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ABSTRACT 

SPLICE SITE PREDICTION USING MACHINE LEARNING 

 

Elham PASHAEI 

 

Department of Computer Engineering 

Ph.D. Thesis 

 

Adviser: Prof. Nizamettin AYDIN 

Co-adviser: Assist. Prof. Alper YILMAZ  

 

Due to an explosion in the quantity of DNA sequences over the past decades, 

development of new methods to accurately detect the genes is vital. The success of 

these methods strongly depends on precise identification of the splice sites. 

In eukaryotic genomes, each gene is composed of exons and introns. During DNA 

transcription only exons of the gene, which contain codes for proteins are transcribed 

into mRNAs. The term splice site refers to the boundary between exon and intron. 

While the intron-exon junction with consensus dinucleotide AG is called acceptor splice 

site, donor splice site refers to an exon-intron junction with consensus dinucleotide GT. 

In DNA sequence, splice site prediction is a search problem for finding donor and 

acceptor boundaries. 

Numerous Machine Learning methods have been used for splice sites identification. 

Performances of these methods highly depend on the DNA encoding approaches, which 

try to extract informative features from DNA sequences. 

Using AdaBoost classifier, we have proposed three new DNA encoding methods for 

feature extraction by combining several approaches that have already proven successful 

in determining pattern around splice sites. the proposed approaches provided 

significantly better performance than eleven current state-of-the-art algorithms based on 

several performance criteria. 

We also have developed an online prediction server (HSSAda) based on proposed 

approach, which is freely available at https://pashaei.shinyapps.io/hssada. The HSSAda 

tool achieved higher accuracy while compared with the existing tools like NNplice, 

WMM, MM1, and MEM, using the independent test set. It is believed the proposed 
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methods can be helpful in discovering location and structure of eukaryotic genes due to 

their high prediction accuracy and simplicity. 

We also assessed the performance of RF as classification and feature selection method 

in splice site prediction domain. The investigation tried to answer the question whether 

RF outperforms SVM, which is the most outstanding classification approach in splice 

site detection, using Markovian encoding methods or not. 

Finally, we proposed another DNA encoding method using SVM and second order 

Markov model for splice site detection. 

Key words: Gene detection, splice sites prediction, machine learning, DNA encoding 
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Son on yılda DNA dizileri miktarında ki olağanüstü artış nedeniyle, genlerin doğru 

tespit edilmesi için yeni yöntemlerin geliştirilmesi hayati önem taşımaktadır. Bu 

yöntemlerin başarısı, uçbirleştirme bölgelerinin kesin olarak tanımlanmasına bağlıdır. 

Ökaryotik genomlarda, her gen eksonlar ve intronlardan oluşur. DNA 

transkripsiyonunda, sadece protein kopyalarını içeren genin ekzonları mRNA'lara 

aktarılır. Uçbirleştirme terimi, ekson ve intron arasındaki sınırı belirtir. Konsensüs 

dinükleotit AG ile yapılan intron-ekson birleşimine, alıcı uçbirleştirme bölgesi denirken, 

verici uçbirleştirme yeri, konsensüs dinükleotit GT ile ekson-intron birleşme noktasını 

belirtir. DNA dizisinde uçbirleştirme öngörüsü, verici ve alıcı sınırlarını bulmak için bir 

arama problemidir. 

Uçbirleştirme yeri tespiti için çok sayıda makine öğrenmesi yöntemi kullanılmıştır. Bu 

yöntemlerin performansları, DNA dizilerinden bilgilendirici özellikler çıkarmaya 

çalışan DNA kodlama yaklaşımlarına büyük ölçüde bağlıdır. 

AdaBoost sınıflandırıcısını kullanarak, uçbirleştirme alanlarının etrafında desen 

belirlemede zaten başarılı olduklarını kanıtlamış birkaç yaklaşımı birleştirerek özellik 

çıkarımı için üç yeni DNA kodlama yöntemi önerdik. Önerilen yaklaşımlar, çeşitli 

performans kriterlerine dayanan mevcut en gelişmiş 11 algoritmadan çok daha iyi bir 

performans sağlamıştır. 

Ayrıca, https://pashaei.shinyapps.io/hssada adresinde erişilebilen, önerilen yaklaşım 

temelli bir çevrimiçi tahmin sunucusu (HSSAda) geliştirdik. HSSAda aracı, bağımsız 

test setini kullanan NNplice, WMM, MM1 ve MEM gibi mevcut araçlar ile 
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karşılaştırıldığında daha yüksek doğruluk elde etmiştir. Önerilen yöntemlerin, ökaryotik 

genlerin yerini ve yapısını keşfetmelerinde, tahminlerinin doğruluğunun ve basitliğinin 

yüksek olması nedeniyle yararlı olabileceği düşünülmektedir. 

Ayrıca, RF'nin uçbirleştirme yeri tahmin alanındaki sınıflandırma ve özellik seçimi 

yöntemi olarak performansını değerlendirdik. Bu araştırmada, Markov kodlama 

yöntemleri kullanan RF'nin uçbirleştirme tespitinde, en başarılı sınıflandırma yaklaşımı 

olan SVM'den üstün  olup olmadığını sorusu yanıtlanmaya çalışılmıştır. 

Son olarak, uçbirleştirme yeri tespiti için SVM ve ikinci dereceden Markov modelini 

kullanan başka bir DNA kodlama yöntemi önerdik. 

Anahtar Kelimeler: Gen algılama, uçbirleştirme yeri tahmin, makine öğrenimi, DNA 

kodlama 
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CHAPTER 1 

 INTRODUCTION 

 Literature Review  

Biological sequence data has been increasing rapidly during the past few decades, so 

there is a crucial need for effective methods to detect genes. The success of these 

methods strongly depends on precise identification of the splice sites. In eukaryotic 

genomes, each gene is composed of exons and introns. During DNA transcription only 

exons of the gene, which contain codes for proteins are transcribed into mRNAs (See 

Figure 1.1). 

 

Figure 1.1 Central dogma of biology 

The splice sites are known as the boundaries between exons and introns. The acceptor 

splice site is defined as transition site from intron to exon and distinguished by 

dinucleotide AG. The donor splice site is defined as transition site from exon to intron 

and distinguished by dinucleotide GT (See Figure 1.2). Large numbers of AG-GT 

consensus sites exist in the eukaryotic genes, but only 0.1%~1% of them are true splice 

sites [1]. In this respect, the splice site prediction is a search problem of identifying 
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whether AG/GT dinucleotide is true splice site or false site, which is known as one of 

the most important and challenging tasks in bioinformatics [1], [2], [3].   

 

Figure 1.2 A pictorial description of splice sites 

1.1.1 Splicing Mechanisms 

Spliceosomes regulate and control splicing mechanism in the cell in order to make 

various proteins. They are composed of enzymes which called small nuclear 

ribonucleoproteins (snRNPs). The snRNPs identify conserved sequences in splice sites 

(AG and GT dinucleotide) and remove the introns. Then, they paste the exon together. 

Figure 1.3 shows the mechanism of splicing.  

Sometimes splicing produces one protein for one gene by putting the exons together in 

one way. While alternative splicing allows the exons to be put together in different ways 

to generate multiple proteins from a single gene (See Figure 1.4). More than 5% of all 

genes can produce variant proteins by alternative splicing. A fine-tuned balance of 

factors regulate splice site selection. In [4], it has been discussed that how changes in 

alternative splicing can be a cause or consequence of human diseases. 

1.1.2 Framework of Methods 

To predict the splice site, approximately all of the proposed methods consist of three 

main steps; proper encoding scheme (feature extraction), feature selection (optionally), 

and classification. Machine learning methods are used to detect splice site 

(classification step). The input of machine learning classifiers is numerical, whereas the 

information of DNA sequences is given as strings. Therefore, encoding the DNA 

sequence into numbers is an initial and main task of splice site prediction (feature 

extraction step) [5]. The probabilistic encoding approaches such as the zero order 

Markov model (MM0), the first order Markov model (MM1), the second order Markov 

model (MM2), and the Markov Chain Model (MCM) are so famous and high usage 

methods [1], [6], [7], [8], [9], [10], [11], [12], [13], [14]. 
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Figure 1.3 Splicing process in cells 

 

Figure 1.4 Alternative splicing  

The problem of splice site detection is subdivided into two separate classification 

process- donor splice site (5′ss) prediction and acceptor splice site (3′ss) prediction. So, 
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two different models are constructed for each of them, which consist of three main 

steps. These processing steps are outlined in the following [13]: 

 Feature extraction: Efficient DNA encoding schemes are used to provide as 

much information as the DNA sequences have. 

 Feature selection: Choosing a relevant subset of features allows for a faster 

classification and better prediction accuracy.  

 Classification: Machine Learning (ML) classifiers are trained on the provided 

features in order to discriminate true splice sites from false sites.    

Steps of overall approaches for predicting splice sites have been described in Figure 1.5. 

 

Figure 1.5 Overall steps of the methods for predicting DNA splice sites 

1.1.3  Related Works 

The problem of the splice site recognition in the literature has been categorized into two 

groups: splice type identification (STI) and splice site prediction (SSP).  For any given 

DNA sequences, the STI considers a classification system that predicts whether the 

sequence belongs to an intron-exon (IE) boundary, exon-intron (EI) boundary or neither 

of them. However, the SSP provides a classification system which identifies whether a 

GT/AG dinucleotide is a true splice site or not. There are few studies that review and 

classify the splice site prediction methods. In [15], the SVM-based methods have been 

investigated, while the neural network-based methods have been reviewed in [16]. 

 Splice Type Identification 

 Given a position in the middle of a DNA sequence, we try to decide whether this is an 

IE boundary, EI boundary or neither (N) (See Figure 1.6). To solve this problem, a 

knowledge-based artificial neural network (KBANN) proposed in [17]. It is a hybrid 

method which feeds inference propositional rules from the biological domain into the 

ANN. In [18], the European Community StatLog project utilized various classification 

approaches such as k-NN, C4.5, CART, NaïveBayes for primate splice site 

identification.  
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 A batch-relevance based artificial intelligent (BRAIN) algorithm was introduced in 

[19]. This approach after replacing each nucleotide in the DNA sequence with 4-bit 

binary (orthonormal sparse) encoding, computes a relevance coefficient for each 

attribute in an iteration way using Boolean classification rules. Then, the performance 

of the BRAIN was increased by combing it with the NN and discriminative analysis 

(DA) method. 

In [20], an algorithm based on novel motif model and pattern matching was developed 

for classification and detection of donor splice junction. This motif model considers 10 

motifs for each sequence. The length of each motif is not less than 6 nucleotide and 

contains GT. Then, a motif Library was constructed. According to the score of pattern 

matching approach, the classification was performed. In [21], a knowledge-based 

cascade correlation algorithm (KBCC) was described. This method was an extension of 

CC learning algorithm [22]. 

 

Figure 1.6 Flow diagram of eukaryotic splice type identification 

The KBANN was able to find solve the problem by incorporating all the rules of 

determining splice junction, while KBCC showed that not all the rules are necessary in 

finding the best solution for splice-junction determination problem. A multiclass SVM 

method [23] was proposed for the Human splice type identification without any 

comparison with other works. Besides, the performance of the ensemble multiclass 

SVM was investigated. The results indicated that bagging SVM does not improve the 

accuracy. Since the input of SVM classifier is numerical, each nucleotide in the DNA 
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sequence was represented by a vector of binary values (A= (0 0 0 1), C = (0 0 1 0), G = 

(0 1 0 0) and T = (1 0 0 0)) in this study. In [24], effect of five noise-filtering technique 

which two of them can also identify redundant instances was investigated. Then, the 

obtained features were fed to multiclass SVM and decision tree C4.5. The best result 

was reported on multiclass SVM without preprocessing steps. 

A hierarchical multi-classifier (HM) method [25] was defined by designing a four-stage 

pattern recognition scheme. After encoding each nucleotide using 8-bit binary, a feature 

ranking method and a dimensional reduction method were used to provide the input 

features. These features fed to SubSpace classifier, Edit Distance classifier, and Linear 

SVM in a hierarchical way, somehow the instances which rejected at each step are 

passed to the next classifier. The results of this method are superior to all methods in the 

literature. In [26], the SVM, Back-propagation NN and unsupervised Kohonen’s Self-

Organizing Map, (KSOM) approaches were employed for the recognition of splice 

junction sites in Human DNA sequences. It was demonstrated that the SVM yielded 

better prediction than others. 

A new DNA encoding method based on k-mer frequency was proposed in [27]. In this 

study, the problem of splice site junction was considered in binary format which tried to 

distinguish IE from EI. The result showed that the 6-mer frequency of ACGT 

nucleotides when feeding to SVM light, which was extended with power series kernel, 

produced good accuracy.  In [28], an unsupervised splice site prediction technique 

based on association analysis, namely assoDNA, was introduced. The method divides 

the training dataset into three subsets according to the class value and then generates 

frequent patterns. The advantage of the proposed method is that it can contain 

nucleotides at the arbitrary position in addition to the contiguous base sequences. The 

proposed method was compared with C4.5, naïve Bayes (NB), Instance-based method 

(with 10 nearest neighbors) and the SVM. From the results, the assoDNA produced a 

significantly high recall prediction. 

In [29], a novel encoding method was proposed to deal with ambiguous values in the 

DNA sequences. The proposed encoding system used the 4-bit binary encoding for each 

nucleotide (A, C, T, G), while it used probability to encode ambiguous values (D, S, R, 

N) in DNA sequences. Then, a hyper decision tree structure (DTS) was used for 

classification in which K-Nearest Neighbors (KNN) and SVM were utilized in each 
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node. The KNN in this study used probability Hamming distance measure at the first 

node of the tree to distinguish the ‘N’ from EI and IE.    

In [30], a new method was introduced based on genetic algorithm (GA) and a new 

version of Naive Bayes (NB) classifier, namely averaged one-dependence estimators 

with subsumption resolution (AODEsr). It works without any prior knowledge by 

utilizing the GA for selecting informative features and the AODEsr for the classification 

task. In [31], an NN based tree-structured pattern classifier, namely NNTree, was 

introduced. The method utilized multilayer perceptron (MLP) with back-propagation 

(BP) algorithm at each node of the tree. A new criterion was used as a splitting criterion 

instead of using the information gain ratio. The performance of the NNTree compared 

with different classification algorithms, namely Bayesian, C4.5, MLP, and cellular 

automata (CA). The results showed that the classification accuracy of the NNTree was 

higher than the others. 

 The UCI Molecular Biology (Splice-Junction Gene Sequences) Data Set [32] is a 

standard dataset which contains 3190 patterns. The length of each pattern is 60 

nucleotides. Approximately, all of the mentioned works have utilized it for evaluating 

and comparing their approaches. According to the results that have been reported in the 

literature, the performance ranking of the methods from better to worse is: HM> DTS> 

multiclass SVM> AODEsr> NNTree> NNBRAIN > BRAIN> KBANN> MLP> ID3> 

NN. This ranking has been provided by considering test error rates.  

 Splice Site Prediction Methods 

 To solve the splice site prediction problem, we try to distinguish real splice sites (AG 

or GT) from the bulk of pseudo splice sites (non-sites). Since the dinucleotide AG or 

GT that correspond to real splice sites in the DNA sequence are less than 1%, this 

problem is one of the most challenging tasks in bioinformatics.  

