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ABSTRACT 

PROVENANCE USE IN SOCIAL MEDIA SOFTWARE TO 

DEVELOP METHODOLOGIES FOR DETECTION OF 

INFORMATION POLLUTION 

 
 

Mohamed Jehad BAETH 

 

Department of Computer Engineering 

PhD. Thesis 

 

Adviser: Assoc. Prof. Dr. Mehmet S. AKTAŞ 

 

 

Social media delivers its users a large-scale easily usable and foolproof platform to 

communicate and to socialize that cannot be delivered using traditional media (such as 

newspapers and television). This platform is based on the technological foundations of 

Web 2.0 to define collaboration and data sharing among Internet users and operates as a 

group of software that allows the sharing of user-generated content. 

Social media users face two important problems when using this platform. The first 

problem is the following: when social media users receive data (user-generated content) 

via social media software, they might not know the exact quality of the data. Therefore, 

they may not be sure about the reliability and correctness of the data, how much emphasis 

it should be given, and whether they should help to disseminate the data. As a result, 

situations like information pollution can arise. The second problem is the following: 

social media software may change their privacy policies over time. As a result, users may 

not be able to set their privacy settings precisely according to the privacy measures that 

they demand. These policies determine the copyrights of the user’s shared data. User’s 

data intended to be disseminated among friend circle, may be disseminated via re-sharing 

within social media. Users are not aware of who actually can see his/her data or apply a 

process to it. As a result, problems like copyright violations can arise. 

In order to solve the two problems, users need information on the lifecycle of social media 

data. Provenance is defined as metadata that describes the origin, validity, quality, and 

ownership of data. Nowadays, we observe a lack of methodologies for detecting 

information pollution and copyright violations of users’ shared data. 
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The goal of this project is to develop methodologies that collect, store, pose queries and 

conduct analysis on the provenance of social media with a focus on the development of 

algorithms and methods for detecting information pollution and copyright violations of 

shared data. To begin to reach this goal, we developed algorithms and evaluated their 

correctness. We studied multiple provenance-quiring and storing systems to measure their 

abilities in aspects of scalability and performance with data of high magnitude. We 

proceeded by creating an abstract provenance data model that can be used to describe 

social interactions on different social network platforms by extending the PROV-O 

ontology. Using this model, we created a large-scale synthetic social provenance dataset, 

which we used to evaluate and test the proposed algorithms. We also tested our 

misinformation detection algorithm prediction capabilities against a real-life dataset. The 

results indicated the proposed algorithms shows promising outcomes. 

Keywords: Provenance data, social media networks, information pollution, violation of 

copyrights, data quality. 
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PROVENANS KULLANILARAK SOSYAL MEDYA 

YAZILIMLARINDA BİLGİ KİRLİLİĞİNİN VE TELİF HAKLARI 

İHLALLERİNİN TESPİTİ İÇİN YÖNTEMLER GELİŞTİRİLMESİ 
 
 

Mohamed Jehad BAETH 

 

Bilgisayar Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Tez Danışmanı: Doç. Dr. Mehmet S. AKTAŞ 

 

 

Sosyal Medya, iletişim kurmak ve sosyalleşmek için, geleneksel medyanın (gazeteler, 

televizyonlar vb.) sunamadığı büyük ölçekli ve kolay kullanımlı araçlardan oluşan bir 

platform sunmaktadır. Bu platform, Internet kullanıcılarının ortaklaşa ve paylaşarak 

yarattığı sistemi tanımlayan Web 2.0.’ın teknolojik temellerine dayanmaktadır ve 

kullanıcı tarafından oluşturulan içeriklerin paylaşılmasına olanak veren bir grup yazılım 

olarak tanımlanmaktadır.  

Sosyal Medya kullanıcıları bu platformları kullanırken iki önemli problem ile karşı 

karşıyadır. Birinci problem; kullandıkları sosyal medya yazılımı üzerinden bir veri (başka 

kullanıcı tarafından oluşturulan içerik) aldıkları zaman, bu verinin kalitesi hakkında tam 

olarak bilgi sahibi olamamaktadır. Dolayısıyla, kullanıcılar, veri hakkında yeterince 

bilgiye sahip olmadan ve veriye ne kadar önem verilmesi gerektiği konusunda emin 

olamadan, verinin yayılmasına olanak sağlayabilmektedir. Bunun sonucunda da bilgi 

kirliliği durumu ortaya çıkabilmektedir. İkinci problem; Sosyal Medya yazılımlarının 

gizlilik politikalarını zaman içinde değiştirebilmeleri ve kullanıcıların bu yazılımların 

gizlilik ayarlarını, talep ettikleri gizlilik derecesine göre, tam olarak düzenleyememeleri 

yüzünden kaynaklanmaktadır. Bu gizlilik politikaları kullanıcının paylaştığı verilerin 

kullanılması ve yayılması ile ilgili hakları belirlemektedir. Kullanıcının sadece 

arkadaşları arasında paylaştığı veriler, yeniden paylaşma yöntemiyle sosyal medya 

üzerinden yayılabilmektedir. Kullanıcılar, kendi verilerinin gerçekte kimler tarafından 

görüntülenebildiğini ve üzerinde kimlerin işlem yapılabildiğini takip edememektedir. 

Bunun sonucunda da telif hakları ihlalleri ortaya çıkabilmektedir.  

Bu iki problemin çözülebilmesi için, kullanıcılar verinin hayat döngüsü bilgilerine ihtiyaç 

duymaktadır. Provenans, veri hakkında köken, doğruluk, gerçeklik, kalite, mülkiyet gibi 
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hayat döngüsü bilgileri sağlayan bir üst-veri olarak tanımlanmaktadır. Günümüzde, 

Sosyal Medya yazılımlarında, “bilgi kirliliği durumlarının” ve “kullanıcı verilerinin telif 

haklarının ihlal edilip edilmediğinin” tespitine yönelik yöntemlerin eksikliği 

görülmektedir. 

 Bu projenin başlıca amacı, Sosyal Medya yazılımlarında yayınlanan verilere ait 

provenans bilgilerini toplayan, saklayan, sorgulayan; bu bilgilerinden, provenans çizge 

yapıları oluşturan; provenans çizgeleri üzerinde “bilgi kirliliği durumları tespiti” ve 

“kullanıcı verilerinin telif haklarının ihlal edilip edilmediğinin tespiti” amaçlı 

tasarlanacak algoritmaları içeren yöntemler geliştirmektedir. Bu temel amaç kapsamında 

algoritmalar geliştirilmiş ve testleri yapılmıştır. Sonuçlar, önerilen algoritmaların başarılı 

olduğunu ortaya koymuştur. 

 

Anahtar Kelimeler: Provenans, dijital veri provenansı, sosyal medya yazılımı, veri 

kalitesi, bilgi kirliliği. 
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CHAPTER 1 

1. INTRODUCTION  

 

The concept of social media is defined by Kaplan & Haenlein (2010) as “a group of 

Internet-based applications that build on the ideological and technological foundations of 

Web 2.0 and that allow the creation and exchange of user-generated content.” Since the 

introduction of this concept into the World Wide Web, there have been different types of 

social media sites, including social networking, blogging, micro-blogging, wikis, social 

news, social bookmarking, media sharing, opinion, reviews and ratings, and community 

Q&As. Through these different platforms, users are easily able to communicate, to 

network among each other on a large scale, and to offer user-generated content that 

traditional media, such as television, radio, and newspapers, cannot provide. Additionally, 

social media has been used for gathering information about large-scale events such as 

fires, earthquakes, and other disasters, all of which impact government and non-

government organizations at local, national, or even international levels. Furthermore, 

individuals use social media to discover reliable information about what is going on 

around them and thus are able to leverage new information as quickly as possible [2]. 

Social media’s low entry barrier is very advantageous to its users by enabling them to 

actively participate. Social media users can share a great amount of personal information 

with friends or on a broader public scale on a social networking site by posting status 

updates onto their own user profiles, via messages or even by using status replies. This 

has led to an explosion in the number of social media users. On the downside, such 

numbers may not be suitable for gathering information about large-scale events on either 

the international or local levels mainly because social media data is vast, noisy, 

distributed, unstructured, and dynamic in nature [2].  
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Tim Berners-Lee, the inventor of the World Wide Web, envisioned1 a browser button 

with which the user could express uncertainty about a document being displayed: “Oh 

yeah?”. Upon activation of the button, the software would then retrieve metadata about 

the document that would list assumptions on which trust could be based. 

Social media delivers to its users a large-scale and easily usable platform that cannot be 

achieved using traditional media. Understanding information propagation in social media 

provides additional context, such as knowing the information originator and a post’s 

transitions and modifications through the end of its lifecycle. The normal social media 

user utilizes such knowledge to evaluate the trustworthiness and correctness of the 

obtained information [3]. As in real life, the quality and value of information or objects 

created on social networks is affected by its provenance and this raises users’ concern of 

finding reliable and trustworthy information sources. 

Among the factual information published in different social media networks, such as 

tweets, there always exists thoughts, expressed attitudes, biased or unverified stories, 

hidden motivations, and the publishing of intentionally deceiving information. There has 

been some remarkable research in this regard trying to investigate how to distinguish 

between rumors and facts within a large number of tweets on a specific topic [4]. 

Nevertheless, a recipient of information propagated in social media does not always have 

additional data about or clues regarding a post’s origin and motivation, or the exact 

identification of the original publisher. As a result, collective behavior can be affected by 

information published on social networking sites, such as a blog, microblog, or even a 

wiki [5]. 

We rely on the Internet and the World Wide Web in almost every aspect of our lives 

nowadays. Regular users are no longer passive consumers of information but rather 

actively participate in the curation and promotion of this information. Therefore, interest 

in studying the provenance of Internet information has gained momentum in many fields, 

from science to food manufacturing, from journalism to art, to keep a clear and concise 

description of the what, how, and when an artifact was influenced or changed. This helps 

consumers make decisions fully aware as to whether something is trustworthy.  

                                                 
1 https://www.w3.org/DesignIssues/UI.html 
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1.1 Objective of the Thesis 

The goal of this study is to develop methodologies that collect, store, pose queries and 

conduct analysis on the provenance of social media with a focus on developing algorithms 

and methods for detecting information pollution and copyright violations of shared data. 

The study has several sub-goals: we will attempt to investigate how to improve existing 

popularity-based ranking algorithms by utilizing provenance data; also, we will design 

and develop algorithms for converting distributed provenance graphs to a small-scale 

representation while avoiding information loss so that it could easily be mined for useful 

information.  

1.2 Hypothesis 

Given the widespread use of social media in its variety of forms, and the propensity of 

such large numbers of people to use the medium to communicate a statement that is valid, 

mistaken, or blatantly false, the problem becomes how to find provenance data that would 

prove useful to recipients. The hypothesis of this work is that it is possible to use social 

media itself, as it exists in its present form, to obtain useful provenance data by 

leveraging the massive amounts of data published in social media to provide 

meaningful context about statements published in social media.  

1.3 Problem Statement 

Throughout the experience of using social media, it can be inferred that users face two 

major problems. One is data authenticity and quality. As explained previously it is hard 

to rate the reliability of a source in such user-generated-content platforms where sources 

of information might, by mistake or intentionally, propagate false information and cause 

the spread of polluted information. When a popular statement is made, the real 

provenance data of interest is metadata affiliated with the source of the statement. Since 

a message is repeated by so many social media users, finding the provenance data about 

the original source becomes the primary goal. In cases where there are multiple sources 

of the message, or there are messages that are similar, the search is focused on the 

message that was sent first or most likely sent first. Provenance data about the earliest 

message will be the most valuable to the user [6]. Thus, it would be hard to determine the 

actual quality of data analysis and how much emphasis should be given to it. The second 
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problem a social network user faces is the uncertainty of data visibility due to the dynamic 

changeability of content shared in social media, in which a change can occur on the 

platform’s privacy settings or a change can occur on a user level by applying more restrict 

privacy measures. These policies determine copyrights of the user’s shared data. User’s 

data, which are intended to be disseminated among friend circles, may be disseminated 

via re-sharing within the social media. Users are not aware of who actually can see his/her 

data or apply a process on it. Besides, Internet users have access to almost anything that 

they can make copies of with the click of a button. This could be a cause of unauthorized 

copying. Copyright laws and policies determine copyrights of the user’s shared data. 

User’s data, which are intended to be circulated between friend circles, may be spread via 

re-sharing within other social media. Users are not aware of who actually can see their 

data or what actions are conducted upon it. Consequently, problems such as violation of 

copyrights can rise. [7]. Analysis of social media sites can provide beneficial provenance 

attribute values that can better inform recipients about latent motivations and meanings 

associated with published information in social media. Nowadays, we observe a lack of 

methodologies for detecting information pollution and copyright violations of users’ 

shared data.  

Currently existing social media networks undergo an ongoing evolutionary process 

involving features, variations of sentiment expression actions, development of social 

collaboration tools, and data transition between these networks for users who have 

multiple accounts on different social networks. 

Provenance is defined as metadata that describes the origin, validity, quality, and 

ownership of the data [8]. Provenance attributes and associated provenance attribute 

values might also provide information about information appearing in social media [9]. 

Attributes, motivated by the subjective interests of a recipient, can provide deeper insights 

and context about information in social media.  

The W3C incubator group published a report [10] identifying motivations and challenges 

of mining social media for provenance data. We quote the points most relevant to our 

research: 

• “No common format and application programmer's interface (API) to access and 

understand provenance information whether is explicitly indicated or implicitly 
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determined.” To the best of our knowledge, no social media provider attaches 

provenance data to their data feed.  

• “Developers rarely include provenance management or publish provenance 

records.” 

• “No widely accepted architecture solution to managing the scale of provenance 

records.” This addresses the need for a scalable, fast and secure provenance data 

storage and quiring systems. 

• “No existing mechanisms for tying identity to objects or provenance traces.” This 

addresses the need for a provenance model applicable for different social media 

providers. 

• “Incompleteness of provenance records and the potential for errors and 

inconsistencies in a widely distributed and open setting such as the Web.” The 

magnitude of information published on social networks and the medium of 

communication is also a challenge. 

 

Although there has been some research on popularity-based ranking among users, there 

has been no work done so far that considers the dissemination of data among users and 

the effect of interaction upon each other. This raises the need for improved popularity-

based ranking algorithms. On the other hand, the nature of social networks that can allow 

a large number of users to all interact in the same context, which, if represented as a 

workflow, can create massively large workflow graphs that make it harder to maintain a 

lossless representation of data.  

In order to solve the abovementioned problems, users need information on the lifecycle 

of social media data. Social media is mainly available in the form of single users’ 

attributes, user-user connections (links), or user-generated content [11], including texts, 

photos, and videos. All this information can be represented as a graph.  

In the light of this problem statement and the aforementioned scenarios, we raise 

following concrete research challenges that we aim to address in this thesis: 

 

• RQ1: How do you go about evaluating misinformation detection in social 

media? 
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1. Determination of origin, custody, and ownership of information in large-scale, 

growing social workflows: the solution to uncertainty or ambiguity of 

information can be solved by extraction of data provenance in social media 

through determining origins, custody, and ownership of this information. The 

origins of information are described as the metadata about the user and the 

context in which the propagation occurred. Such metadata are called 

provenance attributes, and the formulation of these attributes will create 

metrics by which credibility of information can be measured. 

2. Evaluating the credibility of spreading information in social media: 

information with low credibility can lead to erroneous analysis results. We 

group the credibility of information into three different classifications: 

message credibility, source credibility, and media credibility. 

3. Improve existing popularity-based ranking algorithms by utilizing 

provenance data. 

• RQ2: How do you go about evaluating copyright violation detection in social 

media? 

1. Checking the copyright ownership of media files being re-shared in social 

media: due to the nature of social media networks where data dissemination 

is very hard to control, ownership should be taken into consideration. 

2. User’s data, which are intended to be disseminated amongst friend circle, may 

be disseminated via re-sharing within the social media causing an 

unauthorized copying. 

• RQ3: How to maintain a COMPLETE representation of information 

propagation in Social networks with the large propagation magnitude? 

1. Modeling information and its dissemination to fit in different systems and 

different contexts: In spite of the existence of many information diffusion 

models, there is currently no unified, conceptual model for information 

diffusion and provenance that can be applied to different social networks. 
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2. Since PROV-O specification is domain-independent, it does not provide 

domain-specific vocabularies for Social networks. 

3. Design and develop algorithms for converting distributed provenance graphs 

to a small-scale representation without information loss, so that the data could 

easily be mined for useful information. 

• RQ4: How do you go about creating a synthetic social provenance dataset 

that would reflect real social media phenomenon? 

Developing a large-scale provenance repository prototype system capable of auditing 

different social media platforms to generate analyzed information provenance: the 

amount of data generated by social media every day is way beyond the capabilities of 

existing provenance repositories. Thus, there is an inevitable need to leverage provenance 

repositories to handle such data volumes.  

 

1.4 Contributions 

The novel intended contributions of this study can be summarized in the following main 

objectives:  

1) Define a general framework for the problem. This framework is influenced by 

provenance work applied to other computational and information processing 

domains. 

2) Identify methods and a representation provenance model that will be applicable 

to all social media users in today’s different social media environment.  

3) To create a measurement of the quality of social data while developing algorithms 

and methodologies that utilize this information to detect information pollution.  

4) To develop algorithms and methodologies that detect violation of copyrights of 

the users’ shared data. This project will also attempt to investigate methods to 

improve existing popularity-based ranking algorithms by utilizing provenance 

data and determining how to design and develop algorithms for converting 
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distributed provenance graphs to a small-scale representation without information 

loss.  

5) Creation of a synthetic social network large-scale dataset on which the developed 

detection algorithms will be tested and evaluated.  

6) Creating a set of metrics that can be applied for evaluating provenance data in 

social media based on collected attributes. 

Obtain experimental results that demonstrate the framework’s potential and explore both 

the value and limitations of the framework and the approach. 

 

1.5 Organization of Thesis 

This introduction consists of an overview of the social provenance and misinformation 

propagation and detection in social networks, a summary of the outstanding issues that 

relate to the research outlined in this thesis, and a discussion of the contribution of the 

thesis. The remaining of the thesis is organized as follows. 

Chapter 2 consists of two parts. The first part gives background information about 

provenance data and the concepts of social provenance, misinformation propagation, and 

detection in social networks, a general overview of complex event processing (CEP) and 

its appliances in analyzing provenance data, an overview of existing provenance 

repository systems, and an overview of the Fuzzy Analytical Process. As we discuss each 

of these sections, we review related research and projects. 

Chapter 3 describes our evaluation of the existing provenance repository systems. We 

also discuss the need for a synthetic large social provenance dataset, a social provenance 

model which would generate this dataset and the provenance data generation process. 

Then Chapter 3 describes the design principles and components of the proposed algorithm 

for detecting misinformation propagation in social networks. We also introduce a privacy 

violation detection algorithm and present the CEP engine which has been developed as a 

prototype of the proposed algorithms. 
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Chapter 4 is an evaluation of the previously presented frameworks, algorithms, and 

prototypes, in which we ran tests against both synthetically generated data and real-life 

datasets. We present the results obtained in this section. 

Finally, in Chapter 5, we give answers to the research questions identified in Chapter 1, 

outline future research directions, and conclude the dissertation. 
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CHAPTER 2 

2. GENERAL INFORMATION AND LITERATURE REVIEW 

2.1 Social Networks 

The concept of social media is defined by [1] as “a group of Internet-based applications 

that build on the ideological and technological foundations of Web 2.0 and that allow the 

creation and exchange of user-generated content.” Since the introduction of this concept 

into the Web, there have been different types of social media sites, including social 

networking, blogging, micro-blogging, wikis, social news, social bookmarking, media 

sharing, opinion, reviews and ratings, and community Q&A. Through these different 

platforms, users are easily able to communicate, network among each other on a large 

scale and offer user-generated content that traditional media, such as television, radio, 

and newspapers, cannot provide. Additionally, social media has been used for gathering 

information about large-scale events such as fires, earthquakes, and other disasters, all 

which impact government and non-government organizations at local, national, or even 

international levels. Furthermore, Individuals use social media to find reliable 

information about what is going on around them and thus are able to leverage new 

information as quickly as possible [2]. 
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Table 2.1 Common social media subcategories 

Category Existing Platform Example 

Opinion Mining Yelp 

Microblogs Twitter 

Media sharing (photos and video) YouTube, Pinterest, Instagram, Snap Chat 

Blogs Blogger, WordPress, Medium  

Social Networking Facebook, LinkedIn 

Wikis Wikipedia, WikiHow 

Social News Digg, Reddit 

 

The rapid usage growth of social networks in all of its different categories including 

media sharing, blogs, and microblogs, are altering the way people interact with each other. 

Users of the popular microblog service, Twitter, publish over 500 million posts per day2. 

Twitter is accessible on so many different platforms, such as mobile devices and tablets, 

and provides a common API endpoint enables developers to implement their own vision 

of the platform, increasing the amount and frequency of information published in the 

social media environment.  

With platforms like Facebook exceeding one billion registered users, the popularity of 

social networks isn’t bound to a specific geographical region, as people from all over the 

globe use it heavily to share content and communicate. Many news outlets and media 

providers use it as well to reach out to their fan base. Official and non-official 

organizations, like the United Nations, Google, Tesla and dedicated accounts for high 

government officials like the president of the United States of America, use Facebook to 

keep the public updated about events or to promote the release of new products or even 

new job position openings.  

                                                 
2 http://www.internetlivestats.com/twitter-statistics/ 
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Figure 2.1 Number of Facebook users over time (statista.com). 

 

 

Figure 2.2 Number of Twitter users over time (statista.com). 
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Figure 2.3 Reach of leading social media and networking sites used by teenagers and 

young adults in the United States as of February 2017 (statista.com). 

 

Social media’s low entry barrier is very advantageous to its users, which enables them to 

participate more actively. Social media users can share a great amount of personal 

information with friends or on a broader public scale on a social networking site by 

posting status updates to their own user profile via messages, or even by using status 

replies. This has led into an explosion in the number of social media users. On the 

downside, however, social media is not suitable for gathering information about large-

scale events on either international and local levels mainly because social media data is 

usually vast, noisy, distributed, unstructured, and dynamic in nature [2].  

Social media can be categorized in many ways. It can be looked at based in a content-

type perspective, scope perspective, or even purpose of usage wise perspective. Some of 

them are internal such as employee networks, others operate on a extranet level such as 

customer communities for communicating with the customers of a company product or 

business to business relation maintenance, while others are open for public use. Table 2.2 

shows some of the modern social media platforms and its corresponding classification. 
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Table 2.2 Modern Social Media Platforms and its categories 

Social Media Platform Scope Data Type 

Facebook Social Connections All 

LinkedIn Professional All 

Google+ Social Connections All 

Twitter Microblogging All 

Tumblr Microblogging All 

Instagram Social Connections Photos and Video 

Snapchat Social Connections Video 

Pinterest Multimedia Sharing Photos 

YouTube Multimedia Sharing Video 

Vimeo Multimedia Sharing Video 

 

Social media delivers its users a large-scale and easy-to-use platform, which cannot be 

achieved using traditional media. Understanding information propagation in social media 

provides additional context, such as knowing the information originator and 

modifications to its transitions throughout its lifecycle. The normal user of social media 

uses such knowledge to evaluate the trustworthiness and correctness of this information 

[3]. As in real life, the quality and value of information or objects created in social 

networks are affected by its provenance. This raises the concern of users about finding 

reliable and trustworthy information sources. 

2.2 Provenance Data and Social Provenance  

The notion of provenance is well-known in different sectors. For example, in the world 

of art, it describes the chain of ownership of a work of art since its creation. Thus, 

asserting the provenance can affect the art’s value [12]. Another example of provenance 

utilization is food provenance that tracks the supply chain of food producers to determine 

the quality of a product [13]. Then there is data journalism that aims to produce credible 

news based on open data by rating its originator, while academia helps preserve the 

lineage of research continuity and authorship of an original idea.  
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The introduction of Web provenance is relatively recent compared to the abovementioned 

examples. It was introduced after the rapid adoption of social media networks, where 

users of the social Web as well as bots can play the dual role of an information originator 

and consumer [14]. 

Provenance is defined as:  

…a record that describes the people, institutions, entities, and activities 

involved in producing, influencing, or delivering a piece of data or a 

thing. [15]. 

 

Provenance in the context of the Web is a record that describes the series of events which 

created and transformed the state of data until it turns into its current state. In other words, 

it’s a graph-based, computer-processable, lineage record of all active and delegate 

participants who, over time, played a role in the creation of data by performing different 

actions.  

Mainly, there exists two provenance specification models that have been adopted in the 

majority of academic studies: 

1. Open Provenance Model (OPM) 

2. PROV-O data model (Provenance Ontology) 

 

OPM is the result of the Provenance Challenge Series that was developed to facilitate a 

“data exchange format” for provenance information [16] and was designed to meet the 

following set of requirements: 

1. “To allow provenance information to be exchanged between systems, by means 

of a compatibility layer based on a shared provenance model.” 

2. “To allow developers to build and share tools that operate on such a 

provenance model.” 

3. “To define provenance in a precise, technology-agnostic manner.” 

4. “To support a digital representation of provenance for any 'thing', whether 

produced by computer systems or not.” 

5. “To allow multiple levels of description to coexist.” 
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6. “To define a core set of rules that identify the valid inferences that can be made 

on provenance representation.” 

OPM has a modular design illustrated by the following layered architecture: 

 

Figure 2.4 OPM Layered Architecture [17] 

 

The OPM abstract model allows extending OPM to be used in different fields and 

terminologies. The XML serialization mapping allows different applications running 

under different environments to interact, exchange query, and modify the provenance 

graph. Several field-specific protocols have been developed to operate on top of OPM 

[8]. 

 

The Provenance Incubator Group, a part of the World Wide Web Consortium (W3C), 

recently published their report3 about provenance challenges in social media for finding 

and managing provenance data in social media: 

• “Checking authority.” 

• “Recency of information.” 

• “Verification of original sources.” 

                                                 
3 https://www.w3.org/Submission/prov-json/ 
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• “Conveying to an end user the derivation of a source of information.” 

• “Tracking user/reuse of content.” 

• “Scalable provenance management.” 

They presented a new provenance model based on Web 2.0 technology which defines an 

ontology to describe provenance graphs using JSON format. The authors published a 

technical guide4 which addressed different examples and tools that can be utilized by 

developers and researchers to develop applications that tackle the problematic aspects of 

information trustworthiness and authenticity. The proposed layer architecture is shown in 

Figure 2.5.  

 

 

Figure 2.5 Provenance in the semantic web layer cake diagram. 

 

The layers of the semantic web layers can be summarized as follows: 

Unicode is the standard that allows people to use computers in any language, while 

Uniform Resource Identifiers (URIs) are the mechanisms to identify resources in the Web 

                                                 
4 www.provbook.org 
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Architecture. XML is the markup language to encode documents and data in both 

machine- and human-readable ways. RDF (Resource Description Framework) allows for 

the description of resources. Ontologies can specify things and relationships between 

them. The Logic Layer allows for the derivation of new knowledge from assertions 

published on the Web. Proofs are the result of keeping track of logical inferences. And, 

finally, Trust may be established using such proofs. 

PROV is the new standard for provenance defined by the World Wide Web Consortium. 

Figure 2.6 provides a blueprint for a set of protocols, data formats, and knowledge 

representation techniques for the semantic web developer. This diagram should be 

interpreted with some flexibility. Indeed, not all logical reasoning requires ontologies, 

and other data formats, such as JSON, are also frequently encountered over the Web. But 

the essence of provenance, as a vehicle to establish trust on the Web, remains, whatever 

variant of the layered diagram is considered. 

 

 

Figure 2.6 The three Starting Point classes and the properties that relate them. 

