

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PROVENANCE USE IN SOCIAL MEDIA SOFTWARE TO

DEVELOP METHODOLOGIES FOR DETECTION OF

INFORMATION POLLUTION

MOHAMED JEHAD BAETH

PhD THESIS

DEPARTMENT OF COMPUTER ENGINEERING

PROGRAM OF COMPUTER ENGINEERING

ADVISER

Assoc. Prof. Dr. MEHMET S. AKTAŞ

İSTANBUL, 2019

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PROVENANCE USE IN SOCIAL MEDIA SOFTWARE TO

DEVELOP METODOLOGIES FOR DETECTION OF

INFORMATION POLLUTION

A thesis submitted by Mohamed Jehad BAETH in partial fulfillment of the requirements

for the degree of DOCTOR OF PHILOSOPHY is approved by the committee on

18.07.2019 in Faculty of Electrical & Electronics Engineering, Department of Computer

Engineering.

Thesis Adviser

Assoc Prof. Dr. Mehmet S. AKTAŞ

Yıldız Technical University

Approved by the Examining Committee

Assoc. Prof. Dr. Yunus Emre SELÇUK

Yıldız Technical University _____________________

Assoc. Prof. Dr. Ahmet SAYAR, Member

Kocaeli University _____________________

Assoc. Prof. Dr. Hasan SÖZER, Member

Özyeğin University _____________________

Assoc. Prof. Dr. Gökhan BİLGİN, Member

Yıldız Technical University _____________________

This study is part of the PRONALIZ project supported by TUBITAK’s (3501) National

Young Researchers Career Development Program (Project No: 114E781, Project Title:

Provenance Use in Social Media Software to Develop Methodologies for Detection of

Information Pollution and Violation of Copyrights).

ACKNOWLEDGMENTS

All thanks and gratitude go to my supervisor, Assoc. Prof. Dr. Mehmet S. AKTAŞ. It

would be impossible to count all the ways that you've helped me in my journey. Thank

you so much for all that you've done. Thank you for your mentorship, leadership style,

dedication and hard work.

I wish to thank my committee members who were more than generous with their expertise

and precious time. A special thanks to Dr. Ahmet SAYAR and Dr. Yunus Emre

SELÇUK, my committee members for their countless hours of reflecting, reading,

encouraging, and most of all patience throughout the entire process. Thank you Dr.

Gökhan BİLGİN and Dr. Hasan SÖZER for agreeing to serve on my committee. I would

like to acknowledge and thank my school division for allowing me to conduct my research

and providing any assistance requested. Special thanks go to the members of research

assistants in the faculty department for their continued support. Finally, I would like to

thank the beginning teachers, mentor-teachers and administrators in our school division

that assisted me with this project. Their excitement and willingness to provide feedback

made the completion of this research an enjoyable experience.

July, 2019

Moahmed Jehad BAETH

DEDICATION

I dedicate my work to my late father Ahmad, I’ll always strive to live up to his values.

Not a day goes by that I don’t think of him and miss him. A special feeling of gratitude

to my sweet Mother Sahar, to my loving brother and sisters, Eyad, Bara’a, Taima,

Thara’a, and Yosr, whose words of inspiration and push for tenacity ring in my ears. I

also dedicate this work to my friends who have supported me throughout my journey,

especially to my best friend Ziad CHOUEIKI for always being there for me. At the

bleakest of times you have been my light of Eärendil. I also want to thank Nurgül

Yüzbaşıoğlu for all the help and support. Lastly, I’m thankful for all the hardships and

adversities that molded me into the person I am today “ad astra per adua”.

July, 2019

Moahmed Jehad BAETH

V

TABLE OF CONTENTS

Page

LIST OF SYMBOLS ... VIII

LIST OF ABBREVIATIONS .. IX

LIST OF FIGURES ... X

LIST OF TABLES .. XII

ABSTRACT...XIV

ÖZET ...XVI

CHAPTER 1

INTRODUCTION .. 1

1.1 Objective of the Thesis .. 3

1.2 Hypothesis ... 3

1.3 Problem Statement ... 3

1.4 Contributions ... 7

1.5 Organization of Thesis ... 8

CHAPTER 2

GENERAL INFORMATION AND LITERATURE REVIEW 10

2.1 Social Networks ... 10

2.2 Provenance Data and Social Provenance ... 14

2.2.1 Social Workflows ... 21

2.2.1.1 Simple Workflows .. 21

2.2.1.2 Composite Workflows .. 23

2.2.1.3 Noise & Spam Bots... 25

2.2.1.4 Community Participation Scopes.. 26

2.3 Misinformation Propagation in Social Networks .. 26

VI

2.4 Complex Event Processing in Social Networks .. 32

2.5 Stand-Alone Provenance Systems ... 34

2.6 Fuzzy Analytical Process ... 36

CHAPTER 3

METHODOLOGY ... 40

3.1 Evaluation of Existing Stand-alone Social Provenance Systems 40

3.1.1 Experiment Setup ... 41

3.1.2 The Experiment .. 41

3.1.2.1 Performance (Responsiveness) Experiment 43

3.1.2.2 Scalability Experiment .. 47

3.1.3 Findings and Discussions ... 48

3.2 Generating a Synthetic Social Provenance Dataset ... 49

3.2.1 Social Provenance Dataset Requirements .. 50

3.2.1.1 User Information Provenance Availability Measure 52

3.2.1.2 User Information Provenance Legitimacy Measure (Verifiability) .. 53

3.2.1.3 User Information Provenance Social Popularity Measure (Prestige

Centrality) ... 54

3.2.1.4 Information Provenance Social Impact Measure 54

3.2.1.5 Information Prominence or Proximity Prestige 55

3.2.1.6 The Impact Of a Post on A User’s Prestige 55

3.2.2 Generation of The Synthetic Dataset ... 56

3.2.2.1 Database Generation Framework.. 59

3.2.2.2 Generated Workflows ... 60

3.3 Misinformation Detection Algorithm .. 64

3.3.1 Analytic Hierarchy Process .. 67

3.3.1.1 Application of AHP .. 71

3.4 Calculation of Data-based Credibility and Its Usage in Proposed Algorithms75

3.5 Privacy Violation Detection... 75

3.5.1 Proposed Software Architecture ... 77

3.5.2 Implementation of The Proposed Approach ... 78

CHAPTER 4

EVALUATION, RESULTS AND DISCUSSION ... 81

4.1 Evaluation of Misinformation Detection Algorithm 81

VII

4.1.1 Type of Evaluation Scenarios ... 81

4.1.2 Developed Framework ... 83

4.1.3 Analysis and Insights .. 84

4.2 Evaluation Against a Real-life Social Provenance Dataset 86

4.2.1 Threats to Validity of Proposed Approach ... 88

4.1.1 Results Obtained From Running DfP on PHEME Dataset 88

4.2 Evaluation of Privacy Violation Detection Algorithm 90

CHAPTER 5

CONCLUSION AND FUTURE WORK ... 93

1.1. Future Research Opportunities .. 95

REFERENCES…………………………………………………………………………97

APPENDIX-B

RESULTS OBTAINED FROM ANALYZING PHEME DATASET 105

APPENDIX-B

CODE SAMPLES... 115

CURRICULUM VITAE……………………………………………………………...145

PUBLISHMENTS……………………………………………………………………146

VIII

LIST OF SYMBOLS

Ci Countenance operations

Api Sentimentally positive annotations

Pi Propagation operations

Ivα Verifiability of a user

A Availability of a user information

P Popularity of a user

Iiα Social Impact

Τ Social workflow main tweet

ɥ Social workflow user

Ŋ Social workflow user network

Ň Social workflow user reach network

IX

LIST OF ABBREVIATIONS

AHP Analytical Hierarchy Process

CEP Complex Event Processing

DFP Distance from Positivity (Algorithm)

FAHP Fuzzy Analytical Hierarchy Process

JSON JavaScript Object Notation

OPM Open Provenance Model

Prov-O Provenance Ontology

RDF Resource Description Framework

URI Unified Resource Identifier

W3C World Wide Web Consortium

XML Extensible Markup Language

YTU Yıldız Technical University

X

LIST OF FIGURES

Page

Figure 2.1 Number of Facebook users over time (statista.com). 12

Figure 2.2 Number of Twitter users over time (statista.com). 12

Figure 2.3 Reach of leading social media and networking sites used by teenagers and

young adults in the United States as of February 2017 (statista.com). 13

Figure 2.4 OPM Layered Architecture (Moreau, Freire, et al., 2011) 16

Figure 2.5 Provenance in the semantic web layer cake diagram. 17

Figure 2.6 The three Starting Point classes and the properties that relate them. 18

Figure 2.7 Tweet posted by a celebrity with very high social engagement. 22

Figure 2.8 A single simple social workflow PROV-O visualization. 22

Figure 2.9 Solidarity social workflow (the increase of engagement overtime). 24

Figure 2.10 Debate of social workflow (sentiment wise color-coded). 24

Figure 2.11 Bots used by ISIS to promote their hashtag. ... 26

Figure 2.12 Simplified structure of an example AHP hierarchy 37

Figure 3.1 Average population time of different social workflow sizes 43

Figure 3.2 Average Latency for getWorkflowGraph() operation on different workflow

sizes .. 44

Figure 3.3 Average Latency for getActivityGraph() operation on different workflow

sizes .. 45

Figure 3.4 Average Latency for getEntityGraph() operation on different workflow

sizes .. 45

Figure 3.5 Average Latency for findEntity() operation on different workflow sizes . 46