A large number of computational methods are available in order to accurately detect the 

splice sites. The weight matrix method (WMM) [33], [34] and weight array method 

(WAM) [35], also known as MM1, are the earliest and most weighty methods which 

utilize positional features and a threshold to predict splice sites. Baten [7] improved 

prediction accuracy of MM1 by using it as a powerful DNA encoding method and 

feeding the produced features to SVM (MM1-SVM). Another similar method is 

Reduced MM1-SVM [1] which combines only informative features with the SVM. The 
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Fisher Score (F-score) feature ranking method [36] was used for feature selection in this 

approach. Zhang [5] used a Bayes feature mapping as DNA encoding method and 

merge it with the linear SVM (B-SVM) to increase accuracy and decrease time 

complexity of splice site prediction. The disadvantage of this encoding method is that 

dependency between nucleotides is not considered. Huang [37] proposed four different 

encoding approaches, which were mono nucleotide (MN), pairwise nucleotide (PN), the 

combination of the MN with the frequency difference between true and false sites 

(FDTF), and the combination of the PN with the FDTF. The SVM classifier was applied 

to predict splice sites. The experimental results showed that PN-FDTF had the best 

performance among the others. A modified version of PN-FDTF encoding method was 

combined with RF (P-RF), which exhibited good performance in prediction of donor 

sites [38]. Sonnenburg [3] utilized SVM classifier without encoding methods for splice 

sites detection by applying weighted degree kernel (WD)  and shift weighted degree 

kernel (WDS). In [11], a length variable Markov model (LVMM) was proposed. The 

method utilizes second order Markov model (MM2) for extracting DNA features and 

can choose a subset of informative features by considering the ratio of likelihood at 

each position. The proposed method produces good accuracy but determining the 

threshold parameters of the approach is a difficult task. In [13], the MM2 encoding 

method was combined with the SVM and principle feature analysis was used as feature 

selection method (MM2F-SVM). In [39], the SVM was replaced by Random Forest 

classifier (MM2-RF) and the accuracy was highly increased. However, considering high 

Markov model in the DNA encoding makes the approach complex and unrealistic [40]. 

Another DNA encoding method which is known as MCM is a combination of the MM1 

and the MM2 [10]. In this method, the NN was used as the classifier. In [14], the SVM 

was employed instead of the NN and accuracy of the approach was improved (MCM-

SVM). The MCM encoding method divides the sequences into three segments. 

However, this division has a direct effect on the performance of the method and it is not 

easy work. Wei [41] proposed three novel DNA encoding approaches which were 

orthogonal encoding, codon encoding, and sequential information. In this work, the 

linear SVM was used as the classifier (ECS-LSVM).  

In [12], the sequential information under the name of distribution of tri-nucleotides was 

merged with MM1 encoding method using both true and false sites (DM). F-score 

feature ranking method was used to select informative feature and the SVM was 
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employed for classification task (DM-SVM). In [40], new encoding methods based on 

the hybrid of density information of each nucleotide along with positional and chemical 

property (DPCH-SVM) were proposed. The MSC+Pos(+APR)-SVM [2] approach, 

which is hybrid of multi scale sequence component (MSC) encoding, position features 

(Pos) and adjacent position relationship (APR) encoding method along with the SVM, is 

the most outstanding method in Human splice site prediction domain with regard to its 

high-throughput accuracy. However, the number of useless features that are produced 

by the MSC encoding alone is too many. Consequently, the method requires high 

computational cost [2]. Also, the associated encoding approach requires several 

parameters tuning which impose additional time complexity to the method.  

 In-Silico Tools on Splice Site Detection 

There are lots of in silico tools that predict potential splice sites (Table 1.1). Recently, 

the main application of these tools has changed from the precise recognition of splicing 

signals to detect the transcriptional impact of the mutation on known splice sites due to 

high dependency (up to 15%) of human genetic diseases to splicing defects [42].  

Most tools receive single or multi-DNA sequences as the input with or without 

specifying the position of splice sites. The length of the sequences should be fixed by 

the user in the former condition whereas in the latter condition potential splice sites are 

seek automatically through the whole length of the input sequence. The output of the 

prediction tools should be precisely interpreted when are employed in clinical practice. 

Most tools produce a score for exhibiting the potential of the predicted splice sites. A 

higher score always indicates a higher probability of a site being a true splice site. A 

brief description of the algorithms which have been employed in the tools is useful for 

understanding their advantages and disadvantages. 

In 1987, Shapiro and Senapathy [43] identified splice sites by scoring and ranking the 

DNA sequences using k-mer position weighted matrix model (PWM) which was used 

in Splice-Site Analyzer Tool. In contrast to PWM which assume independence among 

all positions, an improved PWM, which consider higher nucleotides frequency in 

certain site positions and the mutual correlation between nucleotides of different site 

positions, was introduced by Rogozin and Milanesi to produce SpliceView tool [44]. 

Backpropagation NN was first addressed by Brunak et al [45] for recognition of splice 

sites. They encoded the sequence of nucleotides using 4-bit sparse schema and gave 
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them as the input to the one hidden layer NN (NetGene). The method has utilized a 

threshold and a cutoff level on the outputs in order to classify splice sites. This cut-off 

level was obtained by prediction of the coding region based on the base compositions 

(codon usage) to control false positive rate in the proposed method. Due to the 

combination of the NN with predicted coding region, it is called a joint prediction 

schema. NetPlantGene tool, which is a combination of the aforementioned method with 

a rule-based system in order to increase accuracy, was used to predict splice sites of 

plants DNA sequences in ref [9]. This method consists of two steps. The first step is 

prediction step where a global detection of coding regions regulate a cut-off level for 

local prediction of splice sites utilized hybrid of sparse encoding and NN. The second 

step is refinement step using rules that obtained by analysis of mistakes which occur at 

the first step [16]. A further improvement in acceptor splice site in the previous method 

was obtained by incorporating branch points to reduce false positive rates in NetGene2 

tool [46]. HMM was used to predict branch points and another NN was added to the 

model to increase the performance of the model. 

NNSplice is another NN based splice site identification method which has been utilized 

in Genie program for gene finding [16]. A 4-bit sparse encoding method with a window 

size of 10 and 40 nucleotides for donor and acceptor site respectively, was fed to back 

propagation NN to predict splice sites. Both true and false splice sites were used to train 

the NN. Later on, Reese et al [8] improved the model by the hybrid of the NN with 16-

bit code per nucleotide pair encoding scheme.  

The maximal dependence decomposition model, which was incorporated in 

GENESCAN [6], is a decision tree based model that captures strong dependencies 

between adjacent and nonadjacent position. Genesplicer [49] improved the previous 

model using Markov model. Spliceport [51] is another tool that utilizes SVM classifier 

to predict splice site. It used feature generation algorithm that automatically captured 

important sequence-based features for feeding to SVM. Finally, MaxEntScan [50] is 

another tool that used maximum entropy model (MEM) to predict splice sites. 
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Table 1.1 Summary of most popular in silico tools for acceptor and donor splice site 

prediction with user-friendly web interface [42] 

 Motivation 

In the past few decades, numerous methods have been proposed to detect the splice 

sites, such as hidden Markov model (HMM) [11], [53], Bayesian networks [54], [55], 

artificial neural network (ANN) [56], [57], support vector machine (SVM) [1], [3], [7], 

[12] and decision trees [58], [59]. However, due to complex dependencies existing 

among the bases around splice sites, the splice site prediction is still a difficult problem, 

i.e., splice site prediction is still a major bottleneck in gene finding [60]. Thus, 

development of new methods to accurately predict the splice sites is important. 

 Contribution of this Thesis 

Generally, the splice site prediction methods are composed of feature extraction and 

classification approaches. DNA encoding methods are used for feature extraction to 

provide the characteristics of the DNA sequences, while ML methods are employed for 

classification part [41]. An efficient DNA encoding method leads to better classification 

accuracy in predicting splice sites [40]. There are many computational approaches for 

identifying splice sites, such as SVM [12], [14], [40], ANN [60], [61], RF [38], [39], 

HMM [11] and Decision Trees [29], which have been utilized different DNA encoding 

Tool  Input Output 

SS Analyzer Tool 

[43] 

 Single/multiple sequences 

 (5′: 9bp (−3 to +6); 3′: 15bp 

(−14 to +1)) 

S & S score (0–100) 

HSPL-RNASPL [47]    

NetPlantGene [9]  - - 

SplicePredictor [48]  Single/multiple sequences *-Value (3–15) determined by 𝑃, 

𝜌, and 𝛾 values 

SpliceView [44]  Single sequence 

 (Length ≤31,000 bp) 

S &S score (0–100) 

NNSplice0.9 [8]  Single/multiple sequences Score (0–1) 

GeneScan [6]  Single sequence  

(Length≤1 million bp) 

Probability score (0–1) 

NetGene2 [46]  Single sequence  

(200bp < length < 80,000bp) 

Confidence score(0–1) 

GeneSplicer [49]    

MaxEntScan[50]  Single/multiple sequences 

(5′: 9bp; 3′:23bp) 

SplicePort [51]  Single/multiple sequences  

(Length ≤30,000 bp) 

Feature generation algorithm score 

Human Splice 

Finder[52] 

 Single sequence  

(Length ≤5,000 bp) 

S & S score (0–100) 
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methods. However, existence of enormous pseudo (false) splice sites compared to real 

(true) sites in genome necessitates developing methods to improve prediction accuracy 

[2]. This Thesis proposed several new methods with improved accuracy for splice site 

prediction. 

1.3.1 Novel DNA Encoding Methods using AdaBoost 

In the class of ensemble learning, Adaptive Boosting (AdaBoost) is a powerful classifier 

that adopts a cleverer way of averaging weak classifiers by increasing the weight of 

misclassified samples at each iteration [62]. Due to its outstanding classification 

accuracy and absence of tuning parameters (except a number of iteration) [63], the 

AdaBoost algorithm has been utilized widely in biology. In [64], a novel method, 

named MirID, was proposed for pre-miRNA classification using the AdaBoost 

algorithm. In another study, Lu et al. presented a new approach for enhancer prediction 

based on the AdaBoost algorithm and shape features of chromatin modifications which 

outperformed previous methods significantly [62]. A cascade AdaBoost based learning 

procedure was adopted by Xie et al. to produce an effective promoter prediction method 

[65]. Recently, the AdaBoost was used for biomarker discovery of microarray data for 

cancer classification [66]. However, our literature search has failed to identify 

documented research related to splice site detection using AdaBoost.  

In this thesis, we have proposed three new DNA encoding methods for feature 

extraction by combining several approaches that have already proven successful in 

determining pattern around splice sites. For given encoding methods, AdaBoost 

classifier outperformed SVM, NN, and RF significantly. Also, the proposed method 

exhibited outstanding performance compared to eleven current state-of-the-art methods 

and several existing tools using two well-known Human splice site datasets, namely 

HS3D and NN269 and an independent test dataset. The developed online prediction 

server (HSSAda) based on proposed approach, which is freely available at 

https://pashaei.shinyapps.io/hssada, is believed to help the biological community for 

easy detection of splice sites. 

Part of this contribution has been published in:  

Pashaei, E. and Aydin, N., (2017). "Prediction of Human splice sites using AdaBoost 

with efficient DNA encoding approaches", Frontiers of Information Technology & 

Electronic Engineering, (under review). 
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Pashaei, E.  Ozen, M., and Aydin, N., (2016). "Splice Sites Prediction of Human 

Genome using AdaBoost", IEEE International Conference on Biomedical and Health 

Informatics (BHI 2016) Las Vegas, USA: 300-303. 

Pashaei, E.  Yilmaz, A.  Ozen, M. and Aydin, N., (2016). "A Novel Method for Splice 

Sites Prediction Using Sequence Component and Hidden Markov Model", 38th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC) Florida, USA: 3076 - 3079. 

Pashaei, E.  Yilmaz, A.  Ozen, M. and Aydin, N., (2016). "Prediction of splice site using 

AdaBoost with a new sequence encoding approach", 2016 IEEE International 

Conference on Systems, Man, and Cybernetics (SMC) Budapest, Hungary: 3853-3858. 

1.3.2 RF for Feature Selection and Classification 

In biology, where structures are described by a large number of features as splice sites, 

the feature selection is an important step towards the classification task. It provides 

useful biological knowledge and allows for a faster and better classification. There are 

few specific works where feature selection techniques have been used in splice site 

prediction domain. Principle feature selection (PFA) is a multivariate filter method that 

has been employed by Maji [13] in Human splice site prediction. F-score feature 

ranking [1], [12] and estimated distribution algorithm (EDA) ranking methods [67] are 

two univariate filter methods that have been applied on human and plants splice sites, 

respectively. Also, the EDA has been utilized as a wrapper approach in [68] which has 

shown good performance in plant splice site prediction. 

RF is among the most popular machine learning methods due to their relatively good 

performance. They also provide method for feature selection [69], [70], [71]. The 

random forest feature ranking (variable importance) has been used in the various 

domain such as integrated analysis of multiple data type [72], biomarker discovery [73] 

and multi-label classification [74]. In this thesis, we investigate the ability of RF feature 

ranking methods on the splice site prediction. 

On the other hand, the SVM classifier is frequently used in prediction of splice sites due 

to its high performance. However, some parameters of SVM classifier such as penalty 

parameter, the kernel type, and kernel parameters, must be tuned. Parameter tuning can 

be time-consuming when there are multiple parameters involved in the training. So, one 
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should be cautious whether SVM is a suitable method for genome-wide splice sites 

prediction or not [11].  Keeping the above in view, we have combined RF as an efficient 

and fast classifier with three predefined encoding methods (MM1 [7], MM2 [13], MCM 

[10], [14], [61]) and compared their results with the SVM. We have also have evaluated 

the efficiency of proposed methods by making a comparison with some current 

methods. The experimental results show that the RF outperforms the SVM when the 

same Markovian encoding methods are used on both donor and acceptor datasets. 

Furthermore, the RF classifier performs much faster than the SVM classifier in 

detecting the splice sites, which make it suitable for use in the genome-wide project. 

Part of this contribution has been published in:     

Pashaei, E.  Ozen, M., and Aydin, N., (2017). "Splice site identification in the human 

genome using random forest", Health and Technology, 7: 141-152.     

Pashaei, E.  Ozen, M., and Aydin, N., (2016). "Random Forest in Splice Site Prediction 

of Human Genome", XIV Mediterranean Conference on Medical and Biological 

Engineering and Computing Paphos, Cyprus: Springer International Publishing: 512-

517.  

1.3.3 A Novel DNA Encoding Method using SVM 

 We proposed another novel efficient DNA encoding methods based on MM2 using 

SVM, which outperform several well-known current methods. This contribution has 

been published in: 

 Pashaei, E.  Yilmaz, A. and Aydin, N., (2016). "A Combined SVM and Markov Model 

approach for Splice Site Identification", 6th IEEE International Conference on 

Computer and Knowledge Engineering (ICCKE2016) Mashhad, Iran: 200-2004. 

1.3.4 Organization 

The rest of the thesis is organized as follows: We presented biological background 

relevant to our issue and related works in Chapter 1. We explained encoding methods, 

the machine learning algorithms used to predict splice sites and feature ranking methods 

in Chapter 2. In Chapter 3, we described our proposed methods. The experimental 

results were presented in Chapter 4. Chapter 5 provided conclusion.  
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Figure 1.7 The overall structure of the contribution 
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CHAPTER 2 

 MATERIALS AND METHODS 

 Evaluation Datasets 

We have utilized the well-known HS3D dataset [75] to evaluate the performance of the 

proposed methods. The HS3D consists of acceptor and donor splice sites. The 

sequences in both sites have the length of 140 nucleotides. The Acceptor segment is 

composed of 2880 true and 329374 false sequences, whereas the donor segment 

contains 2796 true and 271937 false sequences. The consensus dinucleotide AG has 

been placed at positions 69 and 70 for acceptor site, while consensus dinucleotide GT of 

donor sites has been located in positions 71 and 72. The performance of proposed 

methods is examined on both donor and acceptor sites separately. Two balanced and 

imbalanced datasets are extracted from both acceptor and donor sites. The balanced 

datasets (1:1) are constructed by selecting all of the true sequences and randomly 

choosing the same amount of sequences from false sites. However, the imbalanced 

datasets (1:10) are made by choosing all of the true sequences and randomly picking up 

10 times more false splice sites than the true one.  