 

The Starting Point category is a small set of classes and properties that can be used to 

create simple, initial provenance descriptions. Three classes provide a basis for the rest of 

PROV-O: 
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• Entity is a physical, digital, conceptual, or other kind of thing with some fixed 

aspects; entities may be real or imaginary. 

• Activity is something that occurs over a period of time and acts upon or with 

entities; it may include consuming, processing, transforming, modifying, 

relocating, using, or generating entities. 

• Agent is something that bears some form of responsibility for an activity taking 

place, for the existence of an entity, or for another agent's activity. 

 

There exists a major body of previous provenance research, which focus on the history of 

processes such as crud (create, read, update, delete) operations.  These studies focus on 

the representation of the history data [18], capture of the history data [19], management 

of the history data [20] and real-time management of the history data [21]. We observe 

the applications of such research in social media domain [22], [23], social computing 

domain [24] and cloud computing domain [25]. There exist various studies that focus on 

different data preprocessing steps in mining the datasets to increase the quality of the 

supervised learning tasks [26], [27]. There is a major body of research in data mining on 

big data [18], [28], [18]. We also observe a number of studies focused on data stream 

processing [21], [25], [29], [30]. Furthermore, there exists a number of studies on 

distributed data storages [31]. This study differs from previous work, as it mainly focuses 

on complex event processing to detect copyright violations on distributed event 

processing systems. Our previous work on provenance research published in various 

national and international conferences [22], [32]–[35]. 

The study of provenance analysis of information is not restricted to social media. It has 

been a part of research in other areas, including databases and the semantic web. The 

primary research focus in these areas is to redesign storage and management systems. 

Social media information propagation has been widely studied to understand how 

information propagates from one user to others. Shah and Zaman [36] proposed a 

centrality-based measure, called rumor-centrality, to identify the single source node of a 

given rumor spread where all recipients are known prior. Prakash, Vrekeen and Faloutsos 

[37] proposed methods to estimate the multiple sources of given information spread 
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where all recipients are known prior. The sources are assumed to be a part of these known 

recipients.  

Discovering provenance data in social media helps to solve the problem of reducing 

uncertainty about the origins, custody, and ownership of a statement published in a social 

media setting. Finding metadata about the origins and custody of a statement is at the 

heart of the provenance data problem. Simply put, origins are characterized as the 

metadata about a social media user that transmits or passes along a statement. Such 

metadata are called provenance attributes and will be formally defined later in this work. 

A social media user might be the original source of the statement or simply one who 

repeats or modifies a statement made in social media. A chain of users defines the custody 

of a statement, such as a message that has been passed along nodes in a social network. 

The custody information about the statement will be known as a provenance path and will 

also be formally defined later in this work. 

When a piece of information is going viral over social networks, what is the impact of 

this particular platform and how it affects the authenticity of this information? To 

elaborate more on this point and examining the different types of social networks, it can 

be observed that most of them have a functionality that enables users to assert or mark 

the post as important, thus making it visible to other users in the social network. For 

example, Reddit.com has a “vote up/down” functionality, Facebook has the “like” button 

while Twitter has its “favor” button—naturally posts with more positive feedbacks will 

be shown higher in the feed stream. Normally, communities interacting on social 

networks use this kind of collective wisdom to evaluate the importance and credibility of 

information. For instance, during the events following the appearance of Hurricane 

Sandy, users of Reddit.com started sharing eye-witness information and reports from 

media outlets they followed while other users were able to evaluate them, thus filtering 

all the un-credible information.  

Twitter openly provides a RESTful (Representational State System) API to access its 

platform. This enables developers to make programs that can read, write posts, messages, 

and user profiles, and interact with Twitter without going through their official Web or 

mobile applications. Thus, this ability allows for horizontal growth. The Twitter API has 

four main objects represented in either XML or JSON formats (tweet, user, entity, 
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places)5. The fact that these data are real-time, openly accessible allows anyone to mine 

data. Additionally, Twitter is used by millions of users on a daily basis, effectively 

immobilizing others both emotionally and physically as they debate global events, 

express feelings, or campaign politically. This has made Twitter a fertile platform for all 

kinds of research experiments. For these reasons we’ve chosen Twitter as the testing 

ground for this research effort to study social provenance and the credibility of social 

information’s trustworthiness [38].  

2.2.1 Social Workflows 

Social workflows represent an abstract view of the various social patterns observed on 

Twitter. It can be understood, visualized and represented in different formats and, thus, 

analysis can also be conducted upon it.  

Users of Twitter tend to use a set of undeclared rules when tweeting, replying or re-

tweeting in order to control their social engagement. For example, a tweet that starts with 

a mention is considered part of a conversation with low visibility that other users will 

most likely not see or using a hashtag as a keyword engages in the general social context. 

A hashtag is a type of label or metadata tag used on social networks and micro-blogging 

services to make it easier for users to find messages with a specific theme or content. 

Users create and use hashtags by placing the hash character (or pound sign) “#” in front 

of a word or unspaced phrase, either in the main text of a message or at the end. Searching 

for that hashtag will then present any message that has been tagged with it. A hashtag 

archive is consequently collected into a single stream under the same hashtag.6 In other 

words, hashtags are a way to tag and summarize the content of a tweet to bring together 

people who share common interests and ideas and want to share their experience through 

social media.  

2.2.1.1 Simple Workflows 

A simple workflow without hashtags normally represents tweets of users who have no 

intention of engaging in or creating a general topic. Such tweets usually tend to get 

minimal engagement limited to the user’s followers. However, highly prestigious users 

with a very large number of followers and can get large interactions and a wide impression 

                                                 
5 https://developer.twitter.com/ 
6 https://en.wikipedia.org/wiki/Hashtag 
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spread. The image below shows an example of a celebrity getting very high engagement 

on one of his tweets that has no reference to a specific topic.  

 

Figure 2.7 Tweet posted by a celebrity with very high social engagement. 

 

In our synthetically generated dataset,7 which we explain in detail in later section, Figure 

2.8 illustrates a visualization example of a social workflow in a PROV-O representation. 

We’ve also demonstrated several social metrics representing the cumulative sentiment 

summary of the social workflow.  

 

Figure 2.8 A single simple social workflow PROV-O visualization. 

 

                                                 
7 Study on Synthetic Social Provenance Database for Evaluation of Provenance Services for Big Data 
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2.2.1.2 Composite Workflows 

Twitter is not an autonomous digital space following a logic different from those in the 

physical world. Rather, the dynamics of Twitter are strongly driven by local experience, 

social patterns, and national politics. Thus, Twitter communities can be observed and 

identified by their interests.  

We define a composite social workflow as a group of separate workflows where all of 

them are using a unified hashtag and tweeting on the same topic. We’ve observed many 

social patterns on Twitter. However, two of them were the most commonly used among 

Twitter’s users.  

Solidarity workflows 

Twitter, in forging digital solidarities, contributes to deepening existing social and 

political divisions and consequently, leading to the polarization of opinion-based 

communities. 

As an example of such social workflows, the German Institute for International and 

Security Affairs8 published a paper describing several such incidents on Twitter that took 

place in 2015. More specifically, when discussing social interaction concerning the Saudi 

intervention in Yemen, they describe that the main trend was that Twitter united various 

sectarian, ethnic, religious, and other ideology- or value-based communities across the 

Middle East and beyond and pitted them against one other, such as when Shiite 

communities came together in solidarity against the Saudi-led, Sunni attack on the 

Houthis and vice versa. 

Each of the simple workflows that relate to the (#YemenUnderAttack) hashtag, for 

example, can be represented as a single unit with a sentimental value and amount of 

engagement upon the topic that leads to an increasing impact upon the hashtag’s total 

number of impressions and engagement. The figure below shows a representation of a 

solidarity workflow visualization. 

                                                 
8 http://www.swp-berlin.org/en/start-en.html 
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Figure 2.9 Solidarity social workflow (the increase of engagement overtime). 

 

Each of the nodes represents a simple workflow and its color represents the sentiment 

value it carries (magenta = positive, blue = negative); the flowers represent several simple 

workflows that are tweeting using the same hashtag in a specific time interval. 

Debates  

Twitter debates on specific incidents highlight the various ways in which Twitter is used 

by ordinary people, activists, media outlets, and officials, and, in doing so, it provides an 

idea of the political impact such debates can have via Twitter. 

An example of such Twitter debates is the ongoing #ProLife and #ProChoice debates over 

the prohibition of child abortion in the United States. Research conducted by Sarita Yardi9 

suggests that although people are exposed to multiple, diverse points of view through the 

public timeline on Twitter. People are most likely to be associated with the groups of 

people who are most like themselves. Many online communities are structured around 

groups of socially similar individuals. 

Figure 2.10 shows a representation of a Twitter debate workflow visualization: 

 

Figure 2.10 Debate of social workflow (sentiment wise color-coded). 

                                                 
9 http://bst.sagepub.com/content/30/5/316.short?rss=1&ssource=mfc 
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Each of the nodes represents a simple workflow and its color represent the sentiment 

value it carries (magenta = positive, blue = negative). While the flowers represent a 

number of simple workflows that are tweeting using the same set of hashtags in a specific 

time interval. The last flower node in the graph represents a summary of the different 

opinion groups while each of the other nodes would represent changes that occurred 

throughout the entire debate.  

Interleaved  

Some of the hashtags in Twitter never seem to get old, they are topics of general interest 

representing some aspect of everybody’s daily life. Users tend to use these hot channels 

to get high impressions where such scenarios can be observed as an advertisement 

technique. For example, #INeedANewCar is a hashtag that people always use to complain 

about their car problems, while at the same time large car companies and car resellers 

tend to tweet using this hashtag to target an audience with the interest of their products. 

2.2.1.3 Noise & Spam Bots  

Some users aiming to get a larger audience may abuse the use of hashtags and start 

tweeting irrelevant content into the hashtag. Although this may easily have been spotted 

by a human user, classifying such content as noise may be tricky for a computer program. 

Another thing to be addressed is the existence of bots. The Twitter API facilitates the 

creation of autonomous bots that can interact with other users, follow, unfollow and send 

private messages. We’re not arguing that all bots produce spam. However, there have 

been many incidents where bots were used to increase a hashtag’s impressions. For 

example, ISIS in May 2016 used bots to generate tweets trying to promote a hashtag for 

increased visibility in an attempt to utilize Twitter as a publicity medium. Figure 2.11. 

shows a screenshot of tweets generated by a bot maintained by ISIS to promote their 

hashtags.  
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Figure 2.11 Bots used by ISIS to promote their hashtag. 

 

There have been many studies [39] and tools developed [40] to help to detect bots by 

analyzing their behavior. 

2.2.1.4 Community Participation Scopes  

The demographic, political and language barriers in the real world seem to also apply, in 

most cases, to the world of Twitter. The spread of any information or campaign is mostly 

bound by either local interests or by the language spoken, while information is moved 

through bilingual personals serving as a link between two communities that speak 

different languages. Another pattern that is worth mentioning is that whenever topics 

were picked up in another national context, they were reframed locally. For instance, 

Lebanese Twitter users reframed the Saudi military operation in Yemen to proclaim their 

local sectarian loyalties. Egyptians used the Saudi intervention to point to their president’s 

insincerity. 

In general, there are three types of communities observed in social workflows according 

to the scope of interest:  

• Regional: bound to a specific geographic area or a country with unique culture.  

• Interregional: concerns people with different cultural identities. 

• Global: relates to issues with a global scale.  

2.3 Misinformation Propagation in Social Networks 

Recently there has been wide interest in raising awareness about false information 

disseminating throughout social networks. When a social network user sees such a piece 
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of information on his social network feed, it’s advised that these users take necessary 

actions to further investigate the truth behind this information and to evaluate its 

authenticity in order to take the right actions or at least not to propagate it further to 

prevent causing any harm. Usually this on-the-fly assessment is done by considering 

whether information form social media are facts, opinions, or a rumor. Furthermore, they 

should look at the motivation of the originator behind publishing this information. 

Malicious information can cause unwanted consequences which in some cases can be 

very severe [4].  

An example of the impact of a rumor and it’s probability of becoming viral and spreading 

wildly is defined as the “Basic Law of Rumors” [41]: 

“R ∼ i x a” 

R represents the possible impact of rumor which relies on the importance of the 

information i and the ambiguity a of the information given. The authors claim that the 

likelihood of information becoming a rumor is directly related to vagueness factors. They 

also claim that rumors are more likely to spread faster among people with similar 

mindsets.  

Finding misinformation in social media and the World Wide Web is already 

commonplace. Preventing the spread of misinformation has piqued the interest of many 

researchers who have addressed this issue via several different approaches. 

Many proposed methodologies hypothesize that social network users are likely to react 

to suspicious misinformation in a specific way. In a study by Zhao, Yin, & Song (2016), 

the researchers investigated influences that affect a social network users’ behaviors, 

including their willingness to combat rumors during social crises. A model was developed 

to better understand how social network users react to rumors during crises. Their 

approach uses structural equation modeling to evaluate factors influencing a user’s 

behavior. The authors concluded that people are prone to disputing false news and rumors. 

This provides further evidence that the detection of misinformation is based on the social 

network’s user, although collaborative wisdom can also be effective. 

When a statement is going viral on a social network, the most significant provenance data 

is the metadata associated with the originating source. In such cases finding the 



28 

 

provenance data about the origin becomes the essential. Sometimes the collective wisdom 

of a social network cannot distinguish the truthfulness of information in its early stages 

of going on a viral spread. However, users of a social network will start reacting to debunk 

false information, thus correcting whatever damage has been done. In the end, this led to 

the correction visibility of the feed walls of other users that surpass the visibility of the 

false information [4]. In cases where there are multiple sources of the message, or where 

there are messages that are similar, the search is focused on the message that was sent 

first or most likely sent first. When a statement is propagated by multiple sources in a 

concise time period, which makes it hard to distinguish the actual originator of the 

information, provenance data about the earliest message will have the most significance. 

Nevertheless, a recipient of information propagating in social media such as a tweet does 

not always have additional data about the exact information clues regarding its origin, 

motivation, and the original publisher. Collective behavior can be affected by information 

published in social networking sites, such as a blog, microblog, or even a wiki [5].  

The increased interest of information dissemination on social networks led to the 

introduction of several data representation models of which many are based on W3C’s 

PROV data model. The advantage is that PROV is a Web-native and interoperable format 

that allows easy publication of provenance data and minimizes the integration effort 

among different systems making use of PROV. Taxidou et al. (2015) proposed a model 

to track Twitter data propagation. However, the model was reconsidered to include quote 

functionality recently added by Twitter (Taxidou, Fischer, Nies, Mannens, & Walle, 

2015). The extension was called PROV-SAID. The model is only suitable for Twitter 

information diffusion.  

Regarding the existing provenance repositories, i.e. Karma [44] and PreServ [45], to our 

best knowledge Komadu is the only PROV-compatible provenance repository [46]. 

Komadu is a stand-alone provenance capture and visualization system for capturing, 

representing, and manipulating provenance and repositories. It uses the W3C PROV 

standard [47] in representing data. Komadu has a web services interface based on Apache 

Axis2. Komadu has been extensively used for scientific workflow data provenance and 

its ability to handle large-scale data such as the one coming from social networks 

that needs to be tested.  
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Many studies identified the importance of utilizing graphs kernels for data representation 

and discovery. Peng, Zhang, Huang, Huang, and Zhuge (2015) utilized a semantic link 

network to represent complex structured data to calculate the similarity between 

documents by extracting its features and using them as comparison criteria in order to 

address the limitations of the conventional graph kernel. Automatic detection of false 

rumor spreading on Weibo, a blogging network that is mainly popular in China, was 

proposed by Wu, Yang, and Zhu (2015) who used a graph kernel-based hybrid SVM 

classifier to detect misinformation. The classifier captured propagation patterns in 

addition to semantic features such as topics and opinions to evaluate the credibility of 

information.  

Another credibility analysis system for assessing information credibility on Twitter was 

proposed by Alrubaian, Al-Qurishi, Hassan, and Alamri (2016). The proposed system 

consisted of four integrated components: a reputation-based component, a credibility 

classifier engine, a user experience component, and a feature-ranking algorithm. The 

components integrated to analyze and assess the credibility of Twitter tweets and users. 

In a study by Castillo et al. (2011), another information detection methodology was 

developed. This study considered message-based, user-based, topic-based, and 

propagation-based features. These approaches operated under the assumption that social 

network user activity can be an indication of the quality of the information itself. 

However, the evaluation process was done by manually labeling information obtained 

from Twitter and on a relatively smaller scale compared to the voluminous data sizes 

social networks can create.  

A platform for the collection, detection, and analysis of online misinformation and its 

related fact-checking efforts was developed by Shao, Ciampaglia, Flammini, and 

Menczer (2016). The proposed system collected data from news websites and social 

media. Data obtained from fact-checking agencies was used to identify the evolution and 

origin of fake news spreading on social networks. The system compared information 

published on social networks against the reliability results determined by fact-checking 

agencies. To evaluate the system, the authors collected data shared with links from 

websites that intentionally spread false information. The system has proven to be a 

success; however, the system’s fact-checking capability is limited to the news that the 

fact-checking agencies deem important. 
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Semantic Link Network (SLN) is a graph-based semantic web approach which describes 

the relationships among objects. SLN supports relational reasoning, analogical reasoning, 

and inductive reasoning. SLN provides reasoning and querying capabilities with the 

ability to modify, add or remove links among objects to discover semantic communities 

by analyzing the graph structure [52]. SLN has been used to identify semantic 

communities and semantic link networks which has proven valuable in analyzing social 

networks [53] and [48].   

Several studies have applied data mining techniques on large-scale scientific provenance 

datasets (Ghorashi & Jensen, 2013; Aktas, Plale, Leake, & Mukhi, 2013; P. Chen, Plale, 

& Aktas, 2014). In contrast to the previous study, our work focuses on mining large-scale 

social provenance datasets. We also see some real-time big data processing approaches 

that have been applied to real-time provenance notifications in different applications [34]. 

Our work has been conducted on the large-scale provenance dataset rather than real-time 

provenance notifications. 

In a study by G. P. Barbier (2011) a provenance path framework was presented to gather 

and analyze data provenance for the purpose of rumor detection. They adopted several 

social media provenance metrics and utilized it in their framework. The significance of 

this work was its consideration of both complete and uncompleted provenance paths of 

data dissemination. However, it doesn’t consider the temporal nature of data 

propagation in social networks and their adapted provenance model was OPM-

based. A prototype was developed as a proof of concept operating on a very small 

scale, ignoring the existence of massive social workflows. 

Large social networks provide API for developers to create applications that run in all 

different environments, enabling people to automate their social accounts management. 

This has led to the existence of bots that can autonomously create content and in some 

cases create spam. Attacking this problem Ferrara, Varol, Davis, Menczer, and Flammini 

(2014) developed an application that could determine Twitter user account behavior that 

had similarity to bots. Tests had a very high success rate. The detection algorithm 

considered the comparison of features related to content, network, sentiment, and 

temporal patterns of activity that are imitated by bots but at the same time can help 

discriminate synthetic behaviors from human ones, yielding signatures of engineered 

social tampering. Lately, they’ve provided an API enabling developers to access their 
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services. We believe that this can be considered as one of the metrics used to identify the 

credibility of a Twitter user. 

 

Shao et al. (2016) argued that large amounts of data published on Twitter spreads in a 

totally uncontrolled fashion and seems to have no particular spread patterns. They argued 

that once hoaxes, rumors, and false news are spread they may cause catastrophic results 

and the clarification process may be costly due to the unrepeatable damage such a spread 

may cause. Thus, the authors introduced an automatic fact-checking framework named 

Hoaxy. What it does is to constantly keep crawling a list of predefined trustworthy news 

agencies and by listening to the Twitter streaming feed it automatically compares 

information published on a specific hashtag to information obtained from fact sources 

and rates information published by Twitter users. The developed platform has proven 

effective to some extent. However, it has no regard for the user’s status or the way 

information is propagated, as there is no modeling of data the platform and rather 

works in an ad-hoc manner. A similar approach was adopted by Ciampaglia et al. 

(2015) in which Wikipedia was used to create a semantic proximity metrics knowledge 

base to evaluate the tweets. This approach could handle misinformation published on 

various topics.  

Motivated by detection of misinformation on social media to prevent the spread of rumors 

and vicious false news, especially in times of crises and intense situations, Abbasi & Liu 

(2013) developed a framework and an algorithm called CredRank to detect individual 

users with multiple accounts by checking the behavioral similarity and clustering them 

accordingly. The authors, who claimed to have accurate detection rates, focused on 

situations in which content credibility or the publisher could not be assessed. The 

algorithm measured user credibility in social media. While the developed algorithm 

focuses on specific situations, our thesis intends to investigate the bigger picture and 

consider a very large number of metrics.  

Gundecha, Ranganath, Feng, and Liu (2013) developed a tool for extracting user’s social 

provenance attributes by collecting personal attributes such as age, gender and location 

as well as other domain-specific attributes and then compare the collected attributes with 

ones provided by the same users in other social networks to increase the credibility of this 

information. The developed tool had a Web-based user interface for collecting the 
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attributes of interest associated with a particular social media user and related to the 

received information. The used approach gives an extra level of trust to collected 

attributes that increase the user’s credibility rating. However, this study doesn’t 

consider metrics other than those related to user credibility and has no regard for 

the data dissemination. 

A framework developed to detect rumors in social networks by Seo, Mohapatra, and 

Abdelzaher (2012) models the social network as a directed graph where vertices represent 

individuals and directed edges represent information flow (Follower/Followee). They 

injected monitoring nodes into the social network and collected data regarding of 

information flow. They reported that their approach had a high accuracy rate. However, 

their approach experimented in a rigged environment and still needs to be tested 

against a real case scenario. Additionally, the applied method can be used on a small 

scale or topic-specific situation due to the need to set up monitoring nodes every 

time.  

2.4 Complex Event Processing in Social Networks 

Complex event processing and extraction have been utilized in different research areas 

for many different purposes. The extraction of useful information that helps decision-

making processes or the engagement of a better user experience had a share in these 

works. For example, when faced with information overload, people and organizations 

may prefer information which is more filtered and categorized. Realizing such a demand, 

a complex event extraction from a real-time news stream framework was developed [62]. 

The proposed architecture utilized both natural language-processing techniques and CEP. 

The developed framework could detect specific events by analyzing the news streams and 

then launching a notification to the user. However, the system lacked a complete whole-

world ontology, which limits its detection capability. In this study, we utilize provenance, 

which provides information on the complete lifecycle of social media data.  

Utilizing provenance data in CEP was introduced by Astekin and Aktas [63]. They 

proposed a runtime verification framework for a self-healing capability in the Internet of 

things. The developed system used a predefined set of rules, launching relative actions in 

response to a specific event rule being detected. The performance of the developed system 
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was tested with both Apache Storm and Apache Kafka setups and was found to be 

performing well with little overheads for processing events. 

Social networks have a very high adaptation, where 73% of adults in the United States 

actively use social network websites, and young adults use social networks even more 

actively [64]. Social networks provide many benefits to their users such as maintaining 

relationships, keeping up with current trends, obtaining news and information and 

meeting people with similar interests. In a study conducted by Quinn  (2016), several 

privacy concerns of social network users were identified. The privacy concerns included: 

personal information relevant to unintended recipients, unwanted access to specific 

information, future exposure of profiles to government agencies or employers, and 

political party use of personal information to target advertising. This shows that users of 

social networks are somehow aware of the amount of personal information that they share 

may reach unintended parties. The social network provides some privacy control tools, 

however, according to the survey conducted as part of Quinn [65] research, many users 

find these tools are not sufficient enough. They also use external tools such as 

advertisement blockers and pop-up blockers or manual data filtering. 

Addressing the problem of privacy policy control on social networks, Mazzia et al [66] 

developed a policy comprehension tool, PViz. The tool has a graphical user interface that 

shows groups of users directly connected to the user’s network divided into communities 

according to the user privacy policy toward them. The tool aids users to make comparable 

audience classification. A survey was conducted to test PViz in which many users 

expressed the tool’s usefulness for better privacy policy control, community detection 

and labeling. However, the testing was limited by Facebook’s API limitations. The tool 

has no support for policy modification. Addressing difficulties in managing privacy 

policies in large social groups, Amershi et al [67] proposed a tool for supporting users 

who seek to create and classify on-demand custom communities. The tool utilized a 

model of an interactive machine learning approach.  The test results of their proposed tool 

demonstrated that it worked well as a supplementary follower classification across big 

and diverse social communities. 
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2.5 Stand-Alone Provenance Systems 

We tried to evaluate the stand-alone provenance systems in our evaluation framework by 

conducting performance (responsiveness) and scalability experiments to investigate 

whether these stand-alone provenance management systems were capable of handling 

large-size social provenance data. For this performance evaluation, three different stand-

alone provenance management systems were chosen: PReServ, Karma and Komadu. 

Further information about these provenance systems is presented in the next section. The 

intention of this study is to obtain a more reliable picture of the relative advantages and 

disadvantages of various stand-alone provenance systems.  

The collection and processing of social data provenance lead to some challenges. Social 

data provenance records can quickly grow large because of the large number of parties 

participating. The number of services can grow to scale on the order of thousands or 

millions of social interactions that take place in social media. As the size and volume of 

the social data increased, the volume, size, and frequency of provenance data has also 

increased. Therefore, it is clear that the scalability, distributed processing, and real-time 

analytics will be critical not only for the social data streams but also for effective 

performance of the provenance data generated about these data streams. In addition to 

these scalability issues, quality and privacy issues are challenges in data collection. 

Although social networks have a high degree of accessibility, the collection and 

processing of social network data may not be feasible due to privacy reasons. Access to 

this data is limited to specific privileged analysts. Also, the quality of the data is important 

to evaluate for trustworthiness and accuracy of the information. 

Provenance information shows the transformation lineage of a data item from its creation 

till its final state. Being a topic of high interest to many researches, there have been many 

studies that involve experiment reusability, reproducibility, fault tolerance, process 

optimization and performance prediction [68].  

The problem of analyzing, mining and visualizing large-scale provenance data persists in 

many different scenarios. For example, several online streaming, large-scale data sets are 

used to construct an analytical workflow application where several stages and steps are 

conducted [69]. Another example is the CAMERA project, where 800 data sets are 

hosted, containing almost 48 billion base pairs, 120 million reads, and around 20 
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workflows based scientific applications. These scientific applications are analyzed 

against this very large reference dataset. Each application will be executed repeatedly, 

generating various workflows, by many scientists using different query datasets. 

Scientists need to get timestamps of the submitted executed requests [70]. Furthermore, 

the introduction of provenance information usage in the emerging technology of big data 

might create very large workflows when considering the velocity of data handled [71]. 

To get a fine-grain provenance tracking of a workflow, the size of the collected metadata 

can exceed several times the size of the original data itself. Then there is the problem of 

excessive overhead during provenance collection in big data processing systems. 

Later in this research we studied some of the existing stand-alone provenance systems in 

order to identify the one that best meets our needs. The stand-alone provenance systems 

investigated here include PReServ, Karma, and Komadu. This section provides some 

brief information about these systems. 

PASOA (Provenance Aware Service Oriented Architecture) [72] is the software 

architecture of the PReServ system that supports the recording of interaction provenance, 

actor provenance, and input provenance with the provenance recording protocol, which 

specifies the messages that actors can asynchronously exchange with a provenance store 

to support provenance submission. PReServ, which is the realization of this architecture, 

uses a provenance management service as a provenance store that provides a common 

interface to a variety of storage systems, such as file system, relational databases, XML 

databases, and RDF stores. PReServ can only capture provenance from the workflows in 

which all components are web services. The PReServ approach is highly dependent on 

applications based on SOA. 