Figure 3.6 Latency of simultaneous querying clients on a 4K social workflow......... 47

Figure 3.7 Latency with different message rates on a 4K social workflow 48

Figure 3.8 PROV-O specification-based provenance nodes and social provenance

sub-types ... 57

Figure 3.9 Social provenance dataset generation framework 60

XI

Figure 3.10 Distribution of workflows by execution cases ... 62

Figure 3.11 Provenance visualization of a successful workflow run 63

Figure 3.12 Provenance visualization of a workflow execution with provenance

collection 10% error rate .. 63

Figure 3.13 Provenance visualization of a workflow execution with both provenance

collection error and notification failure error ... 64

Figure 3.14 The proposed misinformation detection algorithm 65

Figure 3.15 Visualization sample of a social workflow .. 66

Figure 3.16 Hierarchal structure of evaluating social provenance metrics weights 68

Figure 3.17 Layered software architecture of privacy policy violation detection

framework .. 78

Figure 3.18 Workflow generation and user provenance analysis framework 79

Figure 4.1 Workflow generation and information quality evaluation framework 83

Figure 4.2 The relationship between negative feedback and distance from positivity

value for 500 randomly generated workflows, each with 100 social

operations in the X-axis represents the ID of the workflow, the left-hand

Y-axis represent workflow’s distance from ... 84

Figure 4.3 The relation between negative feedback and distance from positivity value

for 500 randomly generated workflows, each with 1,000 social operation

the X-axis represents the ID of the workflow, the left-hand Y-axis

represent workflow’s distance from positivity score and right-hand Y-axis

represent number of engaged users with negative feedback. 85

Figure 4.4 Relation between distance from positivity value, originator’s credibility

and amount of negative feedback in randomly biased workflows# the

relation between negative feedback and distance from positivity value for

500 randomly generated workflows, each with 100 social operation the x-

axis represents the ID of the workflow, the right-hand Y-axis represent

workflow’s distance from positivity score and originator’s credibility

score, while the left-hand Y-axis represent number of engaged users with

negative feedback. .. 86

Figure 4.5 Number of reactions compared to the number of effective (non-neutral)

reactions in every thread .. 87

Figure 4.6 Prediction results compared to actual classification 89

Figure 4.7 Design of the evaluation experiment ... 90

Figure 4.8 The results of the average processing time (seconds) of 1,000 social

operation workflows in the developed framework. The X-axis indicates

the tested Rule ID, while the Y-axis indicates the average processing time

in milliseconds. ... 91

XII

LIST OF TABLES

Page

Table 2.1 Common social media subcategories .. 11

Table 2.2 Modern Social Media Platforms and its categories 14

Table 2.3 Triangular fuzzy conversion scale .. 38

Table 3.1 List of attributes and percentage of users who reveal them on Facebook. . 52

Table 3.2 List of social provenance attributes captured in the social provenance

database .. 56

Table 3.3 Terminology in the proposed social network provenance model 58

Table 3.4 Generated social workflows users' pool and number of social interactions 59

Table 3.5 PROV-O representation of social operations and entities 61

Table 3.6 Categories of Metrics Values .. 68

Table 3.7 Fuzzy pair-wise comparison matrix in criteria level 68

Table 3.8 The sums of horizontal and vertical directions ... 69

Table 3.9 The fuzzy synthetic extents .. 69

Table 3.10 Criteria’s approximated fuzzy priorities (relative and normalized) 69

Table 3.11 Metrics weights for each identified alternative case 70

Table 3.12 Categories of metrics values ... 71

Table 3.13 Fuzzy pair-wise comparison matrix in criteria level 72

Table 3.14 The sums of horizontal and vertical directions ... 72

Table 3.15 The fuzzy synthetic extents .. 72

Table 3.16 Criteria’s approximated fuzzy priorities (relative and normalized) 73

Table 3.17 Metrics Weights for Each Identified Alternative Case 74

Table 3.18 Formal representation of rules .. 76

XIII

Table 4.1 List of social provenance attributes captured in the social provenance

database .. 82

Table 4.2 Prediction results confusion matrix .. 89

Table 4.3 Different evaluation metric values .. 89

Table 4.4 Details of the testing environment: ... 91

Table 4.5 Latency in detecting faulty running behavior for the defined privacy policy

rules .. 91

XIV

ABSTRACT

PROVENANCE USE IN SOCIAL MEDIA SOFTWARE TO

DEVELOP METHODOLOGIES FOR DETECTION OF

INFORMATION POLLUTION

Mohamed Jehad BAETH

Department of Computer Engineering

PhD. Thesis

Adviser: Assoc. Prof. Dr. Mehmet S. AKTAŞ

Social media delivers its users a large-scale easily usable and foolproof platform to

communicate and to socialize that cannot be delivered using traditional media (such as

newspapers and television). This platform is based on the technological foundations of

Web 2.0 to define collaboration and data sharing among Internet users and operates as a

group of software that allows the sharing of user-generated content.

Social media users face two important problems when using this platform. The first

problem is the following: when social media users receive data (user-generated content)

via social media software, they might not know the exact quality of the data. Therefore,

they may not be sure about the reliability and correctness of the data, how much emphasis

it should be given, and whether they should help to disseminate the data. As a result,

situations like information pollution can arise. The second problem is the following:

social media software may change their privacy policies over time. As a result, users may

not be able to set their privacy settings precisely according to the privacy measures that

they demand. These policies determine the copyrights of the user’s shared data. User’s

data intended to be disseminated among friend circle, may be disseminated via re-sharing

within social media. Users are not aware of who actually can see his/her data or apply a

process to it. As a result, problems like copyright violations can arise.

In order to solve the two problems, users need information on the lifecycle of social media

data. Provenance is defined as metadata that describes the origin, validity, quality, and

ownership of data. Nowadays, we observe a lack of methodologies for detecting

information pollution and copyright violations of users’ shared data.

XV

The goal of this project is to develop methodologies that collect, store, pose queries and

conduct analysis on the provenance of social media with a focus on the development of

algorithms and methods for detecting information pollution and copyright violations of

shared data. To begin to reach this goal, we developed algorithms and evaluated their

correctness. We studied multiple provenance-quiring and storing systems to measure their

abilities in aspects of scalability and performance with data of high magnitude. We

proceeded by creating an abstract provenance data model that can be used to describe

social interactions on different social network platforms by extending the PROV-O

ontology. Using this model, we created a large-scale synthetic social provenance dataset,

which we used to evaluate and test the proposed algorithms. We also tested our

misinformation detection algorithm prediction capabilities against a real-life dataset. The

results indicated the proposed algorithms shows promising outcomes.

Keywords: Provenance data, social media networks, information pollution, violation of

copyrights, data quality.

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

XVI

ÖZET

PROVENANS KULLANILARAK SOSYAL MEDYA

YAZILIMLARINDA BİLGİ KİRLİLİĞİNİN VE TELİF HAKLARI

İHLALLERİNİN TESPİTİ İÇİN YÖNTEMLER GELİŞTİRİLMESİ

Mohamed Jehad BAETH

Bilgisayar Mühendisliği Anabilim Dalı

Doktora Tezi

Tez Danışmanı: Doç. Dr. Mehmet S. AKTAŞ

Sosyal Medya, iletişim kurmak ve sosyalleşmek için, geleneksel medyanın (gazeteler,

televizyonlar vb.) sunamadığı büyük ölçekli ve kolay kullanımlı araçlardan oluşan bir

platform sunmaktadır. Bu platform, Internet kullanıcılarının ortaklaşa ve paylaşarak

yarattığı sistemi tanımlayan Web 2.0.’ın teknolojik temellerine dayanmaktadır ve

kullanıcı tarafından oluşturulan içeriklerin paylaşılmasına olanak veren bir grup yazılım

olarak tanımlanmaktadır.

Sosyal Medya kullanıcıları bu platformları kullanırken iki önemli problem ile karşı

karşıyadır. Birinci problem; kullandıkları sosyal medya yazılımı üzerinden bir veri (başka

kullanıcı tarafından oluşturulan içerik) aldıkları zaman, bu verinin kalitesi hakkında tam

olarak bilgi sahibi olamamaktadır. Dolayısıyla, kullanıcılar, veri hakkında yeterince

bilgiye sahip olmadan ve veriye ne kadar önem verilmesi gerektiği konusunda emin

olamadan, verinin yayılmasına olanak sağlayabilmektedir. Bunun sonucunda da bilgi

kirliliği durumu ortaya çıkabilmektedir. İkinci problem; Sosyal Medya yazılımlarının

gizlilik politikalarını zaman içinde değiştirebilmeleri ve kullanıcıların bu yazılımların

gizlilik ayarlarını, talep ettikleri gizlilik derecesine göre, tam olarak düzenleyememeleri

yüzünden kaynaklanmaktadır. Bu gizlilik politikaları kullanıcının paylaştığı verilerin

kullanılması ve yayılması ile ilgili hakları belirlemektedir. Kullanıcının sadece

arkadaşları arasında paylaştığı veriler, yeniden paylaşma yöntemiyle sosyal medya

üzerinden yayılabilmektedir. Kullanıcılar, kendi verilerinin gerçekte kimler tarafından

görüntülenebildiğini ve üzerinde kimlerin işlem yapılabildiğini takip edememektedir.