To examine stability and reproducibility of the proposed methods, additional evaluation 

was performed on NN269 benchmark dataset [8]. This dataset has been split into the 

training set and test set for both acceptor and donor sites. The training dataset is made 

up of 1116 true acceptor sequences, 4672 false acceptor sequences, 1116 true donor 

sequences, and 4140 false donor sequences, while test dataset contains 208 true 

acceptor sequences, 881 false acceptor sequences, 208 true donor sequences, and 782 

false donor sequences. The acceptor sequences have the length of 90 nucleotides, 

whereas the donor sequences have the length of 15 nucleotides. The consensus 
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dinucleotide AG has been placed at positions 69 and 70 for acceptor site, while 

consensus dinucleotide GT of donor sites has been located in positions 8 and 9. The 

training and test datasets are separate in the NN269. 

We utilized an independent test set for comparing the performance of proposed methods 

with other tools. We prepared this dataset by using two different genes, namely 

AF102137.1 and M63962.1 downloaded from the Genebank [38]. Each gene has twenty 

true sites (without considering start and end of the gene) and many false sites. We 

constructed an imbalanced dataset by choosing all the true sites and randomly selected 4 

times more false splice sites than the true one from both of the genes. Hence, the dataset 

consists of 40 confirmed true splice sites and 160 false splice sites for both donor and 

acceptor sites. The length and position of the dinucleotides are varied due to the 

differences in the format of the inputs of the tools for each of the donor and acceptor 

splice sites. 

 Feature Extraction  

The DNA sequences are composed of four bases which are adenine (A), cytosine (C), 

guanine (G) and thymine (T). The DNA sequences are normally in string format. They 

must be converted to numerical feature vectors before feeding to classifiers. Therefore, 

it is necessary to employ DNA encoding methods to capture information from the DNA 

sequences.   

2.2.1 Sparse Encoding Method 

There are many DNA encoding methods in splice site prediction domain. The simplest 

encoding method allocates two binary digits to each nucleotide (A=00, C=01, G=10, 

T=11). However, it cannot reveal characteristics of DNA sequences. Another simple 

encoding method that assigns four binary digits to each nucleotide (A=0001, C=0010, 

G=0100, T=1000) is called sparse encoding method. The probability of natural mutation 

of DNA sequences cannot be considered using this approach [40]. 

2.2.2 Position Weighted Matrix Model 

The position weighted matrix model (PWM), also called position specific weighted 

matrix (PSWM), is one of the well-known methods in bioinformatics for discovering 
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motifs in nucleotide sequences [76]. There is a matrix element for all possible 

nucleotides (bases) at every position. Each element in PWM model, 𝑚𝑖𝑗, is computed as  

𝑚𝑖𝑗 = log2 (
𝑃𝑖𝑗

𝑃𝑖
)               (2.1) 

where  𝑃𝑖 is the background frequency of nucleotide 𝑖 (0.25 for all bases in below 

example) and 𝑃𝑖𝑗 is the position-specific nucleotide frequency for nucleotide 𝑖 at 

position 𝑗.  Figure 2.1 shows an example of calculating PWM encoding methods for 

several aligned sequences.  

 

Figure 2.1 Example of the PWM model on several DNA aligned sequences [77] 

2.2.3 Markovian Encoding Methods 

The Markov model describes a sequence of possible states, in which the probability of 

each state depends only on the preceding states. In this thesis, MM1 encoding [1], [7], 

[12], MM2 encoding [13], and MCM [10], [14] encoding have been used. 

The MM1 encoding method [1], [7], [12] is one of the well-known approaches which 

calculates the value of bases according to preceding base. The position specific 

probabilistic parameters are used to reveal the correlation between bases (nucleotides). 

Consider a sequence (𝑠1, 𝑠2, … , 𝑠𝑛) of length 𝑛. The nucleotide 𝑠𝑖 is a realization of the 

𝑖𝑡ℎ state variable in Markov chain. Each state is characterized by a position-specific 

probability parameter. The set of parameters in first order Markov model and second 

order Markov model are {𝑃(𝑠𝑖|𝑠𝑖−1)} and {𝑃(𝑠𝑖|𝑠𝑖−1, 𝑠𝑖−2)}, respectively. The 

estimation of the model parameters is calculated by (2.2). 

𝑃(𝑠𝑖|𝑠𝑖−1, … , 𝑠𝑖−𝑘) =  
𝑁(𝑠𝑖−𝑘,…,𝑠𝑖)

𝑁(𝑠𝑖−𝑘,…,𝑠𝑖−1)
                       (2.2) 
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where 𝑘 denotes the order of Markov model and 𝑁(𝑠𝑖−𝑘, … , 𝑠𝑖) shows the occurrence 

number of (𝑠𝑖−𝑘, … , 𝑠𝑖). In this study, 𝑘 = 1 and 𝑘 = 2 have been chosen for MM1 and 

MM2. As it is mentioned in [7], to create Markov model only true splice site sequences 

are considered.  Figure 2.2 provided a small example of the MM1 methods in DNA 

sequence. 

 

 Figure 2.2 An example of first order Markov model  

In the DM-SVM [12], its encoding part contains MM1 encoding method that extracts 

associated features by considering both true and false sites and produce 2(𝑙 − 1) 

features, where 𝑙 is the length of the sequence. However, we only take into account true 

splice sites to create the Markov model and subsequently (𝑙 − 1) feature is produced. 

The deficiency of MM1 encoding method is that the whole features of the splice site are 

not revealed by only considering the correlation between adjoining nucleotides.  

The MCM was earlier used by Lio in [10] and again was employed recently in [14], 

[61]. This encoding method utilizes both MM1 and MM2 encoding methods. Each 

sequence is broken down into three parts: signal segment (𝑆𝑆), upstream segment (𝑆𝑈), 

and downstream segment (𝑆𝐷), as shown in Figure 2.3. The signal segment is encoded 

by MM1 and the model is denoted by 𝑀𝑆. The upstream segments and downstream 

segments are encoded using MM2 and denoted by 𝑀𝑈 and 𝑀𝐷, respectively. We also 

define a false model 𝑀𝐹 to characterize the signal segment for false splice sites. The 

final model is a combination of them, that is (𝑀𝑈, 𝑀𝑆, 𝑀𝐹 , 𝑀𝐷).  
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Figure 2.3 Model description of MCM encoding method [61] 

We have set 𝑙𝑈=30, 𝑙𝑆=47, and 𝑙𝐷= 63 bp for donor sites, 𝑙𝑈= 48, 𝑙𝑆=21, and 𝑙𝐷=69bp 

for acceptor site in the HS3D dataset, while we have adjusted 𝑙𝑈=3, 𝑙𝑆=9, and 𝑙𝐷= 3bp 

for donor sites and 𝑙𝑈= 52, 𝑙𝑆=19, and 𝑙𝐷=19bp for acceptor site in the NN269 dataset. 

2.2.4 Frequency Difference based Encoding Methods 

The MN-FDTF encoding method [37], [38]  allocates an integer number to each DNA 

base  (A-1, T-2, G-3, and C-4). Then, two position weighted matrices are calculated 

using the true (TSS) and false splice sites (FSS) by counting the frequency of each 

nucleotide at a given position using (2.3). 

𝑀𝑖𝑗 =
1

𝑛
 ∑ 𝑂𝑖(𝑁𝑡𝑗)

𝑛
𝑡=1  , 𝑖 = 𝐴, 𝑇, 𝐶, 𝐺            (2.3) 

𝑂𝑖(𝑥) = {
1, 𝑖 = 𝑥
0, 𝑒𝑙𝑠𝑒

  ; 𝑗 = 1,2, … 𝑙   

where 𝑛 is the number of sequences in the TSS and FSS, 𝑙 is the length of a sequence 

and 𝑂𝑖(𝑁𝑡𝑗) ∈ {𝐴, 𝐶, 𝐺, 𝑇}. The final encoding matrix is obtained by calculating 

difference between these two weighted matrices. The same process is repeated for PN-

FDTF encoding method [37] with this difference that there are 16 integer numbers for 

assigning to each dinucleotide (AA-1, AG-2, AC-3, AT-4, GA-5, GG-6, GC-7, CA-9, 

CG-10, CC-11, CT-12, TA-13, TG-14, TC-15 and TT-16).  Figure 2.4 provides 

diagrammatic representation of frequency encoding for preparation of training and test 

datasets. 



 

21 

 

 

Figure 2.4 Overview of the process of the FDTD encoding methods [78] 

2.2.5 Position Independent-Component based Encoding Method 

The sequence position independent component (SC) encoding method [2], [27], [78], 

also known as K-mer, breaks the DNA sequences into two parts which are called 

upstream and downstream. Then, the probability of a string of bases 𝛼1𝛼2…𝛼𝑘 that is 

appeared in the sequences is calculated by (2-4). 

𝑃(𝛼1𝛼2…𝛼𝑘) =  
𝑛(𝛼1𝛼2…𝛼𝑘)

(𝑙−𝑘+1)
                     (2.4) 

where 𝑙 is the length of the sequence, each 𝛼𝑖 is one kind of DNA bases and 𝑘 ∈

 {1,2,3,4}. Let 𝑛(𝛼1𝛼2…𝛼𝑘) be the number of times the string (𝛼1𝛼2…𝛼𝑘) occurs in 

the sequence, by shifting one nucleotide position at a time.  There are 4𝑘 features to be 

extracted for each sequence [2]. The algorithm of the SC encoding has been given in 

Algorithm 2.1.  

The reason behind of choosing 𝑘 <= 4 is that although the protein-coding potential of 

transcripts is assessed by considering triplet bases, the regulatory element motifs are 

made up 6 bases. The experimental results in [2] indicate that considering the amount of 

k up to 4 produces satisfactory results.  
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Algorithm 2.1 SC based feature extraction  

01    input: sequences (𝑆1, 𝑆2, … , 𝑆𝑁) 

02    output: feature matrix 𝑆𝐶𝑁∗680
𝑡  

03    begin 

04      for 𝑖 = 1 to 𝑁 do 

05          Separate each sequence 𝑆𝑖 to two parts upstream (𝑢) and downstream (𝑑) 

06          The following sequence component features are extracted for each part by 

using equation (3) : 

07                  Feature vectors 𝑆𝐶 for 𝑘 = 1,  𝑆𝐶𝑖∗4
𝑢 , 𝑆𝐶𝑖∗4

𝑑   

08                  Feature vectors 𝑆𝐶 for 𝑘 = 2,  𝑆𝐶𝑖∗16
𝑢 , 𝑆𝐶𝑖∗16

𝑑  

09                  Feature vectors 𝑆𝐶 for 𝑘 = 3,  𝑆𝐶𝑖∗64
𝑢 , 𝑆𝐶𝑖∗64

𝑑  

10                  Feature vectors 𝑆𝐶 for 𝑘 = 4,  𝑆𝐶𝑖∗256
𝑢 , 𝑆𝐶𝑖∗256

𝑑  

11      end for 

12      Merge all of them: 𝑆𝐶𝑁∗680
𝑡 = ∑ 𝑆𝐶

𝑁∗4𝑘
𝑢4

𝑘=1  + ∑ 𝑆𝐶
𝑁∗4𝑘
𝑑4

𝑘=1  

13  end 

 

2.2.6 Distribution of Triple Nucleotide Encoding method  

The distribution of triple nucleotide (DT) encoding method has been explained in 

detailed in [12], [41]. The aim of this method is to find the behavior of candidate splice 

sites in triplet format to help their recognition. There are 64 triplet bases for a DNA 

sequence. The pseudo-code of DT encoding method has been exhibited in Algorithm 

2.2. 

Algorithm 2.2 DT based feature extraction 

01     input: sequences (𝑆1, 𝑆2, … , 𝑆𝑁) 

02     output: feature matrix 𝑆𝐼𝑁∗128
𝑡  

03   begin 

04       for 𝑖 = 1 to 𝑁 do 

05          Separate each sequence 𝑆𝑖 to two parts upstream (𝑢) and downstream (𝑑) 

06          The sequence information features are extracted for each part by searching 

and locating each 64  distinct triplet bases 
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 Algorithm 2.2 (cont’d) 

07                    for 𝑗 = 1 to 64 do             

08  Calculate  𝛼𝑟 = 1 𝑝𝑟 − 𝑝𝑟−1 ,⁄  1 ≤ 𝑟 ≤ 𝑚  where 𝑝𝑟 is the location of 

the 𝑟𝑡ℎ occurrence of triplet 𝑗, 𝑝0 = 0 and  𝑚 stands for the number of 

occurrences of triplet 𝑗          

09  Calculate partial sum of  𝛼𝑟:  𝛽𝑗 = ∑ 𝛼𝑟 
𝑗
𝑟=1 , 1 ≤ 𝑗 ≤ 𝑚 

10  Calculate the Pseudo-Entropy (PE) of discrete probability distribution 

using 𝑃𝐸(𝑞1, 𝑞2, … , 𝑞𝑚) =  ∑ 𝑞𝑘𝑒
1−𝑞𝑘𝑚

𝑘=1  , where  𝑞𝑘 = 𝛽𝑘/∑ 𝛽𝑘
𝑚
𝑘=1  

and ∑ 𝑞𝑘 = 1𝑚
𝑘=1    

11               end for 

12         Merge upstream and downstream of each sequence: 𝑆𝐼𝑖∗128 = 𝑃𝐸𝑢∗64 + 𝑃𝐸𝑑∗64 

13     end for 

14     end 

 Feature Selection 

While feature extraction methods transform the DNA sequences into features, which 

will be the input of machine learning methods, the feature selection methods remove all 

the redundant features with the aim of increasing classification accuracy and reducing 

computational complexity. Feature selection techniques by considering the method’s 

output can be divided into two groups; wrapper methods and filter methods [79], [80]. 

The wrapper methods pick up the feature subset based on classifiers performance. 

However, the filter methods assess the relevance of features via univariate statistical 

criteria instead of cross-validation performance. So, the wrapper methods give better 

performance result than filter methods due to taking into account features dependencies 

and directly interacting with the classifier. However, they are computationally more 

expensive than filter approaches [80]. On the other hand, the filter methods are known 

as the fast, rapidly scalable and efficient feature selection approaches in bioinformatics 

[79], [80]. There are two types of filter methods, univariate and multivariate methods. 

Most filter methods in the literature are univariate [79]. Multivariate filter methods can 

find relationships among the features, whereas univariate methods consider each feature 

individually. Therefore, multivariate filter methods can not disclose mutual information 

between features [81]. There are many various wrapper and filter approaches in the 

literature. Particle swarm optimization (PSO), Genetic algorithms (GA), sequential 
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forward and backward selection are some examples of the wrapper approach, while chi-

square, correlation coefficient, Fisher score (F-score) feature ranking are some examples 

of filter approaches. 

2.3.1 Fisher Score Feature Ranking Method 

Feature selection has been performed in splice site prediction domain mostly through F-

score ranking method [1], [12]. The feature ranking methods typically assign a weight 

to each feature and rank them accordingly. Then informative features can be selected 

and low-scoring features are removed. F-score is a simple univariate filter approach, 

which is used for ranking features according to their discriminative powers. Given 

training instance, F-score ranking method is defined as the following: 

𝐹(𝑥𝑗) =  |
�̅�𝑗
(+)
−�̅�𝑗

(−)

𝜎𝑗
+−𝜎𝑗

+ |                         (2.5) 

Given a dataset 𝑋𝑁∗𝐻 with 𝑁 sequences and 𝐻 features, we calculate Fisher score for 

each feature 𝑥𝑗, 𝑗 = 1,2,… , 𝐻, by computing mean and variance of the both positive and 

negative class labels of the associated feature. The high F-score value of an attribute 

demonstrates that this attribute has more discriminative power [36]. 