Karma [44], [73] was designed to support dynamic workflows in weather forecasting 

simulations, where the execution path can change rapidly due to external events. Karma 

allows users to collect and query provenance of scientific data processes with the ability 

to run stand-alone or as part of a greater cyber-infrastructure setup. The Karma system 

records the provenance in four dimensions: execution, location, time, and dataflow, and 

uses a publish-subscribe notification protocol for provenance collection. Karma records 

the published provenance messages in a central relational database server and uses the 

Open Provenance Model (OPM) for data representation. 
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Komadu [46] is another stand-alone provenance capture and management system for 

capturing, representing, and manipulating provenance coming from scientific 

instruments, infrastructure, and storage. It uses the W3C PROV-O standard to represent 

data and it is the successor of the Karma provenance system. Like Karma, Komadu also 

uses a MYSQL database to store all incoming notifications, processed components, their 

relationships, and generated provenance graphs. A connection pool is used to create and 

efficiently manage database connections under high data rates. 

One common challenge related with all these stand-alone provenance systems is that they 

are all based on centralized solutions for storage mechanisms and do not scale when the 

size of the provenance data increases. Another challenge is the lack of capabilities to 

support data ownership, data quality, and trust properties of social provenance. Hence, 

we argue that these systems are not quite useful for the provenance management 

requirements for the big social provenance data.  

2.6 Fuzzy Analytical Process  

Soft computing includes techniques that aim to understand the tolerance for uncertainty 

[74]. Soft computing has been utilized in different studies where the authors used fuzzy 

logic [75], evolutionary computing [76] and machine learning [77]. Soft computing has 

also been used in different application domains such as communication systems, 

manufacturing automation, transportation, and healthcare [78]. In this study, we used a 

fuzzy analytic hierarchy process, a soft computing method that is utilized for multi-

criteria decision-making processes to assign proper weights to the proposed metrics. The 

analytic hierarchy process (AHP) method was introduced by Satty [79] as a “decision-

making method to tackle complex problems with uncertainties”. The main idea of AHP 

is to use the results, both continuous and discrete, to rank the results using a variety of 

existing alternatives. Since its introduction, it has been used widely in various research 

areas [80], including software engineering (Aktas, 2016). In this study, we use Fuzzy 

AHP to determine the values of the proposed social network metrics. 

 The basic hierarchal level structure of AHP, where inputs are divided into multiple 

layers, simplifying the problem. Each layer has several nodes and weights which are used 

to connect nodes in adjacent layers. Fig 2.12 shows the basic hierarchal level structure of 

AHP. 
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Figure 2.12 Simplified structure of an example AHP hierarchy 

 

The basic flow of the AHP involves the following stages: 

1. Creating the decision hierarchy that consists of three main layers. The top 

represents the general goal, followed by a layer that represents the criteria that 

affect the goal’s outcome, and, finally, a lower layer that represents all possible 

alternatives. 

2. By conducting comparisons and calculating the relative importance weights of a 

decision’s criteria in the creation of pair-wise matrices, Saaty [79] used a scale of 

weighting between 1 (resembling importance equality) and 9 (which resembles 

extreme importance). Then, the average weight of each normalized criterion was 

computed. In ranking alternatives according to the calculated weights of criteria, 

the alternative scores are combined with the criterion weights to produce an 

overall score for each alternative. 

The AHP may be insufficient when handling cases that have extra vagueness, such as the 

case of assigning accurate weights to our proposed social metrics. For that reason, we 

introduce the use of the Fuzzy AHP method, in which we conduct pair-wise comparisons 

using triangular fuzzy numbers (TFN) [81]. This will require an extra step to calculate 

the synthesis of criterion priorities. TFN are represented as groups of triplets of real 

numbers (l, m, u) where l ≤ m ≤ u. TNFs are used to express fuzzy events or relationships 

when conducting pair-wise comparisons in the context of AHP [82]. Here, we propose a 

TFN-based scale to represent the relationships between evaluation criteria. Table 2.2 

shows the proposed scale. 
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Table 2.3 Triangular fuzzy conversion scale 

Scale Triangular Fuzzy Number Reciprocal TNF 

Equal Importance (1, 1, 1) (1, 1, 1) 

Slightly more important (2/3, 1, 3/2) (2/3, 1, 3/2) 

Strongly more important (3/2, 2, 5/2) (2/5, 1/2, 2/3) 

Extra more important (5/2, 3, 7/2) (2/7, 1/3, 2/5) 

Extreme importance (7/2, 4, 9/2) (2/9, 1/4, 2/7) 

 
 

Using the introduced scale, we can create a TNF based fuzzy pair-wise comparison matrix 

A{ãij}  

   

 

where ãij = (lij, mij, uij), and its inverse value ãij = 1/ãji for every triangular fuzzy 

number. Since AHP is normally used for conducting a questionnaire-based study that is 

answered by different individuals who might give different importance to a different 

criterion, a pair-wise matrix should be constructed for every answer set to ensure these 

matrices will be aggregated using the fuzzy geometric mean method of Buckley [83] by 

applying the following equation:  

 

where ãijk is the qualified precedence using the TFN form of the kth decision maker’s 

point-of-view and n is the total number of decision makers. 

Once we have the aggregated pair-wise matrix, the next step is to calculate the fuzzy 

synthetic extent Si using the following equation:  

(2.1) 

(2.2) 
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Once the fuzzy synthetic extent values are obtained, we use Chang’s method to calculate 

the degree of possibility which represent the non-fuzzy weight-value criterion Sb ≥ Sa. 

This value is calculated as follows: 

 

 

In this research, we use the method proposed by Srichetta and Thurachon (2012), as 

shown in the Methodology section (see Chapter 3), in order to obtain the degree of 

reliability by applying the min operation on the vector of synthetic extent. This will 

produce the non-fuzzy weight-value for each criterion so that the normalized weights can 

be calculated. After the criterion weights are estimated, we compute the scores of all 

identified case alternatives in accordance with each criterion and then calculate the 

aggregate weights of the alternatives by accumulating the weights via a pre-defined 

hierarchy. 

  

(2.3) 

(2.4) 
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CHAPTER 3 

3. METHODOLOGY 

3.1 Evaluation of Existing Stand-alone Social Provenance Systems 

One of the purposes of this study is to analyze stand-alone provenance systems to 

determine whether they are capable of processing large-scale social provenance data. 

Hence, we need a test suite to test these stand-alone provenance systems and analyze the 

results. This raises some questions: How can the capability of these stand-alone 

provenance systems be analyzed? Which tests are required? The systems should be 

analyzed for both performance and scalability. Hence, a test suite was developed to test 

Karma, Komadu, and PReServ to analyze these systems in terms of performance and 

scalability. Three types of tests have been implemented in this test suite to analyze the 

capability of the stand-alone provenance systems. 

The first test includes latency tests to analyze the response performance of the stand-alone 

provenance systems. This experiment measures the ability of the stand-alone provenance 

management systems to respond to queries on different provenance sizes and investigates 

the performance of both key-value-based queries and multi-criteria (find) queries. 

The second test includes simultaneous client connections to analyze the scalability and 

performance of the stand-alone provenance systems. The test increases the number of 

clients connected to the server and measures the response times on different numbers of 

client connections. This test investigates the behavior of the system as the number of 

concurrent clients querying the provenance data grows. 

The third test includes different message rates to analyze the scalability of the stand-alone 

provenance systems. The test increases the incoming message rate and measures the 
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response times of different message rates. This test investigates the behavior of the 

provenance database when the load (number of incoming messages per second) is 

increased. 

3.1.1 Experiment Setup 

All code was written in Java, using version 1.7 of the Java Standard Edition compiler. 

The tests were conducted with Karma software (version 3.2.3), Komadu software (version 

1.0), and PReServ software (version 0.3.1). The System.getTimeinmillis() function that 

comes with Java 1.7 software was used as the timing function. 

Komadu, Karma and PReServ services were set up to run on an Ubuntu 14.04 node with 

two virtual CPUs, 7.5 GB of memory, 30GB IDE storage on a Google Compute Engine, 

a Tomcat Apache Server (version 6.0.45), and Axis software (version 1.6.2) as a 

container. A MYSQL database (version 5.5.47) was used on both provenance systems as 

back-end storage.  

The Provenance Generator and Query Test clients ran on multiple remote Ubuntu 14.04 

nodes, each equipped with one virtual CPU and 3.75 GB of memory on Google Compute 

Engine. The standard out-of-the-box settings of Tomcat, Axis, Karma, Komadu and 

PReServ software were used. To facilitate testing of the system as-is, none of the 

configurations were altered. 

3.1.2 The Experiment  

This research focused on the largest possible provenance size that is possible using the 

existing implementation of a provenance database. This experimental study showed that 

the large size of the graph provenance to be one with 4,000 social operations. When more 

than 4,000 social operations were ingested, errors occurred while querying the 

provenance database. Tests were conducted on both key-value-based query operations 

and multi-criteria query (find) operations provided by the programmable WSDL (Web 

Services Description Language) interfaces of Karma and Komadu. PReServ has no 

specific query function, but it allows provenance retrieval using XQueries. Hence, XPath 

queries were written for PReServ as a counterpart of the Karma and Komadu query 

functions. This experimental study examined the performance of the systems through the 

synchronous communication channel, as a Web Service approach provides a uniform 
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programming interface to ingest provenance for social network clients and was the most 

appropriate method for both data and application integration. 

The experiments started by first evaluating the performance of ingesting the provenance 

for a single social workflow as the number of social operations involved in a workflow 

increased. The results of this test were expected to provide an idea of the needs to capture 

real-time data from social networks and help further explore whether the large-sized 

provenance ingestion in centralized provenance management systems would create a 

bottleneck in the future. The system ingested social workflows of 100, 1,000, 2,000, 

3,000, and 4,000 social operations. The social operations include “tweet”, “like”, 

“retweet”, and “reply”. The data ingestion process was conducted 10 times for each 

workflow size and the average times were recorded. Figure 3.1 illustrates the average 

time of generation and ingestion provenance data into Karma, Komadu, and PReServ for 

each of the workflows. The X-axis of the plot shows the workflow sizes and the Y-axis 

shows the average ingestion times. Figure 3.1 shows that there was a linear increase in 

both of the stand-alone provenance systems, while the number of social interactions 

increased. The data ingestion process in PReServ took the least amount of time, while the 

data ingestion process in Komadu took the longest time. 
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Figure 3.1 Average population time of different social workflow sizes 

 

This study included two types of query experiments, performance and scalability, to 

analyze the capability of the stand-alone provenance systems. 

3.1.2.1 Performance (Responsiveness) Experiment 

The performance (responsiveness) experiment measured the centralized provenance 

management systems’ ability to respond to queries on different provenance sizes and 

investigate the performance of both key-value-based queries and multi-criteria (find) 

queries. Each of the functions provided by Karma, Komadu, and PReServ web services 

was run 100 times and the average latency on each of the ingested social workflows was 

recorded.  

Key-Value-Based Query Operations: The Karma and Komadu interfaces provide three 

functions to retrieve provenance documents from activities (execution trace of social 

operation), entities (data/artifact), and social workflow trace. Karma and Komadu provide 

a programming interface to retrieve these documents based on workflow-ID, activity ID, 

and entity ID. To do this, Komadu provides key-value-based querying operations: 

getContextGraph(), getActivityGraph(), and getEntityGraph(); while Karma provides 

7
6

3
1

2
4

5
0

2

4
3

4
0

0

6
7

6
7

4

7
4

4
7

0

7
3

1
4

3
2

1
3

7

5
8

7
5

3

8
2

3
9

6

1
0

0
9

4
2

3
0

0
6 8
5

8
0 1

5
8

8
1

2
1

7
1

4

2
4

5
7

9

0

20000

40000

60000

80000

100000

120000

100 1000 2000 3000 4000

M
ill

is
e

co
n

d
s

Number of Social Interactions

Karma

Komadu

Preserv



44 

 

key-value-based querying operations: getWorkflowGraph(), getServiceGraph(), and 

getProvenanceHistory(). In PReServ, XPath queries were written as a counterpart of 

these Karma and Komadu query functions. Each of the query functions ran for 100 

iterations on the generated social workflow sizes and the average latencies were recorded. 

Figures 3.2, 3.3, and 3.4 show the average results of these tests. The X-axes of the plots 

show the workflow sizes and the Y-axes of the plots show the average response times of 

the query. These tests were executed on larger workflows, but when running 

getActivityGraph() and getEntityGraph() functions, the system did not respond. Hence, 

provenance data with 4,000 social operations was the large-provenance size limit in the 

experiments.  

 

 

Figure 3.2 Average Latency for getWorkflowGraph() operation on different workflow 

sizes 
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Figure 3.3 Average Latency for getActivityGraph() operation on different workflow sizes 

 

 

Figure 3.4 Average Latency for getEntityGraph() operation on different workflow sizes 
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Multi-criteria Query (find) Operations: In Komadu and Karma, the given provenance 

database programming interfaces provide multi-criteria querying (find operation) types. 

A performance (responsiveness) test similar to key-value operation tests was executed on 

findEntity() functions, in which returns results matched a given criteria. As before, an 

XPath query was written in PReServ as a counterpart of the Karma and Komadu find 

operations. This test investigated the performance (responsiveness) of the find operation 

when it returns only one result matching the given criteria under investigation. Each of 

the find functions was executed 100 times on our generated social workflow sizes and the 

average latencies were recorded. Figure 3.5 presents the average results of these tests. 

The X-axis of the plot shows the workflow sizes and the Y-axis shows the average 

response times of the find operation. Specifically, Figure 3.5 indicates that there was a 

linear increase in PReServ find operation when the number of social interactions 

increased, while there was only a slight increase in Karma and Komadu. This is because 

PReServ is less optimized for querying and all provenance records must be accessed for 

resolving a query. 

 

 

Figure 3.5 Average Latency for findEntity() operation on different workflow sizes 
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3.1.2.2 Scalability Experiment 

This experiment evaluated the scalability of retrieving provenance by conducting two 

tests. Test 1 investigated the behavior of the system as the number of concurrent clients 

querying the provenance data grew. The key value-based query functions 

(getContextGraph() and getWorkflowGraph()) that receives provenance documents with 

a given workflow-ID were used in this test. As a result of the query, the system returns 

the social workflow graph as a whole. A social linear workflow consisting of 4,000 social 

operations was used to conduct this experiment, because it was the largest provenance 

size limit in the experiments conducted here. The experiment was run iteratively by 

increasing the number of clients querying the database by 10 at every phase and recording 

average latencies. The average latencies were computed over 100 iterations. Figure 3.6 

illustrates the result of the test. The X-axis of the plot shows the concurrent clients and 

the Y-axis shows the average response times of the query. Because PReServ is less 

optimized for querying, Figure 3.6 indicates that there was a linear increase in PReServ 

and that it took the most time for PReServ to query the provenance database. There were 

also increases in Karma and Komadu as the client size increased but these increases were 

smaller than PReServ. 

 

 

Figure 3.6 Latency of simultaneous querying clients on a 4K social workflow 
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Test 2 investigated the behavior of the provenance database while the number of incoming 

messages per second was increased. The key value-based query functions 

(getContextGraph() and getWorkflowGraph()) that receives provenance documents with 

a given workflow-ID were used in this test. Again, a social linear workflow consisting of 

4,000 social operations was used to conduct this experiment. The experiment was run 

iteratively by increasing the message rate and recording average latencies. The average 

latencies were computed over 100 iterations. This test was performed only for Karma and 

Komadu, since PReServ was less optimized for querying. Figure 3.7 presents the result 

of the test. The X-axis of the plot indicates the message rates and the Y-axis indicates the 

average response times of the query. When the message rate was increased, average 

latencies were increased, too. Figure 3.7 clearly shows that Komadu gave better results 

than Karma in this test. 

 

 

Figure 3.7 Latency with different message rates on a 4K social workflow 
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causes all provenance records to be accessed for resolving a query. Hence, Karma and 

Komadu provided better results than PReServ in most cases. 

Data streams in social media networks have a very high volume. For example, Twitter 

produces over 100 terabytes of raw data each day [84]. Therefore, a large number of 

provenance (semi-structured) input rates should be expected. In addition, as the size of 

social interactions on the data published in social domain increases, the size of the social 

provenance graphs will increase. The results of the experiments indicated the need for 

additional research that explores whether the performance of large-size provenance 

ingestion in centralized provenance management systems can be further optimized. The 

results of the scalability experiments show that centralized, stand-alone provenance 

management systems can achieve a good linearly increasing performance for increasing 

simultaneous requests and can produce a relatively large-size provenance graphs with up 

to 4,000 social operations.  

However, this experimental study indicates that, due to limitations of the centralized 

provenance management systems (errors due to lack of memory, HTTP connection 

timeouts, etc.), centralized solutions do not perform well when dealing with social 

workflows that exceed 4,000 social operations for simultaneous requests. To overcome 

these limitations, an attempt was made to increase timeout values in HTTP connections 

and the number of threads in the connection pool, but this did not change the system 

behavior. The performance (responsiveness) experiment also indicated that the 

centralized solutions do not scale to provenance sizes that are above certain thresholds 

(i.e. provenance graphs with 4,000 social operations). To conduct the analysis and other 

experiments on such large-size social provenance data, it should be sorted, processed, and 

retrieved in a fast manner. This demonstrates the need for solutions for scalable 

decentralized stand-alone provenance management systems that can process such data.  

3.2 Generating a Synthetic Social Provenance Dataset 

We observe several challenges related to provenance in social networks domain. First, 

existing social networks do not provide any programming interfaces to access provenance 

information of data published in it. There are no existing mechanisms to identify and trace 

data objects. Provenance collection systems capture provenance on the fly. However, 

their provenance collection mechanism may be faulty and drop provenance notifications. 
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Hence, social provenance records can be partial, partitioned and simply inaccurate. 

Incompleteness and inconsistency of provenance records, “if existing”, are a challenge 

for analyzing provenance datasets [18], [55]. There is a need for a synthetically created 

social provenance database that is modeled based on real-life social interactions and 

populated with known failure patterns. Although synthetic provenance databases are 

available in other domains such as e-Science, there is a need for one within the social 

networking domain. Second, social provenance records can quickly grow large because 

of the high number of participating actors involved. Although the number of services 

involved in e-Science workflows is in the order of hundreds, this number can grow to a 

scale in the order of thousands or millions in social interactions that happen in social 

media.  

To address the abovementioned challenges, this study introduces a large-scale, noisy, 

synthetic social provenance database, which includes a high volume of large-size social 

provenance graphs. It introduces metrics that can be used to capture vital information as 

provenance for calculating the data quality and user credibility. 

3.2.1 Social Provenance Dataset Requirements  

Cheah et al. identified several large-scale, diversity and realism requirements that must 

be met for a provenance database [85]. A provenance database should consist of a 

significant number of provenance records to support research at scale. The provenance 

database should be drawn from varied workflows that have different characteristics in 

terms of size, breadth, and length. The composition of workflows used to generate the 

provenance should have failure characteristics. In addition to the abovementioned 

requirements, we add another requirement, usability. We argue that a provenance 

database should address not only the generic requirements of a provenance database but 

also its domain-dependent requirements.  

In this study, we generated a social provenance database that meets the abovementioned 

requirements. We met the diversity requirement by generating three different types of 

social provenance, each represents a different scale of social interactions. The categories 

of social interactions are 100, 1K and 5K. For each type of social interaction, we created 

a 100-social-workflow execution trace. We met the realism requirement by generating 

the same dataset with a 10% notification failure and 10% execution failure rate. Cheah et 
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al. generated a noisy, 10 GB provenance database with failure characteristics [85] for 

scientific datasets. Their study includes failure characteristics for both provenance 

notification failures and workflow execution failures. Note that we do not consider the 

latter since a social workflow is not dependent on a specific workflow. Finally, we met 

the usability requirement by considering the major research problems in the social 

network domain. Here, we are particularly motivated by research problems that are 

investigated by the PRONALIZ project, a Turkish National Science Foundation-funded 

Research Project [86]. PRONALIZ investigates the use of provenance in social media to 

develop methodologies for the detection of information pollution and violation of 

copyrights. Throughout the experience of using social media, it can be inferred that its 

users face two major problems. One is the determination of data authenticity and quality. 

It is hard to rate the reliability of a source in a user-generated-content platform where 

sources of information might propagate false information which in turn causes the spread 

of a polluted information. Thus, it would be hard to determine the actual quality of data 

and how much emphasis should be given to it. The second problem is the uncertainty of 

data visibility due to the dynamic changeability of content shared in social media, where 

change can occur on the platform’s privacy settings or a change can occur on a user level 

by applying more restrict privacy measures. These policies determine the copyrights of 

the user’s shared data. User’s data, which are intended to be disseminated among friend 

circles, may be disseminated via re-sharing within the social media. Users are not aware 

of who actually can see his/her data and are unable to apply a process on it. As a result, 

problems like violation of copyrights can arise. In order to create a social provenance 

database that can be usable by researchers addressing these problems, we identified a 

number of metrics. 

In order to obtain a better understanding of metrics and have a better definition of 

credibility of information or the trustworthiness of information source we first need to 

present our social network provenance model. We believe our model can be used as a 

generic model for provenance representation in all existing social networks. 

Users in social networks tend to provide numerous information about themselves; this 

information varies from one social network to another as, for example, in Twitter where 

a user has a dedicated place only for bio, place, personal website and birthday. A 

Facebook user can provide a lot more information about himself/herself, such as personal 
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interests, political affiliation, books they’ve read, movies they’ve watched, educational 

background, and schools they’ve attended. Table 3.1 shows some of these attributes and 

information with the percentage of users who have added this information to their 

Facebook profiles and left it publicly viewable, according to G. Barbier et al. (2013). 

Table 3.1 List of attributes and percentage of users who reveal them on Facebook. 

Attribute Percentage 

Current City 30.17 

Gender 81.77 

Relationship Status 26.24 

Education and Word 25.13 

Email 1.32 

Interested in 18.66 

Music 45.77 

Movies 27.92 

Activities 18.74 

Television 33.30 

 

The availability of such information plays an important role in the creation of social 

network provenance metrics. The metrics used in the generated social workflows are 

discussed in the following sections. 

3.2.1.1 User information provenance availability measure  

The availability of a user’s personal information indicates the trustworthiness of a social 

network user as getting information from another well-known user adds credibility to this 

information. The availability function, as defined by G. Barbier et al. (2013), objectively 

quantifies progress in obtaining a user’s personal attribute values. The availability 

function describes how much user provenance metadata is available for the statement of 

interest, since it allows a user to perform simple comparison of search strategies that are 

employed to obtain provenance attributes. It also allows prioritizing attributes by giving 

each a specific weight in which the sum of weights of all attributes equal 1 and an attribute 

with the weight of 0 will have no effect on the result of the measure.  
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 A → [0, 1]    
 

 

In Equation 1, for every attribute n, Wn represents its weight. Xn = 1 if n is present or Xn 

= 0 if the attribute is unknown. The availability function defines the amount of user 

provenance metadata that is obtainable. It also prioritizes obtained attributes by giving 

them weights with a sum that is equal to one. Attributes that have zero weight have no 

impact on the metric value. 

3.2.1.2 User Information Provenance Legitimacy Measure (Verifiability) 

Finding a user provenance attribute might provide some insight; however, a certainty 

measure of those attributes is needed to indicate the validity of found attributes. This can 

be made by matching found attribute values with attributes found in other sources. The 

legitimacy function is computed by averaging the number of independent social media 

sites that are used to verify the attribute and is proposed to quantify whether or not the 

provenance attribute values found are valid [9]. 

Cross-matching a user provenance attribute with different sources indicates the validity 

of these attributes. The verifiability function is calculated by considering the number of 

matches found on other social media sites [6], and is defined as: 

  
V → Real Numbers   

 

 

In Equation 2, for every attribute n, in equal to the source count for attribute n. 

Furthermore, C is the average number of external sources of all attributes multiplied by 

the number of attributes. We call a user account as verifiable when V ≥ 1. 

  

(3. 1) 

 

(3. 2) 

 

𝐼𝑣𝜕 =
∑ 𝑖𝑛𝑁

𝑛=1

𝐶
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3.2.1.3 User Information Provenance Social Popularity Measure (Prestige 

Centrality)  

Typically, a high-profile social network user, who might represent a celebrity or an 

important individual, has a large number of followers. In other words, a famous user 

enjoys high popularity, indicated by having many ties with others. In the case of an 

undirected graph, which is the situation in some social networks, such as Facebook, this 

metric can instead be represented by centrality, where an actor with a high degree of 

importance maintains numerous contacts with other network users. A central user 

occupies a structural position (network location) that serves as a source or conduit for 

larger volumes of information exchange and other resource transactions with other actors. 

This can be measured by simply calculating the summation of each actor’s number of 

degrees in a nondirected graph and then normalizing it by dividing it by the maximum 

number of degrees allowed by the social network. 

A social network user with a high profile or a famous person having followers in large 

numbers represents a bigger impact. In particular, prestigious users enjoy higher 

popularity, as shown by gaining numerous followers and subscribers. We define the 

popularity function as: 

 P → Real Numbers    

 

 

In Equation 3, Followers indicates the number of followers of a given user account, while 

Followee indicates the number of a user accounts that this user account follows. 

3.2.1.4 Information Provenance Social Impact Measure  

The importance of a piece of information may be inferred by the number of social 

activities associated with it. For example, a tweet with a high number of favors, retweet, 

and reply operations may reflect the controversial nature of that information. 

Thus, we calculate data proximity in the context of a user’s relationships by measuring 

the social interactions of users who are not directly connected to the subject, divided by 

the total number of interactions on a piece of information, and divide the set of all users 

not directly connected, who have performed a social action on a piece of posted 

information, by the set of all unique users who have performed a social action. 

(3.3) 
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The importance of a piece of information can be inferred by the number of social activities 

made upon it. For example, a tweet with a high number of favors, retweets and reply 

operations may reflect controversy of that information. We define the measure of 

information provenance Iiα → Ƞ as:  

𝑆𝑜𝑐𝑖𝑎𝑙 𝐼𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 =
∑ 𝐶𝑖+𝑃𝑖+𝐴𝑃𝑖𝑁

𝑛=1

∑ 𝐶𝑖+𝑃𝑖+𝐴𝑖𝑁
𝑛=1

   

 

 

Where: Ci is the number of countenance operations, Pi number of Propagation operations 

and APi number of sentimentally positive annotations. 

3.2.1.5 Information Prominence or Proximity Prestige  

Thus, we calculate data proximity in the context of a user’s relationships by measuring 

the social interactions of users who are not directly connected to the subject, divided by 

the total number of interactions on a piece of information, and dividing the set of all 

directly not connected users, who have performed a social action on a piece of posted 

information, by the set of all unique users who have performed a social action.  

Thus, we calculate the data proximity in relation to a user’s relations by measuring social 

interactions made by users who are not directly connected to the subject, divided by the 

total number of interactions made upon a piece of information: 

𝑃𝑟𝑒𝑠𝑡𝑖𝑔𝑒 𝑢𝑠𝑒𝑟, 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡  =
∑ 𝐺𝑖𝑁

𝑛=1

∑ 𝑈𝑖𝑁
𝑛=1

 

 

 

Where G is the set of all directly not connected users, who have performed a social action 

upon a piece of information posted by User u divided by the set of all unique users who 

have made a social action.  

Another view of a data proximity measure is by finding D (i,j) where j is the user who 

has made a social interaction upon a specific data item and is the most distant among all 

other users.  

3.2.1.6 The Impact of a Post on A User’s Prestige  

An increase in the number of followers in response to a post on a social network might 

provide an indication of the importance of these data. For example, on Twitter, a non-

(3.4) 

 

(3.5) 
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prestigious user may gain a very large number of followers by posting valuable 

information or introducing a piece of information. This should show the impact of the 

information published on the prestige of its publisher. Table 3.2 illustrates the different 

categorizations of the presented metrics.  