Bunun sonucunda da telif hakları ihlalleri ortaya çıkabilmektedir.

Bu iki problemin çözülebilmesi için, kullanıcılar verinin hayat döngüsü bilgilerine ihtiyaç

duymaktadır. Provenans, veri hakkında köken, doğruluk, gerçeklik, kalite, mülkiyet gibi

XVII

hayat döngüsü bilgileri sağlayan bir üst-veri olarak tanımlanmaktadır. Günümüzde,

Sosyal Medya yazılımlarında, “bilgi kirliliği durumlarının” ve “kullanıcı verilerinin telif

haklarının ihlal edilip edilmediğinin” tespitine yönelik yöntemlerin eksikliği

görülmektedir.

 Bu projenin başlıca amacı, Sosyal Medya yazılımlarında yayınlanan verilere ait

provenans bilgilerini toplayan, saklayan, sorgulayan; bu bilgilerinden, provenans çizge

yapıları oluşturan; provenans çizgeleri üzerinde “bilgi kirliliği durumları tespiti” ve

“kullanıcı verilerinin telif haklarının ihlal edilip edilmediğinin tespiti” amaçlı

tasarlanacak algoritmaları içeren yöntemler geliştirmektedir. Bu temel amaç kapsamında

algoritmalar geliştirilmiş ve testleri yapılmıştır. Sonuçlar, önerilen algoritmaların başarılı

olduğunu ortaya koymuştur.

Anahtar Kelimeler: Provenans, dijital veri provenansı, sosyal medya yazılımı, veri

kalitesi, bilgi kirliliği.

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

1

CHAPTER 1

1. INTRODUCTION

The concept of social media is defined by Kaplan & Haenlein (2010) as “a group of

Internet-based applications that build on the ideological and technological foundations of

Web 2.0 and that allow the creation and exchange of user-generated content.” Since the

introduction of this concept into the World Wide Web, there have been different types of

social media sites, including social networking, blogging, micro-blogging, wikis, social

news, social bookmarking, media sharing, opinion, reviews and ratings, and community

Q&As. Through these different platforms, users are easily able to communicate, to

network among each other on a large scale, and to offer user-generated content that

traditional media, such as television, radio, and newspapers, cannot provide. Additionally,

social media has been used for gathering information about large-scale events such as

fires, earthquakes, and other disasters, all of which impact government and non-

government organizations at local, national, or even international levels. Furthermore,

individuals use social media to discover reliable information about what is going on

around them and thus are able to leverage new information as quickly as possible [2].

Social media’s low entry barrier is very advantageous to its users by enabling them to

actively participate. Social media users can share a great amount of personal information

with friends or on a broader public scale on a social networking site by posting status

updates onto their own user profiles, via messages or even by using status replies. This

has led to an explosion in the number of social media users. On the downside, such

numbers may not be suitable for gathering information about large-scale events on either

the international or local levels mainly because social media data is vast, noisy,

distributed, unstructured, and dynamic in nature [2].

2

Tim Berners-Lee, the inventor of the World Wide Web, envisioned1 a browser button

with which the user could express uncertainty about a document being displayed: “Oh

yeah?”. Upon activation of the button, the software would then retrieve metadata about

the document that would list assumptions on which trust could be based.

Social media delivers to its users a large-scale and easily usable platform that cannot be

achieved using traditional media. Understanding information propagation in social media

provides additional context, such as knowing the information originator and a post’s

transitions and modifications through the end of its lifecycle. The normal social media

user utilizes such knowledge to evaluate the trustworthiness and correctness of the

obtained information [3]. As in real life, the quality and value of information or objects

created on social networks is affected by its provenance and this raises users’ concern of

finding reliable and trustworthy information sources.

Among the factual information published in different social media networks, such as

tweets, there always exists thoughts, expressed attitudes, biased or unverified stories,

hidden motivations, and the publishing of intentionally deceiving information. There has

been some remarkable research in this regard trying to investigate how to distinguish

between rumors and facts within a large number of tweets on a specific topic [4].

Nevertheless, a recipient of information propagated in social media does not always have

additional data about or clues regarding a post’s origin and motivation, or the exact

identification of the original publisher. As a result, collective behavior can be affected by

information published on social networking sites, such as a blog, microblog, or even a

wiki [5].

We rely on the Internet and the World Wide Web in almost every aspect of our lives

nowadays. Regular users are no longer passive consumers of information but rather

actively participate in the curation and promotion of this information. Therefore, interest

in studying the provenance of Internet information has gained momentum in many fields,

from science to food manufacturing, from journalism to art, to keep a clear and concise

description of the what, how, and when an artifact was influenced or changed. This helps

consumers make decisions fully aware as to whether something is trustworthy.

1 https://www.w3.org/DesignIssues/UI.html

3

1.1 Objective of the Thesis

The goal of this study is to develop methodologies that collect, store, pose queries and

conduct analysis on the provenance of social media with a focus on developing algorithms

and methods for detecting information pollution and copyright violations of shared data.

The study has several sub-goals: we will attempt to investigate how to improve existing

popularity-based ranking algorithms by utilizing provenance data; also, we will design

and develop algorithms for converting distributed provenance graphs to a small-scale

representation while avoiding information loss so that it could easily be mined for useful

information.

1.2 Hypothesis

Given the widespread use of social media in its variety of forms, and the propensity of

such large numbers of people to use the medium to communicate a statement that is valid,

mistaken, or blatantly false, the problem becomes how to find provenance data that would

prove useful to recipients. The hypothesis of this work is that it is possible to use social

media itself, as it exists in its present form, to obtain useful provenance data by

leveraging the massive amounts of data published in social media to provide

meaningful context about statements published in social media.

1.3 Problem Statement

Throughout the experience of using social media, it can be inferred that users face two

major problems. One is data authenticity and quality. As explained previously it is hard

to rate the reliability of a source in such user-generated-content platforms where sources

of information might, by mistake or intentionally, propagate false information and cause

the spread of polluted information. When a popular statement is made, the real

provenance data of interest is metadata affiliated with the source of the statement. Since

a message is repeated by so many social media users, finding the provenance data about

the original source becomes the primary goal. In cases where there are multiple sources

of the message, or there are messages that are similar, the search is focused on the

message that was sent first or most likely sent first. Provenance data about the earliest

message will be the most valuable to the user [6]. Thus, it would be hard to determine the

actual quality of data analysis and how much emphasis should be given to it. The second

4

problem a social network user faces is the uncertainty of data visibility due to the dynamic

changeability of content shared in social media, in which a change can occur on the

platform’s privacy settings or a change can occur on a user level by applying more restrict

privacy measures. These policies determine copyrights of the user’s shared data. User’s

data, which are intended to be disseminated among friend circles, may be disseminated

via re-sharing within the social media. Users are not aware of who actually can see his/her

data or apply a process on it. Besides, Internet users have access to almost anything that

they can make copies of with the click of a button. This could be a cause of unauthorized

copying. Copyright laws and policies determine copyrights of the user’s shared data.

User’s data, which are intended to be circulated between friend circles, may be spread via

re-sharing within other social media. Users are not aware of who actually can see their

data or what actions are conducted upon it. Consequently, problems such as violation of

copyrights can rise. [7]. Analysis of social media sites can provide beneficial provenance

attribute values that can better inform recipients about latent motivations and meanings

associated with published information in social media. Nowadays, we observe a lack of

methodologies for detecting information pollution and copyright violations of users’

shared data.

Currently existing social media networks undergo an ongoing evolutionary process

involving features, variations of sentiment expression actions, development of social

collaboration tools, and data transition between these networks for users who have

multiple accounts on different social networks.

Provenance is defined as metadata that describes the origin, validity, quality, and

ownership of the data [8]. Provenance attributes and associated provenance attribute

values might also provide information about information appearing in social media [9].

Attributes, motivated by the subjective interests of a recipient, can provide deeper insights

and context about information in social media.

The W3C incubator group published a report [10] identifying motivations and challenges

of mining social media for provenance data. We quote the points most relevant to our

research:

• “No common format and application programmer's interface (API) to access and

understand provenance information whether is explicitly indicated or implicitly

5

determined.” To the best of our knowledge, no social media provider attaches

provenance data to their data feed.

• “Developers rarely include provenance management or publish provenance

records.”

• “No widely accepted architecture solution to managing the scale of provenance

records.” This addresses the need for a scalable, fast and secure provenance data

storage and quiring systems.

• “No existing mechanisms for tying identity to objects or provenance traces.” This

addresses the need for a provenance model applicable for different social media

providers.