 When the F-score of each feature was computed, we have to find an optimal threshold 

for choosing a subset of features whose discriminative powers are the highest. In this 

study, after calculating F-score of each feature, the average F-score value of all features 

is considered as the threshold. Thus, the features whose F-scores are more than the 

threshold are selected and a new subset of features is constructed. 

2.3.2 Random Forest Feature Ranking Method 

Ranking of variables can be obtained by utilizing the mechanism of random forest. Each 

tree in the random forest is constructed on 2/3 of the training data which are drawn 

randomly with replacement (bootstrap). The split in each node of the trees is selected 

from a subset of variables (features). After building trees of the forest, each tree is tested 

on the 1/3 of the samples which have not been selected for bootstrap. These samples are 

called the Out-Of-Bag (OOB) instances and error of predictive performance of them is 

shown with 𝐸𝑟𝑟(𝑂𝑂𝐵). The OOB is used for ranking variables by permuting each 

variable (𝑗) one-by-one in OOB dataset of all the trees and calculating error of 
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predictive performance of the permuted version of OOB data (𝐸𝑟𝑟𝑗)). Subtraction of 

these errors is calculated at the next step. Ultimately, the average error of subtraction 

results and associated variances are measured. Algorithm 2.3 explains steps of 

calculating the ranking of the features using RF clearly. The “FSelector” R package has 

been used for implementation of RF feature ranking method. More detailed explanation 

on RF can be found in [74], [82].  

Algorithm 2.3 RF feature ranking method 

01 input: training dataset 𝐷𝑁∗𝑀 , number of trees (𝑘) in forest, size of feature subset 

(𝑚) that is considered at each node during tree construction 

02 output: Importance of each feature 

03 begin 

04 for 𝑖 = 1 to 𝑘 do 

05  Draw a bootstrap sample of size 𝑁 from the training dataset. 

06  Grow a random-forest tree 𝑇𝑖 to the 2/3 of bootstrapped data 

07  Give the leftover 1/3 of samples (called OOB) to the tree 𝑇𝑖, and calculate 

the error rate 𝐸𝑟𝑟(𝑂𝐵𝐵) 

08        for 𝑗 = 1 to 𝑀 do //  for each feature 𝑗 ∈ 𝑀 

09  Permute the value of feature 𝑗 randomly for the OOB samples  

10  Compute the error rate for permuted version of OBB samples 𝐸𝑟𝑟𝑗 

using tree 𝑇𝑖 

11  Calculate 𝑑𝑗 = 𝐸𝑟𝑟𝑗 − 𝐸𝑟𝑟(𝑂𝐵𝐵) 

12       end For 

13 end for 

14 for 𝑗 = 1 to 𝑀 do  

15  Aggregate total error rate from all trees and calculate variance for each 

feature 

       �̂� =
1

𝑘
∑ 𝑑𝑖

𝑗𝑘
𝑖=1    and  𝑆𝑑 =

1

𝑘−1
∑ (𝑑𝑖

𝑗
− �̂�)2𝑘

𝑖=1  

16  Calculate variable importance   𝑣𝑗= �̂� 𝑆𝑑⁄  

17 end for 

18 end 



 

26 

 

 Classification Methods 

2.4.1 AdaBoost Classifier 

The AdaBoost algorithm is a machine learning meta-algorithm [62], which chooses a 

weak classifier (in this case decision tree) and continuously refines itself by rising the 

weights of the falsely classified samples at each iteration [83], which can dramatically 

improve the accuracy of the AdaBoost. Figure 2.5 illustrates how AdaBoost works and 

how a set of the weak classifier can be strong classifier ℎ𝑓𝑖𝑛(𝑥). 

 

Figure 2.5 Illustration of AdaBoost classifier 

The AdaBoost has some characteristics that make it so good for prediction task, such as 

its capability in utilizing many different classifiers, not being prone to overfitting, and 

easy implementation. There is various type of boosting algorithms which mainly differ 

in the ways that their errors represent and weights update. One of the well-known 

versions of the AdaBoost classifier is AdaBoost.M1 [84], [85], which has been 

employed in this study. The pseudo code for AdaBoost.M1 has been given in Algorithm 

2.4.  

The AdaBoost classifier requires only one parameter (number of iterations) to tune. The 

accuracy of the AdaBoost classifier increases by increasing the number of iterations. 

Consequently, training time (computational cost) also increases. We should note that 

there should be a stopping time for AdaBoost, i.e. the point from which test error starts 

to increase with the number of iterations [86]. 
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Algorithm 2.4 Pseudo code of AdaBoost.M1 

01   input: dataset of 𝑚 samples  < (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) >  with labels 𝑦𝑖  ∈ 𝑌 =

{1,… ,𝑚} 

02    initialize: 𝐷1(𝑖) = 1/𝑚  such that  𝑖 = 1,… , 𝑇 

03    begin 

04       for 𝑖 = 1 to 𝑇 do 

05            Call weaklearn using distribution 𝐷𝑡 

06            Get back a hypothesis ℎ𝑡: 𝑋 ⟶ 𝑌 

07            Calculate the error of ℎ𝑡: 𝜖𝑡 = ∑  𝐷𝑡(𝑖)𝑖:ℎ𝑡(𝑥𝑖)≠𝑦𝑖
 

08            If  𝜖𝑡 > 1 2⁄  , then set 𝑇 = 𝑡 − 1 and abort loop 

09            Set 𝛽𝑡 = 𝜖𝑡 (1 − 𝜖𝑡)⁄  

10      
Update distribution 𝐷𝑡:  Dt+1(i) 

Dt(i)

Zt
× {

β
t
      if ht(xi)=y

i

1        otherwise
   where 𝑍𝑡 is a 

normalization constant 

11      end for 

12    output: the final hypothesis:  ℎ𝑓𝑖𝑛(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌  ∑ 𝑙𝑜𝑔
1

𝛽𝑡
𝑡:ℎ𝑡(𝑥)=𝑦  

In order to prevent overfitting, early stopping has been emphasized by the statistics 

community [87]. For tuning the parameter of AdaBoost classifier, we have examined a 

definite range of numbers according to the length of sequences. For instance, the range 

has been set between 50 and 400 by step of 50 for the HS3D dataset. The maximum 

number of iteration has been considered 400 to achieve the model that not only has 

satisfactory prediction accuracy but also has a lower time cost. 

We compared the performance of the AdaBoost.M1 with SVM [88], NN [89] and RF 

[90], because these techniques have been widely used for prediction in bioinformatics 

[38].  

2.4.2 SVM Classifier 

The SVM classifier has excellent empirical performance in many domains [91] and 

frequently used for detecting the splice sites [40]. The underlying idea of SVM 

classifier is to transform the input vector into a high-dimension Hilbert space and 

seeking a separating maximum margin hyperplane in this place (See Figure 2.6) 
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Figure 2.6 Maximum margin hyperplane and margins for an SVM trained with samples 

from two classes 

The SVM classifier was trained with a radial basis function (RBF) kernel, while a grid-

based search method was used to seek optimal parameters of the kernel (the soft margin 

parameter 𝐶 and the Kernel parameter 𝛾). Figure 2.7 explains the flowchart of the 

tuning process. 

2.4.3 NN Classifier 

The NN is another classifier that is frequently used in splice site prediction because of 

its ability to capture and represent complex input-output relationships [16]. The NN is 

an information processing model, which is composed of a large interconnected group of 

artificial neurons. The structure of an NN is represented as multiple layers of these 

neurons working in parallel to solve a specific problem [92].  

In the NN model, three parameters which are “size”, “decay” and “maxit” should be 

tuned. The “size” parameters stand for the number of units in the hidden layers, while 

the “decay” and “maxit” parameters demonstrate weight degradation and maximum 

number of iteration. Again, a grid-based search approach was utilized for finding 

optimal values. 
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Figure 2.7 Flowchart of SVM tuning process 

2.4.4 RF Classifier 

The RF classifier, which has been introduced by Breiman in 2001[90], is an ensemble 

learning method based on decision tree which has been utilized in splice site prediction 

[38], [39] due to its high efficiency in prediction accuracy and time complexity. Each 

tree in the forest is trained by randomly selecting samples with replacement (bootstrap) 

from total samples of the original dataset. The rest of the samples are used as the test 

set. A single decision tree uses randomly 𝑚 number of features from total 𝑀 features in 

splitting each node (mtry).  A random forest with 𝑘 decision tree (ntree) repeats above 

procedure for each decision tree and final classification is obtained by the voting result 

of these 𝑘 decision trees on testing data. Figure 2.8 shows RF framework using two 

trees, while Algorithm 2.5 describes the steps of Random Forest classifier.  
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Figure 2.8 Illustration of a random forest [93] 

Algorithm 2.5 RF classifier framework 

01 input: training dataset 𝐷𝑁∗𝑀 , number of trees (𝑘) in forest, size of feature subset 

(𝑚) that is considered at each node during tree construction 

02 begin 

03   for 𝑖 = 1 to 𝑘 do 

04  Draw a bootstrap sample of size 𝑁 from the training dataset. 

05  Grow a random-forest tree 𝑇𝑖 to the 2/3 of bootstrapped data, by recursively 

repeating the following steps for each terminal node of the tree until the 

minimum node size 𝑛𝑚𝑖𝑛 is reached. 

06  Select 𝑚 features at random from total 𝑀 features. 

07  Pick the best feature/split-point among the 𝑚. 

08  Split the node into two daughter nodes. 

09   end for 

10 output the ensemble of trees  {𝑇𝑖}1
𝑘.  

11 end 

12 To make a prediction at the new point 𝑥:    

 �̂�𝑅𝐹
𝑘 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {�̂�𝑖(𝑥)}1

𝑘
   , let �̂�𝑖(𝑥) be the class prediction of the 𝑖th 

tree in RF. 

We have implemented Random Forest algorithm using “Random Forest” package in R 

software. The Random Forest has two parameters for tuning namely “mtry” and “ntree”. 

They are a number of features to choose at each node for splitting and number of trees 

to be grown in the forest respectively. In this study, “mtry” is equal to √M, while 
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“ntree” is equal to 500 (default value) on the HS3D dataset. The value of “ntree” has 

been set to 530 for the NN269 dataset. 

 Statistical Comparison 

When we compare performances of classifiers, it is important to determine whether the 

observed difference in their performance is statistically significant or simply due to 

chance. The Mann-Whitney U test was utilized to assess the significance of differences 

in classification performance of proposed and existing approaches. The null hypothesis 

of this test is that there are no differences between performances of AdaBoost and other 

classifiers, while a significance level of α=0.01 was considered for this test. F-measure 

criteria were used to perform this test. 

 Implementation 

The “adabag” R package was used for implementing the AdaBoost.M1 classifier, while 

the “e1071”, “Random Forest”, and “nnet” packages of R were employed for 

implementation of SVM, RF, and NN, respectively. Also, the Mann-Whitney U-test 

was performed by using “stats” R package. All of the programs were written in R 3.3.3 

and run on the windows 7 operation system on 5 core 2.40 GHz CPU and 8 GB main 

memory.   

 Evaluation Criteria 

This study has utilized several criteria to measure the performance of prediction 

methods. They are sensitivity (𝑆𝑛), specificity (𝑆𝑝), global accuracy (𝑄9), Matthew’s 

correlation coefficients (𝑀𝑐𝑐), area under ROC curve (𝐴𝑈𝐶), area under precision-

recall curve (𝑎𝑢𝑃𝑅𝐶) and F-measure.  

𝑆𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄               (2.6) 

𝑆𝑝 = 𝑇𝑁 (𝑇𝑁+𝐹𝑃)⁄              (2.7) 

𝑄9 = (1 + 𝑞9)/2             (2.8) 
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𝑞9 =

{
 
 
 
 

 
 
 
 

(𝑇𝑁 − 𝐹𝑃)

(𝑇𝑁 + 𝐹𝑃)
    𝑖𝑓   𝑇𝑃 + 𝐹𝑁 = 0

(𝑇𝑃 − 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑁)
   𝑖𝑓  𝑇𝑁 + 𝐹𝑃 = 0

1 − √2 [(
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
)
2

+ (
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
)
2

]     𝑖𝑓 𝑇𝑃 + 𝐹𝑁 ≠ 0

                                    
                                                                          𝑎𝑛𝑑 𝑇𝑁 + 𝐹𝑃 ≠ 0

                                    

 

𝑀𝑐𝑐 =  
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃∗𝐹𝑁)∗(𝑇𝑁∗𝐹𝑃)∗(𝑇𝑃∗𝐹𝑃)∗(𝑇𝑁∗𝐹𝑁)
             (2.9)  

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 
𝑇𝑃 (𝑇𝑃+𝐹𝑃)⁄ ∗ 𝑆𝑛

𝑇𝑃 (𝑇𝑃+𝐹𝑃)⁄ + 𝑆𝑛
                        (2.10) 

where TP, FN, TN, and FP represent the number of true positives, false negatives, true 

negatives and false positives, respectively. Due to the existence of the false splice sites 

than the true ones, we confronted with imbalanced classes in splice site prediction 

problem. So, the need of measures that are independent of class distribution is essential 

and we have fulfilled it by considering 𝑄9, 𝑀𝑐𝑐, and 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 criteria.  

On the other hand, the 𝐴𝑈𝐶 is commonly used when evaluating binary decision 

problems. It exhibits that how the number of the correctly classified positive samples 

changes with the number of incorrectly classified negative samples [94]. However, 

when dealing with highly imbalanced datasets, the 𝑎𝑢𝑃𝑅𝐶 have been cited as an 

alternative to AUC [3], [94].   

 Cross-Validation Design 

To evaluate the effectiveness of classification, a 10-fold cross validation has been used 

on the HS3D dataset. The dataset is separated into 10 equal size segments (folds). The 9 

out of 10 folds are used for training, whereas remaining fold is used for testing. This 

process is repeated 10 times by choosing different folds as the test set and the total 

average is reported. To increase the reliability of the evaluation, the whole process is 

replicated 5 times by breaking the dataset into 10 different folds and the overall average 

is calculated. However, the process of validation on imbalanced datasets of HS3D are 

slightly different due to the large inequality between the number of true sites and false 

sites. It causes that the evaluating indicators tend to be biased towards the majority class 

[95]. In order to solve the problem of imbalanced classification, the under-sampling 

technique [96], [97] has been employed. We separate the dataset into 10 equal sizes in 
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such a way that the ratio between true sites and false sites (1:10) are the same in each 

constructed folds. Then, the training dataset (the combination of  9 out of 10 fold) is 

modified so that the same portion of the number of false sites versus the number of true 

sites are chosen in each iteration of cross-validation for training the classifier (random 

undersampling). However, the test set (remaining fold) was not modified and remained 

imbalanced.  

Since the training data and test data are separate at the NN269, we do not need any 

cross-validation approach in its evaluation process. However, in order to tune 

parameters of SVM, we divided training dataset into 10 equally sized data fold. Each 

fold contains the same proportion of true versus false sequences. For each parameter 

combination, we used 9 out of 10 folds and evaluated the methods on the remaining 

fold. We selected the model with the highest average of auPRC on 10 evaluation sets. 

Then this best model was trained on the complete training dataset. The ultimate 

evaluation was performed on the corresponding independent test sets. According to 

[98], when the binary classifier on the imbalanced dataset is evaluated, the auPRC is 

more informative than AUC. So, we focused on the auPRC measure for model selection 

of SVM. 