The increase of a number of followers upon posting information on a social network 

might give an indication of the importance of these data as, for example, in Twitter a non-

prestigious user gains a very large number of followers upon posting valuable information 

the introduction of a piece of information. We propose measuring the impact of i 

information posted by user u on a time interval T starting at posting time as: 

𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝐼𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 =
#𝑁𝑒𝑤 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠∗

∑ 𝐴𝑖𝑁
𝑛=1

∑ 𝐴𝑖,𝑇𝑁
𝑛=1

 

#𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠
∗ 100  

 

Where Ai is the number of social actions performed by users upon information i, and is 

the total number of social actions made upon all posts shared in time interval T. This 

should give a percentage that shows the impact of an information i upon the prestige of 

user u.  

Table 3.2 List of social provenance attributes captured in the social provenance database 

Metric 

Graph Type Perspective 
Time-

Dependen

t 
Directed 

Non-

Directed 

Data in 

the 

Center 

User in 

the 

Center 

Verifiability 

 
X X  X  

Popularity Prestige Centrality  X  

Availability X X  X  

Social Impact X X X   

Prestige X  X  X 

Artifact Impact X  X X X 

3.2.2 Generation of The Synthetic Dataset 

Normally, a scientific workflow describes the accomplishment of a scientific objective 

process, which is expressed by the task being done and its dependencies. Typically, 

scientific workflow tasks are computational steps for scientific simulations or data 

(3.6) 
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analysis steps [87]. On the other hand, a social workflow is always bound to run on a 

social network. Its operations and its data are defined by the social network itself. In turn, 

each social network names the social operations and data formats differently. In this 

study, we introduce a set of properties that can be used to map the social operations to 

PROV-O entities. Table 3.3 lists these properties along with their explanations. Figure 

3.8 illustrates how we map social provenance attributes to each PROV-O entity.  

 

 

Figure 3.8 PROV-O specification-based provenance nodes  

and social provenance sub-types 
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Table 3.3 Terminology in the proposed social network provenance model 

Sub-Type 

(Properties) 
Explanation 

Equivalence in Social 

Networks 

Countenance 
To support or approve a statement or an entity or its 

content. 
Like(v), Favor(v) 

Annotation to remark, make an observation or make criticism.  Reply, Comment 

Publishment 
To issue textual or graphical materials for public 

distribution. 
Post(v), tweet(v) 

Subscription 
To follow or watch the movement or 

course/progress of something or someone.  
Follow, get notified 

Propagation To reproduce transmit, spread or disseminate. Share, Retweet 

Follower 
A person who follows another and becomes a 

subscriber to his/her feed of tweets. 
Follower, Liker 

Followee 
A person who is being tracked on a social media 

website or application. 
User 

Original 
The blog or post in its state at time of creation by its 

original creator.  
Tweet(n), Post(n) 

Revised 
Reconsider and alter (something) in the light of 

further evidence. 
Retweet, Shared post 

 

 

Twitter is described to be the biggest data source openly accessible to everyone through 

its stream and search API. Thus, it is the source for many recent research studies. There 

are currently many tools developed based on mining a large amount of data for 

information such as tracking earthquakes, world’s health and spread of epidemic diseases, 

or even providing real-time information during crisis times by extracting information 

from users’ Twitter feeds. In short, Twitter nowadays is used to mobilize users 

emotionally and physically. Social workflows represent an abstract view of the various 

social patterns observed on Twitter. Since it can be understood, visualized and 

represented in different formats, thus analysis can also be conducted upon it. In order to 

obtain a dataset with controllable characteristics that capture the nature of information 

propagation in social media, we created a fully synthetic dataset imitating Twitter. This 

synthetic dataset was designed to meet criteria that may not be achievable when collecting 

data from Twitter’s live feed due to users’ privacy setting and availability of different 

personal information which can impose a real issue when evaluating the to-be-developed 

misinformation detection algorithms. 
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A simple workflow normally represents tweets of users not using a hashtag because they 

have no intention of engaging in or creating a general topic. Such tweets usually tend to 

get minimal engagement that is limited to the user’s followers. However, highly 

prestigious users who have very large numbers of followers can get large interactions and 

a wide impression spread. In contrast, we define a composite social workflow as a group 

of separate workflows where all of them use a unified topic. Generally, the majority of 

such participating users use a global hashtag or directed mention of a celebrity official’s 

Twitter account. An example of such social interactions is in a solidarity group debate 

where normally an opinion-based community is polarized [88]. Users’ interaction 

dynamics and interaction patterns were observed and analyzed in different social events 

that belonged to different topics [89]. The study indicated there were different 

characteristics in the collected social workflows observed from real Twitter data. The 

possible number of user engagements and the number of social interactions of our 

generated social workflows were derived from these observations as shown in Table 3.4. 

We generated 100 workflows of each of the described categories in which each of these 

generated workflows is executed four times with different failure generation modules.  

Table 3.4 Generated social workflows users' pool and number of social interactions 

Users Pool Number of Social Interactions 
Number of Generated 

Workflows 

10 10 100 

10 100 100 

100 100 100 

100 1000 100 

1000 1000 100 

5000 5000 100 

 

3.2.2.1 Database Generation Framework 

The four components used in the creation of the provenance database are WorkflowGen, 

WorkflowSim, ProvToolbox, and the Komadu provenance repository. Figure 3.9 shows 

an overview of the framework.  
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Figure 3.9 Social provenance dataset generation framework 

 

Komadu [46] is a stand-alone provenance capture and visualization system for capturing, 

representing and manipulating provenance. It uses the W3C PROV standard [15], which 

is considered to be the successor of the Karma [44] provenance capture system. 

WorkflowSim is an open-source workflow simulator. It models workflows with a DAG 

model and supports implementations of some popular dynamic and static workflow 

schedulers and task-clustering algorithms [90]. WorkflowSim also has failure 

modeling that supports two types of failure on both job and task level. Failure rates 

generated by WorkflowSim are modifiable according to user’s preference [90]. 

WorkflowGen, on the other hand, is a tool developed by the same team for the purpose 

of creating custom DAX workflows to facilitate evaluation of workflow algorithms and 

systems on a range of workflow sizes, thus generating realistic, synthetic workflows 

resembling those used by the real world similar to the ones gathered from Twitter [91]. 

We used WorkflowSim as a simulation environment to execute DAX files generated by 

WorkflowGen. The provenance recorded from the logs of the simulation are generated 

using ProvToolbox and put into Komadu [92].  

3.2.2.2 Generated workflows 

The client responsible for the generation of random tweet data considers that any social 

visualized scenario, no matter how many users are engaged in it or how many social 
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activities has been made upon it, will be shaped as a multi-forked sequential graph. First, 

the client keeps track of entities linked to the main workflow created either by re-tweeting 

or replying. In addition, the client considers only social activities that may be done upon 

a tweet, such as tweet, like, retweet and reply. The client also creates a pool of agents 

where each agent has its own set of popularity, availability and verifiability values. 

Finally, the client considers that every social operation is affected by the last social 

operation made upon the same entity. The clients start by creating an initial activity 

representing a “tweet operation” that leads to the creation of the original tweet entity. 

From that point, the client will randomly invoke social operations until the wanted 

number of operations is reached. Table 3.5 shows the PROV-O representation of 

relationships between entities, agents and activities created at every iteration, depending 

on the social operation type: 

Table 3.5 PROV-O representation of social operations and entities 

Social Operation PROV-O Representation 

Post 

Generation(tweet_activity, main_tweet) 

Attribution(main_tweet, agent1) 

Association(tweet_activity, main_tweet) 

Like 
Association(new_agent, like_activity) 

Usage(like_activity, tweet_x) 

Retweet 

Association(new_agent, retweet_activity) 

Generation(retweet_activity, new_tweet) 

Usage(retweet_activity, tweet_x) 

Attribution(new_tweet, new_agent) 

Derivation (new_tweet, tweet_x) 

Reply 

Association(new_agent, reply_activity) 

Generation(reply_activity, new_tweet) 

Usage(reply_activity, tweet_x) 

Attribution(new_tweet, new_agent) 
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We generated 300 workflows with 100, 1,000 and 5,000 social operations with 100 

workflows for each category. The workflows were generated with different sizes of agent 

pools ranging from 10 to 1,000 agents that were then executed in the following forms: 

• Social workflows with complete successful runs.  

• Social workflows with simulation execution faults generated using 

WorkflowSim’s fault generation module which represents missing notifications 

coming from the social network to specific actions.  

• Social workflows with provenance collection faults in which some of the 

provenance data extracted is dropped. This kind of fault represents errors that 

might happen during provenance ingestion into the data repository. The dropped 

provenance data is selected randomly during workflow simulation at a 10% rate. 

• Social workflows with faults on both execution and provenance collection level.  

We observed 1,200 workflow execution. Figure 3.10 shows the distribution of workflows 

by execution case. We had a total of 361 successfully executed workflow provenances, 

239 workflows with execution failure, 358 workflow execution provenances with 10% 

notification drops, and 242 workflow execution provenances with both failure types.  

 

Figure 3.10 Distribution of workflows by execution cases 
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Our observations of individual faulty runs also show that that the larger a workflow, the 

higher the failure rate and dropped notification rate gets. Figures 3.11, 3.12, and 3.13 

illustrate samples from all different kinds of generated provenance data from all types of 

social workflows. Figure 3.11 shows the visualization of a successful run for 10 social-

operations workflows. 

 

Figure 3.11 Provenance visualization of a successful workflow run 

 

Figure 3.12 shows a provenance visualization of 10 social operations workflow with 

provenance collection failure. It can be observed that some of the relationships are 

missing within the provenance visualization presented in Figure 3.12.  

 

Figure 3.12 Provenance visualization of a workflow execution  

with provenance collection 10% error rate 
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Figure 3.13 shows the provenance visualization of the same execution of a 10 social 

operations workflow including both the errors on notification collection level and the 

provenance ingestion level. Missing activities and missing dangling entities are both 

observed in the visualization below.  

 

Figure 3.13 Provenance visualization of a workflow execution with  

both provenance collection error and notification failure error 

 

The social provenance database was developed to serve as a test platform for the 

development of failure resilient misinformation detection algorithms. 

3.3 Misinformation Detection Algorithm 

Ward Cunningham, the father of the wiki, stated that "the best way to get the right answer 

on the Internet is not to ask a question, it's to post the wrong answer". This concept is 

called Cunningham's law. Our proposed methodology relies mainly on the collaborative 

wisdom of the public interacting with information in social networks by calculating the 

weighted impact of a user. This calculation is done based on the user's credibility metrics. 

Most social networks provide the means for a user to give sentiment feedback without the 

needing to write a comment. The types of these feedbacks may vary from one social 

network to another. For example, a Facebook user has the option of leaving one of six 

different sentiment feedbacks, while a Twitter user can only give the like sentiment. 

However, many of the most popular social networks have a similar like functionality 

which implies positive feedback. Our proposed algorithm has the following assumptions: 

Assumption 1: A like is a social operation that is considered positive feedback and 

therefore is given a positive value. Most social networks provide a means for the user to 
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give sentiment feedback without the need to write a comment. Therefore, we assume that 

whenever a user uses a like operation on a post, that user wants to give positive feedback. 

Assumption 2: Pairs of social operations, where the operations are applied within a pre-

set time interval and where one of the operations is the like operation, are considered 

positive feedback. Some social networks provide different feedback options such as 

sentiment feedbacks and comments. Therefore, for users of such networks, using 

sentiment feedback along with a comment is common usage. Given a time interval, 

whenever a user gives multiple feedbacks that includes a like operation, we assume that 

the user wants to give positive feedback. 

Assumption 3: Social operations made by a user without like operations is considered 

negative feedback. We assume that when a user does not specifically use a like operation 

on a post, we cannot tell exactly if that user likes the post. Therefore, we assume that the 

user is not giving positive feedback. 

Assumption 4: The state of a data entity (the original Twitter post or tweet) changes 

periodically for a predefined period. During this period, social operations can be grouped 

together. As the social operations may be applied simultaneously, users will only be able 

to see the operations that happened before they take any action. Therefore, we group 

together the social operations that happen in small time window. We assume that social 

network users decide whether they like a post based on its state (i.e. the number of likes, 

friends who like the post, friends who commented on the post etc.). 

 

Figure 3.14 The proposed misinformation detection algorithm 



66 

 

The proposed algorithm shown in Figure 3.14 takes the provenance graph of the generated 

social workflow and extracts a user’s metrics as discussed in the metrics section 3.1. The 

algorithm calculates changes in distance for every new state the main tweet goes through. 

The main tweet updates the stated value in the provenance graph during a predefined 

period, where actions upon the tweets aren’t affected by each other but rather only 

affected by the actions and users that interacted in prior states. Thus, the output is a series 

of values that shows the changes in the proposed metric value.  

The proposed approach takes the provenance graph of the generated social workflow and 

extracts users’ metrics, as discussed in the metrics section. It calculates the credibility of 

the metric values for all users engaged in workflows and users who may have seen the 

data. We believe that trustworthiness, user credibility and social status make a large 

impact on the type of social privacy policy used toward such accounts. For example, 

Twitter is known to have a large number of programmable bots and trolls which makes 

the real users social networks experience bad and sometimes even malicious when 

promoting fake news. Generally, users prefer debating and communicating with real and 

credible users when expressing their views and sharing personal information.  

 

 

Figure 3.15 Visualization sample of a social workflow 

 

Figure 3.15 shows a visualization sample of a social workflow generated with our 

synthetic social provenance data generator. The orange pentagons represent Twitter users, 

while the attached rectangles represent the values of the user’s recorded provenance 

metrics and the darker dotted rectangle is the user’s list of followers; the blue rectangles 

represent one or more social activities (post, like, reply, re-tweet) and the yellow ovals 

represent tweets generated by the users invoking one of the social operations. This 

example shows the interaction of three Twitter users. Our developed framework extracts 
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a list of users who took a social action within the workflow and their followers. Then it 

calculates their provenance metric values. Finally, it returns a list of users with credibility 

values less than the predefined threshold. The credibility of a user Ux is calculated using 

the following equation: 

𝑪𝒓𝒆𝒅𝒊𝒃𝒊𝒍𝒊𝒕𝒚 𝑼𝒙 = 𝑽𝒆𝒓𝒊𝒇𝒊𝒂𝒃𝒍𝒊𝒍𝒊𝒕𝒚 × 𝑾𝒗 + 𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 ×  𝑾𝒂
+ 𝑷𝒐𝒑𝒖𝒍𝒂𝒓𝒊𝒕𝒚 × 𝑾𝒑 

 

 

In Equation 4, Wv, Wp and Wa are the weights assigned to the verifiability, popularity 

and availability metrics, respectively. Each of the metrics that we use is given a weight-

value ranging between 0 and 1 and the summation of all weights should be equal to 1. For 

the sake of demonstrating the algorithm execution, we calculated the credibility value of 

users in the social workflow visualization sample in Figure 3.12, where we gave the used 

metrics equal weights. However, the calculation of the metric weights may change 

according to the presence of such metrics. It can also be observed from Figure 3.12 that 

user-1 and user-3 are in each other’s immediate network. While user-3 is in user-2’s 

reach network, user-2 is outside of user-3’s immediate and reach networks.  

3.3.1 Analytic Hierarchy Process 

According to the proposed distance from positivity algorithm assumptions, the developed 

module has no restriction for obtaining data on published content, friends or follower 

lists. Therefore, the popularity value will always be present and is thus an invariant 

variable. Taking into consideration the different categories of the proposed metrics, we 

identify 21 possible variations. Since verifiability is required to find the availability value 

and for it to be larger than zero, we ignore cases where the availability value equals zero 

and the verifiability is larger than zero. Figure 3.16 shows the hierarchal structure of 

evaluating social provenance metric variations. 

(3.7) 
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Figure 3.16 Hierarchal structure of evaluating social provenance metrics weights 

We introduce a way to construct the pair-wise comparison matrix of our proposed social 

provenance metrics, the construction of hierarchical structure to be analyzed, and the 

steps of generating the relative and normalized weights. We begin by identifying the 

different categories of proposed social metrics values. Table 3.6 shows the proposed 

categories. 

Table 3.6 Categories of Metrics Values 

Popularity (P) Availability (A) Verifiability (V) 

- A=0 V=0 

- 0 < A ≤ 25% 0 < V ≤ 2 

- 25 < A ≤ 50% 0 < V ≤ 5 

- 50 < A ≤ 75% 0 < V ≤ 7 

- 75 < A ≤ 100% V > 7 

 

We construct the fuzzy pair-wise comparison matrix in accordance with what is presented 

in (2), based on the transformed TFNs shown in Table 3.6. Meanwhile, Table 3.7 

illustrates the fuzzy pair-wise comparison matrix of the criteria level. 

 

Table 3.7 Fuzzy pair-wise comparison matrix in criteria level 

CRITERION POPULARITY AVAILABILITY VERIFIABILITY 

POPULARITY 1 (1.5, 2, 2.5) (1.5, 2, 2.5) 

AVAILABILITY (0.4, 0.5, 0.67) 1 (0.4, 0.5, 0.67) 

VERIFIABILITY (0.4, 0.5, 0.67) (0.67, 1, 1.5) 1 

 



69 

 

The sums of the rows and columns are shown in Table 3.8. These sums will be used to 

calculate the fuzzy synthetic extent values. 

 

Table 3.8 The sums of horizontal and vertical directions 

Criterion ROW SUMS COLUMN SUMS 

POPULARITY (4, 5, 6) (1.8, V2, 2.34) 

AVAILABILITY (1.71, 2, 5) (3.17, 4, 5) 

VERIFIABILITY (2.07, 2.3, 3.17) (3.17, 4, 5) 

SUMS (7.77, 9.5, 11.67) (8.14, 10, 12.34) 

 

The fuzzy synthetic extent value Si with respect to the ith criterion can be computed with 

(4). Table 3.9 shows the fuzzy synthetic extent values for each criterion.  

 

Table 3.9 The fuzzy synthetic extents 

CRITERION FUZZY SYNTHETIC EXTENT 

POPULARITY (0.324, 0.5, 0.737) 

AVAILABILITY (0.137, 0.2, 0.61) 

VERIFIABILITY (0.167, 0.25, 0.389) 

 

From the fuzzy synthetic extent values, the non-fuzzy values that represent the relative 

preferences or weights of one criterion over other criteria will be approximated as shown 

in (5). Table 3.10. shows the calculated relative weights and its corresponding normalized 

weights of our proposed social provenance metrics.  

 

Table 3.10 Criteria’s approximated fuzzy priorities (relative and normalized) 

CRITERION RELATIVE WEIGHT NORMALIZED WEIGHT 

POPULARITY 1 0.438 

AVAILABILITY 0.488 0.213 

VERIFIABILITY 0.794 0.347 
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The normalized criterion weights are substituted to calculate the relative weights of 

metrics for each identified alternative case. Table 3.11. shows the weights for the 

corresponding cases. This serves as a reasoning base for our developed framework. 

 

Table 3.11 Metrics weights for each identified alternative case 

ALTERNATIVES POPULARITY AVAILABILITY VERIFIABILITY 

A1 1 0 0 

A2 0.892 0.108 0 

A3 0.805 0.194 0 

A4 0.732 0.267 0 

A5 0.672 0.327 0 

A6 0.759 0.091 0.149 

A7 0.695 0.168 0.136 

A8 0.64 0.233 0.125 

A9 0.597 0.289 0.116 

A10 0.659 0.079 0.26 

A11 0.61 0.147 0.241 

A12 0.568 0.207 0.224 

A13 0.531 0.258 0.209 

A14 0.584 0.07 0.345 

A15 0.545 0.132 0.322 

A16 0.511 0.186 0.302 

A17 0.481 0.234 0.284 

A18 0.522 0.063 0.414 

A19 0.491 0.118 0.389 

A20 0.463 0.169 0.367 

A21 0.438 0.213 0.347 
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3.3.1.1 Application of AHP 

This section presents the way to construct the pair-wise comparison matrix of our 

proposed social provenance metrics, the construction of hierarchical structure to be 

analyzed, and the steps of generating the relative and normalized weights. 

We started by identifying the different categories of proposed social metrics values. Table 

3.13 indicates the proposed categories. Note that the artifact impact metric is affected by 

trust factor of sentiment analysis tools being used. 

Table 3.12 Categories of metrics values 

Artifact Prestige (AP) Artifact Impact (At) Social Impact (Si) 

- At =0 Si =0 

- 0 < At ≤ 25% 0 < Si ≤ 25% 

- 25 < At ≤ 50% 25 < Si ≤ 50% 

- 50 < At ≤ 75% 50 < Si ≤ 75% 

- 75 < At ≤ 100% 75 < Si ≤ 100% 

 

According to the proposed distance from positivity algorithm assumptions, the developed 

module has no restriction in obtaining data on published content or friends and followers 

lists. Therefore, the artifact prestige value will always be present. Taking into 

consideration the different categories of the proposed metrics where social impact relies 

directly on the level of confidence that we put into sentiment analysis tools used, we 

categorized confidence into four different level. Thus, we identify 21 possible different 

variations.  

We construct the fuzzy pair-wise comparison matrix in accordance with what is presented 

based on the transformed TFNs shown in Table 3.13. Meanwhile, Table 3.14 illustrates 

the fuzzy pair-wise comparison matrix on criterial level. 
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Table 3.13 Fuzzy pair-wise comparison matrix in criteria level 

 Artifact Prestige (AP) Artifact Impact (At) Social Impact (Si) 

Artifact Prestige 

(AP) 

1 (1.5, 2, 2.5) (1.5, 2, 2.5) 

Artifact Impact 

(At) 

(0.4, 0.5, 0.67) 1 (0.4, 0.5, 0.67) 

Social Impact (Si) (0.4, 0.5, 0.67) (0.67, 1, 1.5) 1 

 

The sums of the rows and columns are shown in Table 3.14. These sums will be used to 

calculate the fuzzy synthetic extent values. 

Table 3.14 The sums of horizontal and vertical directions 

CRITERION ROW SUMS COLUMN SUMS 

Artifact Prestige (AP) (4, 5, 6) (1.8, V2, 2.34) 

Artifact Impact (At) (1.71, 2, 5) (3.17, 4, 5) 

Social Impact (Si) (2.07, 2.3, 3.17) (3.17, 4, 5) 

SUMS (7.77, 9.5, 11.67) (8.14, 10, 12.34) 

 

The fuzzy synthetic extent value Si with respect to the ith criterion can be computed with. 

Table 3.15 shows the fuzzy synthetic extent values for each criterion.  

Table 3.15 The fuzzy synthetic extents 

CRITERION FUZZY SYNTHETIC EXTENT 

Artifact Prestige (AP) (0.324, 0.5, 0.737) 

Artifact Impact (At) (0.137, 0.2, 0.61) 

Social Impact (Si) (0.167, 0.25, 0.389) 

 

From the fuzzy synthetic extent values, the non-fuzzy values that represent the relative 

preferences or weights of one criterion over other criteria will be approximated as shown 
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in Table 3.16 shows the calculated relative weights and its corresponding normalized 

weights of our proposed social provenance metrics.  

 

Table 3.16 Criteria’s approximated fuzzy priorities (relative and normalized) 

CRITERION RELATIVE 

WEIGHT 

NORMALIZED WEIGHT 

Artifact Prestige (AP) 1 0.438 

Artifact Impact (At) 0.488 0.213 

Social Impact (Si) 0.794 0.347 

 

The normalized criterion weights will be substituted in order to calculate the relative 

weights of metrics for each identified alternative case. Table 3.17 shows the weights for 

their corresponding cases. This will serve as a reasoning base for our developed 

framework. 
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Table 3.17 Metrics Weights for Each Identified Alternative Case 

ALTERNATIVES Artifact 

Prestige (AP) 

Social 

Impact (Si) 

Artifact 

Impact (At) 

Values 

A1 1 0 0 Ap=1, At = 0, 

Si= C0 

A2 0.892 0.108 0 Ap=1, At = 0, 

Si= C1 

A3 0.805 0.194 0 Ap=1, At = 0, 

Si= C2 

A4 0.732 0.267 0 Ap=1, At = 0, 

Si= C3 

A5 0.672 0.327 0 Ap=1, At = 0, 

Si= C4 

A6 0.759 0.091 0.149 Ap=1, At = 25, 

Si= C1 

A7 0.695 0.168 0.136 Ap=1, At = 25, 

Si= C2 

A8 0.64 0.233 0.125 Ap=1, At = 25, 

Si= C3 

A9 0.597 0.289 0.116 Ap=1, At = 25, 

Si= C4 

A10 0.659 0.079 0.26 Ap=1, At = 50, 

Si= C1 

A11 0.61 0.147 0.241 Ap=1, At = 50, 

Si= C2 

A12 0.568 0.207 0.224 Ap=1, At = 50, 

Si= C3 

A13 0.531 0.258 0.209 Ap=1, At = 50, 

Si= C4 

A14 0.584 0.07 0.345 Ap=1, At = 75, 

Si= C1 

A15 0.545 0.132 0.322 Ap=1, At = 75, 

Si= C2 

A16 0.511 0.186 0.302 Ap=1, At = 75, 

Si= C3 

A17 0.481 0.234 0.284 Ap=1, At = 75, 

Si= C4 

A18 0.522 0.063 0.414 Ap=1, At = 100, 

Si= C1 

A19 0.491 0.118 0.389 Ap=1, At = 100, 

Si= C2 

A20 0.463 0.169 0.367 Ap=1, At = 100, 

Si= C3 

A21 0.438 0.213 0.347 Ap=1, At = 100, 

Si= C4 
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3.4 Calculation of Data-based Credibility and Its Usage in Proposed Algorithms 

Based on this understanding the new credibility equation would be as follows:  

 

𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑈𝑥 = 𝑉𝑒𝑟𝑖𝑓𝑖𝑎𝑏𝑙𝑖𝑙𝑖𝑡𝑦 × 𝑊𝑣 + 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ×  𝑊𝑎 + 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 × 𝑊𝑝 

 

While Artifact credibility within time window T would be calculated as:  

 
𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑇)𝐴 = 𝑆𝑜𝑐𝑖𝑎𝑙 𝐼𝑚𝑝𝑎𝑐𝑡 × 𝑊𝑠 + 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑃𝑟𝑒𝑠𝑡𝑖𝑔𝑒 × 𝑊𝑝𝑝

+ 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝐼𝑚𝑝𝑎𝑐𝑡 × 𝑊𝑎𝑖 
 

Thus, the credibility of user published data within a T time would be:  

 

𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑈𝑥 × 𝑊𝑐𝑢 + 𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑇)𝐴𝑥 × 𝑊𝑎𝑥 

 

 

Where Wcu is the weight assigned to user-based metrics credibility value, while Wax is 

the weight assigned to data-based metrics value. 

3.5 Privacy Violation Detection  

The proposed methodology handles the described problem by utilizing provenance graphs 

obtained from users’ social profile data and activities. We use the provenance data to 

track data propagation and lifecycles. 

The goal of CEP is to process real-time events. It is concerned with instantaneous events. 

An event represents the current state of something or a specific change or action; 

furthermore, it can represent the absence of an action. CEP, if supported with reasoning 

abilities, can leverage real-time, intelligent decision making [93]. Adding such 

capabilities can improve social network user experience. Utilizing flexible CEP in social 

networks requires a temporal description of events, which can be achieved by utilizing 

provenance graphs. 

  

(3.8) 

 

(3.9) 

 

(3.10) 
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We introduced several custom user privacy policy infringement cases to demonstrate our 

approach. Table 3.18 shows the formal representation of the policies that were used. Each 

policy is formulated as a rule. When creating the privacy policy detection rules, we 

identified various patterns. Those patterns were derived from simple events, as shown in 

Table 3.18. The simple/basic event becomes complex through combining patterns for a 

specific period, wherein the patterns are sequenced, aggregated, conjoined, disjointed and 

negated. 