• “Incompleteness of provenance records and the potential for errors and

inconsistencies in a widely distributed and open setting such as the Web.” The

magnitude of information published on social networks and the medium of

communication is also a challenge.

Although there has been some research on popularity-based ranking among users, there

has been no work done so far that considers the dissemination of data among users and

the effect of interaction upon each other. This raises the need for improved popularity-

based ranking algorithms. On the other hand, the nature of social networks that can allow

a large number of users to all interact in the same context, which, if represented as a

workflow, can create massively large workflow graphs that make it harder to maintain a

lossless representation of data.

In order to solve the abovementioned problems, users need information on the lifecycle

of social media data. Social media is mainly available in the form of single users’

attributes, user-user connections (links), or user-generated content [11], including texts,

photos, and videos. All this information can be represented as a graph.

In the light of this problem statement and the aforementioned scenarios, we raise

following concrete research challenges that we aim to address in this thesis:

• RQ1: How do you go about evaluating misinformation detection in social

media?

6

1. Determination of origin, custody, and ownership of information in large-scale,

growing social workflows: the solution to uncertainty or ambiguity of

information can be solved by extraction of data provenance in social media

through determining origins, custody, and ownership of this information. The

origins of information are described as the metadata about the user and the

context in which the propagation occurred. Such metadata are called

provenance attributes, and the formulation of these attributes will create

metrics by which credibility of information can be measured.

2. Evaluating the credibility of spreading information in social media:

information with low credibility can lead to erroneous analysis results. We

group the credibility of information into three different classifications:

message credibility, source credibility, and media credibility.

3. Improve existing popularity-based ranking algorithms by utilizing

provenance data.

• RQ2: How do you go about evaluating copyright violation detection in social

media?

1. Checking the copyright ownership of media files being re-shared in social

media: due to the nature of social media networks where data dissemination

is very hard to control, ownership should be taken into consideration.

2. User’s data, which are intended to be disseminated amongst friend circle, may

be disseminated via re-sharing within the social media causing an

unauthorized copying.

• RQ3: How to maintain a COMPLETE representation of information

propagation in Social networks with the large propagation magnitude?

1. Modeling information and its dissemination to fit in different systems and

different contexts: In spite of the existence of many information diffusion

models, there is currently no unified, conceptual model for information

diffusion and provenance that can be applied to different social networks.

7

2. Since PROV-O specification is domain-independent, it does not provide

domain-specific vocabularies for Social networks.

3. Design and develop algorithms for converting distributed provenance graphs

to a small-scale representation without information loss, so that the data could

easily be mined for useful information.

• RQ4: How do you go about creating a synthetic social provenance dataset

that would reflect real social media phenomenon?

Developing a large-scale provenance repository prototype system capable of auditing

different social media platforms to generate analyzed information provenance: the

amount of data generated by social media every day is way beyond the capabilities of

existing provenance repositories. Thus, there is an inevitable need to leverage provenance

repositories to handle such data volumes.

1.4 Contributions

The novel intended contributions of this study can be summarized in the following main

objectives:

1) Define a general framework for the problem. This framework is influenced by

provenance work applied to other computational and information processing

domains.

2) Identify methods and a representation provenance model that will be applicable

to all social media users in today’s different social media environment.

3) To create a measurement of the quality of social data while developing algorithms

and methodologies that utilize this information to detect information pollution.

4) To develop algorithms and methodologies that detect violation of copyrights of

the users’ shared data. This project will also attempt to investigate methods to

improve existing popularity-based ranking algorithms by utilizing provenance

data and determining how to design and develop algorithms for converting

8

distributed provenance graphs to a small-scale representation without information

loss.

5) Creation of a synthetic social network large-scale dataset on which the developed

detection algorithms will be tested and evaluated.

6) Creating a set of metrics that can be applied for evaluating provenance data in

social media based on collected attributes.

Obtain experimental results that demonstrate the framework’s potential and explore both

the value and limitations of the framework and the approach.

1.5 Organization of Thesis

This introduction consists of an overview of the social provenance and misinformation

propagation and detection in social networks, a summary of the outstanding issues that

relate to the research outlined in this thesis, and a discussion of the contribution of the

thesis. The remaining of the thesis is organized as follows.

Chapter 2 consists of two parts. The first part gives background information about

provenance data and the concepts of social provenance, misinformation propagation, and

detection in social networks, a general overview of complex event processing (CEP) and

its appliances in analyzing provenance data, an overview of existing provenance

repository systems, and an overview of the Fuzzy Analytical Process. As we discuss each

of these sections, we review related research and projects.

Chapter 3 describes our evaluation of the existing provenance repository systems. We

also discuss the need for a synthetic large social provenance dataset, a social provenance

model which would generate this dataset and the provenance data generation process.

Then Chapter 3 describes the design principles and components of the proposed algorithm

for detecting misinformation propagation in social networks. We also introduce a privacy

violation detection algorithm and present the CEP engine which has been developed as a

prototype of the proposed algorithms.

9

Chapter 4 is an evaluation of the previously presented frameworks, algorithms, and

prototypes, in which we ran tests against both synthetically generated data and real-life

datasets. We present the results obtained in this section.

Finally, in Chapter 5, we give answers to the research questions identified in Chapter 1,

outline future research directions, and conclude the dissertation.

10

CHAPTER 2

2. GENERAL INFORMATION AND LITERATURE REVIEW

2.1 Social Networks

The concept of social media is defined by [1] as “a group of Internet-based applications

that build on the ideological and technological foundations of Web 2.0 and that allow the

creation and exchange of user-generated content.” Since the introduction of this concept

into the Web, there have been different types of social media sites, including social

networking, blogging, micro-blogging, wikis, social news, social bookmarking, media

sharing, opinion, reviews and ratings, and community Q&A. Through these different

platforms, users are easily able to communicate, network among each other on a large

scale and offer user-generated content that traditional media, such as television, radio,

and newspapers, cannot provide. Additionally, social media has been used for gathering

information about large-scale events such as fires, earthquakes, and other disasters, all

which impact government and non-government organizations at local, national, or even

international levels. Furthermore, Individuals use social media to find reliable

information about what is going on around them and thus are able to leverage new

information as quickly as possible [2].

11

Table 2.1 Common social media subcategories

Category Existing Platform Example

Opinion Mining Yelp

Microblogs Twitter

Media sharing (photos and video) YouTube, Pinterest, Instagram, Snap Chat

Blogs Blogger, WordPress, Medium

Social Networking Facebook, LinkedIn

Wikis Wikipedia, WikiHow

Social News Digg, Reddit

The rapid usage growth of social networks in all of its different categories including

media sharing, blogs, and microblogs, are altering the way people interact with each other.

Users of the popular microblog service, Twitter, publish over 500 million posts per day2.

Twitter is accessible on so many different platforms, such as mobile devices and tablets,

and provides a common API endpoint enables developers to implement their own vision

of the platform, increasing the amount and frequency of information published in the

social media environment.

With platforms like Facebook exceeding one billion registered users, the popularity of

social networks isn’t bound to a specific geographical region, as people from all over the

globe use it heavily to share content and communicate. Many news outlets and media

providers use it as well to reach out to their fan base. Official and non-official

organizations, like the United Nations, Google, Tesla and dedicated accounts for high

government officials like the president of the United States of America, use Facebook to

keep the public updated about events or to promote the release of new products or even

new job position openings.

2 http://www.internetlivestats.com/twitter-statistics/

12

Figure 2.1 Number of Facebook users over time (statista.com).

Figure 2.2 Number of Twitter users over time (statista.com).

13

Figure 2.3 Reach of leading social media and networking sites used by teenagers and

young adults in the United States as of February 2017 (statista.com).

Social media’s low entry barrier is very advantageous to its users, which enables them to

participate more actively. Social media users can share a great amount of personal

information with friends or on a broader public scale on a social networking site by

posting status updates to their own user profile via messages, or even by using status

replies. This has led into an explosion in the number of social media users. On the

downside, however, social media is not suitable for gathering information about large-

scale events on either international and local levels mainly because social media data is

usually vast, noisy, distributed, unstructured, and dynamic in nature [2].

Social media can be categorized in many ways. It can be looked at based in a content-

type perspective, scope perspective, or even purpose of usage wise perspective. Some of

them are internal such as employee networks, others operate on a extranet level such as

customer communities for communicating with the customers of a company product or

business to business relation maintenance, while others are open for public use. Table 2.2

shows some of the modern social media platforms and its corresponding classification.

14

Table 2.2 Modern Social Media Platforms and its categories

Social Media Platform Scope Data Type

Facebook Social Connections All

LinkedIn Professional All

Google+ Social Connections All

Twitter Microblogging All

Tumblr Microblogging All

Instagram Social Connections Photos and Video

Snapchat Social Connections Video

Pinterest Multimedia Sharing Photos

YouTube Multimedia Sharing Video

Vimeo Multimedia Sharing Video

Social media delivers its users a large-scale and easy-to-use platform, which cannot be

achieved using traditional media. Understanding information propagation in social media

provides additional context, such as knowing the information originator and

modifications to its transitions throughout its lifecycle. The normal user of social media

uses such knowledge to evaluate the trustworthiness and correctness of this information

[3]. As in real life, the quality and value of information or objects created in social

networks are affected by its provenance. This raises the concern of users about finding

reliable and trustworthy information sources.