 Online Predictor Server 

Based on the proposed approach, a web server, named HSSAda, was developed using 

“Shiny” R package in RStudio to help the biological community in predicting splice 

sites. The developed R-code was run in the background, while the model was trained 

with the HS3D dataset. To submit the sequence(s), the user can either paste the 

sequence(s) in a text area or upload FASTA file. The results are displayed in terms of 

probabilities and labels, which “yes” indicates true splice site and “no” demonstrates 

false one. We did not consider any threshold for probabilities, whereas we adjusted 

threshold value of 0.4 and 3 for the NNsplice and MaxEntScan, respectively. 

     

 

 

 

 



 

34 

 

 

CHAPTER 3 

 PROPOSED APPROACHES 

 Novel Encoding Methods using AdaBoost 

We presented three novel DNA encoding methods based on a hybrid of the Markovian 

model (MM1), distribution of tri-nucleotide, frequency difference of mono and di-

nucleotide, and position-independent component features. To predict splice sites, four 

well-known classifiers (Support Vector Machine, AdaBoost, Random Forest, and 

Artificial Neural Network) have been used. The performance of the proposed methods 

was evaluated on two most popular publicly available Human splice site datasets, HS3D 

and NN269. The experimental results demonstrated that the AdaBoost outperformed all 

the considered classifiers using proposed encoding methods. 

3.1.1 The DTMM1 Encoding Method 

This encoding is hybrid of the DT and MM1 encoding methods. As mentioned before, 

the main difference between the proposed method and Wei’s study [12] is the MM1 

encoding part, which is created by considering only true splice sites sequences. After 

calculating MM1 and DT for all the DNA sequences, we use the F-score ranking 

method to select the discriminative features. We merge final MM1 vectors and DT 

vectors as the input of classifier. The steps of the proposed method have been described 

in Algorithm 3.1.    
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Algorithm 3.1. The steps of the DTMM1 approach 

01  input: The candidate splice site sequences, (𝑆1, 𝑆2, … , 𝑆𝑁),  length of sequence , 𝑙 

02  output: Labels of unknown sequences 

03  encoding steps:  

04             Using distribution of triple nucleotide encoding to construct 𝐴𝑁∗128 matrix 

05             Using First order hidden Markov model encoding to construct 𝐵𝑁∗𝑙−1 matrix 

06             Using F-score feature ranking method to choose subset of features for both of 

them 𝐴𝑁∗𝑎, 𝐵𝑁∗𝑏 

07             Merge both of them respectively (𝐴𝑁∗𝑎 , 𝐵𝑁∗𝑏) to produce training set     

08  classification: Feed them to classifiers to make prediction     

3.1.2 The FDDT Encoding Method 

 This encoding method is called frequency difference distribution of triple nucleotide 

(FDDT) due to utilizing the MN-FDTF, the PN-FDTF and the DT encoding methods to 

extract features. Before merging the extracted features, we apply F-score to the MN-

FDTF features and determine the position of the features whose F-score are more than 

the average threshold. By taking these positions into account, a new contiguous position 

vector is constructed. In other words, it contained consensus sites AG for acceptor and 

GT for Donor sites besides the selected position by F-score. The new position vector is 

used to select features from the MN-FDTF. The same process is repeated for the PN-

FDTF. Finally, we merge them to provide the input to the classifiers. The pseudo-code 

of the FDDT algorithm has been given in the Algorithm 3.2.  

Algorithm 3.2 The steps of the FDDT approach 

01  input: The candidate splice site sequences, (𝑆1, 𝑆2, … , 𝑆𝑁),  length of sequence , 𝑙 

02  output: Labels of unknown sequences 

03  encoding steps:  

04  Using distribution of triple nucleotide (DT) encoding to construct 𝐴𝑁∗128 

matrix. 

05  Using MN-FDTF encoding to construct 𝐵𝑁∗𝑙 matrix 

06  Using PN-FDTF encoding to construct 𝐶𝑁∗𝑙−1 matrix 
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 Algorithm 3.2 (cont’d) 

07  Using F-score feature ranking method to choose subset of features (𝑎) for 

matrix 𝐵𝑁∗𝑎 and determine position of chosen features. 

08  Construct a new contiguous vector of position by adding position of AG for 

acceptor and position of GT for donor site among the selected position from 

previous step, 𝐵𝑁∗𝑎+2.  

09  The same process is used to choose subset of features for matrix 𝐶, 𝐶𝑁∗𝑎+2.  

10  Merge all of them respectively (𝐵𝑁∗𝑎+2 , 𝐶𝑁∗𝑎+2 , 𝐴𝑁∗(𝑏 𝑜𝑟 128) ) to produce 

training set. 

11  classification: Feed them to classifiers to make prediction     

For more illustration, let us consider donor splice site of the NN269 dataset that is 

composed of 15 nucleotides. After calculating the mono-nucleotide and the pairwise 

nucleotides, the F-Score Feature ranking method is applied to them. Figure 3.1 shows 

the F-score values of each feature using the MN encoding. The amount of threshold is 

0.17253 (calculated by averaging all the F-score values). By considering the threshold, 

features whose F-scores are above the 0.17 are chosen. These features have been placed 

at the position sixth, seventh, tenth, eleventh and twelfth. For constructing a contiguous 

vector of the position we add features at the positions eighth and ninth to the previous 

vector. So the new vector includes the features in the (6, 7, 8, 9, 10, 11, 12) positions.  

Features of the pair-wise nucleotides are selected by using the same process. 

 

Figure 3.1 The F-score values on the features which were obtain by MN-encoding 

method on NN269 Donor sites 
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3.1.3 The SCMM1 Encoding Method 

 In this method sequence component is calculated for all of the sequences and the F-

score feature ranking is applied to select the informative features. Then, the MM1 

features are extracted and again the F-score feature ranking method is applied for 

choosing the contiguous features. At the end, the SC and MM1 features are combined to 

provide the input to the classifiers. The pseudo-code of the SCMM1 algorithm is illustrated in 

Algorithm 3.3. 

Algorithm 3.3 The steps of the SCMM1 approach 

01  input: The candidate splice site sequences, (𝑆1, 𝑆2, … , 𝑆𝑁),  length of sequence , 𝑙 

02  output: Labels of unknown sequences 

03  encoding steps:  

04  Using Sequence component encoding to construct 𝐴𝑁∗680 matrix 

05  Using MM1 encoding to construct 𝐵𝑁∗𝑙−1 matrix 

06  Using F-score feature ranking method to choose subset of features (𝑎) for 

matrix A, 𝐴𝑁∗𝑎 

07  Again, using F-score feature ranking method to choose subset of features (𝑏) 

for matrix B, 𝐵𝑁∗𝑏 and also add AG for acceptor and GT for donor site among 

the selected features, 𝐵𝑁∗𝑏+2 

08  Merge both of them respectively (𝐴𝑁∗𝑎+2 , 𝐵𝑁∗𝑏 ) to produce training set 

09   classification: Feed them to classifiers to make prediction     

 Performance of RF on Markovian Encoding Models 

This part is concerned with RF for feature selection [70] and classification in splice site 

prediction domain. The performance of RF ranking method has been compared with F-

score feature ranking [36] by using the learning curve concept. Liu [99] and Kocev [74] 

have remarked on the use of learning curves to show the effect of adding features when 

a list of ordered features is provided.  We have investigated their effect on HS3D 

datasets with the goal of using a small number of features to achieve better 

classification performance.  
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3.2.1 RF as Feature Ranking 

We proposed the following two-step procedure (See Algorithm 3.4) for investigating 

RF feature ranking approach in Human splice site detection. At the first step, we have 

applied RF feature ranking method to train dataset. As the consequence, a value is 

assigned to each feature which demonstrates the importance of the each feature in 

classification accuracy. Then, we sorted them according to their values decreasingly. At 

the second step, we evaluated the ranking by performing a stepwise feature subset 

evaluation, which is used to provide the learning curve. For this purpose, we selected 

the top-k ranked features from the ordered variables. Then, we evaluated the 

performance of the classifier on chosen subset feature and constructed forward feature 

addition curve (FFA). 

Algorithm 3.4 Steps of providing forward feature addition curve using Random Forest  

01 input: The provided training data 𝐷𝑁∗𝑀, number of total features 𝑀 

02 output: Forward feature addition curve (FFA) 

03 begin 

04  Compute the RF score of importance for all the feature. 𝑅 = {𝐼1, 𝐼2, … , 𝐼𝑀} is 

the vector of obtained feature ranking. 

05  Order the features in decreasing order of importance  

06  for 𝑖 = 1 to 10 do  

07  select 𝑘-top ranked feature from 𝑅 and accordingly carry out feature 

selection on training set, 𝑘 = (𝑖 ∗ 10 ∗ 𝑀) 100⁄   

08  Apply SVM on the training set 𝐷𝑁∗𝑘 to learn the prediction model 

09  Use the model to make prediction on the test set with the chosen 𝑘 

features(calculate 𝑄9) 

10  Return 𝑄9 measurement for drawing FFA curve 

11  end for 

12 end 

3.2.2 RF as Classifier 

Splice site is subdivided into two separate classification problems: acceptor splice site 

classification and donor splice site classification. We try to identify whether a candidate 

splice site is true splice site (positive) or not (negative) for both of the problems. So, 
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two different models are constructed for them to make a prediction. These models 

consist of two phases: feature extraction using encoding scheme and classification. The 

proposed methods MM1-RF, MM2-RF, and MCM-RF utilize Markovian encoding 

approaches MM1, MM2 and MCM to provide features and use RF for classification. 

The steps of models are outlined in Algorithm 3.5. 

Algorithm 3.5 Steps of the proposed splice site prediction methods MM1-RF, MM2-RF 

and MCM-RF 

01 input: The candidate splice site sequences, {𝑆1, 𝑆2, … , 𝑆𝑁} 

02 output: Labels of unknown sequences 

03 begin 

04   for 𝑖 = 1 to 𝑁 do  

05  Model 𝑆𝑖 using one of the proposed Markovian encoding methods (MM1, 

MM2 or MCM). The Output is a vector of features, 𝐹𝑖 = (𝑓1, 𝑓2, 𝑓3, … )  

06   end for 

07  Apply RF on the training set of the extracted features {𝐹1, 𝐹2, … , 𝐹𝑁}  to learn the 

prediction model 

08   Use the model to make prediction on the test sequences of splice sites 

09 end 

 A novel Encoding Method using SVM 

The proposed method consists of two steps. In the first step, we extract informative 

features from DNA sequences by employing DMM2 (Double MM2) encoding 

approach. Two matrices 𝐴𝑁∗𝑙−2 and 𝐵𝑁∗𝑙−2 are calculated by using TSS (𝑀𝑇) and FSS 

(𝑀𝐹), respectively. Then, the final feature matrix, 𝐶𝑁∗2(𝑙−2) is constructed as the input 

of the classifier by combining 𝐴𝑁∗𝑙−2 with 𝐵𝑁∗𝑙−2 . In the second step, the feature 

vectors are fed to SVM for classifying the splice sites. Algorithm 3.6 explain steps of 

proposed method. 

Algorithm 3.6 Proposed DMM2-SVM method 

01 input: the candidate splice site sequences, (𝑆1, 𝑆2, … , 𝑆𝑁),  length of sequence , 𝑙 

02 output: labels of unknown sequences 

03 steps:  
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 Algorithm 3.6 (cont’d) 

04 Calculate 𝑀𝑇 model using True splice site  and Compute feature vectors 𝐴𝑁∗𝑙−2
𝑇  

using 𝑀𝑇 

05 Calculate 𝑀𝐹 model using False splice site Compute feature vectors 𝐵𝑁∗𝑙−2
𝐹  using 

𝑀𝐹 

06 Merge both of them 𝐶𝑁∗2(𝑙−2) = (𝐴𝑁∗𝑙−2
𝑇 , 𝐵𝑁∗𝑙−2

𝐹 )    

07 Apply the SVM classifier on the training set to obtain the model and use the 

model to predict the splice sites on testing sequences. 
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CHAPTER 4 

 RESULTS  

 Experimental Results using AdaBoost 

To evaluate the performance of our proposed methods, we utilized two popular datasets, 

namely HS3D and NN269. We assessed the efficiency of the proposed DNA encoding 

methods by considering four outstanding classifiers, namely SVM, NN, RF, and 

AdaBoost, to seek the most successful model. Then, we compared results of the chosen 

model with current state-of-the-art methods for both of the datasets. To examine the 

performance of the designed web tool (HSSAda), several well-known tools were used 

for comparison using an independent test dataset. 

4.1.1 Evaluation on the HS3D Dataset 

The 10-fold cross-validation was run on both acceptor and donor sites of balanced and 

imbalanced datasets using SVM, NN, RF, and AdaBoost classifiers. The results of the 

proposed methods have been shown in Table 4.1, Table 4.2, Table 4.3 and Table 4.4 for 

balanced and unbalanced acceptor and donor sites, respectively.  Further, the 

performance comparisons of the models with twelve state-of-the-arts methods were 

reported in Table 4.5, Table 4.6, Table 4.7 and Table 4.8 for both balanced and 

unbalanced acceptor and donor sites, separately. 

4.1.2 Optimum Value of Parameters 

Figure 4.1 shows the performances of the three proposed encoding methods using the 

AdaBoost classifier for various iterations on both donor and acceptor sites of balanced 

and imbalanced datasets.  
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Figure 4.1 Evaluation of AdaBoost performance at different numbers of iteration on 

HS3D and NN269 datasets 
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The best result of the DTMM1, FDDT and SCMM1 encoding methods, using AdaBoost 

classifier, have been obtained in iteration 350, 250 and 250, respectively in balanced 

acceptor sites. According to the above order of the mentioned encoding methods, the 

high performance is seen in the iteration of 400, 350 and 300 for the balanced donor 

sites. By considering the imbalanced datasets, the value of optimal parameters in 

acceptor sites is the same and is equal to 350, whereas they are 250, 350 and 200 in 

donor site, respectively.  