Table 3.18 Formal representation of rules 

Rule 

ID 

Formal Representation Description 

Rule1 

ON PATTERN (→Action on 

(MainTweet (τ)) By User ɥ ∉ 

Originator’s Network (Ŋ)) 

DO ACTION (Launch 

Notification) 

Data being touched by a user outside 

of the originator’s immediate network 

(not in friends list). 

Rule2 

ON PATTERN (→Action on 

(MainTweet (τ)) By User ɥ ∉ 

Originator’s Reach Network (Ň)) 

DO ACTION (Launch 

Notification) 

Data being touched by a user outside 

of the originator’s reach network (not 

a friend & not a friend of a friend). 

Rule3 

ON PATTERN (→Action on 

(MainTweet (τ)) By User ɥ ∉ 

Originator’s Network (Ŋ) & ɥ 

Credibility < Threshold) 

DO ACTION (Launch 

Notification) 

Data being touched by a user outside 

of the originator’s immediate network 

with credibility lower than the 

specified threshold. 

Rule4 

ON PATTERN (→Action on 

(MainTweet (τ)) By User ɥ 

Credibility > Threshold) 

DO ACTION (Launch 

Notification) 

Data being touched by a user with a 

very high social impact (Credibility). 

Rule5 

ON PATTERN (→Action on 

(MainTweet (τ)) By User ɥ ∉ 

Originator’s Reach Network (Ň) & 

ɥ Credibility >= Threshold) 

DO ACTION (Launch 

Notification) 

Data being touched by a user with a 

very high social impact from outside 

the originator’s immediate network. 

Rule6 

ON PATTERN (→Action on 

(MainTweet (τ)) By User ɥ ∉ 

Originator’s Reach Network (Ň) & 

ɥ Credibility <= Threshold) 

DO ACTION (Launch 

Notification) 

Data being touched by a user with a 

very low social impact from outside 

the originator’s immediate network. 
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We use CEP in the window of the event, i.e., provenance notifications, to search for a 

pattern that matches the rules identified in Table 3.18. Whenever a match is detected, a 

privacy policy violation is also detected. The rules work on three different levels. The 

first level concerns an immediate network resembling users’ friends/follower. The second 

level concerns a user’s reach network, which represents a user’s friends and friends of 

friends all together. The last level concerns everything outside of the first two levels. As 

can be seen in Table 3.18, in some rules we introduce a social metric called user 

credibility.  

We argue that a user’s credibility has a large impact on social privacy policy used social 

media. Our argument is based on the following assumption: If a user account has a low 

user credibility in a social network, then such user account is a good candidate for a 

possible copyright violation activity within that network. Our assumption is based on the 

real-life examples. For example, Twitter is known to have a large number of 

programmable bots and trolls that are programmed to replicate a user’s original content 

in other networks. Such fake user accounts have low user credibility values. The proposed 

architecture is designed to detect user accounts with low user credibility values so that 

the candidates for copyright violation can be identified. Below, we discuss, in great detail, 

the details of how user credibility is calculated. 

3.5.1 Proposed Software Architecture  

In order to detect a policy violation, we employ concepts from CEP so as to detect 

previously defined rules (see Table 3.18). We introduce a software architecture of a policy 

violation detection system that can be integrated with existing social media platforms. 

Figure 3.17 depicts the layered software architecture of this platform. 
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Figure 3.17 Layered software architecture of privacy policy  

violation detection framework 

 

Figure 3.17 shows the abstract layers of the proposed architecture of the system. As 

shown in the proposed software architecture, the event-streaming engines (streaming 

engine and CEP engine) receive the notification graphs deriving from the outside stream 

or from a provenance repository. Provenance graphs are then grouped and converted into 

provenance events, which are sent into a pattern detection module through facade objects. 

The facade design pattern is being used here both to hide the complexity of the system 

and to facilitate future integration of other CEP engines. The pattern detection module is 

responsible for analyzing the incoming provenance events and checking for matches 

against the defined rules. Once a pattern match is detected, the pattern detection module 

signals the notification module, which sends the appropriate notification message 

accordingly. The pattern detection module consists of two main layers: the event 

subscriber layer which contains corresponding representation of a privacy rule pattern 

and is responsible of generating pattern match flags; and the event handler, which works 

as a mediator between the incoming events stream that needs to be assigned to its 

appropriate subscriber and the notification module.  

3.5.2 Implementation of the Proposed Approach  

To facilitate testing the proposed software architecture, we developed a prototype 

implementation that is responsible for extracting the list of users engaged in a social 
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workflow in accordance with their credibility, and applied CEP to detect previously 

identified patterns. 

For evaluating our proposed framework, we developed a module that is responsible for 

extracting the list of users engaged in a social workflow in accordance with their 

credibility. We integrated the module into our previously implemented social workflow 

generation framework. The social provenance workflow generation framework [34] uses 

WorkflowSim (an open-source workflow simulator) and WorkflowGen (an open-source 

workflow generator) to create DAG model-based workflows and provide implementation 

interfaces for task-clustering algorithms, while showing common dynamic and static 

workflow schedulers [90]. Figure 3.18 shows the main parts of this framework. 

 

 

Figure 3.18 Workflow generation and user provenance analysis framework 

 

As a simulation environment, we utilized WorkflowSim in our social provenance 

workflow generation and simulation framework. The DAX files ingested were created 

using Workflow-Gen. The XML-based DAX files resemble the abstraction of a single 

workflow, an XML-based file is utilized for workflow as well [94]. Provenance records 

representing simulation log output were created using ProvToolBox [15] and then 

ingested into Komadu, which is a provenance repository that can visualize provenance 

graphs [47]. ProvToolBox is an open-source provenance processing library. Komadu, 

which uses W3C PROV-O notation, is the successor to Karma, which uses an OPM 

provenance notation [44] provenance capture system. The information quality evaluation 

module retrieves provenance graphs from Komadu, extracts the ingested user-based 
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attributes and calculates the value of the user credibility metric. We should note that as 

the size of the provenance dataset grows, this may affect the performance of the 

provenance storage, i.e. Komadu. Hence the performance of the provenance retrieving 

module is dependent on the KOMADU’s provenance retrieval capability.  

As it is the main contribution of this study, the architecture of the privacy policy violation 

framework is the illustrated in Figure 3.18 in detail. We developed a prototype of this 

proposed architecture. The developed system has a set of extendible facade classes 

responsible for hiding the complexities of the utilized streaming and CEP engines. The 

streaming façade and the CEP engine façade make the prototype dynamic in terms of 

utilization of different libraries. The streaming façade receives provenance graphs 

generated statically and the prototype performs under the assumption that they have to be 

complete and have already reached the end of their cycle. Here, we utilize the Spring 

Framework in order to add inversion of control and dependency injection design pattern 

capabilities so as to delegate the creation of stream listeners and event handlers according 

to the user’s preference. In turn, this approach makes our implementation highly 

decoupled. In addition, it adds an extra level of layer segregation by making it much easier 

to switch to different tools, libraries and technologies.  

Giving all data-based metrics similar equal weights would be a valid assumption since 

we have no clear indication of the importance of one of metric over the others. However, 

considering the efficiency of sentiment analysis tools, which take part in the calculation 

of social impact metric, and the fact that most social provenance graphs are incomplete, 

one can argue that the artifact impact metric can have precedence over the other two 

metrics. Using fuzzy AHP, previously used in the creation of a dynamic weighting model 

for user-based metrics, can help determine configurable weighting according to the 

completeness of social provenance graphs and the level of confidence in used tools. Either 

way, credibility would be calculated in terms of the time window that examined artifacts 

took place in.  
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CHAPTER 4 

4. EVALUATION, RESULTS AND DISCUSSION 

 

4.1 Evaluation of Misinformation Detection Algorithm  

Existing misinformation detection methodologies rely on comparing information 

published on social networks against reliability results determined by fact-checking 

agencies, which are maintained manually and that monitor a limited number of 

information and news sources. We discussed such approaches in the Related Work 

section. Other methodologies consider the originator’s credibility or social interaction 

with the published information and the way the information is disseminated. However, in 

our approach we introduce a new approach that utilizes a wide set of metrics that cover 

both data-related and user-related aspects and consider both aspects with metrics that can 

cover all facets.  

4.1.1 Type of Evaluation Scenarios 

To test the algorithm, we used our synthetic social provenance workflow generator [95] 

to generate workflows with the following characteristics:  

This scenario considers social workflows, where users apply their actions without looking 

at the additional metadata (i.e., who touched the data and when). In other words, users 

make their decisions (i.e., decisions on whether to like the data or not) based on the 

content of the data. We assume that if the content contains misinformation, a user will 

most likely give a negative feedback. If the content is correct information, then the user 

might give positive feedback with a higher probability. The workflows are generated 

randomly, and all the actions have an equal probability (like, reply, retweet). 
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Users apply an action after reviewing additional metadata (such as the user credibility of 

the originator) in addition to the content of data, as they make decisions. Here, verification 

is affected by the originator's credibility. In this scenario, social workflow generation is 

done in a biased random fashion, where the higher the originators credibility metrics are, 

the more likely they are to get a positive feedback. 

To evaluate the usefulness of the proposed algorithm, we examine up to 2,000 social 

workflows. Half of them are generated with biased randomness, according to originator’s 

credibility value. Table 4.1 shows the details of the generated workflows. 

 

Table 4.1 List of social provenance attributes captured  

in the social provenance database 

Number of 

Workflows 

Generated 

Number  

Of 

Social  

Operations 

Users Pool 
Biased 

Randomness 

100 1000 100 YES 

100 1000 200 YES 

100 1000 300 YES 

100 1000 400 YES 

100 1000 500 YES 

100 100 10 YES 

100 100 20 YES 

100 100 30 YES 

100 100 40 YES 

100 100 50 YES 

100 1000 100 NO 

100 1000 200 NO 

100 1000 300 NO 

100 1000 400 NO 

100 1000 500 NO 

400 100 20 NO 

100 100 50 NO 
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4.1.2 Developed Framework 

The social provenance workflow generation framework ( Baeth & Meh Aktas, 2017) uses 

WorkflowSim and WorkflowGen, an open-source workflow generator and simulator. It 

models workflows using a DAG model and supports implementations of some popular 

dynamic, static workflow schedulers and task-clustering algorithms [90]. Figure 4.1 

shows the main components of our framework. 

We used WorkflowSim as a simulation environment to execute the DAX files generated 

by WorkflowGen that represent the abstract description of a single workflow in XML 

format. The provenance recorded from the simulation logs were generated using 

ProvToolBox [92] and put into Komadu [46], a stand-alone provenance capture and 

visualization system for capturing, representing, and manipulating provenance. It uses the 

W3C PROV standard [96], which is considered as the successor to Karma [44] 

provenance capture system. The information quality evaluation module retrieves 

provenance graphs from Komadu, extracts user-based and content-based attributes, and 

calculates the quality metric of the proposed information. 

 
 

Figure 4.1 Workflow generation and information quality evaluation framework 
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4.1.3 Analysis and Insights 

By examining the data obtained from analyzing our pre-generated social provenance 

workflow data, we inferred that there is a proportional relationship between the distance 

of a positive metric and the amount of negative feedback a tweet has received. Both 

Figure 4.2 and Figure 4.3 illustrate this relationship. Fig 4.3 shows the total number of 

users engaged in a workflow and shows how users engaged in negative feedback affect 

the distance from the positivity metric in workflows with 100 social operations. 

 

 

Figure 4.2 The relationship between negative feedback and distance from positivity 

value for 500 randomly generated workflows, each with 100 social operations in the X-

axis represents the ID of the workflow, the left-hand Y-axis represent workflow’s 

distance from 

 

Figure 4.2 illustrates the total number of users engaged in a workflow, who are engaged 

only with negative feedback and their relationship and effect on the distance from a 

positivity metric for workflows with one thousand social operations. 
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Figure 4.3 The relation between negative feedback and distance from positivity value 

for 500 randomly generated workflows, each with 1,000 social operation the X-axis 

represents the ID of the workflow, the left-hand Y-axis represent workflow’s distance 

from positivity score and right-hand Y-axis represent number of engaged users with 

negative feedback. 

 

The other observations were made by examining the results of the proportional 

relationships between the value of the distance from positivity, the originator’s credibility 

value, and the amount of negative feedback based on the tweet. Figure 4.4 shows a plot 

of the number of users engaged only in negative feedback. Their relationship and distance 

from the positivity metric for randomly-biased generated workflows are shown with one 

thousand social operations. The value of the originator’s credibility fluctuates in 

accordance with the number of users with negative feedback.  
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Figure 4.4 Relation between distance from positivity value, originator’s credibility and 

amount of negative feedback in randomly biased workflows# the relation between 

negative feedback and distance from positivity value for 500 randomly generated 

workflows, each with 100 social operation the x-axis represents the ID of the workflow, 

the right-hand Y-axis represent workflow’s distance from positivity score and 

originator’s credibility score, while the left-hand Y-axis represent number of engaged 

users with negative feedback. 

4.2 Evaluation Against a Real-life Social Provenance Dataset 

The PHEME rumor dataset was collected and annotated within the project’s journalism 

use case [97]. These rumors were associated with nine different breaking news. It was 

created for the analysis of social media rumors and contains Twitter conversations which 

are initiated by a rumourous tweet and conversations that include tweets responding to 

those rumourous tweets. These tweets have been annotated for support, certainty, and 

evidentiality. The dataset contains 330 conversational threads (297 in English, and 33 in 

German), with a folder for each thread, and is structured as follows: 

• source-tweets: this folder contains a JSON file with the source tweet. 

• reactions: this folder contains the JSON files for all the tweets that participated in 

the conversations by replying. 

• url-content: this folder contains the content of the Web pages pointed to from the 

tweets. 
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• structure.json: this file provides the structure of the conversation, making it easier 

to determine what each tweets are children’s tweets and to reconstruct the 

conversations by putting together the source tweet and the replies. 

• retweets.json: this file contains the tweets that retweeted the source tweet. 

• who-follows-whom.dat: this file contains the users, within the thread, who are 

following someone else. Each row contains two IDs, representing that the user 

with the first ID follows the user with the second ID. Note that following is not 

reciprocal, and therefore if two users mutually follow each other it will be 

represented in two rows, A B and B A. 

• annotation.json: this files includes the manual annotations at the thread level, 

which is especially useful for rumors and contains the following fields: 

o is_rumour: which is rumor or non-rumor. 

o category: which is the title that describes the rumorous story and can be 

used to group with other rumors within the same story. 

The following chart shows the number of reactions in every thread and the number of 

effective (non-neutral) reactions. A neutral reaction is a comment which adds no value to 

the certainty of an original tweet.  

 

Figure 4.5 Number of reactions compared to the number  

of effective (non-neutral) reactions in every thread 
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The graph shows that the number of effective reactions per thread is relatively low. This 

can cause some inconsistency when evaluating our proposed distance from positivity 

algorithm since it’s highly dependent on large number of interactions. The PHEME 

dataset also has no record of user information, growth of the number of followers as the 

thread grows, users’ specific list of followers and followees, or any chronological 

indication. This renders it unusable for most of our proposed metrics except for 

popularity. 

4.2.1 Threats to Validity of Proposed Approach 

The results obtained by running DfP on the PHEME dataset may be affected by the 

validity of the following assumptions and aspects: 

 

1 We’re assuming that no “Human error” happened during the process of collecting and 

classifying tweets in PHEME dataset. 

2 The proposed algorithm depends mainly on data with large magnitude of size “The 

more interactions we have upon a piece of information the more accurate our detection 

algorithms performs” However as presented earlier, number of effective interactions 

in most of collected social workflows threads are small.  

3 The graph shows that the number of effective reactions per thread is relatively low. 

This can cause some inconsistency when evaluating our proposed Distance from 

positivity algorithm since it’s highly dependent on large number of interactions.  

4 The PHEME dataset also has no record of user information, growth of the number of 

followers as the thread grows, user’s specific list of followers and followees, or any 

chronological indication. Rendering it unusable for most of our proposed metrics 

except for the POPULARITY. 

4.1.1 Results Obtained from running DfP on PHEME Dataset 

We implemented a java-based prototype that loads the JSON files of the PHEME dataset 

into memory and processes them in order to calculate the distance of positivity value for 

every English thread. The number of threads analyzed was 297. Then we normalized the 

obtained value to match the classification criterion defined by the PHEME developers. 

The results of our prediction against the real classification is in the appendix section. We 
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calculated the confusion matrix and calculated necessary metrics to evaluate our 

prediction.  

Table 4.2 Prediction results confusion matrix 

 True Positive True Negative 

Predicted Positive 228 56 

Predicted Negative 7 5 

 

 

 

Table 4.3 Different evaluation metric values 

MEASURE VALUE DERIVATIONS 

SENSITIVITY 0.9702 TPR = TP / (TP + FN) 

SPECIFICITY 0.0820 SPC = TN / (FP + TN) 

PRECISION 0.8028 PPV = TP / (TP + FP) 

NEGATIVE PREDICTIVE VALUE 0.4167 NPV = TN / (TN + FN) 

FALSE POSITIVE RATE 0.9180 FPR = FP / (FP + TN) 

FALSE DISCOVERY RATE 0.1972 FDR = FP / (FP + TP) 

FALSE NEGATIVE RATE 0.0298 FNR = FN / (FN + TP) 

ACCURACY 0.7872 ACC = (TP + TN) / (P + N) 

F1 SCORE 0.8786 F1 = 2TP / (2TP + FP + FN) 

 

The fact that threads existing in the PHEME dataset are mostly labeled positive (certain) 

may give wrong indications about the quality of our predictions. The following graph 

shows the number of threads per its certainty classification. 

 

Figure 4.6 Prediction results compared to actual classification 
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However, our classifier performed well considering that we were able to use only one of 

the proposed metrics. We expect to get even better results if we had access to all required 

data.  

4.2 Evaluation of Privacy Violation Detection Algorithm  

Twitter is one of the major data sources that has open access to its feed for everyone 

through its APIs (Twitter stream and search APIs). Social network users’ patterns of 

interactions form a workflow. We previously developed a synthetic dataset that imitated 

Twitter, wherein we generated controlled workflows [34] as part of our research. As part 

of the PRONALIZ research, we explained the need for a synthetically generated, large-

scale social provenance dataset and then developed a model with which to generate it. 

We created various social workflows with both user-based and content-based metrics 

[56]. Details of the developed generation framework and characteristics of generated 

workflows can be found in a study by Baeth and Aktas (2017). Using a slightly modified 

version of this synthetic social workflow generator, we created 1,000 social workflows, 

each with 1,000 social operations which range between 5,000 and 12,000 provenance 

notifications. The design of the experiment is depicted in Figure 4.7. 

 

 

Figure 4.7 Design of the evaluation experiment 

 

We conducted performance testing on our overall system to evaluate its performance and 

scalability. For each rule, the tests were conducted on a sample of 1,000 synthetically 

generated social workflows, each with 1,000 social operations using our simulation 
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environment. We recorded the time that it took the event processing engine to analyze 

and send a notification for each of the defined rules. This analysis was conducted using a 

test environment, as specified in Table 4.4. Our developed simulation environment was 

running on a workstation, while the social provenance processing and rule verification 

framework was running on a virtual machine hosted on the same computer.  

 

Table 4.4 Details of the testing environment: 

CPU Intel Core I5-6500 CPU 3.20GHz 

Memory 16 Gigabytes 

Operating System Windows 10 

Java Version 1.8 

SSD SSD 750 EVO 250GB 

 

 

Figure 4.8 The results of the average processing time (seconds) of 1,000 social 

operation workflows in the developed framework. The X-axis indicates the tested Rule 

ID, while the Y-axis indicates the average processing time in milliseconds. 

 

Table 4.5 Latency in detecting faulty running behavior  

for the defined privacy policy rules 

Rule ID 
Runtime Verification Software Prototype 

Average Time (S) Standard Deviation 

Rule 1 0.074674367  0.007133121 

Rule 2 0.202734350 0.040959625 

Rule 3 0.202671522  0.048038539 

Rule 4 0.190684251  0.044241382 

Rule 5 0.20020108  0.048001567 

Rule 6  0.198688868  0.044528124 
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Figure 4.8 shows the average processing of 1,000 social operation workflows, while 

Table 4.5 shows the results and their respective standard deviation. It can be observed 

that Rule 1 has a relatively lower average processing time, which is expected because it 

only looks to the originators’ immediate network and does not need to calculate the 

credibility of any of the users engaged in the workflow. The relatively higher 

computational overhead in the other rules is caused by either the credibility calculation 

or the lookup of many user connections, or even both. The small value of the standard 

deviation shows that the randomness of social actions conducted, and user-user 

connections have little effect; moreover, with larger workflows, processing time will 

increase linearly. Therefore, test results for the developed framework show that the 

performance remains steady even with a high number of requests. Consequently, we 

believe that the developed system performed well under with the ingested large number 

of provenance workflows because the processing overhead is negligible. However, the 

current implementation of the prototype is limited by Komadu’s provenance graphs 

retrieval capabilities. We believe that Komadu may be the bottleneck when processing 

large-scale workflows since it uses a MYSQL database to store data. The capabilities of 

Komadu to process large workflows was tested by Tas, Baeth, and Aktas (2017). 
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CHAPTER 5 

5. CONCLUSION AND FUTURE WORK 

 

In this research we’ve shown that the solution to uncertainty or ambiguity of information 

can be solved by extraction of data provenance in social media by determining origins, 

custody, and ownership of this information. Here, we present a summary of this work in 

the form of answers to research questions presented earlier in Chapter 1. 

How to determine the origin, custody, and ownership of information in large-scale, 

growing social workflows? 

The origins of information are described as the metadata about the user and the context 

in which the propagation occurred. Such metadata are called provenance attributes, and 

the formulation of these attributes will be creating the metrics by which credibility of 

information can be measured. Despite the existence of many information diffusion 

models, there is currently no unified, conceptual model for information diffusion and 

provenance that can be applied to different social networks.  

 

We have presented a provenance-data-based misinformation detection algorithm in social 

networks, which utilizes a variety of metrics in order to use the collective wisdom of a 

social network users to determine the authenticity of data dissemination. The proposed 

algorithm aggregates two different sets of metrics: one that places data in the center and 

the other that places the user in the center. We created a general provenance representation 

that suits all types of social networks derived from the PROV-O provenance model. We 

identified several variations in the cases of our proposed social provenance metrics that 

is used in the calculation of a social network user’s credibility. To dynamically give 

proper weights in accordance with the identified cases, we used a Fuzzy AHP method.  
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Developing a large-scale provenance repository prototype system capable of 

auditing different social media platforms to generate analyzed information 

provenance by Designing and developing algorithms for converting distributed 

provenance graphs.  

Recognizing the need for a synthetic social provenance dataset, we investigated whether 

the current state-of-the-art, stand-alone, centralized provenance systems are capable of 

handling large-size social provenance data. To do this, a test suite was developed and a 

performance evaluation of stand-alone provenance systems when handling large-size 

social provenance data was examined by conducting responsiveness and scalability 

experiments. The experimental study used Karma, Komadu, and PReServ as stand-alone, 

centralized provenance systems. Although the centralized approaches to provenance 

collection systems scales well for collecting and querying small-size provenance records, 

the results demonstrated that they cannot handle large-size provenance records. The 

amount of data generated by social media every day is well beyond the capabilities of 

existing provenance repositories. Thus, it is inevitable to leverage provenance repositories 

to handle such data volumes. After identifying the characteristics of the dataset in this 

discussion and taking Twitter as an example, we introduced a large-scale noisy synthetic 

social provenance database, to which we applied various social provenance metrics and 

attributes to capture vital information for calculating data quality and user credibility. The 

introduced provenance database consisted of social workflows of different sizes and 

different breadths where each was created with randomly generated social interaction 

scenarios utilizing WorkflowSim and WorkflowGen tools. It also had failure 

characteristics that represented both notifications drop failures and provenance collection 

failures to simulate real-life provenance capture. We created a publicly accessible website 

to make the dataset available for research that dealt with large-size and high-volume 

provenance graphs that are downloadable directly as XML files and are accessible 

through a Komadu repository query interface. 

Evaluating the credibility of spreading information in social media and Improve 

existing popularity-based ranking algorithms. 

In our proposed misinformation detection algorithm, we classified the credibility of 

information in three different classifications: message credibility, source credibility, and 

media credibility. This research demonstrated the results of a study that assessed the 
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credibility of users on social media networks. To utilize the collective wisdom of users in 

social networks, we proposed an algorithm that calculated the distance between a 

positivity metric and a developed framework that implemented it. In order to test our 

framework, we used a previously generated social provenance workflow framework [34]. 

We generated workflows with different characteristics in two different scenarios. The 

first was for workflows generated with random activity selection, representing users who 

reacted to information without considering the context. The other scenario was generated 

with a controlled randomness. The different scenarios represented users reacting to 

information depending on the originator’s credibility. The results demonstrated that both 

the relationship between the proposed metric, the number of engaged users and the 

relationship between the originator’s credibility and distance from positivity had a 

positive correlation. This occurred because both values fluctuated in the same fashion 

accordingly. Future work would extend the use of the obtained results to train a machine 

learning classifier and test it on real-life Twitter data. 

Checking the copyright ownership of media files being re-shared in social media.  

Due to the nature of social media networks where data dissemination is very hard to 

control, ownership should be taken into consideration. In this study, we introduced a 

generic software architecture that can be integrated with existing social media software 

to enable users to track the dissemination of their data and generate special notifications 

by using CEP. The proposed solution utilizes social provenance data, which are defined 

as the metadata that describe the lifecycle of the data. To facilitate testing of the software 

architecture, we developed a large-scale synthetic provenance dataset, discussed the 

details of the prototype implementation and evaluated its performance. The developed 

system performed well under with the ingested large number of provenance workflows 

because the processing overhead was negligible. 

 

1.1. Future Research Opportunities  

To this end, there is an emerging need for decentralized approaches to provenance 

management that can handle high-volume, large-size social provenance data. 

Specifically, there is an emerging need for a provenance capture and management service 

that addresses the scalability, data quality, and privacy-awareness properties of social 

networking domains. To fill in this gap, we have presented an architecture of a 
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decentralized bigdata-based social provenance repository system. We believe that this 

design will satisfy the need for a scalable, quality and privacy-aware provenance 

management service for social networking environments. The detailed design and the 

implementation of this architecture is left for future further research as one of our next 

steps.  

Recently, blockchain technology has gain momentum in both business and academia. It’s 

being used in a wide range of different fields. A block chain is a distributed data storage 

system which keeps multiple copies of data in chronological lists (also called blocks). 

Before a block can be added to the storage systems it should be verified by undergoing a 

mathematical calculation which involves input from all sources that keep copies of the 

existing blocks. Blockchain technology provides many advantages starting from 

immutability, high security, reliability, transparency, privacy and efficiency [98]. The 

provenance academic community has already started taking leverage utilizing blockchain 

technology. An ontology-driven blockchain design was introduced by Kim and 

Laskowski (2018); a blockchain-based provenance architecture with improved privacy 

and availability was introduced by Liang et al. (2017); a blockchain-based provenance 

model for tracking ownership of art in the Internet was proposed by McConaghy, 

McMullen, Parry, McConaghy, and Holtzman (2017); and even a blockchain-based 

provenance repository system was made by Ramachandran and Kantarcioglu (2018). 

However, and to the best of our knowledge there has been no research done on utilizing 

blockchain technology in the field of storing, modeling and analyzing social provenance. 

We believe that blockchain technology will yield a transparent ownership detection and 

credibility evaluation system that is incorruptible by external sources. We see this as one 

of our future research opportunities.  