2.2 Provenance Data and Social Provenance

The notion of provenance is well-known in different sectors. For example, in the world

of art, it describes the chain of ownership of a work of art since its creation. Thus,

asserting the provenance can affect the art’s value [12]. Another example of provenance

utilization is food provenance that tracks the supply chain of food producers to determine

the quality of a product [13]. Then there is data journalism that aims to produce credible

news based on open data by rating its originator, while academia helps preserve the

lineage of research continuity and authorship of an original idea.

15

The introduction of Web provenance is relatively recent compared to the abovementioned

examples. It was introduced after the rapid adoption of social media networks, where

users of the social Web as well as bots can play the dual role of an information originator

and consumer [14].

Provenance is defined as:

…a record that describes the people, institutions, entities, and activities

involved in producing, influencing, or delivering a piece of data or a

thing. [15].

Provenance in the context of the Web is a record that describes the series of events which

created and transformed the state of data until it turns into its current state. In other words,

it’s a graph-based, computer-processable, lineage record of all active and delegate

participants who, over time, played a role in the creation of data by performing different

actions.

Mainly, there exists two provenance specification models that have been adopted in the

majority of academic studies:

1. Open Provenance Model (OPM)

2. PROV-O data model (Provenance Ontology)

OPM is the result of the Provenance Challenge Series that was developed to facilitate a

“data exchange format” for provenance information [16] and was designed to meet the

following set of requirements:

1. “To allow provenance information to be exchanged between systems, by means

of a compatibility layer based on a shared provenance model.”

2. “To allow developers to build and share tools that operate on such a

provenance model.”

3. “To define provenance in a precise, technology-agnostic manner.”

4. “To support a digital representation of provenance for any 'thing', whether

produced by computer systems or not.”

5. “To allow multiple levels of description to coexist.”

16

6. “To define a core set of rules that identify the valid inferences that can be made

on provenance representation.”

OPM has a modular design illustrated by the following layered architecture:

Figure 2.4 OPM Layered Architecture [17]

The OPM abstract model allows extending OPM to be used in different fields and

terminologies. The XML serialization mapping allows different applications running

under different environments to interact, exchange query, and modify the provenance

graph. Several field-specific protocols have been developed to operate on top of OPM

[8].

The Provenance Incubator Group, a part of the World Wide Web Consortium (W3C),

recently published their report3 about provenance challenges in social media for finding

and managing provenance data in social media:

• “Checking authority.”

• “Recency of information.”

• “Verification of original sources.”

3 https://www.w3.org/Submission/prov-json/

17

• “Conveying to an end user the derivation of a source of information.”

• “Tracking user/reuse of content.”

• “Scalable provenance management.”

They presented a new provenance model based on Web 2.0 technology which defines an

ontology to describe provenance graphs using JSON format. The authors published a

technical guide4 which addressed different examples and tools that can be utilized by

developers and researchers to develop applications that tackle the problematic aspects of

information trustworthiness and authenticity. The proposed layer architecture is shown in

Figure 2.5.

Figure 2.5 Provenance in the semantic web layer cake diagram.

The layers of the semantic web layers can be summarized as follows:

Unicode is the standard that allows people to use computers in any language, while

Uniform Resource Identifiers (URIs) are the mechanisms to identify resources in the Web

4 www.provbook.org

18

Architecture. XML is the markup language to encode documents and data in both

machine- and human-readable ways. RDF (Resource Description Framework) allows for

the description of resources. Ontologies can specify things and relationships between

them. The Logic Layer allows for the derivation of new knowledge from assertions

published on the Web. Proofs are the result of keeping track of logical inferences. And,

finally, Trust may be established using such proofs.

PROV is the new standard for provenance defined by the World Wide Web Consortium.

Figure 2.6 provides a blueprint for a set of protocols, data formats, and knowledge

representation techniques for the semantic web developer. This diagram should be

interpreted with some flexibility. Indeed, not all logical reasoning requires ontologies,

and other data formats, such as JSON, are also frequently encountered over the Web. But

the essence of provenance, as a vehicle to establish trust on the Web, remains, whatever

variant of the layered diagram is considered.

Figure 2.6 The three Starting Point classes and the properties that relate them.

The Starting Point category is a small set of classes and properties that can be used to

create simple, initial provenance descriptions. Three classes provide a basis for the rest of

PROV-O:

19

• Entity is a physical, digital, conceptual, or other kind of thing with some fixed

aspects; entities may be real or imaginary.

• Activity is something that occurs over a period of time and acts upon or with

entities; it may include consuming, processing, transforming, modifying,

relocating, using, or generating entities.

• Agent is something that bears some form of responsibility for an activity taking

place, for the existence of an entity, or for another agent's activity.

There exists a major body of previous provenance research, which focus on the history of

processes such as crud (create, read, update, delete) operations. These studies focus on

the representation of the history data [18], capture of the history data [19], management

of the history data [20] and real-time management of the history data [21]. We observe

the applications of such research in social media domain [22], [23], social computing

domain [24] and cloud computing domain [25]. There exist various studies that focus on

different data preprocessing steps in mining the datasets to increase the quality of the

supervised learning tasks [26], [27]. There is a major body of research in data mining on

big data [18], [28], [18]. We also observe a number of studies focused on data stream

processing [21], [25], [29], [30]. Furthermore, there exists a number of studies on

distributed data storages [31]. This study differs from previous work, as it mainly focuses

on complex event processing to detect copyright violations on distributed event

processing systems. Our previous work on provenance research published in various

national and international conferences [22], [32]–[35].

The study of provenance analysis of information is not restricted to social media. It has

been a part of research in other areas, including databases and the semantic web. The

primary research focus in these areas is to redesign storage and management systems.

Social media information propagation has been widely studied to understand how

information propagates from one user to others. Shah and Zaman [36] proposed a

centrality-based measure, called rumor-centrality, to identify the single source node of a

given rumor spread where all recipients are known prior. Prakash, Vrekeen and Faloutsos

[37] proposed methods to estimate the multiple sources of given information spread

20

where all recipients are known prior. The sources are assumed to be a part of these known

recipients.

Discovering provenance data in social media helps to solve the problem of reducing

uncertainty about the origins, custody, and ownership of a statement published in a social

media setting. Finding metadata about the origins and custody of a statement is at the

heart of the provenance data problem. Simply put, origins are characterized as the

metadata about a social media user that transmits or passes along a statement. Such

metadata are called provenance attributes and will be formally defined later in this work.

A social media user might be the original source of the statement or simply one who

repeats or modifies a statement made in social media. A chain of users defines the custody

of a statement, such as a message that has been passed along nodes in a social network.

The custody information about the statement will be known as a provenance path and will

also be formally defined later in this work.

When a piece of information is going viral over social networks, what is the impact of

this particular platform and how it affects the authenticity of this information? To

elaborate more on this point and examining the different types of social networks, it can

be observed that most of them have a functionality that enables users to assert or mark

the post as important, thus making it visible to other users in the social network. For

example, Reddit.com has a “vote up/down” functionality, Facebook has the “like” button

while Twitter has its “favor” button—naturally posts with more positive feedbacks will

be shown higher in the feed stream. Normally, communities interacting on social

networks use this kind of collective wisdom to evaluate the importance and credibility of

information. For instance, during the events following the appearance of Hurricane

Sandy, users of Reddit.com started sharing eye-witness information and reports from

media outlets they followed while other users were able to evaluate them, thus filtering

all the un-credible information.

Twitter openly provides a RESTful (Representational State System) API to access its

platform. This enables developers to make programs that can read, write posts, messages,

and user profiles, and interact with Twitter without going through their official Web or

mobile applications. Thus, this ability allows for horizontal growth. The Twitter API has

four main objects represented in either XML or JSON formats (tweet, user, entity,

21

places)5. The fact that these data are real-time, openly accessible allows anyone to mine

data. Additionally, Twitter is used by millions of users on a daily basis, effectively

immobilizing others both emotionally and physically as they debate global events,

express feelings, or campaign politically. This has made Twitter a fertile platform for all

kinds of research experiments. For these reasons we’ve chosen Twitter as the testing

ground for this research effort to study social provenance and the credibility of social

information’s trustworthiness [38].

2.2.1 Social Workflows

Social workflows represent an abstract view of the various social patterns observed on

Twitter. It can be understood, visualized and represented in different formats and, thus,

analysis can also be conducted upon it.

Users of Twitter tend to use a set of undeclared rules when tweeting, replying or re-

tweeting in order to control their social engagement. For example, a tweet that starts with

a mention is considered part of a conversation with low visibility that other users will

most likely not see or using a hashtag as a keyword engages in the general social context.

A hashtag is a type of label or metadata tag used on social networks and micro-blogging

services to make it easier for users to find messages with a specific theme or content.