Table 4.1 Performance comparison of the SVM, RF, NN, and AdaBoost under three 

proposed encoding methods on predicting balanced Acceptor splice sites of HS3D 

datasets 

Encoding  

Methods 

 Candidate 

classifier 

 Balanced Acceptor sites p-value 

(AdaBoost)  𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

DTMM1  SVM  92.92 88.99 90.69 81.99 97.11 91.12 0.00194 

  (1.60) (0.88) (0.76) (1.75) (0.42) (0.89) 

 NN  92.15 89.24 90.53 81.44 96.70 90.82 0.000765 

  (1.66) (1.32) (1.02) (1.95) (0.43) (1.00) 

 RF  91.77 90.45 91.03 82.24 96.89 91.16 0.0113 

  (1.75) (1.23) (1.05) (2.14) (0.25) (1.10) 

 AdaBoost  93.72 91.04 92.16 84.82 97.41 92.48 -- 

  (1.70) (1.35) (0.74) (1.52) (0.39) (0.78) 

          

FDDT  SVM  92.99 90.55 91.64 83.58 97.47 91.87 0.000155 

  (1.31) (0.76) (0.54) (1.21) (0.45) (0.63)  

 NN  92.74 91.00 91.78 83.77 97.33 91.94 0.000501 

  (1.08) (1.44) (0.89) (1.77) (0.36) (0.86)  

 RF  91.35 89.62 90.37 81.01 96.81 90.57 0.000154 

  (1.13) (1.56) (0.51) (0.98) (0.28) (0.44)  

 AdaBoost  94.76 91.87 93.13 86.68 98.10 93.41 -- 

  (0.69) (0.94) (0.65) (1.33) (0.37) (0.66)  

          

SCMM1  SVM  93.51 91.21 92.24 84.75 97.74 92.45 0.000326 

  (0.91) (1.10) (0.69) (1.37) (0.30) (0.67)  

 NN  93.89 92.22 92.98 86.13 97.88 93.11 0.01261 

   (0.91) (0.91) (0.66) (1.32) (0.26) (0.66)  

 RF  91.88 90.34 91.04 82.24 97.00 91.17 0.000157 

  (1.73) (1.08) (1.15) (2.42) (0.37) (1.24)  

 AdaBoost  95.07 92.60 93.64 87.72 98.14 93.91 -- 

   (1.16) (1.40) (0.77) (1.40) (0.33) (0.69)  

The value inside the brackets () are the standard errors 

The reported p-values have been computed between AdaBoost and other classifiers using F-measure 

criteria 
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Table 4.2 Performance comparison of the SVM, RF, NN and AdaBoost under three 

proposed encoding methods on predicting unbalanced Acceptor splice sites of HS3D 

datasets 

Encoding  

Methods 

 Candidate 

classifier 

 UnBalanced Acceptor sites p-value 

(AdaBoost)  𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

DTMM1  SVM  93.02 89.72 91.19 62.23 97.08 62.94 0.00194 

  (1.15) (0.76) (0.59) (1.58) (0.25) (1.62) 

 NN  92.88 89.44 90.97 61.57 96.79 62.26 0.000669 

  (1.14) (0.61) (0.51) (1.22) (0.18) (1.25) 

 RF  92.12 90.42 91.14 63.08 96.88 64.01 0.01556 

  (2.27) (0.59) (1.05) (2.03) (0.49) (1.82) 

 AdaBoost  93.96 91.04 92.35 65.56 97.42 66.30 -- 

  (1.04) (0.67) (0.73) (1.96) (0.39) (1.91) 

          

FDDT  SVM  93.06 90.83 91.84 64.53 97.35 65.38 0.000285 

  (1.43) (0.50) (0.76) (1.36) (0.31) (1.52) 

 NN  93.26 91.00 92.01 65.03 97.40 65.87 0.000506 

  (1.38) (0.58) (0.65) (1.50) (0.24) (1.47) 

 RF  91.94 89.84 90.80 61.76 96.77 62.66 0.000157 

  (1.30) (0.62) (0.71) (1.63) (0.46) (1.56) 

 AdaBoost  95.24 92.30 93.54 69.27 98.16 69.98 -- 

  (1.40) (0.56) (0.57) (1.42) (0.40) (1.42) 

          

SCMM1  SVM  94.17 91.46 92.66 66.65 97.82 67.42 0.01906 

  (1.31) (0.78) (0.83) (2.18) (0.34) (2.15) 

 NN  94.17 91.70 92.78 67.19 97.96 67.98 0.01906 

   (1.26) (0.67) (0.53) (1.52) (0.25) (1.57) 

 RF  92.05 90.44 91.13 63.07 97.08 64.02 0.000156 

  (1.95) (0.69) (0.76) (1.29) (0.42) (1.29) 

 AdaBoost  94.86 92.27 93.39 68.95 98.20 69.72 -- 

   (1.25) (0.61) (0.55) (1.54) (0.27) (1.56) 

The value inside the brackets () are the standard errors 

The reported p-values have been computed between AdaBoost and other classifiers using F-measure 

criteria 

4.1.3 Performance Comparison on different Classifiers 

From Table 4.1, Table 4.2, Table 4.3, and Table 4.4 it can be seen clearly that the 

combination of proposed encoding methods with AdaBoost classifier performs 

nominally (that is, not necessarily statistically significantly) better than the composition 

of them with SVM, RF, and NN classifiers in all the terms for acceptor splice sites. The 

statistical comparison test with significance level of 𝛼 = 0.01 reveals that AdaBoost 

significantly outperforms other classifiers using proposed encoding methods, except 
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DTMM1-RF and SCMM1-NN, which perform the same. According to the results, we 

have chosen the SCMM1-AdaBoost method as our best method in all the terms for the 

balanced and the imbalanced acceptor sites. From Table 4.3 and Table 4.4, it is 

observed that for the balanced and the imbalanced donor sites the best performance 

again has been obtained by the SCMM1-AdaBoost in all the terms. 

Table 4.3 Performance comparison of the SVM, RF, NN and AdaBoost under three 

proposed encoding methods on predicting balanced Donor splice sites of  HS3D 

datasets 

Encoding  

Methods 

 Candidate 

classifier 

 Balanced Donor sites p-value 

(AdaBoost)  𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

DTMM1  SVM  94.46 91.85 92.96 86.35 97.82 93.24 0.000758 

  (1.06) (1.76) (1.03) (1.67) (0.53) (0.81) 

 NN  93.71 91.70 92.58 85.44 97.23 92.78 0.000379 

  (1.14) (1.64) (1.03) (1.87) (0.58) (0.91) 

 RF  95.92 92.60 93.95 88.59 98.27 94.35 0.096180 

  (1.33) (1.44) (0.93) (1.65) (0.57) (0.81) 

 AdaBoost  96.18 93.70 94.71 89.92 98.43 95.00 -- 

  (1.28) (1.14) (0.73) (1.45) (0.66) (0.72) 

          

FDDT  SVM  96.10 93.88 94.76 90.03 98.61 95.05 0.11240 

  (1.11) (1.65) (0.86) (1.55) (0.49) (0.75)  

 NN  95.42 93.88 94.54 89.33 98.45 94.70 0.02837 

  (0.79) (1.56) (0.92) (1.68) (0.53) (0.82)  

 RF  95.96 92.13 93.65 88.18 98.30 94.16 0.001309 

  (1.47) (1.43) (0.89) (1.73) (0.54) (0.85)  

 AdaBoost  97.03 94.06 95.23 91.15 98.80 95.61 -- 

  (1.41) (0.94) (0.80) (1.72) (0.47) (0.86)  

          

SCMM1  SVM  95.89 93.31 94.33 89.25 98.54 94.66 0.004556 

  (1.69) (1.35) (0.93) (1.87) (0.58) (0.94)  

 NN  95.53 93.74 94.48 89.30 98.50 94.68 0.002807 

   (1.20) (1.15) (0.60) (1.17) (0.56) (0.59)  

 RF  95.42 92.67 93.84 88.13 98.19 94.13 0.001147 

  (1.20) (1.12) (0.81) (1.58) (0.37) (0.79)  

 AdaBoost  97.03 94.28 95.39 91.35 98.81 95.71 -- 

   (1.09) (0.99) (0.77) (1.52) (0.53) (0.76)  

The value inside the brackets () are the standard errors 

The reported p-values have been computed between AdaBoost and other classifiers using F-measure 

criteria 
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Table 4.4 Performance comparison of the SVM, RF, NN and AdaBoost under three 

proposed encoding methods on predicting unbalanced Donor splice sites of HS3D 

datasets 

Encoding  

Methods 

 Candidate 

classifier 

 UnBalanced Donor sites p-value 

(AdaBoost)  𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

DTMM1  SVM  94.31 91.98 93.01 67.92 97.77 68.73 0.0001562 

  (1.26) (0.56) (0.65) (1.65) (0.29) (1.62) 

 NN  93.28 91.02 92.00 65.09 97.17 65.93 0.0001571 

  (1.70) (0.78) (0.70) (1.54) (0.27) (1.60) 

 RF  95.60 92.75 93.94 70.60 98.29 71.32 0.003598 

  (1.31) (0.71) (0.65) (1.99) (0.24) (2.00) 

 AdaBoost  96.06 93.55 94.60 73.00 98.42 73.77 -- 

  (1.27) (0.55) (0.54) (1.62) (0.26) (1.63) 

          

FDDT  SVM  95.85 93.79 94.70 73.51 98.52 74.34 0.01556 

  (0.72) (0.55) (0.42) (1.59) (0.26) (1.63) 

 NN  95.96 93.61 94.63 73.10 98.42 73.89 0.001699 

  (0.79) (0.56) (0.39) (1.50) (0.24) (1.56) 

 RF  96.06 92.68 94.09 70.73 98.36 71.38 0.000157 

  (0.91) (0.54) (0.40) (1.35) (0.22) (1.41) 

 AdaBoost  96.82 94.22 95.29 75.32 98.77 76.07 -- 

  (0.99) (0.38) (0.33) (1.10) (0.21) (1.11) 

          

SCMM1  SVM  96.03 93.98 94.89 74.15 98.58 74.98 0.001499 

  (0.57) (0.28) (0.23) (0.77) (0.19) (0.79)  

 NN  95.81 94.11 94.83 74.37 98.54 75.24 0.010170 

   (1.31) ()0.41 (0.48) (1.29) (0.22) (1.26)  

 RF  95.17 92.42 93.62 69.53 98.27 70.27 0.0001571 

  (0.96) (0.54) (0.55) (1.59) (0.20) (1.59)  

 AdaBoost  96.71 94.54 95.45 76.20 98.86 77.00 -- 

   (1.08) (0.39) (0.47) (1.37) (0.19) (1.34)  

The value inside the brackets () are the standard errors 

The reported p-values have been computed between AdaBoost and other classifiers using F-measure 

criteria 

4.1.4 Performance Comparison with different state-of-the-art Methods 

The performance results of other methods were shown in Table 4.5 and Table 4.6 for 

acceptor sites. In total, the selected proposed method, i.e. SCMM1-AdaBoost, 

significantly outperforms all the other methods in all the terms in both balanced and 

imbalanced acceptor datasets. However, it does not significantly outperform the FDDT-

AdaBoost approach and does not perform better than the MSC+Pos-SVM approach in 

imbalanced data. But the difference is less than 1.5% which is a slight difference. Table 
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4.7 and Table 4.8 show the performance comparison of the proposed methods and other 

current methods for donor splice sites using balanced and imbalanced datasets. From 

Tables 4.7 and 4.8, it can be seen that SCMM1-AdaBoost significantly outperforms all 

the methods, while it does not statistically significantly outperform the FDDT-

AdaBoost and MSC+Pos+APR-SVM methods and produce the same result 

approximately.  

Table 4.5 Performance comparison of the proposed methods with others state of art 

methods on balanced Acceptor splice sites  

Methods  Balanced Acceptor sites p-value 

* 𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

MM1-SVM  90.17 87.54 88.65 77.78 95.33 89.00 0.005062 

 (2.01) (2.15) (1.06) (2.06) (0.42) (1.02) 

Reduced MM1-SVM  90.83 88.02 89.27 78.91 95.48 94.36 0.005062 

 (1.49) (1.42) (0.78) (1.47) (0.51) (1.13) 

B-LSVM  90.90 88.16 89.34 79.13 95.88 89.67 0.005062 

 (1.97) (1.68) (0.99) (2.09) (0.40) (1.06) 

PN FDTF-SVM  91.18 88.47 89.64 79.71 96.12 89.96 0.005062 

 (1.52) (1.87) (0.88) (1.52) (0.54) (0.75) 

LVMM2  88.96 90.11 89.40 79.20 95.90 89.70 0.005062 

 (1.70) (1.08) (1.24) (1.48) (0.43) (0.85) 

MM2F-SVM  91.84 88.16 89.76 80.08 96.02 90.17 0.005062 

 (1.77) (1.00) (0.66) (1.57) (0.49) (0.82) 

MM2-RF  92.11 89.53 90.65 81.68 96.64 90.75 0.005062 

 (1.27) (0.90) (0.62) (1.33) (0.48) (0.68) 

MCM-SVM  92.46 90.80 91.56 83.28 97.21 91.70 0.005062 

 (0.94) (1.23) (0.78) (1.53) (0.48) (0.75) 

ECS-LSVM  91.74 90.00 90.78 81.76 96.64 90.95 0.005062 

 (1.26) (1.67) (1.09) (2.10) (0.49) (1.03) 

Sparse-SVM  92.71 89.86 91.10 82.62 96.94 91.41 0.005062 

 (1.13) (1.63) (0.82) (1.53) (0.40) (0.73) 

DM-SVM  92.64 90.73 91.54 83.41 97.31 91.76 0.005062 

 (1.22) (1.57) (0.62) (1.19) (0.34) (0.57) 

MSC+POS-SVM  94.69 92.78 93.61 87.49 98.30 93.80 0.7989 

  (1.42) (1.09) (1.00) (2.11) (0.29) (1.05) 

DTMM1-AdaBoost 

 

 93.72 91.04 92.16 84.82 97.41 92.48 0.00691 

 (1.70) (1.35) (0.74) (1.52) (0.39) (0.78) 

FDDT-AdaBoost  94.76 91.87 93.13 86.68 98.10 93.41 0.02842 

  (0.69) (0.94) (0.65) (1.33) (0.37) (0.66) 

SCMM1-AdaBoost*  95.07 92.60 93.64 87.72 98.14 93.91 -- 

  (1.16) (1.40) (0.77) (1.40) (0.33) (0.69)  
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Table 4.6 Performance comparison of the proposed methods with others state of art 

methods on unbalanced Acceptor splice sites  

Methods  UnBalanced Acceptor sites p-value 

* 𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

MM1-SVM  91.18 88.28 89.54 58.30 95.76 59.14 0.005062 

 (2.56) (0.54) (1.15) (1.99) (0.57) (1.66) 

Reduced MM1-SVM  90.72 88.23 89.35 58.01 95.66 58.90 0.005062 

 (1.45) (0.88) (0.67) (1.59) (0.33) (1.62) 

B-LSVM  91.81 88.20 89.82 58.58 96.04 59.30 0.005062 

 (1.40) (0.72) (0.82) (1.79) (0.40) (1.69) 

PN FDTF-SVM  92.15 88.35 90.03 59.06 96.14 59.74 0.005062 

 (1.56) (0.78) (0.83) (1.92) (0.46) (1.83) 

LVMM2  89.10 90.08 89.90 60.26 96.00 61.63 0.005062 

 (1.15) (0.43) (0.32) (0.87) (0.43) (0.84) 

MM2F-SVM  92.22 88.81 90.33 59.93 96.23 60.66 0.005062 

 (1.43) (0.55) (0.72) (1.52) (0.55) (1.41) 

MM2-RF  92.24 90.05 91.04 62.23 96.74 63.00 0.005062 

 (1.62) (0.69) (0.81) (1.83) (0.50) (1.74) 

MCM-SVM  92.33 90.92 91.48 64.28 97.26 65.25 0.005062 

 (2.53) (0.64) (1.16) (2.07) (0.52) (1.86) 

ECS-LSVM  91.15 89.47 90.22 60.55 96.41 61.53 0.005062 

 (1.65) (0.94) (0.85) (1.80) (0.34) (1.84) 

Sparse-SVM  92.64 89.47 90.89 61.48 96.81 62.22 0.005062 

 (1.01) (0.74) (0.5) (1.36) (0.36) (1.44) 

DM-SVM  92.81 90.44 91.51 63.56 97.16 64.39 0.005062 

 (1.13) (0.66) (0.54) (1.43) (0.38) (1.45) 

MSC+POS-SVM  94.93 92.76 93.68 70.21 98.24 71.03 0.009344 

  (1.63) (0.57) (0.69) (1.38) (0.32) (1.38) 

DTMM1-AdaBoost 

 

 93.96 91.04 92.35 65.56 97.42 66.30 0.005062 

 (1.04) (0.67) (0.73) (1.96) (0.39) (1.91) 

FDDT-AdaBoost  95.24 92.30 93.54 69.27 98.16 69.98 0.2845 

  (1.40) (0.56) (0.57) (1.42) (0.40) (1.42) 

SCMM1-AdaBoost*  94.86 92.27 93.39 68.95 98.20 69.72 -- 

  (1.25) (0.61) (0.55) (1.54) (0.27) (1.56)  
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Table 4.7 Performance comparison of the proposed methods with others state of art 

methods on balanced Donor splice sites 

Methods  Balanced Donor sites p-value 

* 𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

MM1-SVM  93.24 90.99 92.00 84.28 97.12 92.20 0.005062 

 (1.88) (1.77) (1.01) (2.07) (0.57) (1.04) 