Lastly, while conducting this research and for the purpose of evaluating our proposed 

misinformation detection algorithm, we need a complete real-life social provenance 

dataset. Other than the PHEME dataset, which we were able to use by utilizing one out 

of six metrics used by the algorithm, we couldn’t find any other suitable dataset. Creating 

a dataset would be a big challenge as it requires collaboration with journalists and fact-

checking professionals, along with approvals from both the data originators and the 

publishers. We believe that creating such a dataset will have immense benefits for 

studying misinformation detection and privacy protection in social networks.  
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APPENDIX-A 

Results Obtained from Analyzing PHEME dataset 

Thread ID 
Distance from 

Positivity 
Normalize 

DfP 
Prediction 

Thread 
Certainty 

Number of 
Interactions 

Number of 
Effective Reactions 

577258317942
149000 

0 0 certain 
somewhat-

certain 
5 0 

576755174531
862000 

-0.776610806 78 uncertain 
somewhat-

certain 
5 2 

576319832800
555000 

-0.393946111 40 
somewhat-

certain 
somewhat-

certain 
15 3 

576513463738
109000 

-0.614002471 62 
somewhat-

certain 
certain 7 3 

552783667052
167000 

-0.303102109 31 certain certain 7 2 

552793679082
311000 

0 0 certain certain 15 1 

553548567420
628000 

-0.81251687 82 uncertain 
somewhat-

certain 
22 10 

552832817089
236000 

0 0 certain certain 12 1 

552833028201
144000 

0 0 certain certain 18 0 

553184482241
814000 

-0.253730909 26 certain 
somewhat-

certain 
28 3 

553534838880
608000 

-0.069263347 7 certain certain 7 2 

553512735192
141000 

-0.17075819 18 certain certain 5 2 

552834961762
709000 

0 0 certain certain 17 0 

553197863971
610000 

-0.417497938 42 
somewhat-

certain 
certain 23 6 

552792802309
181000 

-0.442427348 45 
somewhat-

certain 
certain 8 4 

553586860334
010000 

-0.474570272 48 
somewhat-

certain 
certain 19 5 

553486439129
038000 

-0.142876854 15 certain certain 9 2 

552848620375
261000 

-0.414145379 42 
somewhat-

certain 
somewhat-

certain 
15 7 

553588178687
655000 

-0.393430282 40 
somewhat-

certain 
certain 12 3 

553518472798
683000 

0 0 certain certain 20 6 

553503184174
710000 

-0.291434018 30 certain certain 23 3 

552805488631
758000 

-0.856128044 86 uncertain certain 110 12 

553506608203
169000 

-0.538961644 54 
somewhat-

certain 
certain 24 6 

553221600955
621000 

0 0 certain certain 2 0 
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Thread ID 
Distance from 

Positivity 
Normalize 

DfP 
Prediction 

Thread 
Certainty 

Number of 
Interactions 

Number of 
Effective Reactions 

553549686129
561000 

0 0 certain certain 23 3 

552792913910
833000 

0 0 certain certain 5 2 

552996335319
007000 

-0.499964188 50 
somewhat-

certain 
certain 15 2 

552806309540
528000 

-0.560215662 57 
somewhat-

certain 
certain 39 7 

553550301886
955000 

-0.569983087 57 
somewhat-

certain 
certain 19 7 

529660296080
916000 

0 0 certain certain 4 0 

500295393301
647000 

-0.090497376 10 certain certain 8 2 

500278045597
368000 

-0.086779795 9 certain certain 16 4 

499612545909
415000 

-0.708507703 71 uncertain certain 27 10 

500279189405
433000 

-0.342301295 35 
somewhat-

certain 
certain 38 3 

500341884678
836000 

-0.835237006 84 uncertain 
somewhat-

certain 
10 4 

500270780832
174000 

-0.366816274 37 
somewhat-

certain 
certain 16 3 

500319801344
929000 

-0.206090557 21 certain certain 17 9 

499530130487
017000 

-0.500067129 51 
somewhat-

certain 
certain 25 6 

500298752469
770000 

-0.957279692 96 uncertain certain 44 11 

500327120770
301000 

-0.435421107 44 
somewhat-

certain 
certain 19 3 

500394061887
709000 

0 0 certain 
somewhat-

certain 
15 2 

500377145349
521000 

-0.265958672 27 certain 
somewhat-

certain 
14 5 

500381163866
062000 

-0.059190888 6 certain certain 8 3 

500258409988
763000 

-0.005489083 1 certain 
somewhat-

certain 
8 2 

580331561398
108000 

-0.581359313 59 
somewhat-

certain 
certain 14 4 

580319078155
468000 

-0.327777871 33 certain certain 32 16 

580320684305
416000 

0 0 certain certain 4 1 

581047170637
381000 

-0.124617595 13 certain 
somewhat-

certain 
3 2 

580333909008
871000 

0 0 certain certain 4 2 

580333763512
705000 

0 0 certain certain 24 3 

580371845997
682000 

-0.048381382 5 certain 
somewhat-

certain 
2 1 

580323060533
764000 

0 0 certain certain 2 0 

580321156508
577000 

0 0 certain certain 2 0 

580322453928
431000 

0 0 certain 
somewhat-

certain 
2 1 

524924619812
511000 

-0.474438255 48 
somewhat-

certain 
certain 9 3 

524922729485
848000 

-0.992835123 100 uncertain certain 36 13 

524941132237
910000 

0 0 certain certain 2 1 
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Thread ID 
Distance from 

Positivity 
Normalize 

DfP 
Prediction 

Thread 
Certainty 

Number of 
Interactions 

Number of 
Effective Reactions 

524925987239
120000 

0 0 certain certain 4 3 

525025279803
424000 

0 0 certain certain 8 0 

524925730053
181000 

-0.221178684 23 certain certain 18 4 

524962142563
610000 

-0.813731771 82 uncertain certain 5 2 

525023025792
835000 

0 0 certain certain 11 1 

524937542131
793000 

-0.401741649 41 
somewhat-

certain 
certain 6 2 

524926235030
589000 

-0.183267567 19 certain certain 6 2 

524972443308
683000 

-0.481939794 49 
somewhat-

certain 
certain 11 3 

524936872666
353000 

-0.002665429 1 certain certain 29 5 

524993533212
897000 

-0.358795361 36 
somewhat-

certain 
certain 6 2 

524983581983
375000 

-0.631278179 64 
somewhat-

certain 
certain 18 5 

524991576163
250000 

-0.633299998 64 
somewhat-

certain 
somewhat-

certain 
9 5 

524964948683
005000 

-0.80944294 81 uncertain certain 45 10 

544277860555
710000 

-0.674184515 68 uncertain certain 14 3 

544271069146
656000 

-0.900072669 91 uncertain certain 12 8 

544391176137
089000 

-0.299175379 30 certain certain 22 3 

544504183341
064000 

0 0 certain certain 18 1 

544271362022
338000 

-0.995878369 100 uncertain certain 18 5 

544292670336
925000 

-0.131498081 14 certain certain 6 1 

544520042810
200000 

0 0 certain certain 2 0 

544520273718
812000 

-0.402802513 41 
somewhat-

certain 
certain 18 4 

544518335019
229000 

-0.475462834 48 
somewhat-

certain 
certain 16 4 

544350712365
207000 

-0.351590147 36 
somewhat-

certain 
certain 18 3 

544515538383
564000 

-0.645442436 65 
somewhat-

certain 
certain 19 5 

544282005941
530000 

0 0 certain certain 14 1 

544278335455
776000 

-0.562610175 57 
somewhat-

certain 
certain 18 7 

544309275141
885000 

-0.718132135 72 uncertain 
somewhat-

certain 
32 9 

544310853613
281000 

-0.805907479 81 uncertain 
somewhat-

certain 
19 11 

544288681021
145000 

-0.436587641 44 
somewhat-

certain 
certain 17 7 

544319274072
817000 

-0.634749184 64 
somewhat-

certain 
certain 13 6 

544283772569
788000 

-0.446433422 45 
somewhat-

certain 
certain 19 8 

544282227035
869000 

-0.401427385 41 
somewhat-

certain 
certain 18 9 

553558982476
828000 

-0.507458001 51 
somewhat-

certain 
certain 13 3 
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Thread ID 
Distance from 

Positivity 
Normalize 

DfP 
Prediction 

Thread 
Certainty 

Number of 
Interactions 

Number of 
Effective Reactions 

553212962044
149000 

-0.244755018 25 certain certain 8 1 

553538058440
941000 

0 0 certain 
somewhat-

certain 
19 1 

552984502063
337000 

0 0 certain certain 3 1 

553467311261
503000 

0 0 certain 
somewhat-

certain 
2 0 

552982613288
157000 

0 0 certain certain 4 1 

552792544132
997000 

-0.288431853 29 certain 
somewhat-

certain 
17 2 

553535829017
370000 

0 0 certain certain 5 1 

553590835850
514000 

-0.604155518 61 
somewhat-

certain 
somewhat-

certain 
20 5 

553587672137
334000 

-0.048718352 5 certain 
somewhat-

certain 
27 2 

553470492565
602000 

-0.514387775 52 
somewhat-

certain 
uncertain 8 2 

552821069036
670000 

0 0 certain certain 21 1 

553531413459
660000 

-0.603073676 61 
somewhat-

certain 
somewhat-

certain 
14 4 

553476490315
431000 

0 0 certain certain 4 0 

553589051044
151000 

0 0 certain certain 8 2 

552791578893
619000 

-0.413213351 42 
somewhat-

certain 
certain 20 2 

553152395371
630000 

-0.271107569 28 certain certain 21 4 

553505242554
175000 

-0.468813836 47 
somewhat-

certain 
certain 15 2 

553474188259
102000 

-0.108975404 11 certain certain 12 1 

529540733020
405000 

-0.060483167 7 certain 
somewhat-

certain 
14 3 

529720273285
566000 

-0.67786233 68 uncertain certain 20 8 

529695367680
761000 

-0.462047028 47 
somewhat-

certain 
somewhat-

certain 
8 2 

529654186791
944000 

-0.301712154 31 certain 
somewhat-

certain 
10 2 

529695483661
664000 

0 0 certain 
somewhat-

certain 
10 0 

529653029747
064000 

-0.042259514 5 certain 
somewhat-

certain 
6 1 

500327106824
245000 

0 0 certain 
somewhat-

certain 
7 0 

500354773133
299000 

0 0 certain 
somewhat-

certain 
25 1 

500391222075
076000 

-0.873797635 88 uncertain uncertain 53 15 

499456140044
824000 

-0.199407249 20 certain 
somewhat-

certain 
11 2 

500363740311
982000 

-0.493399905 50 
somewhat-

certain 
somewhat-

certain 
20 6 

498430783699
554000 

0 0 certain 
somewhat-

certain 
22 3 

499366666300
846000 

-0.565600827 57 
somewhat-

certain 
certain 14 3 

500294803402
137000 

-0.563702541 57 
somewhat-

certain 
somewhat-

certain 
19 4 

500377906305
327000 

-0.405584936 41 
somewhat-

certain 
somewhat-

certain 
16 4 
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Distance from 

Positivity 
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DfP 
Prediction 

Thread 
Certainty 

Number of 
Interactions 

Number of 
Effective Reactions 

500290456845
299000 

-0.696527382 70 uncertain certain 38 10 

500280422295
937000 

-0.327374943 33 certain 
somewhat-

certain 
14 3 

500279160795
721000 

-0.972922049 98 uncertain uncertain 95 16 

581386094337
474000 

-0.384857047 39 
somewhat-

certain 
certain 11 2 

580324027715
063000 

0 0 certain certain 3 0 

580325090367
315000 

-0.704157101 71 uncertain 
somewhat-

certain 
52 7 

581063377226
637000 

-0.14208522 15 certain certain 2 1 

580326222107
951000 

-0.425307112 43 
somewhat-

certain 
certain 11 2 

580319184652
890000 

-0.513628658 52 
somewhat-

certain 
certain 9 3 

580339825649
291000 

0 0 certain certain 10 1 

580339547269
144000 

-0.689000729 69 uncertain 
somewhat-

certain 
14 7 

525003468659
228000 

-0.847476578 85 uncertain certain 25 5 

524975705206
304000 

0 0 certain certain 23 2 

524942470472
548000 

0 0 certain certain 3 0 

524932056560
963000 

-0.048963657 5 certain 
somewhat-

certain 
3 1 

525019752507
658000 

-0.889672548 89 uncertain certain 34 16 

524947416869
388000 

0 0 certain 
somewhat-

certain 
3 0 

524935485370
929000 

-0.500235056 51 
somewhat-

certain 
certain 19 3 

524925050739
490000 

-0.442187573 45 
somewhat-

certain 
certain 11 3 

524969201102
901000 

0 0 certain 
somewhat-

certain 
17 0 

524923462398
513000 

-0.579046608 58 
somewhat-

certain 
certain 13 1 

524925215235
911000 

0 0 certain certain 18 1 

524980744658
382000 

-0.184892414 19 certain certain 9 2 

524981436252
950000 

-0.606393514 61 
somewhat-

certain 
somewhat-

certain 
7 1 

524931324763
992000 

-0.666770559 67 uncertain certain 7 3 

524926472432
410000 

0 0 certain certain 3 0 

524943490887
991000 

0 0 certain certain 7 0 

524944399890
124000 

-0.233903116 24 certain certain 22 2 

544380742076
088000 

0 0 certain 
somewhat-

certain 
19 1 

544358564484
378000 

-0.184150464 19 certain certain 2 2 

544510450101
415000 

-0.189024464 19 certain 
somewhat-

certain 
11 2 

544278985249
550000 

-0.517188183 52 
somewhat-

certain 
certain 18 3 

544514564407
427000 

0 0 certain 
somewhat-

certain 
4 0 
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Certainty 
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Number of 
Effective Reactions 

544512676643
500000 

0 0 certain certain 3 0 

544329935943
237000 

-0.890056315 90 uncertain certain 102 29 

544305540286
148000 

0 0 certain 
somewhat-

certain 
15 0 

544314234541
469000 

-0.493886413 50 
somewhat-

certain 
somewhat-

certain 
20 5 

544291965513
134000 

-0.723388422 73 uncertain 
somewhat-

certain 
24 4 

544269749405
097000 

-0.111580265 12 certain certain 15 1 

544301453717
041000 

0 0 certain 
somewhat-

certain 
23 0 

544274934835
707000 

-0.702308264 71 uncertain certain 41 12 

544350567183
556000 

-0.467500804 47 
somewhat-

certain 
somewhat-

certain 
2 1 

544271284796
784000 

0 0 certain certain 8 0 

544289311504
355000 

0 0 certain certain 2 0 

544513524438
155000 

0 0 certain certain 2 0 

544333764814
323000 

-0.528460034 53 
somewhat-

certain 
certain 23 2 

544517264054
423000 

0 0 certain 
somewhat-

certain 
17 0 

544391533240
516000 

0 0 certain certain 4 0 

544268732046
913000 

0 0 certain certain 8 0 

544512910538
838000 

-0.522432862 53 
somewhat-

certain 
certain 14 3 

544306402731
507000 

0 0 certain 
somewhat-

certain 
3 0 

544382892378
714000 

-0.013783483 2 certain certain 8 3 

544399927045
283000 

-0.113799915 12 certain certain 31 4 

544512664769
396000 

-0.275584988 28 certain certain 5 3 

544305745416
581000 

0 0 certain certain 3 0 

576323086888
361000 

-0.212057296 22 certain certain 6 3 

576829262927
413000 

-0.967040913 97 uncertain 
somewhat-

certain 
7 3 

576276947648
405000 

-0.5 50 
somewhat-

certain 
somewhat-

certain 
3 3 

576796432730
071000 

-0.979945456 98 uncertain 
somewhat-

certain 
14 6 

576812998418
939000 

0 0 certain certain 2 1 

552978184413
921000 

0 0 certain 
somewhat-

certain 
2 1 

553575232867
672000 

-0.412870345 42 
somewhat-

certain 
certain 12 3 

553544694765
215000 

0 0 certain certain 14 2 

553476880339
599000 

-0.142584446 15 certain 
somewhat-

certain 
14 1 

552802654641
225000 

-0.36705502 37 
somewhat-

certain 
certain 7 3 

553579224402
235000 

-0.480001965 49 
somewhat-

certain 
certain 25 4 
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Number of 
Effective Reactions 

553586897168
392000 

0 0 certain certain 12 5 

553566026030
272000 

-0.044236173 5 certain certain 11 5 

553164985460
068000 

-0.289365615 29 certain 
somewhat-

certain 
14 2 

553590459688
570000 

-0.487730065 49 
somewhat-

certain 
certain 19 17 

553160652567
498000 

-0.02140854 3 certain certain 11 3 

552785375161
499000 

0 0 certain certain 3 2 

552806757672
964000 

-0.5744289 58 
somewhat-

certain 
certain 12 10 

553107921081
749000 

-0.200462496 21 certain certain 6 2 

552810448324
943000 

-0.205844058 21 certain certain 19 6 

553576010898
497000 

-0.202829446 21 certain 
somewhat-

certain 
19 6 

553501357156
876000 

-0.510847623 52 
somewhat-

certain 
certain 24 3 

552978099357
237000 

0 0 certain certain 3 2 

553587013409
325000 

-0.660270055 67 uncertain certain 34 8 

553461741917
863000 

-0.677889949 68 uncertain certain 19 5 

553489393202
499000 

0 0 certain certain 8 2 

553543369604
210000 

-0.613757636 62 
somewhat-

certain 
somewhat-

certain 
22 8 

553508098825
261000 

-0.367336609 37 
somewhat-

certain 
certain 19 4 

552816020403
269000 

-0.598237973 60 
somewhat-

certain 
certain 5 1 

553478289474
740000 

0 0 certain uncertain 6 1 

552811386259
386000 

-0.204958011 21 certain 
somewhat-

certain 
18 7 

553587303172
833000 

-0.355739425 36 
somewhat-

certain 
certain 21 10 

529689679411
810000 

-0.764797583 77 uncertain certain 5 1 

529713467184
676000 

-0.434677023 44 
somewhat-

certain 
certain 5 4 

529716453792
956000 

0 0 certain uncertain 2 0 

529687410611
728000 

0 0 certain uncertain 5 2 

500307001629
745000 

-0.995305309 100 uncertain 
somewhat-

certain 
88 33 

500303431928
922000 

-0.562396429 57 
somewhat-

certain 
somewhat-

certain 
18 6 

500371149713
178000 

-0.390269053 40 
somewhat-

certain 
somewhat-

certain 
21 8 

500413818368
184000 

-0.942507995 95 uncertain 
somewhat-

certain 
19 7 

500319675797
209000 

-0.744827729 75 uncertain 
somewhat-

certain 
12 5 

500284699546
517000 

-0.461881823 47 
somewhat-

certain 
certain 16 8 

500378522788
315000 

-0.734065479 74 uncertain certain 21 9 

500363126294
863000 

-0.590676042 60 
somewhat-

certain 
certain 9 5 
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500347114975
944000 

-0.795305328 80 uncertain certain 103 22 

500308076004
929000 

-0.78041691 79 uncertain 
somewhat-

certain 
19 6 

500389488217
309000 

-0.813792688 82 uncertain 
somewhat-

certain 
37 16 

500288349924
782000 

-0.049243161 5 certain uncertain 18 7 

499368931367
608000 

-0.953050633 96 uncertain certain 48 9 

500332933098
385000 

-0.761525429 77 uncertain 
somewhat-

certain 
9 4 

581293286268
129000 

-0.996138287 100 uncertain uncertain 20 8 

580360165540
642000 

-0.338636131 34 
somewhat-

certain 
certain 2 2 

580882341880
446000 

0 0 certain uncertain 5 2 

580340476949
086000 

-0.726109427 73 uncertain certain 19 10 

580332109782
466000 

0 0 certain certain 9 3 

524923676484
177000 

-0.753244524 76 uncertain certain 10 5 

524947867975
561000 

-0.536266088 54 
somewhat-

certain 
somewhat-

certain 
17 5 

524949443607
412000 

-0.369983107 37 
somewhat-

certain 
somewhat-

certain 
4 2 

525032872647
065000 

-0.805439187 81 uncertain certain 15 8 

524940659778
920000 

0 0 certain certain 6 4 

525056576038
518000 

-0.444107056 45 
somewhat-

certain 
certain 23 6 

524948866773
184000 

0 0 certain certain 3 1 

525028734991
343000 

-0.374218077 38 
somewhat-

certain 
certain 5 2 

525025463648
137000 

0 0 certain certain 10 3 

524965775036
387000 

0 0 certain certain 4 2 

524927281048
080000 

-0.999429654 100 uncertain certain 42 16 

544512108885
725000 

-0.407772337 41 
somewhat-

certain 
certain 19 9 

544374511194
632000 

-0.589916127 59 
somewhat-

certain 
somewhat-

certain 
9 4 

544292129972
170000 

-0.737150904 74 uncertain 
somewhat-

certain 
14 8 

544511199702
822000 

-0.456549885 46 
somewhat-

certain 
certain 8 2 

544272537341
812000 

-0.715531846 72 uncertain certain 21 8 

544306719686
656000 

-0.599477562 60 
somewhat-

certain 
certain 16 8 

544352727971
954000 

-0.675252348 68 uncertain certain 8 5 

544491151118
860000 

-0.379864821 38 
somewhat-

certain 
certain 8 1 

544287209730
236000 

-0.079249312 8 certain certain 10 5 

544328894812
549000 

-0.716809672 72 uncertain certain 36 18 

544514570367
168000 

-0.500450695 51 
somewhat-

certain 
certain 15 10 
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544324444773
433000 

-0.407100207 41 
somewhat-

certain 
certain 21 9 

544277117039
837000 

-0.866786276 87 uncertain 
somewhat-

certain 
30 10 

544297696308
518000 

-0.370842437 38 
somewhat-

certain 
certain 23 7 

544381485591
982000 

-0.272364646 28 certain uncertain 21 6 

544290258951
892000 

0 0 certain certain 10 4 

498280126254
428000 

0 0 certain certain 5 1 

544476808566
276000 

-0.602515293 61 
somewhat-

certain 
certain 31 8 

552791196247
269000 

-0.734583391 74 uncertain certain 22 11 

524929497205
055000 

-0.674890309 68 uncertain certain 12 6 

524970851675
176000 

-0.467036505 47 
somewhat-

certain 
certain 9 5 

544293753130
082000 

-0.356403375 36 
somewhat-

certain 
certain 10 3 

553544252563
935000 

-0.293058932 30 certain certain 14 9 

552814494381
256000 

-0.042264806 5 certain certain 10 5 

529739968470
867000 

-0.586069265 59 
somewhat-

certain 
certain 11 6 

500378223977
721000 

-0.532938352 54 
somewhat-

certain 
somewhat-

certain 
17 9 

580348081100
734000 

-0.022449871 3 certain certain 23 5 

581473088249
958000 

-0.147878204 15 certain certain 7 4 

524952883343
925000 

-0.497648108 50 
somewhat-

certain 
certain 21 7 

525060425184
858000 

-0.438493204 44 
somewhat-

certain 
certain 21 4 

524959809402
331000 

-0.696775502 70 uncertain certain 19 10 

525049639016
615000 

-0.027416069 3 certain certain 6 3 

524966904885
428000 

-0.257273649 26 certain certain 6 3 

524995771587
108000 

-0.389766241 39 
somewhat-

certain 
certain 6 3 

525058976376
193000 

-0.430500553 44 
somewhat-

certain 
somewhat-

certain 
4 3 

525068915068
923000 

0 0 certain certain 3 1 

524956129017
995000 

-0.739855767 74 uncertain 
somewhat-

certain 
33 9 

524990163446
140000 

-0.485852424 49 
somewhat-

certain 
certain 5 4 

544462330105
712000 

-0.361999201 37 
somewhat-

certain 
certain 33 5 

544291804057
960000 

-0.454017216 46 
somewhat-

certain 
somewhat-

certain 
10 3 

544289409294
553000 

-0.671104584 68 uncertain 
underspecifi

ed 
11 6 

544289941996
326000 

-0.360295819 37 
somewhat-

certain 
underspecifi

ed 
4 4 

544358533819
420000 

-0.590059908 60 
somewhat-

certain 
certain 18 9 

544367462012
432000 

-0.63942661 64 
somewhat-

certain 
certain 12 6 
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544319832486
064000 

-0.737634347 74 uncertain certain 27 12 

500280838710
247000 

-0.841586956 85 uncertain 
somewhat-

certain 
39 14 

500281094239
817000 

-0.579040379 58 
somewhat-

certain 
certain 5 3 

500281131057
811000 

-0.628136759 63 
somewhat-

certain 
certain 21 5 

500286058664
579000 

-0.819180662 82 uncertain certain 74 16 

524932935137
628000 

-0.843733465 85 uncertain certain 35 20 

524947674164
760000 

-0.87161386 88 uncertain certain 20 10 

521346721226
711000 

-0.704596273 71 uncertain uncertain 26 6 

521360486387
175000 

-0.609888865 61 
somewhat-

certain 
certain 8 5 
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APPENDIX-B 

CODE SAMPLES 

package tr.edu.yildiz.phemeProcessing; 

 

import com.fasterxml.jackson.databind.ObjectMapper; 

import org.apache.commons.lang3.tuple.Pair; 

import org.apache.log4j.Logger; 

import tr.edu.yildiz.phemeProcessing.pojos.Annotations; 

import tr.edu.yildiz.phemeProcessing.pojos.ReplyAnnotation; 

import tr.edu.yildiz.phemeProcessing.pojos.Tweet; 

 

import java.io.*; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.List; 

import java.util.Map; 

import java.util.stream.Collectors; 

 

public class PhemeProcessor { 

    final static Logger logger = Logger.getLogger(PhemeProcessor.class); 

    final static String SOURCE = "source-tweets"; 

    final static String REACTION = "reactions"; 

 

 

    public static void main(String[] args) { 

        PrintWriter pw = null; 

        try { 

            pw = new PrintWriter(new 

File("..\\phemeProcessor\\phemeDataset/output.csv")); 

        } catch (FileNotFoundException e) { 

            e.printStackTrace(); 

        } 

        StringBuilder builder = new StringBuilder(); 

        String ColumnNamesList = "Thread ID,Distance From Positivity, Thread 

Certainity, Number of Interactions"; 

        // No need give the headers Like: id, Name on builder.append 

        builder.append(ColumnNamesList + "\n"); 

        final PhemeProcessor phemeProcessor = new PhemeProcessor(); 

         

 

ObjectMapper objectMapper = new ObjectMapper(); 

         

 

 

String datasetPath = "..\\phemeProcessor\\phemeDataset/"; 

        //start by loading annotation files to determine the threads 

        File annotationsFile = new File(datasetPath + 

"annotations/original_en-scheme-annotations.json"); 

        try { 

            FileInputStream fileInputStream = new 

FileInputStream(annotationsFile); 

            BufferedReader bufferedReader = new BufferedReader(new 
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InputStreamReader(fileInputStream)); 

 

            String line = null; 

            List<Annotations> annotationsList = new ArrayList<Annotations>(); 

            while ((line = bufferedReader.readLine()) != null) { 

                if (line.startsWith("#")) continue; 

                annotationsList.add(objectMapper.readValue(line, 

Annotations.class)); 

            } 

            Map<String, Annotations> annotationsMap = new HashMap<>(); 

            for (Annotations annotation : annotationsList) { 

                annotationsMap.put(annotation.getThreadid(), annotation); 

 

            } 

            logger.debug("Finished importing main annotations file"); 

            logger.debug("number of annotations imported: " + 

annotationsList.size()); 

 

            for (Annotations annotation : annotationsList) { 

                logger.debug("First annotation imported is: " + 

annotation.toString()); 

                Map<Pair<String, String>, ReplyAnnotation> replyAnnotationMap 

= phemeProcessor.getAllAnnotations(datasetPath); 

 

                //test 

                String tweetPath = datasetPath + "threads/en/" + 

annotation.getEvent() + "/" + annotation.getThreadid(); 