Users create and use hashtags by placing the hash character (or pound sign) “#” in front

of a word or unspaced phrase, either in the main text of a message or at the end. Searching

for that hashtag will then present any message that has been tagged with it. A hashtag

archive is consequently collected into a single stream under the same hashtag.6 In other

words, hashtags are a way to tag and summarize the content of a tweet to bring together

people who share common interests and ideas and want to share their experience through

social media.

2.2.1.1 Simple Workflows

A simple workflow without hashtags normally represents tweets of users who have no

intention of engaging in or creating a general topic. Such tweets usually tend to get

minimal engagement limited to the user’s followers. However, highly prestigious users

with a very large number of followers and can get large interactions and a wide impression

5 https://developer.twitter.com/
6 https://en.wikipedia.org/wiki/Hashtag

22

spread. The image below shows an example of a celebrity getting very high engagement

on one of his tweets that has no reference to a specific topic.

Figure 2.7 Tweet posted by a celebrity with very high social engagement.

In our synthetically generated dataset,7 which we explain in detail in later section, Figure

2.8 illustrates a visualization example of a social workflow in a PROV-O representation.

We’ve also demonstrated several social metrics representing the cumulative sentiment

summary of the social workflow.

Figure 2.8 A single simple social workflow PROV-O visualization.

7 Study on Synthetic Social Provenance Database for Evaluation of Provenance Services for Big Data

23

2.2.1.2 Composite Workflows

Twitter is not an autonomous digital space following a logic different from those in the

physical world. Rather, the dynamics of Twitter are strongly driven by local experience,

social patterns, and national politics. Thus, Twitter communities can be observed and

identified by their interests.

We define a composite social workflow as a group of separate workflows where all of

them are using a unified hashtag and tweeting on the same topic. We’ve observed many

social patterns on Twitter. However, two of them were the most commonly used among

Twitter’s users.

Solidarity workflows

Twitter, in forging digital solidarities, contributes to deepening existing social and

political divisions and consequently, leading to the polarization of opinion-based

communities.

As an example of such social workflows, the German Institute for International and

Security Affairs8 published a paper describing several such incidents on Twitter that took

place in 2015. More specifically, when discussing social interaction concerning the Saudi

intervention in Yemen, they describe that the main trend was that Twitter united various

sectarian, ethnic, religious, and other ideology- or value-based communities across the

Middle East and beyond and pitted them against one other, such as when Shiite

communities came together in solidarity against the Saudi-led, Sunni attack on the

Houthis and vice versa.

Each of the simple workflows that relate to the (#YemenUnderAttack) hashtag, for

example, can be represented as a single unit with a sentimental value and amount of

engagement upon the topic that leads to an increasing impact upon the hashtag’s total

number of impressions and engagement. The figure below shows a representation of a

solidarity workflow visualization.

8 http://www.swp-berlin.org/en/start-en.html

24

Figure 2.9 Solidarity social workflow (the increase of engagement overtime).

Each of the nodes represents a simple workflow and its color represents the sentiment

value it carries (magenta = positive, blue = negative); the flowers represent several simple

workflows that are tweeting using the same hashtag in a specific time interval.

Debates

Twitter debates on specific incidents highlight the various ways in which Twitter is used

by ordinary people, activists, media outlets, and officials, and, in doing so, it provides an

idea of the political impact such debates can have via Twitter.

An example of such Twitter debates is the ongoing #ProLife and #ProChoice debates over

the prohibition of child abortion in the United States. Research conducted by Sarita Yardi9

suggests that although people are exposed to multiple, diverse points of view through the

public timeline on Twitter. People are most likely to be associated with the groups of

people who are most like themselves. Many online communities are structured around

groups of socially similar individuals.

Figure 2.10 shows a representation of a Twitter debate workflow visualization:

Figure 2.10 Debate of social workflow (sentiment wise color-coded).

9 http://bst.sagepub.com/content/30/5/316.short?rss=1&ssource=mfc

25

Each of the nodes represents a simple workflow and its color represent the sentiment

value it carries (magenta = positive, blue = negative). While the flowers represent a

number of simple workflows that are tweeting using the same set of hashtags in a specific

time interval. The last flower node in the graph represents a summary of the different

opinion groups while each of the other nodes would represent changes that occurred

throughout the entire debate.

Interleaved

Some of the hashtags in Twitter never seem to get old, they are topics of general interest

representing some aspect of everybody’s daily life. Users tend to use these hot channels

to get high impressions where such scenarios can be observed as an advertisement

technique. For example, #INeedANewCar is a hashtag that people always use to complain

about their car problems, while at the same time large car companies and car resellers

tend to tweet using this hashtag to target an audience with the interest of their products.

2.2.1.3 Noise & Spam Bots

Some users aiming to get a larger audience may abuse the use of hashtags and start

tweeting irrelevant content into the hashtag. Although this may easily have been spotted

by a human user, classifying such content as noise may be tricky for a computer program.

Another thing to be addressed is the existence of bots. The Twitter API facilitates the

creation of autonomous bots that can interact with other users, follow, unfollow and send

private messages. We’re not arguing that all bots produce spam. However, there have

been many incidents where bots were used to increase a hashtag’s impressions. For

example, ISIS in May 2016 used bots to generate tweets trying to promote a hashtag for

increased visibility in an attempt to utilize Twitter as a publicity medium. Figure 2.11.

shows a screenshot of tweets generated by a bot maintained by ISIS to promote their

hashtags.

26

Figure 2.11 Bots used by ISIS to promote their hashtag.

There have been many studies [39] and tools developed [40] to help to detect bots by

analyzing their behavior.

2.2.1.4 Community Participation Scopes

The demographic, political and language barriers in the real world seem to also apply, in

most cases, to the world of Twitter. The spread of any information or campaign is mostly

bound by either local interests or by the language spoken, while information is moved

through bilingual personals serving as a link between two communities that speak

different languages. Another pattern that is worth mentioning is that whenever topics

were picked up in another national context, they were reframed locally. For instance,

Lebanese Twitter users reframed the Saudi military operation in Yemen to proclaim their

local sectarian loyalties. Egyptians used the Saudi intervention to point to their president’s

insincerity.

In general, there are three types of communities observed in social workflows according

to the scope of interest:

• Regional: bound to a specific geographic area or a country with unique culture.

• Interregional: concerns people with different cultural identities.

• Global: relates to issues with a global scale.

2.3 Misinformation Propagation in Social Networks

Recently there has been wide interest in raising awareness about false information

disseminating throughout social networks. When a social network user sees such a piece

27

of information on his social network feed, it’s advised that these users take necessary

actions to further investigate the truth behind this information and to evaluate its

authenticity in order to take the right actions or at least not to propagate it further to

prevent causing any harm. Usually this on-the-fly assessment is done by considering

whether information form social media are facts, opinions, or a rumor. Furthermore, they

should look at the motivation of the originator behind publishing this information.

Malicious information can cause unwanted consequences which in some cases can be

very severe [4].

An example of the impact of a rumor and it’s probability of becoming viral and spreading

wildly is defined as the “Basic Law of Rumors” [41]:

“R ∼ i x a”

R represents the possible impact of rumor which relies on the importance of the

information i and the ambiguity a of the information given. The authors claim that the

likelihood of information becoming a rumor is directly related to vagueness factors. They

also claim that rumors are more likely to spread faster among people with similar

mindsets.

Finding misinformation in social media and the World Wide Web is already

commonplace. Preventing the spread of misinformation has piqued the interest of many

researchers who have addressed this issue via several different approaches.

Many proposed methodologies hypothesize that social network users are likely to react

to suspicious misinformation in a specific way. In a study by Zhao, Yin, & Song (2016),

the researchers investigated influences that affect a social network users’ behaviors,

including their willingness to combat rumors during social crises. A model was developed

to better understand how social network users react to rumors during crises. Their

approach uses structural equation modeling to evaluate factors influencing a user’s

behavior. The authors concluded that people are prone to disputing false news and rumors.

This provides further evidence that the detection of misinformation is based on the social

network’s user, although collaborative wisdom can also be effective.

When a statement is going viral on a social network, the most significant provenance data

is the metadata associated with the originating source. In such cases finding the

28

provenance data about the origin becomes the essential. Sometimes the collective wisdom

of a social network cannot distinguish the truthfulness of information in its early stages

of going on a viral spread. However, users of a social network will start reacting to debunk

false information, thus correcting whatever damage has been done. In the end, this led to

the correction visibility of the feed walls of other users that surpass the visibility of the

false information [4]. In cases where there are multiple sources of the message, or where

there are messages that are similar, the search is focused on the message that was sent

first or most likely sent first. When a statement is propagated by multiple sources in a

concise time period, which makes it hard to distinguish the actual originator of the

information, provenance data about the earliest message will have the most significance.

Nevertheless, a recipient of information propagating in social media such as a tweet does

not always have additional data about the exact information clues regarding its origin,

motivation, and the original publisher. Collective behavior can be affected by information

published in social networking sites, such as a blog, microblog, or even a wiki [5].