Reduced MM1-SVM  93.92 91.24 92.36 85.22 97.32 92.67 0.005062 

 (1.88) (1.05) (0.81) (1.70) (0.74) (0.89) 

B-LSVM  94.28 90.77 92.30 85.11 97.33 92.65 0.005062 

 (1.70) (1.29) (1.20) (2.59) (0.66) (1.28) 

MM2F-SVM  93.70 91.60 92.50 85.34 97.33 92.72 0.005062 

 (1.42) (1.32) (0.79) (1.51) (0.67) (0.76) 

ECS-LSVM  95.67 90.95 92.86 86.73 97.71 93.30 0.005062 

 (1.29) (1.06) (0.85) (1.84) (0.48) (0.90) 

Sparse-SVM  94.64 91.95 93.07 86.64 97.73 93.38 0.005062 

 (1.65) (1.15) (0.80) (1.68) (0.55) (0.86) 

OLVWMM2  93.99 92.06 93.10 86.11 97.56 93.50 0.005062 

 (1.70) (1.64) (1.26) (2.58) (0.62) (1.27) 

P1-RF  95.64 92.20 93.56 87.92 97.81 94.02 0.005062 

 (1.91) (1.11) (0.83) (1.89) (0.64) (0.96) 

PN FDTF-SVM  95.28 92.67 93.74 87.99 97.94 94.05 0.005062 

 (1.74) (1.24) (0.98) (2.18) (0.67) (1.08) 

MM2-RF  95.92 91.32 93.17 87.39 97.97 93.71 0.005062 

 (1.17) (1.60) (0.96) (1.42) (0.64) (0.69) 

DM-SVM  95.17 92.13 93.36 87.34 98.05 93.73 0.005062 

 (1.16) (1.92) (1.06) (1.72) (0.45) (0.83) 

MCM-SVM  96.39 93.56 94.73 90.00 98.52 95.04 0.01246 

  (1.13) (0.94) (0.69) (1.45) (0.57) (0.72) 

MSC+POS+APR-SVM 

 

 96.92 94.67 95.62 91.63 98.84 95.85 0.06584 

 (0.81) (1.42) (1.04) (1.93) (0.63) (0.94) 

DTMM1-AdaBoost 

 

 96.18 93.70 94.71 89.92 98.43 95.00 0.01898 

 (1.28) (1.14) (0.73) (1.45) (0.66) (0.72) 

FDDT-AdaBoost  97.03 94.06 95.23 91.15 98.80 95.61 0.05934 

  (1.41) (0.94) (0.80) (1.72) (0.47) (0.86)  

SCMM1-AdaBoost*  97.03 94.28 95.39 91.35 98.81 95.71 -- 

 (1.09) (0.99) (0.77) (1.52) (0.53) (0.76) 

Overall, the proposed methods exhibit good performance in both balanced and 

imbalanced datasets for the donor and acceptor site detection. Although the best 

proposed method has comparative prediction performance for imbalanced donor site in 

comparison with the high-accuracy MSC+Pos+APR-SVM method, it is less accurate in 

the imbalanced acceptor site. 
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Table 4.8 Performance comparison of the proposed methods with others state of art 

methods on unbalanced Donor splice sites  

Methods  UnBalanced Donor sites p-value 

* 𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-measure 
 

MM1-SVM  93.10 91.08 91.96 65.10 97.15 65.98 0.005062 

 (1.89) (0.48) (0.90) (1.66) (0.35) (1.50) 

Reduced MM1-SVM  93.96 91.08 92.34 65.63 97.32 66.37 0.005062 

 (1.22) (0.49) (0.52) (1.21) (0.36) (1.19) 

B-LSVM  93.99 90.96 92.23 65.43 97.34 66.15 0.005062 

 (1.89) (0.80) (0.70) (1.59) (0.28) (1.63) 

MM2F-SVM  93.21 91.39 92.20 65.85 97.44 66.75 0.005062 

 (1.49) (0.44) (0.70) (1.40) (0.31) (1.30) 

ECS-LSVM  94.92 90.86 92.56 65.78 97.69 66.33 0.005062 

 (1.46) (0.52) (0.52) (1.51) (0.34) (1.56) 

Sparse-SVM  94.42 91.61 92.84 67.11 97.80 67.86 0.005062 

 (1.21) (0.46) (0.50) (1.27) (0.29) (1.24) 

OLVWMM2  94.21 92.50 93.12 67.71 97.85 68.50 0.005062 

 (1.33) (0.69) (0.66) (1.05) (0.32) (1.40) 

P1-RF  95.35 92.25 93.56 69.25 97.80 69.94 0.005062 

 (1.16) (0.80) (0.56) (1.81) (0.35) (1.91) 

PN FDTF-SVM  95.21 92.78 93.86 70.43 98.07 71.22 0.005062 

 (0.74) (0.44) (0.39) (1.20) (0.28) (1.22) 

MM2-RF  95.56 91.65 93.28 67.55 97.95 68.12 0.005062 

 (1.30) (0.53) (0.62) (1.63) (0.30) (1.57) 

DM-SVM  94.60 92.34 93.30 68.71 98.00 69.51 0.005062 

 (1.28) (0.52) (0.54) (1.37) (0.29) (1.59) 

MCM-SVM  95.75 94.24 94.88 74.71 98.66 75.61 0.005062 

  (1.45) (0.45) (0.68) (1.42) (0.25) (1.39) 

MSC+POS+APR-SVM 

 

 96.78 94.89 95.69 77.28 98.93 78.11 0.01252 

 (0.96) (0.37) (0.38) (1.19) (0.19) (1.19) 

DTMM1-AdaBoost 

 

 96.06 93.55 94.60 73.00 98.42 73.77 0.00691 

 (1.27) (0.55) (0.54) (1.62) (0.26) (1.63) 

FDDT-AdaBoost  96.82 94.22 95.29 75.32 98.77 76.07 0.0166 

  (0.99) (0.38) (0.33) (1.10) (0.21) (1.11)  

SCMM1-AdaBoost*  96.71 94.54 95.45 76.20 98.86 77.00 -- 

 (1.08) (0.39) (0.47) (1.37) (0.19) (1.34) 

The value inside the brackets () are the standard errors 

The reported p-values have been computed between AdaBoost and other classifiers using F-measure 

criteria 
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4.1.5 Evaluation on the NN269 Dataset 

We applied the proposed methods to the NN269 dataset for further evaluation. The 

performance metrics of AdaBoost, SVM, RF and NN with three encoding methods for 

both acceptor and donor sites were presented in Table 4.9 and Table 4.10. It is observed 

that the AdaBoost performs better than the other classifiers in acceptor sites, while it 

produces comparable results for donor sites in all the terms. The comparison result of 

the proposed methods with other state-of-the-arts methods on this dataset were given in 

Table 4.11. From Tables 4.11, it is seen that the proposed method for acceptor site 

outperforms all the current methods in terms of AUC and auPRC, while for donor site it 

outperforms all the other methods except the DPCH-SVM method in both of the terms. 

Table 4.9 Performance comparison of SVM, RF, NN and AdaBoost under three 

proposed encoding methods on predicting acceptor splice sites of NN269 dataset 

Encoding  

Methods 

 Candidate 

classifier 

 Acceptor splice sites 

 𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC 𝒂𝒖𝑷𝑹𝑪 F-measure 

DTMM1  SVM  76.92 96.48 83.49 75.87 96.75 88.99 80.20 

 NN  79.33 96.25 85.14 77.03 97.37 88.75 81.28 

 RF  74.52 97.84 81.92 77.63 97.31 90.44 81.15 

 AdaBoost  83.65 97.28 88.28 82.48 98.56 93.91 85.71 

          

FDDT  SVM  79.81 96.14 85.46 77.10 97.52 90.87 81.37 

 NN  78.85 96.82 84.87 78.05 97.61 90.77 82.00 

 RF  71.63 98.75 79.92 78.15 97.88 91.56 80.98 

 AdaBoost  86.06 97.84 90.02 85.51 98.69 94.33 88.18 

          

SCMM1  SVM  78.37 97.05 84.56 78.27 98.10 92.21 82.12 

 NN  79.33 97.50 85.28 80.08 98.24 92.62 83.54 

 RF  72.60 98.30 80.59 77.53 97.58 91.21 80.75 

 AdaBoost  84.13 97.50 88.64 83.37 98.69 94.74 86.42 
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Table 4.10 Performance comparison of SVM, RF, NN and AdaBoost under three 

proposed encoding methods on predicting donor splice sites of NN269 dataset 

Encoding  

Methods 

 Candidate 

classifier 

 Donor splice sites 

 𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC 𝒂𝒖𝑷𝑹𝑪 F-measure 

DTMM1  SVM  86.54 96.29 90.13 82.68 97.47 90.91 86.33 

 NN  85.10 96.16 89.12 81.40 97.37 90.45 85.30 

 RF  86.06 97.19 89.94 84.31 96.72 92.47 87.53 

 AdaBoost  87.98 96.68 91.18 84.51 97.03 92.34 87.77 

          

FDDT  SVM  87.02 96.16 90.43 82.75 98.04 91.73 86.40 

 NN  89.42 96.29 92.07 84.69 98.00 90.90 87.94 

 RF  87.98 96.80 91.21 84.78 97.83 91.48 87.98 

 AdaBoost  88.46 96.55 91.48 84.56 98.00 91.46 87.83 

          

SCMM1  SVM  88.46 96.68 91.51 84.84 98.21 93.12 88.04 

 NN  87.98 96.55 91.16 84.23 98.18 92.42 87.56 

 RF  87.02 98.08 90.72 87.02 97.95 92.00 89.60 

 AdaBoost  88.46 96.93 91.56 85.39 98.05 92.93 88.46 

Table 4.11 Comparison of different models on NN269 dataset 

Methods Acceptor splice sites  Donor splice sites 

Performance Metrics  Performance Metrics 

AUC 𝒂𝒖𝑷𝑹𝑪  AUC 𝒂𝒖𝑷𝑹𝑪 

Reduced MM1-SVM  97.45 89.98  97.91 90.30 

Weighted Degree Kernel 98.16 92.53  98.50 92.86 

Weighted Degree Kernel with shift 98.65 94.36  98.13 92.47 

DPCH-SVM 97.88 90.79  98.46 93.29 

B-LSVM 97.79 91.24  97.95 92.00 

MM2-RF 97.63 90.59  97.15 91.66 

MCM-SVM 97.97 91.51  98.11 91.75 

DTMM1-AdaBoost 98.56 93.91  97.03 92.34 

FDDT-AdaBoost 98.69 94.33  98.00 91.46 

SCMM1-AdaBoost 98.69 94.74  98.05 92.93 
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4.1.6 Online Prediction Server-HSSAda 

Since the SCMM1-AdaBoost is observed to be superior over the other proposed 

approaches, we only included it in the server for prediction. The home page of the web 

server after execution of an example is exhibited in Figure 4.2. The prediction tool, 

HSSAda, is freely available at https://pashaei.shinyapps.io/hssada/.  

The performance of the HSSAda was compared with several well-known existing tools 

using an independent test dataset, which is presented in Table 4.12 and Table 4.13. It 

can be seen that the proposed method outperforms others in all the terms. 

 

Figure 4.2 Snapshot of the developed web tool 

Table 4.12 Performance comparison with other in-silico tools using the independent  

Acceptor test set 

Methods  Acceptor splice sites 

 𝑻𝑷𝑹 𝑻𝑵𝑹 𝑸𝟗 𝑴𝒄𝒄 F-measure 

WMM  100 83.12 88.07 70.45 74.77 

MM1  100 84.38 88.95 72.06 76.19 

MaxEntScan  100 83.75 88.51 71.24 75.47 

NNSplice  85.00 91.88 87.94 72.52 78.16 

Our proposed  100 91.88 94.25 83.27 86.02 
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Table 4.13 Performance comparison with other in-silico tools using the independent  

Donor test set 

Methods  Donor splice sites 

 𝑻𝑷𝑹 𝑻𝑵𝑹 𝑸𝟗 𝑴𝒄𝒄 F-measure 

WMM  95.00 77.51 83.71 59.30 65.52 

MM1  97.50 80.62 86.19 65.52 70.91 

MaxEntScan  95.00 85.00 88.82 69.19 74.51 

NNSplice  85.00 89.38 87.00 68.26 74.73 

Our proposed  100 93.12 95.14 85.46 87.91 

 Experimental Result using RF 

4.2.1 Efficiency of RF as Feature Ranking Approach 

The performance of selected attributes on balanced and unbalanced datasets have been 

shown in Figure 4.3. From the figure, it is possible to state that the accuracy of simple 

MM1-SVM has been improved by using feature ranking approaches. By considering 

balanced datasets (see Figure 4.3 (a) and (b)), it can be seen that both feature ranking 

methods have approximately the same accuracy on their optimal points. Additionally, 

the optimal points of both are equal in balanced acceptor and donor sites. The optimal 

point of balanced acceptor dataset and balanced donor dataset have been achieved by 

choosing 60% and 30% of top features using both of the feature ranking methods, 

respectively. Considering results for unbalanced datasets shown in the second row of 

the Fig. 4.3, the result of the RF ranking in acceptor sites (see Figure 4.3 (c)) is higher 

than the F-Score and the optimal point has been obtained using fewer numbers of 

attributes. In unbalanced donor splice sites (See Figure 4.3 (d)) F-Score shows better 

performance than the RF ranking method. So, on 4 datasets, the RF ranking method 

shows two equal, one win and one failure on its performance. As a result, on average it 

can be concluded that the RF feature ranking method is a good candidate for performing 

feature selection as preprocessing part on splice sites prediction methods. 
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Figure 4.3 Global accuracy of different percentage of selected features using F-score 

feature ranking and random forest feature ranking methods on a) Balanced acceptor 

splice sites, b) Balanced donor splice sites, c) Unbalanced acceptor splice sites and d) 

Unbalance donor splice sites datasets for assessing performance of MM1-SVM method 

4.2.2 Efficiency of RF as Classifier 

The performance results of classification have been shown in Table 4.14. Since 

different training data are obtained due to employing different encoding methods, we 

considered each row of the table as an independent dataset. Therefore, our experiment 

utilized 18 different datasets which 9 of them belong to the acceptor sites while the 

remains belong to the donor sites. The performance was estimated using various 

measures. However, we preferred 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 to make statistical comparisons 

(reported P-value) between SVM and RF. We should take into account that we could 

not carry out the statistical evaluation on NN269 dataset due to default separation 

between the training set and test set. However, we consider their result significant when 

the difference in F-measure became more than 1.50% between SVM and RF.  
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Table 4.14 Comparison of classification performance of SVMs and RFs using 

Markovian encoding methods 

Dataset Classifier Encoding  

Methods 

Support Vector Machine (SVM) 

𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC F-

measure 

CPU 

time 

Balanced 

Acceptor Sites 

(HS3D) 

SVM MM1 90.22 87.79 88.86 78.06 95.43 89.14* 1556.25 

MM2  91.42 88.17 89.60 79.65 96.00 89.95* 1274.84 

MCM  92.87 88.35 90.28 81.32 96.52 90.82 1301.68 

RF MM1 91.69 89.10 90.24 80.84 96.36 90.52* 484.89 

MM2  92.16 89.47 90.65 81.68 96.62 90.94* 500.98 

MCM  91.92 89.67 90.66 81.63 96.62 90.90 557.02 

Balanced 

Donor sites 

(HS3D) 

SVM MM1  93.27 91.12 92.01 84.43 97.15 92.27 1064.89 

MM2  93.37 91.59 92.36 85.00 97.34 92.55* 793.94 

MCM  95.67 93.16 94.20 88.94 98.18 94.52 1006.01 

RF MM1  95.40 91.00 92.78 86.50 97.72 93.35 472.25 

MM2  95.77 91.29 93.09 87.17 97.97 93.67* 467.84 

MCM  95.44 92.00 93.41 87.52 97.93 93.84 622.96 

UnBalanced 

Acceptor sites 

(HS3D) 