                File mainTweetJSONFile = new File(tweetPath + "/" + SOURCE + 

"/" + annotation.getThreadid() + ".json"); 

                Tweet mainTweet = phemeProcessor.getTweet(mainTweetJSONFile); 

                List<Tweet> reactions = 

phemeProcessor.getReactions(annotation, datasetPath); 

 

                double mainTweetPopularity = 

phemeProcessor.getPopularity(mainTweet); 

                List<Double> popularity = reactions.stream().filter(tweet -> { 

                    ReplyAnnotation replyAnnotation = 

replyAnnotationMap.get(Pair.of(mainTweet.getIdStr(), tweet.getIdStr())); 

                    return replyAnnotation != null && 

!replyAnnotation.getResponsetypeVsSource().equals("comment"); 

                }).map(tweet -> { 

                    ReplyAnnotation replyAnnotation = 

replyAnnotationMap.get(Pair.of(mainTweet.getIdStr(), tweet.getIdStr())); 

 

                    if (replyAnnotation != null && 

(replyAnnotation.getResponsetypeVsSource().equals("disagreed") || 

                            

replyAnnotation.getResponsetypeVsSource().equals("appeal-for-more-

information"))) { 

                        return (-1 * 

Math.abs(phemeProcessor.getPopularity(tweet))); 

                    } else { 

                        return Math.abs(phemeProcessor.getPopularity(tweet)); 

                    } 

 

 

                }).collect(Collectors.toList()); 

                logger.debug("List of popularity Size: " + popularity.size()); 

                popularity.stream().forEach(logger::debug); 

                Double cumulativeCredibility = 0.0; 

                cumulativeCredibility = 

popularity.stream().mapToDouble(Math::abs).sum(); 

                cumulativeCredibility += mainTweetPopularity; 

                double distanceFromPosititvity = mainTweetPopularity / 

Math.abs(cumulativeCredibility); 

                for (double creibility : popularity) { 

                    distanceFromPosititvity = distanceFromPosititvity + 

(creibility / Math.abs(cumulativeCredibility)); 



117 

 

                } 

                builder.append(mainTweet.getIdStr() + ","); 

                builder.append(distanceFromPosititvity + ","); 

                

builder.append(annotationsMap.get(mainTweet.getIdStr()).getCertainty() + ","); 

                builder.append(reactions.size()); 

                builder.append('\n'); 

 

                

logger.info("#################################################"); 

                logger.info("DistanceFromPositivity equals: " + 

distanceFromPosititvity); 

                logger.info("Main Tweet Certainty: " + 

annotationsMap.get(mainTweet.getIdStr()).getCertainty()); 

                

logger.info("#################################################"); 

 

            } 

 

            logger.info("#################################################"); 

            logger.info("############### - Final Report - ################"); 

            logger.info(builder.toString()); 

            logger.info("############### - Final Report End - 

###############"); 

            logger.info("#################################################"); 

            pw.write(builder.toString()); 

            pw.close(); 

 

 

        } catch (FileNotFoundException e) { 

            e.printStackTrace(); 

        } catch (IOException e) { 

            e.printStackTrace(); 

        } finally { 

 

        } 

 

 

    } 

 

    public double getPopularity(Tweet tweet) { 

        return (double) (tweet.getUser().getFollowersCount() - 

tweet.getUser().getFriendsCount()) 

                / (double) (tweet.getUser().getFollowersCount() + 

tweet.getUser().getFriendsCount()); 

    } 

 

    public Tweet getTweet(File tweetJSONFile) { 

        ObjectMapper objectMapper = new ObjectMapper(); 

        Tweet tweet = null; 

        try { 

            FileInputStream fileInputStream = new 

FileInputStream(tweetJSONFile); 

            BufferedReader bufferedReader = new BufferedReader(new 

InputStreamReader(fileInputStream)); 

            String tweetFileString = ""; 

            String line = null; 

            while ((line = bufferedReader.readLine()) != null) { 

 

                tweetFileString = tweetFileString.concat(line); 

            } 

            tweet = objectMapper.readValue(tweetFileString, Tweet.class); 

            logger.debug("Finished importing tweet file"); 

            logger.debug("Tweet JSON file " + tweet.toString()); 

 

 

        } catch (FileNotFoundException e) { 

            e.printStackTrace(); 



118 

 

        } catch (IOException e) { 

            e.printStackTrace(); 

        } 

        logger.debug("Number of Favs: " + tweet.getFavoriteCount()); 

        logger.debug("Number of Retweets:" + tweet.getRetweetCount()); 

        return tweet; 

    } 

 

    public List<Tweet> getReactions(Annotations annotations, String 

datasetPath) { 

        String reactionPath = datasetPath + "threads/en/" + 

annotations.getEvent() + "/" + annotations.getThreadid() + "/"; 

        File reactionsFolder = new File(reactionPath + REACTION); 

        List<Tweet> reactions = new ArrayList<Tweet>(); 

        for (File tweetReaction : reactionsFolder.listFiles()) { 

            logger.debug("List of Reaction JSON Tweet files"); 

            logger.debug(reactionsFolder.list()); 

            reactions.add(getTweet(tweetReaction)); 

        } 

        logger.debug("Number of Reactions: " + reactions.size()); 

        return reactions; 

    } 

 

    public Map<Pair<String, String>, ReplyAnnotation> getAllAnnotations(String 

datasetPath) { 

        File annotationsFile = new File(datasetPath + "annotations/en-scheme-

annotations.json"); 

        ObjectMapper objectMapper = new ObjectMapper(); 

        Map<Pair<String, String>, ReplyAnnotation> annotationsMap = null; 

        try { 

            FileInputStream fileInputStream = new 

FileInputStream(annotationsFile); 

            BufferedReader bufferedReader = new BufferedReader(new 

InputStreamReader(fileInputStream)); 

 

            String line = null; 

            annotationsMap = new HashMap<>(); 

            while ((line = bufferedReader.readLine()) != null) { 

                if (line.startsWith("#")) continue; 

                annotationsMap.put(Pair.of((objectMapper.readValue(line, 

ReplyAnnotation.class)).getThreadid(), 

                        (objectMapper.readValue(line, 

Annotations.class)).getTweetid()), (objectMapper.readValue(line, 

ReplyAnnotation.class))); 

            } 

            logger.debug("Finished importing all annotations file"); 

            logger.debug("number of annotations imported: " + 

annotationsMap.size()); 

        } catch (FileNotFoundException e) { 

            logger.fatal("an Error has occured " + e.getMessage()); 

            e.printStackTrace(); 

        } catch (IOException e) { 

            e.printStackTrace(); 

            logger.fatal("an Error has occured " + e.getMessage()); 

 

        } finally { 

 

        } 

        return annotationsMap; 

    } 

} 
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package tr.edu.yildiz.phemeProcessing.pojos; 

 

import java.io.Serializable; 

import java.util.HashMap; 

import java.util.Map; 

import com.fasterxml.jackson.annotation.JsonAnyGetter; 

import com.fasterxml.jackson.annotation.JsonAnySetter; 

import com.fasterxml.jackson.annotation.JsonIgnore; 

import com.fasterxml.jackson.annotation.JsonInclude; 

import com.fasterxml.jackson.annotation.JsonProperty; 

import com.fasterxml.jackson.annotation.JsonPropertyOrder; 

import org.apache.commons.lang.builder.EqualsBuilder; 

import org.apache.commons.lang.builder.HashCodeBuilder; 

import org.apache.commons.lang.builder.ToStringBuilder; 

 

@JsonInclude(JsonInclude.Include.NON_NULL) 

@JsonPropertyOrder({ 

    "contributors", 

    "truncated", 

    "text", 

    "in_reply_to_status_id", 

    "id", 

    "favorite_count", 

    "source", 

    "retweeted", 

    "coordinates", 

    "entities", 

    "in_reply_to_screen_name", 

    "id_str", 

    "retweet_count", 

    "in_reply_to_user_id", 

    "favorited", 

    "user", 

    "geo", 

    "in_reply_to_user_id_str", 

    "possibly_sensitive", 

    "lang", 

    "created_at", 

    "in_reply_to_status_id_str", 

    "place" 

}) 

public class Tweet implements Serializable 

{ 

 

    @JsonProperty("contributors") 

    private Object contributors; 

    @JsonProperty("truncated") 

    private Boolean truncated; 

    @JsonProperty("text") 

    private String text; 

    @JsonProperty("in_reply_to_status_id") 

    private Object inReplyToStatusId; 

    @JsonProperty("id") 

    private Long id; 

    @JsonProperty("favorite_count") 

    private Long favoriteCount; 

    @JsonProperty("source") 

    private String source; 

    @JsonProperty("retweeted") 

    private Boolean retweeted; 

    @JsonProperty("coordinates") 

    private Object coordinates; 

    @JsonProperty("entities") 

    private Entities entities; 

    @JsonProperty("in_reply_to_screen_name") 

    private Object inReplyToScreenName; 

    @JsonProperty("id_str") 
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    private String idStr; 

    @JsonProperty("retweet_count") 

    private Long retweetCount; 

    @JsonProperty("in_reply_to_user_id") 

    private Object inReplyToUserId; 

    @JsonProperty("favorited") 

    private Boolean favorited; 

    @JsonProperty("user") 

    private User user; 

    @JsonProperty("geo") 

    private Object geo; 

    @JsonProperty("in_reply_to_user_id_str") 

    private Object inReplyToUserIdStr; 

    @JsonProperty("possibly_sensitive") 

    private Boolean possiblySensitive; 

    @JsonProperty("lang") 

    private String lang; 

    @JsonProperty("created_at") 

    private String createdAt; 

    @JsonProperty("in_reply_to_status_id_str") 

    private Object inReplyToStatusIdStr; 

    @JsonProperty("place") 

    private Object place; 

    @JsonIgnore 

    private Map<String, Object> additionalProperties = new HashMap<String, 

Object>(); 

    private final static long serialVersionUID = 3942418562524754126L; 

 

    /** 

     * No args constructor for use in serialization 

     *  

     */ 

    public Tweet() { 

    } 

 

    /** 

     *  

     * @param contributors 

     * @param text 

     * @param geo 

     * @param inReplyToUserIdStr 

     * @param retweeted 

     * @param retweetCount 

     * @param inReplyToScreenName 

     * @param truncated 

     * @param lang 

     * @param entities 

     * @param possiblySensitive 

     * @param idStr 

     * @param inReplyToStatusId 

     * @param id 

     * @param favoriteCount 

     * @param source 

     * @param inReplyToStatusIdStr 

     * @param favorited 

     * @param createdAt 

     * @param inReplyToUserId 

     * @param place 

     * @param user 

     * @param coordinates 

     */ 

    public Tweet(Object contributors, Boolean truncated, String text, Object 

inReplyToStatusId, Long id, Long favoriteCount, String source, Boolean 

retweeted, Object coordinates, Entities entities, Object inReplyToScreenName, 

String idStr, Long retweetCount, Object inReplyToUserId, Boolean favorited, 

User user, Object geo, Object inReplyToUserIdStr, Boolean possiblySensitive, 

String lang, String createdAt, Object inReplyToStatusIdStr, Object place) { 

        super(); 
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        this.contributors = contributors; 

        this.truncated = truncated; 

        this.text = text; 

        this.inReplyToStatusId = inReplyToStatusId; 

        this.id = id; 

        this.favoriteCount = favoriteCount; 

        this.source = source; 

        this.retweeted = retweeted; 

        this.coordinates = coordinates; 

        this.entities = entities; 

        this.inReplyToScreenName = inReplyToScreenName; 

        this.idStr = idStr; 

        this.retweetCount = retweetCount; 

        this.inReplyToUserId = inReplyToUserId; 

        this.favorited = favorited; 

        this.user = user; 

        this.geo = geo; 

        this.inReplyToUserIdStr = inReplyToUserIdStr; 

        this.possiblySensitive = possiblySensitive; 

        this.lang = lang; 

        this.createdAt = createdAt; 

        this.inReplyToStatusIdStr = inReplyToStatusIdStr; 

        this.place = place; 

    } 

 

    @JsonProperty("contributors") 

    public Object getContributors() { 

        return contributors; 

    } 

 

    @JsonProperty("contributors") 

    public void setContributors(Object contributors) { 

        this.contributors = contributors; 

    } 

 

    public Tweet withContributors(Object contributors) { 

        this.contributors = contributors; 

        return this; 

    } 

 

    @JsonProperty("truncated") 

    public Boolean getTruncated() { 

        return truncated; 

    } 

 

    @JsonProperty("truncated") 

    public void setTruncated(Boolean truncated) { 

        this.truncated = truncated; 

    } 

 

    public Tweet withTruncated(Boolean truncated) { 

        this.truncated = truncated; 

        return this; 

    } 

 

    @JsonProperty("text") 

    public String getText() { 

        return text; 

    } 

 

    @JsonProperty("text") 

    public void setText(String text) { 

        this.text = text; 

    } 

 

    public Tweet withText(String text) { 

        this.text = text; 

        return this; 
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    } 

 

    @JsonProperty("in_reply_to_status_id") 

    public Object getInReplyToStatusId() { 

        return inReplyToStatusId; 

    } 

 

    @JsonProperty("in_reply_to_status_id") 

    public void setInReplyToStatusId(Object inReplyToStatusId) { 

        this.inReplyToStatusId = inReplyToStatusId; 

    } 

 

    public Tweet withInReplyToStatusId(Object inReplyToStatusId) { 

        this.inReplyToStatusId = inReplyToStatusId; 

        return this; 

    } 

 

    @JsonProperty("id") 

    public Long getId() { 

        return id; 

    } 

 

    @JsonProperty("id") 

    public void setId(Long id) { 

        this.id = id; 

    } 

 

    public Tweet withId(Long id) { 

        this.id = id; 

        return this; 

    } 

 

    @JsonProperty("favorite_count") 

    public Long getFavoriteCount() { 

        return favoriteCount; 

    } 

 

    @JsonProperty("favorite_count") 

    public void setFavoriteCount(Long favoriteCount) { 

        this.favoriteCount = favoriteCount; 

    } 

 

    public Tweet withFavoriteCount(Long favoriteCount) { 

        this.favoriteCount = favoriteCount; 

        return this; 

    } 

 

    @JsonProperty("source") 

    public String getSource() { 

        return source; 

    } 

 

    @JsonProperty("source") 

    public void setSource(String source) { 

        this.source = source; 

    } 

 

    public Tweet withSource(String source) { 

        this.source = source; 

        return this; 

    } 

 

    @JsonProperty("retweeted") 

    public Boolean getRetweeted() { 

        return retweeted; 

    } 

 

    @JsonProperty("retweeted") 
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    public void setRetweeted(Boolean retweeted) { 

        this.retweeted = retweeted; 

    } 

 

    public Tweet withRetweeted(Boolean retweeted) { 

        this.retweeted = retweeted; 

        return this; 

    } 

 

    @JsonProperty("coordinates") 

    public Object getCoordinates() { 

        return coordinates; 

    } 

 

    @JsonProperty("coordinates") 

    public void setCoordinates(Object coordinates) { 

        this.coordinates = coordinates; 

    } 

 

    public Tweet withCoordinates(Object coordinates) { 

        this.coordinates = coordinates; 

        return this; 

    } 

 

    @JsonProperty("entities") 

    public Entities getEntities() { 

        return entities; 

    } 

 

    @JsonProperty("entities") 

    public void setEntities(Entities entities) { 

        this.entities = entities; 

    } 

 

    public Tweet withEntities(Entities entities) { 

        this.entities = entities; 

        return this; 

    } 

 

    @JsonProperty("in_reply_to_screen_name") 

    public Object getInReplyToScreenName() { 

        return inReplyToScreenName; 

    } 

 

    @JsonProperty("in_reply_to_screen_name") 

    public void setInReplyToScreenName(Object inReplyToScreenName) { 

        this.inReplyToScreenName = inReplyToScreenName; 

    } 

 

    public Tweet withInReplyToScreenName(Object inReplyToScreenName) { 

        this.inReplyToScreenName = inReplyToScreenName; 

        return this; 

    } 

 

    @JsonProperty("id_str") 

    public String getIdStr() { 

        return idStr; 

    } 

 

    @JsonProperty("id_str") 

    public void setIdStr(String idStr) { 

        this.idStr = idStr; 

    } 

 

    public Tweet withIdStr(String idStr) { 

        this.idStr = idStr; 

        return this; 

    } 
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    @JsonProperty("retweet_count") 

    public Long getRetweetCount() { 

        return retweetCount; 

    } 

 

    @JsonProperty("retweet_count") 

    public void setRetweetCount(Long retweetCount) { 

        this.retweetCount = retweetCount; 

    } 

 

    public Tweet withRetweetCount(Long retweetCount) { 

        this.retweetCount = retweetCount; 

        return this; 

    } 

 

    @JsonProperty("in_reply_to_user_id") 

    public Object getInReplyToUserId() { 

        return inReplyToUserId; 

    } 

 

    @JsonProperty("in_reply_to_user_id") 

    public void setInReplyToUserId(Object inReplyToUserId) { 

        this.inReplyToUserId = inReplyToUserId; 

    } 

 

    public Tweet withInReplyToUserId(Object inReplyToUserId) { 

        this.inReplyToUserId = inReplyToUserId; 

        return this; 

    } 

 

    @JsonProperty("favorited") 

    public Boolean getFavorited() { 

        return favorited; 

    } 

 

    @JsonProperty("favorited") 

    public void setFavorited(Boolean favorited) { 

        this.favorited = favorited; 

    } 

 

    public Tweet withFavorited(Boolean favorited) { 

        this.favorited = favorited; 

        return this; 

    } 

 

    @JsonProperty("user") 

    public User getUser() { 

        return user; 

    } 

 

    @JsonProperty("user") 

    public void setUser(User user) { 

        this.user = user; 

    } 

 

    public Tweet withUser(User user) { 

        this.user = user; 

        return this; 

    } 

 

    @JsonProperty("geo") 

    public Object getGeo() { 

        return geo; 

    } 

 

    @JsonProperty("geo") 

    public void setGeo(Object geo) { 
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        this.geo = geo; 

    } 

 

    public Tweet withGeo(Object geo) { 

        this.geo = geo; 

        return this; 

    } 

 

    @JsonProperty("in_reply_to_user_id_str") 

    public Object getInReplyToUserIdStr() { 

        return inReplyToUserIdStr; 

    } 

 

    @JsonProperty("in_reply_to_user_id_str") 

    public void setInReplyToUserIdStr(Object inReplyToUserIdStr) { 

        this.inReplyToUserIdStr = inReplyToUserIdStr; 

    } 

 

    public Tweet withInReplyToUserIdStr(Object inReplyToUserIdStr) { 

        this.inReplyToUserIdStr = inReplyToUserIdStr; 

        return this; 

    } 

 

    @JsonProperty("possibly_sensitive") 

    public Boolean getPossiblySensitive() { 

        return possiblySensitive; 

    } 

 

    @JsonProperty("possibly_sensitive") 

    public void setPossiblySensitive(Boolean possiblySensitive) { 

        this.possiblySensitive = possiblySensitive; 

    } 

 

    public Tweet withPossiblySensitive(Boolean possiblySensitive) { 

        this.possiblySensitive = possiblySensitive; 

        return this; 

    } 

 

    @JsonProperty("lang") 

    public String getLang() { 

        return lang; 

    } 

 

    @JsonProperty("lang") 

    public void setLang(String lang) { 

        this.lang = lang; 

    } 

 

    public Tweet withLang(String lang) { 

        this.lang = lang; 

        return this; 

    } 

 

    @JsonProperty("created_at") 

    public String getCreatedAt() { 

        return createdAt; 

    } 

 

    @JsonProperty("created_at") 

    public void setCreatedAt(String createdAt) { 

        this.createdAt = createdAt; 

    } 

 

    public Tweet withCreatedAt(String createdAt) { 

        this.createdAt = createdAt; 

        return this; 

    } 
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    @JsonProperty("in_reply_to_status_id_str") 

    public Object getInReplyToStatusIdStr() { 

        return inReplyToStatusIdStr; 

    } 

 

    @JsonProperty("in_reply_to_status_id_str") 

    public void setInReplyToStatusIdStr(Object inReplyToStatusIdStr) { 

        this.inReplyToStatusIdStr = inReplyToStatusIdStr; 

    } 

 

    public Tweet withInReplyToStatusIdStr(Object inReplyToStatusIdStr) { 

        this.inReplyToStatusIdStr = inReplyToStatusIdStr; 

        return this; 

    } 

 

    @JsonProperty("place") 

    public Object getPlace() { 

        return place; 

    } 

 

    @JsonProperty("place") 

    public void setPlace(Object place) { 

        this.place = place; 

    } 

 

    public Tweet withPlace(Object place) { 

        this.place = place; 

        return this; 

    } 

 

    @JsonAnyGetter 

    public Map<String, Object> getAdditionalProperties() { 

        return this.additionalProperties; 

    } 

 

    @JsonAnySetter 

    public void setAdditionalProperty(String name, Object value) { 

        this.additionalProperties.put(name, value); 

    } 

 

    public Tweet withAdditionalProperty(String name, Object value) { 

        this.additionalProperties.put(name, value); 

        return this; 

    } 

 

    @Override 

    public String toString() { 

        return new ToStringBuilder(this).append("contributors", 

contributors).append("truncated", truncated).append("text", 

text).append("inReplyToStatusId", inReplyToStatusId).append("id", 

id).append("favoriteCount", favoriteCount).append("source", 

source).append("retweeted", retweeted).append("coordinates", 

coordinates).append("entities", entities).append("inReplyToScreenName", 

inReplyToScreenName).append("idStr", idStr).append("retweetCount", 

retweetCount).append("inReplyToUserId", inReplyToUserId).append("favorited", 

favorited).append("user", user).append("geo", 

geo).append("inReplyToUserIdStr", 

inReplyToUserIdStr).append("possiblySensitive", 

possiblySensitive).append("lang", lang).append("createdAt", 

createdAt).append("inReplyToStatusIdStr", 

inReplyToStatusIdStr).append("place", place).append("additionalProperties", 

additionalProperties).toString(); 

    } 

 

    @Override 

    public int hashCode() { 

        return new 

HashCodeBuilder().append(inReplyToUserIdStr).append(retweeted).append(retweetC
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ount).append(truncated).append(lang).append(id).append(inReplyToStatusIdStr).a

ppend(createdAt).append(place).append(coordinates).append(text).append(contrib

utors).append(geo).append(inReplyToScreenName).append(entities).append(possibl

ySensitive).append(idStr).append(inReplyToStatusId).append(source).append(favo

riteCount).append(favorited).append(additionalProperties).append(inReplyToUser

Id).append(user).toHashCode(); 

    } 

 

    @Override 

    public boolean equals(Object other) { 

        if (other == this) { 

            return true; 

        } 

        if ((other instanceof Tweet) == false) { 

            return false; 

        } 

        Tweet rhs = ((Tweet) other); 

        return new EqualsBuilder().append(inReplyToUserIdStr, 

rhs.inReplyToUserIdStr).append(retweeted, rhs.retweeted).append(retweetCount, 

rhs.retweetCount).append(truncated, rhs.truncated).append(lang, 

rhs.lang).append(id, rhs.id).append(inReplyToStatusIdStr, 

rhs.inReplyToStatusIdStr).append(createdAt, rhs.createdAt).append(place, 

rhs.place).append(coordinates, rhs.coordinates).append(text, 

rhs.text).append(contributors, rhs.contributors).append(geo, 

rhs.geo).append(inReplyToScreenName, rhs.inReplyToScreenName).append(entities, 

rhs.entities).append(possiblySensitive, rhs.possiblySensitive).append(idStr, 

rhs.idStr).append(inReplyToStatusId, rhs.inReplyToStatusId).append(source, 

rhs.source).append(favoriteCount, rhs.favoriteCount).append(favorited, 

rhs.favorited).append(additionalProperties, 

rhs.additionalProperties).append(inReplyToUserId, 

rhs.inReplyToUserId).append(user, rhs.user).isEquals(); 

    } 

 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

package tr.edu.yildiz.phemeProcessing.pojos; 

 

import com.fasterxml.jackson.annotation.*; 

import org.apache.commons.lang.builder.EqualsBuilder; 

import org.apache.commons.lang.builder.HashCodeBuilder; 

import org.apache.commons.lang.builder.ToStringBuilder; 

 

import java.io.Serializable; 
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import java.util.HashMap; 

import java.util.Map; 

 

@JsonInclude(JsonInclude.Include.NON_NULL) 

@JsonPropertyOrder({ 

        "event", 

        "threadid", 

        "tweetid", 

        "support", 

        "evidentiality", 

        "certainty" 

}) 

public class Annotations  implements Serializable 

{ 

 

    @JsonProperty("event") 

    private String event; 

    @JsonProperty("threadid") 

    private String threadid; 

    @JsonProperty("tweetid") 

    private String tweetid; 

    @JsonProperty("support") 

    private String support; 

    @JsonProperty("evidentiality") 

    private String evidentiality; 

    @JsonProperty("certainty") 

    private String certainty; 

    @JsonIgnore 

    private Map<String, Object> additionalProperties = new HashMap<String, 

Object>(); 

    private final static long serialVersionUID = -1946548778095666557L; 

 

    /** 

     * No args constructor for use in serialization 

     * 

     */ 

    public Annotations() { 

    } 

 

    /** 

     * 

     * @param support 

     * @param certainty 

     * @param evidentiality 

     * @param event 

     * @param tweetid 

     * @param threadid 

     */ 

    public Annotations(String event, String threadid, String tweetid, String 

support, String evidentiality, String certainty) { 

        super(); 

        this.event = event; 

        this.threadid = threadid; 

        this.tweetid = tweetid; 

        this.support = support; 

        this.evidentiality = evidentiality; 

        this.certainty = certainty; 

    } 

 

    @JsonProperty("event") 

    public String getEvent() { 

        return event; 

    } 

 

    @JsonProperty("event") 

    public void setEvent(String event) { 

        this.event = event; 

    } 
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    public Annotations withEvent(String event) { 

        this.event = event; 

        return this; 

    } 

 

    @JsonProperty("threadid") 

    public String getThreadid() { 

        return threadid; 

    } 

 

    @JsonProperty("threadid") 

    public void setThreadid(String threadid) { 

        this.threadid = threadid; 

    } 

 

    public Annotations withThreadid(String threadid) { 

        this.threadid = threadid; 

        return this; 

    } 

 

    @JsonProperty("tweetid") 

    public String getTweetid() { 

        return tweetid; 

    } 

 

    @JsonProperty("tweetid") 

    public void setTweetid(String tweetid) { 

        this.tweetid = tweetid; 

    } 

 

    public Annotations withTweetid(String tweetid) { 

        this.tweetid = tweetid; 

        return this; 

    } 

 

    @JsonProperty("support") 

    public String getSupport() { 

        return support; 

    } 

 

    @JsonProperty("support") 

    public void setSupport(String support) { 

        this.support = support; 

    } 

 

    public Annotations withSupport(String support) { 

        this.support = support; 

        return this; 

    } 

 

    @JsonProperty("evidentiality") 

    public String getEvidentiality() { 

        return evidentiality; 

    } 

    @JsonProperty("evidentiality") 

    public void setEvidentiality(String evidentiality) { 

        this.evidentiality = evidentiality; 

    } 

 

    public Annotations withEvidentiality(String evidentiality) { 

        this.evidentiality = evidentiality; 

        return this; 

    } 

 

    @JsonProperty("certainty") 

    public String getCertainty() { 

        return certainty; 
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    } 

 

    @JsonProperty("certainty") 

    public void setCertainty(String certainty) { 

        this.certainty = certainty; 

    } 

 

    public Annotations withCertainty(String certainty) { 

        this.certainty = certainty; 

        return this; 

    } 

 

    @JsonAnyGetter 

    public Map<String, Object> getAdditionalProperties() { 

        return this.additionalProperties; 