The increased interest of information dissemination on social networks led to the

introduction of several data representation models of which many are based on W3C’s

PROV data model. The advantage is that PROV is a Web-native and interoperable format

that allows easy publication of provenance data and minimizes the integration effort

among different systems making use of PROV. Taxidou et al. (2015) proposed a model

to track Twitter data propagation. However, the model was reconsidered to include quote

functionality recently added by Twitter (Taxidou, Fischer, Nies, Mannens, & Walle,

2015). The extension was called PROV-SAID. The model is only suitable for Twitter

information diffusion.

Regarding the existing provenance repositories, i.e. Karma [44] and PreServ [45], to our

best knowledge Komadu is the only PROV-compatible provenance repository [46].

Komadu is a stand-alone provenance capture and visualization system for capturing,

representing, and manipulating provenance and repositories. It uses the W3C PROV

standard [47] in representing data. Komadu has a web services interface based on Apache

Axis2. Komadu has been extensively used for scientific workflow data provenance and

its ability to handle large-scale data such as the one coming from social networks

that needs to be tested.

29

Many studies identified the importance of utilizing graphs kernels for data representation

and discovery. Peng, Zhang, Huang, Huang, and Zhuge (2015) utilized a semantic link

network to represent complex structured data to calculate the similarity between

documents by extracting its features and using them as comparison criteria in order to

address the limitations of the conventional graph kernel. Automatic detection of false

rumor spreading on Weibo, a blogging network that is mainly popular in China, was

proposed by Wu, Yang, and Zhu (2015) who used a graph kernel-based hybrid SVM

classifier to detect misinformation. The classifier captured propagation patterns in

addition to semantic features such as topics and opinions to evaluate the credibility of

information.

Another credibility analysis system for assessing information credibility on Twitter was

proposed by Alrubaian, Al-Qurishi, Hassan, and Alamri (2016). The proposed system

consisted of four integrated components: a reputation-based component, a credibility

classifier engine, a user experience component, and a feature-ranking algorithm. The

components integrated to analyze and assess the credibility of Twitter tweets and users.

In a study by Castillo et al. (2011), another information detection methodology was

developed. This study considered message-based, user-based, topic-based, and

propagation-based features. These approaches operated under the assumption that social

network user activity can be an indication of the quality of the information itself.

However, the evaluation process was done by manually labeling information obtained

from Twitter and on a relatively smaller scale compared to the voluminous data sizes

social networks can create.

A platform for the collection, detection, and analysis of online misinformation and its

related fact-checking efforts was developed by Shao, Ciampaglia, Flammini, and

Menczer (2016). The proposed system collected data from news websites and social

media. Data obtained from fact-checking agencies was used to identify the evolution and

origin of fake news spreading on social networks. The system compared information

published on social networks against the reliability results determined by fact-checking

agencies. To evaluate the system, the authors collected data shared with links from

websites that intentionally spread false information. The system has proven to be a

success; however, the system’s fact-checking capability is limited to the news that the

fact-checking agencies deem important.

30

Semantic Link Network (SLN) is a graph-based semantic web approach which describes

the relationships among objects. SLN supports relational reasoning, analogical reasoning,

and inductive reasoning. SLN provides reasoning and querying capabilities with the

ability to modify, add or remove links among objects to discover semantic communities

by analyzing the graph structure [52]. SLN has been used to identify semantic

communities and semantic link networks which has proven valuable in analyzing social

networks [53] and [48].

Several studies have applied data mining techniques on large-scale scientific provenance

datasets (Ghorashi & Jensen, 2013; Aktas, Plale, Leake, & Mukhi, 2013; P. Chen, Plale,

& Aktas, 2014). In contrast to the previous study, our work focuses on mining large-scale

social provenance datasets. We also see some real-time big data processing approaches

that have been applied to real-time provenance notifications in different applications [34].

Our work has been conducted on the large-scale provenance dataset rather than real-time

provenance notifications.

In a study by G. P. Barbier (2011) a provenance path framework was presented to gather

and analyze data provenance for the purpose of rumor detection. They adopted several

social media provenance metrics and utilized it in their framework. The significance of

this work was its consideration of both complete and uncompleted provenance paths of

data dissemination. However, it doesn’t consider the temporal nature of data

propagation in social networks and their adapted provenance model was OPM-

based. A prototype was developed as a proof of concept operating on a very small

scale, ignoring the existence of massive social workflows.

Large social networks provide API for developers to create applications that run in all

different environments, enabling people to automate their social accounts management.

This has led to the existence of bots that can autonomously create content and in some

cases create spam. Attacking this problem Ferrara, Varol, Davis, Menczer, and Flammini

(2014) developed an application that could determine Twitter user account behavior that

had similarity to bots. Tests had a very high success rate. The detection algorithm

considered the comparison of features related to content, network, sentiment, and

temporal patterns of activity that are imitated by bots but at the same time can help

discriminate synthetic behaviors from human ones, yielding signatures of engineered

social tampering. Lately, they’ve provided an API enabling developers to access their

31

services. We believe that this can be considered as one of the metrics used to identify the

credibility of a Twitter user.

Shao et al. (2016) argued that large amounts of data published on Twitter spreads in a

totally uncontrolled fashion and seems to have no particular spread patterns. They argued

that once hoaxes, rumors, and false news are spread they may cause catastrophic results

and the clarification process may be costly due to the unrepeatable damage such a spread

may cause. Thus, the authors introduced an automatic fact-checking framework named

Hoaxy. What it does is to constantly keep crawling a list of predefined trustworthy news

agencies and by listening to the Twitter streaming feed it automatically compares

information published on a specific hashtag to information obtained from fact sources

and rates information published by Twitter users. The developed platform has proven

effective to some extent. However, it has no regard for the user’s status or the way

information is propagated, as there is no modeling of data the platform and rather

works in an ad-hoc manner. A similar approach was adopted by Ciampaglia et al.

(2015) in which Wikipedia was used to create a semantic proximity metrics knowledge

base to evaluate the tweets. This approach could handle misinformation published on

various topics.

Motivated by detection of misinformation on social media to prevent the spread of rumors

and vicious false news, especially in times of crises and intense situations, Abbasi & Liu

(2013) developed a framework and an algorithm called CredRank to detect individual

users with multiple accounts by checking the behavioral similarity and clustering them

accordingly. The authors, who claimed to have accurate detection rates, focused on

situations in which content credibility or the publisher could not be assessed. The

algorithm measured user credibility in social media. While the developed algorithm

focuses on specific situations, our thesis intends to investigate the bigger picture and

consider a very large number of metrics.

Gundecha, Ranganath, Feng, and Liu (2013) developed a tool for extracting user’s social

provenance attributes by collecting personal attributes such as age, gender and location

as well as other domain-specific attributes and then compare the collected attributes with

ones provided by the same users in other social networks to increase the credibility of this

information. The developed tool had a Web-based user interface for collecting the

32

attributes of interest associated with a particular social media user and related to the

received information. The used approach gives an extra level of trust to collected

attributes that increase the user’s credibility rating. However, this study doesn’t

consider metrics other than those related to user credibility and has no regard for

the data dissemination.

A framework developed to detect rumors in social networks by Seo, Mohapatra, and

Abdelzaher (2012) models the social network as a directed graph where vertices represent

individuals and directed edges represent information flow (Follower/Followee). They

injected monitoring nodes into the social network and collected data regarding of

information flow. They reported that their approach had a high accuracy rate. However,

their approach experimented in a rigged environment and still needs to be tested

against a real case scenario. Additionally, the applied method can be used on a small

scale or topic-specific situation due to the need to set up monitoring nodes every

time.

2.4 Complex Event Processing in Social Networks

Complex event processing and extraction have been utilized in different research areas

for many different purposes. The extraction of useful information that helps decision-

making processes or the engagement of a better user experience had a share in these

works. For example, when faced with information overload, people and organizations

may prefer information which is more filtered and categorized. Realizing such a demand,

a complex event extraction from a real-time news stream framework was developed [62].

The proposed architecture utilized both natural language-processing techniques and CEP.

The developed framework could detect specific events by analyzing the news streams and

then launching a notification to the user. However, the system lacked a complete whole-

world ontology, which limits its detection capability. In this study, we utilize provenance,

which provides information on the complete lifecycle of social media data.

Utilizing provenance data in CEP was introduced by Astekin and Aktas [63]. They

proposed a runtime verification framework for a self-healing capability in the Internet of

things. The developed system used a predefined set of rules, launching relative actions in

response to a specific event rule being detected. The performance of the developed system

33

was tested with both Apache Storm and Apache Kafka setups and was found to be

performing well with little overheads for processing events.

Social networks have a very high adaptation, where 73% of adults in the United States

actively use social network websites, and young adults use social networks even more

actively [64]. Social networks provide many benefits to their users such as maintaining

relationships, keeping up with current trends, obtaining news and information and

meeting people with similar interests. In a study conducted by Quinn (2016), several

privacy concerns of social network users were identified. The privacy concerns included:

personal information relevant to unintended recipients, unwanted access to specific

information, future exposure of profiles to government agencies or employers, and

political party use of personal information to target advertising. This shows that users of

social networks are somehow aware of the amount of personal information that they share

may reach unintended parties. The social network provides some privacy control tools,

however, according to the survey conducted as part of Quinn [65] research, many users

find these tools are not sufficient enough. They also use external tools such as

advertisement blockers and pop-up blockers or manual data filtering.