SVM MM1  90.77 88.27 89.39 58.04 95.78 58.95* 1678.18 

MM2  91.90 88.97 90.29 60.04 96.25 60.83* 1332.50 

MCM  92.88 89.00 90.69 60.70 96.66 61.34* 1388.43 

RF MM1  91.87 89.52 90.59 61.09 96.52 61.96* 528.20 

MM2  92.17 89.99 90.97 62.21 96.73 63.09* 525.89 

MCM  91.94 89.69 90.71 61.48 96.64 62.56* 582.91 

UnBalanced 

Donor sites 

(HS3D) 

SVM MM1  93.24 91.00 91.99 65.02 97.18 65.54 1146.47 

MM2  93.41 91.37 92.27 65.94 97.38 66.80 837.84 

MCM  95.36 93.14 94.09 71.49 98.22 72.30* 1059.76 

RF MM1  95.06 90.72 92.52 65.55 97.75 66.07 472.68 

MM2  95.70 91.55 93.25 67.79 97.96 68.33 454.23 

MCM  94.93 92.12 93.32 68.65 98.02 69.38* 620.38 

UnBalanced 

Acceptor sites 

(NN269) 

SVM MM1  75.96 96.71 82.84 75.74 97.52 80.00 336.60 

MM2  79.33 97.05 85.23 78.94 97.92 82.71 301.08 

MCM  80.77 97.73 86.31 81.65 98.43 84.85 297.36 

RF MM1  70.19 97.50 78.85 73.67 97.33 77.66 28.91 

MM2  71.63 97.96 79.89 75.92 98.01 79.47 28.08 

MCM  69.71 98.30 78.55 75.51 97.69 78.80 34.82 

UnBalanced 

Donor Sites 

(NN269) 

SVM MM1  83.65 96.16 88.13 80.39 97.82 84.47 54.95 

MM2  83.17 96.16 87.80 80.05 97.33 84.18 52.21 

MCM  90.87 95.65 92.85 84.37 98.06 87.70 58.24 

RF MM1  85.58 96.55 89.51 82.56 97.86 86.20 4.37 

MM2  85.10 96.68 89.20 82.51 97.84 86.13 4.20 

MCM  88.01 96.42 91.21 83.96 97.70 87.35 5.18 

The t-test have been computed between SVM and RF classifiers using F-measure criteria. The * show 

that the performance of RF is significantly betther than SVM. 
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According to the result, in total RF outperformed SVM statistical significantly (at the 

0.01 a value) in 8 datasets, RF nominally (that is, not essentially statistically significant) 

outperforms SVM in 4 datasets, SVM nominally outperforms RF in 2 datasets, and in 4 

datasets SVM outperforms RF statistically significant. So, considering 18 datasets, RF 

performs better than SVM in 12 datasets. In terms of computational efficiency, as can 

be seen from CPU time column, RFs performed much faster than SVM due to 

parameter optimization process that was composed to SVM. 

In addition, the classification results of proposed methods MM1-RF, MM2-RF and 

MCM-RF compared with these of MM1-SVM [7], Reduced MM1-SVM [1], SVM-B 

[5], LVMM2 [11], MM2F-SVM [13] and MCM-SVM [14] methods using 𝑄9 criteria 

for HS3D dataset and 𝑎𝑢𝑃𝑅𝐶 for NN269 dataset in Figure 4.4. The result of the 

LVMM2 was taken from [11].  

From Figure 4.4, considering both balanced datasets, the proposed method MM1-RF 

outperformed MM1-SVM, Reduced MM1-SVM, SVM-B and MM2F-SVM for both 

acceptor (Figure 4.4 (a)) and donor splice site (Figure 4.4 (b)), but could not show better 

performance than MCM-SVM. Two other proposed methods, MM2-RF and MCM-RF 

performed better than MM1-RF for both acceptor and donor sites. In balanced acceptor 

splice site (Figure 4.4 (a)), MM2-RF and MCM-RF showed the same performance and 

both of them could outperform other methods. In balanced donor site (Figure 4.4 (b)), 

MCM-RF performed better than MM2-RF and MM1-RF and could outperform all of 

the other methods except MCM-SVM. Considering unbalanced acceptor dataset (Figure 

4.4 (c)), we can see that MM1-RF outperformed the MM1-SVM, Reduced MM1-SVM 

and SVM-B and produce a comparable result with LVMM and MM2F-SVM. The 

MCM-RF method performed better than MM1-RF and could outperform LVMM and 

MM2F-SVM. The MM2-RF method performed better than MCM-RF and outperformed 

all methods significantly and stood out as the best method on unbalanced acceptor 

splice sites. In the unbalance donor site (Figure 4.4 (d)), the MM1-RF outperformed 

MM1-SVM, Reduced MM1-SVM, SVM-B, and MM2F-SVM. The MM2-RF 

performed better than MM1-RF and could produce comparable results with LVMM. 

The MCM-RF performed slightly better than the MM2-RF and could outperform all the 

methods except the MCM-SVM same as the MM2-RF.  In comparison to LVMM2, the 

proposed methods MM2-RF and MCM-RF performed slightly better than LVMM2. 



 

58 

 

However, determining the associated threshold parameters of the LVMM [11] are 

difficult [12]. The proposed method has less complexity in comparison to LVMM2.  

 

Figure 4.4 Classification performance of the different state-of-the-art methods for both 

HS3D and NN269 datasets 
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The overall performance comparison of the proposed methods can be summarized in 

this way. Considering the balanced acceptor dataset, MM2-RF and MCM-RF showed 

the best performance. The MCM-SVM method illustrated better accuracy than the 

proposed methods on balanced donor splice sites. Considering unbalanced datasets, the 

MM2-RF outperformed all the methods on acceptor site and again MCM-SVM showed 

higher accuracy in unbalanced donor sites. We can state that our proposed methods are 

definitely more suitable for acceptor sites than donor sites. Additionally, considering the 

performance of RF along with SVM using the same encoding methods, the proposed 

methods in most of the cases performed better. 

In order to estimate the consistency of the proposed methods, we performed an 

additional evaluation on the NN269 dataset. For acceptor sites (Figure 4.4 (e)), auPRC 

of the MM1-RF is better than MM1-SVM and Reduced MM1-SVM. Besides, the 

MM2-RF performed better than MM2F-SVM and SVM-B. The MCM-RF 

outperformed all of the methods but MCM-SVM performed better than the proposed 

methods. For the donor sites (Figure 4.4 (f)), the auPRC of the MM1-RF method is 

lower than other available models. The MM2-RF and MCM-RF showed the same 

accuracy in term of auPRC. Both of them outperformed all methods except SVM-B and 

MCM-SVM methods. Overall, the proposed methods produced good results for the 

NN269 dataset. 

 Experimental Result using SVM 

The results of balanced and unbalanced datasets on both acceptor and donor splice sites 

are given in the Table 4.15, Table 4.16, Table 4.17, and Table 4.18, respectively. The 

DMM2-SVM outperforms all the methods clearly for both acceptor and donor splice 

site on the balanced dataset, except the MCM-SVM method in the unbalanced dataset. 

For acceptor and donor sites, the Q9 score, Mcc and AUC of DMM2-SVM is clearly 

better than those of other methods. Also, DMM2-SVM performs better than MM1-

SVM, Reduced MM1-SVM, SVM-B, MM2F-SVM, PN-FDTF-SVM, LVMM2, ESC-

LSVM, Sparse-SVM, and DM-SVM in terms of sensitivity and specificity. In 

comparison with MCM-SVM, our method performs better in all the terms for acceptor 

and donor site in balance dataset sites and produces approximately the same results for 

both sites in unbalanced dataset. 
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Table 4.15 Performance comparison of the DMM2-SVM with others state of art 

methods on balanced Acceptor splice sites  

Methods 
 Balanced Acceptor splice sites 

 
𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC 

MM1-SVM  90.17 87.54 88.65 77.78 95.33 

Reduced MM1-SVM  90.83 88.02 89.27 78.91 95.48 

B-LSVM  90.90 88.16 89.34 79.13 95.88 

PN FDTF-SVM  91.18 88.47 89.64 79.71 96.12 

LVMM2  88.96 90.11 89.40 79.20 95.90 

MM2F-SVM  91.84 88.16 89.76 80.08 96.02 

DM-SVM  92.64 90.73 91.54 83.41 97.31 

MCM-SVM  92.46 90.80 91.56 83.28 97.21 

DMM2-SVM  94.16 91.91 92.82 86.13 97.86 

Table 4.16 Performance comparison of the proposed methods DMM2-SVM with others 

state of art methods on unbalanced Acceptor splice sites  

Methods 
 UnBalanced Acceptor splice sites 

 
𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC 

MM1-SVM  91.18 88.28 89.54 58.30 95.76 

Reduced MM1-SVM  90.72 88.23 89.35 58.01 95.66 

B-LSVM  91.81 88.20 89.82 58.58 96.04 

PN FDTF-SVM  92.15 88.35 90.03 59.06 96.14 

LVMM2  89.10 90.08 89.90 60.26 96.00 

MM2F-SVM  92.22 88.81 90.33 59.93 96.23 

DM-SVM  92.81 90.44 91.51 63.56 97.16 

MCM-SVM  92.33 90.92 91.48 64.28 97.26 

DMM2-SVM  94.06 90.37 91.93 64.18 97.46 

Table 4.17 Performance comparison of the proposed methods DMM2-SVM with others 

state of art methods on balanced Donor splice sites  

Methods 

 Balanced Donor splice sites 

 
𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC 

MM1-SVM  93.24 90.99 92.00 84.28 97.12 

Reduced MM1-SVM  93.92 91.24 92.36 85.22 97.32 

B-LSVM  94.28 90.77 92.30 85.11 97.33 

MM2F-SVM  93.70 91.60 92.50 85.34 97.35 

OLVWMM2  93.99 92.06 93.10 86.11 97.56 

DM-SVM  95.17 92.13 93.36 87.34 98.05 

PN FDTF-SVM  95.28 92.67 93.74 87.99 97.94 

MCM-SVM  96.39 93.56 94.73 90.00 98.52 

DMM2-SVM  95.96 94.06 94.85 90.05 98.54 
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Our method has less parameter to tune in comparison with the LVMM2 (OLVWMM2) 

and the MCM-SVM approaches that have to be specified before using and the results of 

our proposed method are better too. It can be concluded that the DMM2-SVM is an 

efficient approach in identification of Human splice site on both balanced and 

unbalanced datasets. Besides, our proposed encoding method does not have any 

parameters to tune. It makes our method easier to use than others. 

Table 4.18 Performance comparison of the proposed methods DMM2-SVM with others 

state of art methods on unbalanced Donor splice sites 

Methods 

 Balanced Donor splice sites 

 
𝑺𝒏 𝑺𝒑 𝑸𝟗 𝑴𝒄𝒄 AUC 

MM1-SVM  93.10 91.08 91.96 65.10 97.15 

Reduced MM1-SVM  93.96 91.08 92.34 65.63 97.32 

B-LSVM  93.99 90.96 92.23 65.43 97.34 

MM2F-SVM  93.21 91.39 92.20 65.85 97.44 

OLVWMM2  94.21 92.50 93.12 67.71 97.85 

DM-SVM  94.60 92.34 93.30 68.71 98.00 

PN FDTF-SVM  95.21 92.78 93.86 70.43 98.07 

MCM-SVM  95.75 94.24 94.88 74.71 98.66 

DMM2-SVM  95.14 93.94 94.47 73.48 98.48 
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 CHAPTER 5 

 DISCUSSION AND CONCLUSION 

It can be seen from the literature that SVM-based classification techniques are 

frequently used because of their outstanding performance [40]. The accuracy of the 

SVM largely depends on choosing kernels and its parameters. Because the parameter 

tuning of the SVM can be a laborious task when multiple parameters are involved in it, 

it is arguable whether the SVM is a suitable method for genome-wide splice sites 

prediction [11]. Besides, efficient DNA encoding methods are essential to convert the 

DNA sequences to feature vectors in order to make them utilizable for the SVM. Each 

encoding method has its own advantage and disadvantages. For instance, encoding 

approaches of the LVMM2 and the MCM-SVM methods contain several thresholds that 

make these methods difficult to use in spite of their good performance. The MM2 

encoding approach in the MM2F-SVM method is computationally expensive [12], 

while the idea of a hybrid of triplet nucleotide with MM1 as encoding approach in the 

DM-SVM method only performs slightly better than the LVMM2 method in donor 

splice sites detection. The MSC+Pos(+APR)-SVM method is the most outstanding 

approach in Human splice site prediction domain with regard to its high-throughput 

accuracy. However, the number of useless and inhibiting features that is produced just 

by the MSC encoding approach is too many. Additionally, because of the existence of 

several parameters that should be tuned in feature extraction section, the computation 

cost is high. Hence, improving the performance of the approaches for high prediction 

accuracy and capability of them for applying in the whole genome are still need. 

In this thesis, we proposed novel DNA encoding methods by an efficient combination 

of several former proven successful encoding methods, in order to provide more 

informative features. The main advantages of the proposed methods to current state-of-
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the-art methods are that they have no parameters to tune and they are easy to use. 

Besides, the proposed methods exhibit good prediction accuracy for both donor and 

acceptor splice sites. 

In the first part of this thesis, we introduced three novel DNA encoding methods, which 

have been obtained by an efficient combination of previously existing DNA encoding 

methods in order to provide more information from DNA sequences. Besides, the 

AdaBoost classifier has been proposed in splice site prediction domain. It exhibited 

higher accuracy than the state-of-art SVM classifier in most of the cases when it was 

combined with the proposed DNA encoding methods. Our methods showed better 

performance in comparison with eleven currently available methods in the literature on 

HS3D dataset. Due to high prediction accuracy and existence of minimum tuning 

parameters, it can be concluded that our approaches are simple, efficient and easy to 

use. We also utilized the benchmark NN269 dataset to examine the reproducibility and 

stability of proposed approaches. Results showed that our methods are efficient in splice 

site prediction. In addition, the proposed methods are believed to contribute to the 

detection of unknown splice sites of whole genome and be extended for predicting other 

specific splice sites such as alternative splice sites in the DNA sequences. The relevant 

web server will help the biological community for easy detection of splice sites. 

In the second part, we study RF as a new classifier and feature selection method in 

Human splice site prediction domain. Since a large number of features are used to 

describe structures or processes in biology, the elimination of irrelevant and redundant 

information provide useful biological knowledge for human experts. F-score feature 

ranking method is a simple and efficient method that is used in splice site prediction 

domain frequently. We have investigated the efficiency of RF feature ranking method 

by comparing it with F-score to show the capability of RF as a feature selection in 

Human splice sites identification. The results show that RF feature ranking is a useful 

method in human splice sites prediction. 

SVM has been most commonly used in prediction of splice sites due to its high 

performance. But existing of the parameters that have to be set before using it, such as 

penalty parameter, the kernel type, and kernel parameters make it time-consuming 

process, causing to question whether SVM is a suitable method for genome-wide splice 

sites prediction [11]. We employ RF as another extremely successful classifier in this 

thesis. One of the main advantages of RF-based methods in comparison to SVM-based 
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methods is that it does not need tuning step in contrary to SVM and it is really fast with 

high performance. By combining RF with three up-to-date encoding methods (MM1, 

MM2, and MCM), we show that the proposed methods perform approximately the same 

and often better than the SVM-based methods. In addition, the proposed methods are 

simple, fast, easy to use and can be applied to large-scale Human Genome data for 

identifying splice sites. As a future study, these methods can also be utilized for 

identification of other regulatory regions such as translation initiation sites and 

promoters. 
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