    } 

 

    @JsonAnySetter 

    public void setAdditionalProperty(String name, Object value) { 

        this.additionalProperties.put(name, value); 

    } 

 

    public Annotations withAdditionalProperty(String name, Object value) { 

        this.additionalProperties.put(name, value); 

        return this; 

    } 

 

    @Override 

    public String toString() { 

        return new ToStringBuilder(this).append("event", 

event).append("threadid", threadid).append("tweetid", 

tweetid).append("support", support).append("evidentiality", 

evidentiality).append("certainty", certainty).append("additionalProperties", 

additionalProperties).toString(); 

    } 

    @Override 

    public int hashCode() { 

        return new 

HashCodeBuilder().append(support).append(certainty).append(evidentiality).appe

nd(additionalProperties).append(event).append(tweetid).append(threadid).toHash

Code(); 

    } 

 

    @Override 

    public boolean equals(Object other) { 

        if (other == this) { 

            return true; 

        } 

        if ((other instanceof Annotations) == false) { 

            return false; 

        } 

        Annotations rhs = ((Annotations) other); 

        return new EqualsBuilder().append(support, 

rhs.support).append(certainty, rhs.certainty).append(evidentiality, 

rhs.evidentiality).append(additionalProperties, 

rhs.additionalProperties).append(event, rhs.event).append(tweetid, 

rhs.tweetid).append(threadid, rhs.threadid).isEquals(); 

    } 

 

} 

package tr.edu.yildiz.phemeProcessing.pojos; 

 

import com.fasterxml.jackson.annotation.*; 

import org.apache.commons.lang.builder.EqualsBuilder; 

import org.apache.commons.lang.builder.HashCodeBuilder; 

import org.apache.commons.lang.builder.ToStringBuilder; 

 

import java.io.Serializable; 
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import java.util.HashMap; 

import java.util.Map; 

 

@JsonInclude(JsonInclude.Include.NON_NULL) 

@JsonPropertyOrder({ 

        "event", 

        "threadid", 

        "tweetid", 

        "responsetype-vs-source", 

        "certainty", 

        "evidentiality" 

}) 

public class ReplyAnnotation implements Serializable { 

 

    private final static long serialVersionUID = 3870105215280666259L; 

    @JsonProperty("event") 

    private String event; 

    @JsonProperty("threadid") 

    private String threadid; 

    @JsonProperty("tweetid") 

    private String tweetid; 

    @JsonProperty("responsetype-vs-source") 

    private String responsetypeVsSource; 

    @JsonProperty("certainty") 

    private String certainty; 

    @JsonProperty("evidentiality") 

    private String evidentiality; 

    @JsonIgnore 

    private Map<String, Object> additionalProperties = new HashMap<String, 

Object>(); 

 

    /** 

     * No args constructor for use in serialization 

     */ 

    public ReplyAnnotation() { 

    } 

 

    /** 

     * @param evidentiality 

     * @param certainty 

     * @param responsetypeVsSource 

     * @param event 

     * @param tweetid 

     * @param threadid 

     */ 

    public ReplyAnnotation(String event, String threadid, String tweetid, 

String responsetypeVsSource, String certainty, String evidentiality) { 

        super(); 

        this.event = event; 

        this.threadid = threadid; 

        this.tweetid = tweetid; 

        this.responsetypeVsSource = responsetypeVsSource; 

        this.certainty = certainty; 

        this.evidentiality = evidentiality; 

    } 

 

    @JsonProperty("event") 

    public String getEvent() { 

        return event; 

    } 

 

    @JsonProperty("event") 

    public void setEvent(String event) { 

        this.event = event; 

    } 

 

    public ReplyAnnotation withEvent(String event) { 

        this.event = event; 
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        return this; 

    } 

 

    @JsonProperty("threadid") 

    public String getThreadid() { 

        return threadid; 

    } 

 

    @JsonProperty("threadid") 

    public void setThreadid(String threadid) { 

        this.threadid = threadid; 

    } 

 

    public ReplyAnnotation withThreadid(String threadid) { 

        this.threadid = threadid; 

        return this; 

    } 

 

    @JsonProperty("tweetid") 

    public String getTweetid() { 

        return tweetid; 

    } 

 

    @JsonProperty("tweetid") 

    public void setTweetid(String tweetid) { 

        this.tweetid = tweetid; 

    } 

 

    public ReplyAnnotation withTweetid(String tweetid) { 

        this.tweetid = tweetid; 

        return this; 

    } 

 

    @JsonProperty("responsetype-vs-source") 

    public String getResponsetypeVsSource() { 

        return responsetypeVsSource; 

    } 

 

    @JsonProperty("responsetype-vs-source") 

    public void setResponsetypeVsSource(String responsetypeVsSource) { 

        this.responsetypeVsSource = responsetypeVsSource; 

    } 

 

    public ReplyAnnotation withResponsetypeVsSource(String 

responsetypeVsSource) { 

        this.responsetypeVsSource = responsetypeVsSource; 

        return this; 

    } 

 

    @JsonProperty("certainty") 

    public String getCertainty() { 

        return certainty; 

    } 

 

    @JsonProperty("certainty") 

    public void setCertainty(String certainty) { 

        this.certainty = certainty; 

    } 

 

    public ReplyAnnotation withCertainty(String certainty) { 

        this.certainty = certainty; 

        return this; 

    } 

 

    @JsonProperty("evidentiality") 

    public String getEvidentiality() { 

        return evidentiality; 

    } 
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    @JsonProperty("evidentiality") 

    public void setEvidentiality(String evidentiality) { 

        this.evidentiality = evidentiality; 

    } 

 

    public ReplyAnnotation withEvidentiality(String evidentiality) { 

        this.evidentiality = evidentiality; 

        return this; 

    } 

 

    @JsonAnyGetter 

    public Map<String, Object> getAdditionalProperties() { 

        return this.additionalProperties; 

    } 

 

    @JsonAnySetter 

    public void setAdditionalProperty(String name, Object value) { 

        this.additionalProperties.put(name, value); 

    } 

 

    public ReplyAnnotation withAdditionalProperty(String name, Object value) { 

        this.additionalProperties.put(name, value); 

        return this; 

    } 

 

    @Override 

    public String toString() { 

        return new ToStringBuilder(this).append("event", 

event).append("threadid", threadid).append("tweetid", 

tweetid).append("responsetypeVsSource", 

responsetypeVsSource).append("certainty", certainty).append("evidentiality", 

evidentiality).append("additionalProperties", 

additionalProperties).toString(); 

    } 

 

    @Override 

    public int hashCode() { 

        return new 

HashCodeBuilder().append(evidentiality).append(certainty).append(responsetypeV

sSource).append(additionalProperties).append(event).append(tweetid).append(thr

eadid).toHashCode(); 

    } 

 

    @Override 

    public boolean equals(Object other) { 

        if (other == this) { 

            return true; 

        } 

        if ((other instanceof ReplyAnnotation) == false) { 

            return false; 

        } 

        ReplyAnnotation rhs = ((ReplyAnnotation) other); 

        return new EqualsBuilder().append(evidentiality, 

rhs.evidentiality).append(certainty, 

rhs.certainty).append(responsetypeVsSource, 

rhs.responsetypeVsSource).append(additionalProperties, 

rhs.additionalProperties).append(event, rhs.event).append(tweetid, 

rhs.tweetid).append(threadid, rhs.threadid).isEquals(); 

    } 

 

} 
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PROV EVALUATE 

 

 

package edu.yildiz.pronaliz; 

 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.nio.file.Files; 

import java.nio.file.Paths; 

import java.nio.file.StandardOpenOption; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.List; 

 

import org.apache.commons.collections15.list.SetUniqueList; 

import org.dom4j.Document; 

import org.dom4j.DocumentException; 

import org.dom4j.Element; 

import org.dom4j.Node; 

import org.dom4j.io.SAXReader; 

 

public class DistanceCalculator { 

 

    public static void main(String[] args) throws FileNotFoundException { 

 

        File folder = new File("/home/jihad/Desktop/Results/"); 

        File[] listOfFiles = folder.listFiles(); 

        PrintWriter pw = new PrintWriter(new 

File("/home/jihad/Desktop/Results/distances.csv")); 

        StringBuilder sb = new StringBuilder(); 

        sb.append("FileName"); 

        sb.append(','); 

        sb.append("Distance"); 

        sb.append(','); 

        sb.append("Total Number of Tweeps"); 

        sb.append(','); 

        sb.append("Number of Tweeps with positive Feedback"); 

        sb.append(','); 

        sb.append("Number of Tweeps with Ngeative Feedback"); 

        sb.append('\n'); 

        for (File file : listOfFiles) { 

            if (file.isFile()) { 

                System.out.println(file.getAbsolutePath()); 

                String[] results = distanceCalculator(file.getAbsolutePath()); 

 

 

                sb.append(file.getName()); 

                sb.append(','); 

                sb.append(results[0]); 

                sb.append(','); 

                sb.append(results[1]); 

                sb.append(','); 

                sb.append(results[2]); 

                sb.append(','); 

                sb.append(results[3]); 

                sb.append('\n'); 

 

 

                System.out.println("done!"); 

            } 

        } 

        pw.write(sb.toString()); 

        pw.close(); 
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    } 

 

    public static String[] distanceCalculator(String path) { 

        double distance = 0; 

        String[] resutls = new String[4]; 

        try { 

            File inputFile = new File(path); 

            SAXReader reader = new SAXReader(); 

            Document document = reader.read(inputFile); 

            List<Tuple> tupleList = new ArrayList<>(); 

            List<Node> nodes = 

document.selectNodes("/document/prov:wasAssociatedWith"); 

            System.out.println("----------------------------"); 

            HashMap<String, Agent> ahm = new HashMap<String, Agent>(); 

            ArrayList<String> positive = new ArrayList<String>(); 

            ArrayList<String> negative = new ArrayList<String>(); 

            int i = 1; 

            for (Node node : nodes) { 

                String activityID = node.valueOf("@prov:id"); 

 

 

 

                if (activityID.length() > 45) { 

                    if (i == 3) { 

                        i = 1; 

                    } else { 

                        i++; 

                    } 

                    String[] contents = activityID.split("(?=activity)"); 

                    Tuple t = new Tuple(); 

                    t.setActivityID(contents[i]); 

                    

t.setAgentID(node.selectSingleNode("prov:agent").valueOf("@prov:ref")); 

                    tupleList.add(t); 

                    String[] activitySplits = t.getActivityID().split("__"); 

                    String activityType = activitySplits[4].substring(0, 1); 

                    double cred = 

AgentMetricsRetriver.getAgentMetrics(t.getAgentID(), path).getCredibility(); 

                    double avail = 

AgentMetricsRetriver.getAgentMetrics(t.getAgentID(), path).getAvailability(); 

                    double veri = 

AgentMetricsRetriver.getAgentMetrics(t.getAgentID(), path).getVerifiability(); 

 

                    Agent tweep = new Agent(); 

                    tweep.setId(t.getAgentID()); 

                    tweep.setCredibility(cred); 

                    tweep.setAvailability(avail); 

                    tweep.setVerifiability(veri); 

                    ahm.put(t.getAgentID(), tweep); 

                    if (activityType.equals("1")) { 

                        if (!positive.contains(tweep.getId())) 

                            positive.add(tweep.getId()); 

                        if (negative.contains(tweep.getId())) { 

                            negative.remove(tweep.getId()); 

                        } 

                    } else if (activityType.equals("2") || 

activityType.equals("3")) { 

                        if (!positive.contains(tweep.getId())) { 

                            if (!negative.contains(tweep.getId())) 

                                negative.add(tweep.getId()); 

                        } 

                    } 

                } 

 

            } 

 

            System.out.println("==============="); 

            System.out.println("List of Tweeps"); 
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            resutls[1] = ahm.size() + ""; 

            for (String temp : ahm.keySet()) { 

                System.out.print(temp + "  "); 

                System.out.println(ahm.get(temp).getCredibility()); 

            } 

            System.out.println("==============="); 

            System.out.println("List of Tweeps with Positive Feedback"); 

            for (String temp : positive) { 

                System.out.println(temp); 

            } 

            resutls[2] = positive.size() + ""; 

            System.out.println("==============="); 

            System.out.println("List of Tweeps with Negative Feedback"); 

            for (String temp : negative) { 

                System.out.println(temp); 

            } 

            System.out.println("==============="); 

            System.out.println(); 

            System.out.println(); 

            System.out.println(); 

            System.out.println(); 

            System.out.println("Calculating Distance from Positivity"); 

            double sumOfCred = 0; 

            for (Agent temp : ahm.values()) { 

                sumOfCred = sumOfCred + temp.getCredibility(); 

            } 

            System.out.println("Summation of tweeps credibility: " + 

sumOfCred); 

            for (String temp : negative) { 

                distance = distance + (ahm.get(temp).getCredibility() / 

sumOfCred); 

            } 

            resutls[3] = negative.size() + ""; 

            System.out.println("Distance from positivity= " + (1 - distance)); 

            System.out.println(); 

        } catch (DocumentException e) { 

            e.printStackTrace(); 

        } 

        resutls[0] = distance + ""; 

 

        return resutls; 

 

 

    } 

 

} 

 

 

package edu.yildiz.pronaliz; 

interface Item { 

    double getWeight(); 

    String getOperation(); 

} 

public class Operation implements Item{ 

 

   public double weight =0; 

   public String operation =""; 

   public String getOperation() { 

      return operation; 

   } 

   public void setOperation(String operation) { 

      this.operation = operation; 

   } 

   public void setWeight(double weight) { 

      this.weight = weight; 

   } 
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   @Override 

   public double getWeight() { 

      return weight; 

   } 

   public Operation(double weight, String operation) { 

      super(); 

      this.weight = weight; 

      this.operation = operation; 

   } 

 

} 

 

 

 

 

package edu.yildiz.pronaliz; 

import java.util.ArrayList; 

import java.util.List; 

 

 

 

class RandomItemChooser { 

 

   private static ArrayList<Item> items; 

   public static void main (String []args) 

   { 

      RandomItemChooser ric = new RandomItemChooser(); 

      items = new ArrayList<Item>(); 

      items.add(new Operation(5,"Like")); 

      items.add(new Operation(0.2,"Retweet")); 

      items.add(new Operation(0.2,"Reply")); 

   } 

    public Item chooseOnWeight(List<Item> items) { 

        double completeWeight = 0.0; 

        for (Item item : items) 

            completeWeight += item.getWeight(); 

        double r = Math.random() * completeWeight; 

        double countWeight = 0.0; 

        for (Item item : items) { 

            countWeight += item.getWeight(); 

            if (countWeight >= r) 

                return item; 

        } 

        throw new RuntimeException("Should never be shown."); 

    } 

} 

 

 

Privacy Control  

 

 

package tr.yildiz.edu.privacyControl; 

 

import org.w3c.dom.Document; 

import org.w3c.dom.Element; 

import org.w3c.dom.Node; 

import org.w3c.dom.NodeList; 

 

import javax.xml.parsers.DocumentBuilder; 
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import javax.xml.parsers.DocumentBuilderFactory; 

import java.io.File; 

import java.util.ArrayList; 

 

public class DaxParser { 

    public static ArrayList<Jobs> getDax(String path) { 

        ArrayList<Jobs> listOfJobs = new ArrayList<Jobs>(); 

 

        try { 

            File inputFile = new File(path); 

            DocumentBuilderFactory dbFactory = 

DocumentBuilderFactory.newInstance(); 

            DocumentBuilder dBuilder = dbFactory.newDocumentBuilder(); 

            Document doc = dBuilder.parse(inputFile); 

            doc.getDocumentElement().normalize(); 

            NodeList nList = doc.getElementsByTagName("job"); 

 

            for (int temp = 0; temp < nList.getLength(); temp++) { 

                Jobs jobs = new Jobs(); 

                Node nNode = nList.item(temp); 

 

                if (nNode.getNodeType() == Node.ELEMENT_NODE) { 

                    Element eElement = (Element) nNode; 

 

                    jobs.setActivityID(eElement.getAttribute("id").trim()); 

 

                    

jobs.setUserData(eElement.getElementsByTagName("argument").item(0).getTextCont

ent()); 

                    jobs.setOpType(eElement.getAttribute("name")); 

                    NodeList nodeList = nNode.getChildNodes(); 

                    for (int j = 0; j < nodeList.getLength(); j++) { 

                        Node childNode = nodeList.item(j); 

                        if (childNode.getNodeType() == Node.ELEMENT_NODE) { 

 

                            //Element element = (Element) childNode; 

 

                            if (childNode.getNodeType() == Node.ELEMENT_NODE) 

{ 

                                if 

(childNode.getNodeName().equals("metadata")) { 

                                    

jobs.setTimestamp(childNode.getTextContent()); 

                                } 

                                if (childNode.getNodeName().equals("uses") && 

childNode.getAttributes().getNamedItem("link").toString().contains("input")) { 

                                    

jobs.setTweetAffected(childNode.getAttributes().getNamedItem("name").getTextCo

ntent()); 

                                    

jobs.setDerrivedFrom(childNode.getAttributes().getNamedItem("name").getTextCon

tent()); 

 

                                } 

                                if (childNode.getNodeName().equals("argument") 

&& !jobs.getOpType().equals("like")) { 

                                    

jobs.setTweetID(childNode.getChildNodes().item(1) 

                                            

.getAttributes().getNamedItem("name") 

                                            .getTextContent()); 

                                  

                                } 

                            } 

                        } 

                    } 

 

                } 
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                jobs.setMetricValues(); 

                listOfJobs.add(jobs); 

 

            } 

        } catch (Exception e) { 

            e.printStackTrace(); 

        } 

        return listOfJobs; 

 

    } 

 

    public static void main(String[] args) { 

        ArrayList<Jobs> listOfJobs = new ArrayList<Jobs>(); 

 

        try { 

            File inputFile = new 

File("C:\\Users\\jehad\\Desktop\\Dax\\dax_401_1K_.dax"); 

            DocumentBuilderFactory dbFactory = 

DocumentBuilderFactory.newInstance(); 

            DocumentBuilder dBuilder = dbFactory.newDocumentBuilder(); 

            Document doc = dBuilder.parse(inputFile); 

            doc.getDocumentElement().normalize(); 

            NodeList nList = doc.getElementsByTagName("job"); 

            for (int temp = 0; temp < nList.getLength(); temp++) { 

                Jobs jobs = new Jobs(); 

                Node nNode = nList.item(temp); 

                if (nNode.getNodeType() == Node.ELEMENT_NODE) { 

                    Element eElement = (Element) nNode; 

                    jobs.setActivityID(eElement.getAttribute("id").trim()); 

jobs.setUserData(eElement.getElementsByTagName("argument").item(0).getTextCont

ent()); 

 

                    jobs.setOpType(eElement.getAttribute("name")); 

                    NodeList nodeList = nNode.getChildNodes(); 

                    for (int j = 0; j < nodeList.getLength(); j++) { 

                        Node childNode = nodeList.item(j); 

                        if (childNode.getNodeType() == Node.ELEMENT_NODE) { 

 

                            //Element element = (Element) childNode; 

 

                            if (childNode.getNodeType() == Node.ELEMENT_NODE) 

{ 

                                if 

(childNode.getNodeName().equals("metadata")) { 

 

                                    

jobs.setTimestamp(childNode.getTextContent()); 

 

                                } 

                                if (childNode.getNodeName().equals("uses") && 

childNode.getAttributes().getNamedItem("link").toString().contains("input")) { 

                                    System.out.println("HERE!!!!!!!!!!!!!!!!" 

+ childNode.getAttributes().getNamedItem("name").getTextContent()); 

                                    

jobs.setDerrivedFrom(childNode.getAttributes().getNamedItem("name").getTextCon

tent()); 

 

                                } 

                                if 

(childNode.getNodeName().equals("argument")) { 

                                    

jobs.setTweetID(childNode.getChildNodes().item(1) 

                                            

.getAttributes().getNamedItem("name") 

                                            .getTextContent()); 

 

                                     

                                } 
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                            } 

                        } 

                    } 

 

                } 

                jobs.setMetricValues(); 

                listOfJobs.add(jobs); 

 

            } 

 

        } catch (Exception e) { 

            e.printStackTrace(); 

        } 

 

        for (Jobs j : listOfJobs) { 

            System.out.println(j.toString()); 

        } 

 

    } 

} 

 

 

 

 

 

package tr.yildiz.edu.privacyControl; /** 

 * 

 */ 

 

 

import java.util.ArrayList; 

 

/** 

 * @author jihad 

 */ 

public class Jobs { 

 

 

    private String activityID; 

    private String userData; 

    private String opType; 

    private String timestamp; 

    private String derrivedFrom; 

    private String legitimacy; 

    private String availability; 

    private String username; 

    private String popularity; 

    private String tweetID; 

    private String[] followers; 

    private String tweetAffected; 

 

    public Jobs() { 

    } 

 

    public Jobs(String activityID, String userData, String opType, String 

timestamp, String derrivedFrom, 

                String legitimacy, String availability, String username, 

String popularity, String tweetID, String[] followers, 

                String tweetAffected) { 

        super(); 

        this.setActivityID(activityID); 

        this.setUserData(userData); 

        this.setOpType(opType); 
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        this.setTimestamp(timestamp); 

        this.setDerrivedFrom(derrivedFrom); 

        this.setLegitimacy(legitimacy); 

        this.setAvailability(availability); 

        this.setUsername(username); 

        this.setPopularity(popularity); 

        this.setTweetID(tweetID); 

        this.setFollowers(followers); 

        this.setTweetAffected(tweetAffected); 

    } 

 

    public String getTweetAffected() { 

        return tweetAffected; 

    } 

 

    public void setTweetAffected(String tweetAffected) { 

        this.tweetAffected = tweetAffected; 

    } 

 

    public String getTweetID() { 

        return tweetID; 

    } 

 

    public void setTweetID(String tweetID) { 

        this.tweetID = tweetID; 

    } 

 

    public void setMetricValues() { 

        //System.out.println("User's data before parsin: "+ getUserData()); 

        String[] tokens = getUserData().split(","); 

        //for(int i=0;i<tokens.length;i++) 

        //{ 

        //System.out.println(" -->"+aList.get(i)); 

//        System.out.println("0: "+tokens[0].split(" ")[1]); 

        setUsername(tokens[0].split(" ")[1].trim()); 

        //System.out.println(tokens[1].split(" ")[2]); 

//        System.out.println("2: "+tokens[2].split(" ")[2]); 

        setPopularity(tokens[2].split(" ")[2].trim()); 

//        System.out.println("3: "+tokens[3].split(" ")[2]); 

        setAvailability(tokens[3].split(" ")[2].trim()); 

//        System.out.println("4: "+tokens[4].split(" ")[2]); 

        setLegitimacy(tokens[4].split(" ")[2].trim()); 

        ArrayList<String> followersList = new ArrayList<String>(); 

        for (int numOfFollowers = 5; numOfFollowers < tokens.length; 

numOfFollowers++) { 

            followersList.add(tokens[numOfFollowers]); 

        } 

        setFollowers(followersList.toArray(new String[0])); 

 

    } 

 

    public String getDerrivedFrom() { 

        return derrivedFrom; 

    } 

 

    public void setDerrivedFrom(String derrivedFrom) { 

        this.derrivedFrom = derrivedFrom; 

    } 

 

    public String getActivityID() { 

        return activityID; 

    } 

 

    public void setActivityID(String activityID) { 

        this.activityID = activityID; 

    } 

 

    public String getUserData() { 
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        return userData; 

    } 

 

    public void setUserData(String userData) { 

        this.userData = userData; 

    } 

 

    public String getOpType() { 

        return opType; 

    } 

 

    public void setOpType(String opType) { 

        this.opType = opType; 

    } 

 

    public String getTimestamp() { 

        return timestamp; 

    } 

 

    public void setTimestamp(String timestamp) { 

        this.timestamp = timestamp; 

    } 

 

    public String getLegitimacy() { 

        return legitimacy; 

    } 

 

    public void setLegitimacy(String legitimacy) { 

        this.legitimacy = legitimacy; 

    } 

 

    public String getAvailability() { 

        return availability; 

    } 

 

    public void setAvailability(String availability) { 

        this.availability = availability; 

    } 

 

    public String getUsername() { 

        return username; 

    } 

 

    public void setUsername(String username) { 

        this.username = username; 

    } 

 

    public String getPopularity() { 

        return popularity; 

    } 

 

    public void setPopularity(String popularity) { 

        this.popularity = popularity; 

    } 

 

 

    @Override 

    public String toString() { 

        return "Jobs [activityID= " + getActivityID() + " , opType=" + 

getOpType() + ", timestamp=" 

                + getTimestamp() + " Derrived from: " + getDerrivedFrom() + 

"]" + "TweetID" + getTweetID() 

                + " Popularity " + getPopularity() + " Legitimacy " + 

getLegitimacy() + " Availability " + getAvailability(); 

    } 

 

    public String[] getFollowers() { 

        return followers; 
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    } 

 

    public void setFollowers(String[] followers) { 

        this.followers = followers; 

    } 

 

    public boolean existInFollowersList(String userID) { 

        for (String temp : followers) { 

            if (temp.equals(userID)) { 

                return true; 

            } 

        } 

        return false; 

    } 

 

 

} 

 

 

 

 

 
package tr.yildiz.edu.privacyControl; 

 

import org.springframework.context.support.ClassPathXmlApplicationContext; 

 

public class PrivacyControlRunner { 

 

 

    public static void main(String[] args) { 

 

        ClassPathXmlApplicationContext context = 

                new ClassPathXmlApplicationContext("application-context.xml"); 

        for (int i = 0; i < 10; i++) { 

            new Thread(context.getBean("ruleSelector", 

RuleOneVerifier.class)).start(); 

 

 

        } 

    } 

} 

 

 

 
package tr.yildiz.edu.privacyControl; 

 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.util.ArrayList; 

 

public class RuleOneVerifier implements Runnable, RuleVerifier { 

 

    public static void main(String[] args) { 

        for (int i = 0; i < 10; i++) { 

            new Thread(new RuleOneVerifier()).start(); 

 

 

        } 

    } 

 

    public void run() { 

        verifyRule(); 
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    } 

 

    public void verifyRule() { 

 

        try { 

            File folder = new File("C:\\Users\\jehad\\Desktop\\Dax\\"); 

            File[] listOfFiles = folder.listFiles(); 

            FileWriter f0 = new 

FileWriter("C:\\Users\\jehad\\Desktop\\Dax\\results\\output.csv"); 

            String newLine = System.getProperty("line.separator"); 

 

 

            for (File file : listOfFiles) { 

                if (file.isFile()) { 

                    long startTime = System.nanoTime(); 

                    ArrayList<Jobs> jobs; 

                    jobs = DaxParser.getDax(file.getAbsolutePath()); 

                    Jobs mainTweet = jobs.get(0); 

                    int numberOfTocuhes = 0; 

 

                    for (int index = 1; index < jobs.size(); index++) { 

                        Jobs temp = jobs.get(index); 

                        if (temp.getTweetAffected() != null && 

temp.getTweetAffected().equals(mainTweet.getTweetID()) && 

                                

!mainTweet.existInFollowersList(temp.getUsername())) { 

                            System.out.println(temp.getUsername() + " Has 

violated rule one policy"); 

                            numberOfTocuhes++; 

 

                        } 

 

                    } 

                    System.out.println("Found " + numberOfTocuhes + " Rule one 

privacy policy violations"); 

                    long endTime = System.nanoTime(); 

                    long totalTime = endTime - startTime; 

                    System.out.println("Execution time " + totalTime); 

                    f0.write(file.getName() + ", " + totalTime + newLine); 

 

                } 

 

            } 

            f0.close(); 

 

        } catch (IOException e) { 

            e.printStackTrace(); 

        } 

 

 

    } 

} 
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