Addressing the problem of privacy policy control on social networks, Mazzia et al [66]

developed a policy comprehension tool, PViz. The tool has a graphical user interface that

shows groups of users directly connected to the user’s network divided into communities

according to the user privacy policy toward them. The tool aids users to make comparable

audience classification. A survey was conducted to test PViz in which many users

expressed the tool’s usefulness for better privacy policy control, community detection

and labeling. However, the testing was limited by Facebook’s API limitations. The tool

has no support for policy modification. Addressing difficulties in managing privacy

policies in large social groups, Amershi et al [67] proposed a tool for supporting users

who seek to create and classify on-demand custom communities. The tool utilized a

model of an interactive machine learning approach. The test results of their proposed tool

demonstrated that it worked well as a supplementary follower classification across big

and diverse social communities.

34

2.5 Stand-Alone Provenance Systems

We tried to evaluate the stand-alone provenance systems in our evaluation framework by

conducting performance (responsiveness) and scalability experiments to investigate

whether these stand-alone provenance management systems were capable of handling

large-size social provenance data. For this performance evaluation, three different stand-

alone provenance management systems were chosen: PReServ, Karma and Komadu.

Further information about these provenance systems is presented in the next section. The

intention of this study is to obtain a more reliable picture of the relative advantages and

disadvantages of various stand-alone provenance systems.

The collection and processing of social data provenance lead to some challenges. Social

data provenance records can quickly grow large because of the large number of parties

participating. The number of services can grow to scale on the order of thousands or

millions of social interactions that take place in social media. As the size and volume of

the social data increased, the volume, size, and frequency of provenance data has also

increased. Therefore, it is clear that the scalability, distributed processing, and real-time

analytics will be critical not only for the social data streams but also for effective

performance of the provenance data generated about these data streams. In addition to

these scalability issues, quality and privacy issues are challenges in data collection.

Although social networks have a high degree of accessibility, the collection and

processing of social network data may not be feasible due to privacy reasons. Access to

this data is limited to specific privileged analysts. Also, the quality of the data is important

to evaluate for trustworthiness and accuracy of the information.

Provenance information shows the transformation lineage of a data item from its creation

till its final state. Being a topic of high interest to many researches, there have been many

studies that involve experiment reusability, reproducibility, fault tolerance, process

optimization and performance prediction [68].

The problem of analyzing, mining and visualizing large-scale provenance data persists in

many different scenarios. For example, several online streaming, large-scale data sets are

used to construct an analytical workflow application where several stages and steps are

conducted [69]. Another example is the CAMERA project, where 800 data sets are

hosted, containing almost 48 billion base pairs, 120 million reads, and around 20

35

workflows based scientific applications. These scientific applications are analyzed

against this very large reference dataset. Each application will be executed repeatedly,

generating various workflows, by many scientists using different query datasets.

Scientists need to get timestamps of the submitted executed requests [70]. Furthermore,

the introduction of provenance information usage in the emerging technology of big data

might create very large workflows when considering the velocity of data handled [71].

To get a fine-grain provenance tracking of a workflow, the size of the collected metadata

can exceed several times the size of the original data itself. Then there is the problem of

excessive overhead during provenance collection in big data processing systems.

Later in this research we studied some of the existing stand-alone provenance systems in

order to identify the one that best meets our needs. The stand-alone provenance systems

investigated here include PReServ, Karma, and Komadu. This section provides some

brief information about these systems.

PASOA (Provenance Aware Service Oriented Architecture) [72] is the software

architecture of the PReServ system that supports the recording of interaction provenance,

actor provenance, and input provenance with the provenance recording protocol, which

specifies the messages that actors can asynchronously exchange with a provenance store

to support provenance submission. PReServ, which is the realization of this architecture,

uses a provenance management service as a provenance store that provides a common

interface to a variety of storage systems, such as file system, relational databases, XML

databases, and RDF stores. PReServ can only capture provenance from the workflows in

which all components are web services. The PReServ approach is highly dependent on

applications based on SOA.

Karma [44], [73] was designed to support dynamic workflows in weather forecasting

simulations, where the execution path can change rapidly due to external events. Karma

allows users to collect and query provenance of scientific data processes with the ability

to run stand-alone or as part of a greater cyber-infrastructure setup. The Karma system

records the provenance in four dimensions: execution, location, time, and dataflow, and

uses a publish-subscribe notification protocol for provenance collection. Karma records

the published provenance messages in a central relational database server and uses the

Open Provenance Model (OPM) for data representation.

36

Komadu [46] is another stand-alone provenance capture and management system for

capturing, representing, and manipulating provenance coming from scientific

instruments, infrastructure, and storage. It uses the W3C PROV-O standard to represent

data and it is the successor of the Karma provenance system. Like Karma, Komadu also

uses a MYSQL database to store all incoming notifications, processed components, their

relationships, and generated provenance graphs. A connection pool is used to create and

efficiently manage database connections under high data rates.

One common challenge related with all these stand-alone provenance systems is that they

are all based on centralized solutions for storage mechanisms and do not scale when the

size of the provenance data increases. Another challenge is the lack of capabilities to

support data ownership, data quality, and trust properties of social provenance. Hence,

we argue that these systems are not quite useful for the provenance management

requirements for the big social provenance data.

2.6 Fuzzy Analytical Process

Soft computing includes techniques that aim to understand the tolerance for uncertainty

[74]. Soft computing has been utilized in different studies where the authors used fuzzy

logic [75], evolutionary computing [76] and machine learning [77]. Soft computing has

also been used in different application domains such as communication systems,

manufacturing automation, transportation, and healthcare [78]. In this study, we used a

fuzzy analytic hierarchy process, a soft computing method that is utilized for multi-

criteria decision-making processes to assign proper weights to the proposed metrics. The

analytic hierarchy process (AHP) method was introduced by Satty [79] as a “decision-

making method to tackle complex problems with uncertainties”. The main idea of AHP

is to use the results, both continuous and discrete, to rank the results using a variety of

existing alternatives. Since its introduction, it has been used widely in various research

areas [80], including software engineering (Aktas, 2016). In this study, we use Fuzzy

AHP to determine the values of the proposed social network metrics.

 The basic hierarchal level structure of AHP, where inputs are divided into multiple

layers, simplifying the problem. Each layer has several nodes and weights which are used

to connect nodes in adjacent layers. Fig 2.12 shows the basic hierarchal level structure of

AHP.

37

Figure 2.12 Simplified structure of an example AHP hierarchy

The basic flow of the AHP involves the following stages:

1. Creating the decision hierarchy that consists of three main layers. The top

represents the general goal, followed by a layer that represents the criteria that

affect the goal’s outcome, and, finally, a lower layer that represents all possible

alternatives.

2. By conducting comparisons and calculating the relative importance weights of a

decision’s criteria in the creation of pair-wise matrices, Saaty [79] used a scale of

weighting between 1 (resembling importance equality) and 9 (which resembles

extreme importance). Then, the average weight of each normalized criterion was

computed. In ranking alternatives according to the calculated weights of criteria,

the alternative scores are combined with the criterion weights to produce an

overall score for each alternative.

The AHP may be insufficient when handling cases that have extra vagueness, such as the

case of assigning accurate weights to our proposed social metrics. For that reason, we

introduce the use of the Fuzzy AHP method, in which we conduct pair-wise comparisons

using triangular fuzzy numbers (TFN) [81]. This will require an extra step to calculate

the synthesis of criterion priorities. TFN are represented as groups of triplets of real

numbers (l, m, u) where l ≤ m ≤ u. TNFs are used to express fuzzy events or relationships

when conducting pair-wise comparisons in the context of AHP [82]. Here, we propose a

TFN-based scale to represent the relationships between evaluation criteria. Table 2.2

shows the proposed scale.

38

Table 2.3 Triangular fuzzy conversion scale

Scale Triangular Fuzzy Number Reciprocal TNF

Equal Importance (1, 1, 1) (1, 1, 1)

Slightly more important (2/3, 1, 3/2) (2/3, 1, 3/2)

Strongly more important (3/2, 2, 5/2) (2/5, 1/2, 2/3)

Extra more important (5/2, 3, 7/2) (2/7, 1/3, 2/5)

Extreme importance (7/2, 4, 9/2) (2/9, 1/4, 2/7)

Using the introduced scale, we can create a TNF based fuzzy pair-wise comparison matrix

A{ãij}

where ãij = (lij, mij, uij), and its inverse value ãij = 1/ãji for every triangular fuzzy

number. Since AHP is normally used for conducting a questionnaire-based study that is

answered by different individuals who might give different importance to a different

criterion, a pair-wise matrix should be constructed for every answer set to ensure these

matrices will be aggregated using the fuzzy geometric mean method of Buckley [83] by

applying the following equation:

where ãijk is the qualified precedence using the TFN form of the kth decision maker’s

point-of-view and n is the total number of decision makers.

Once we have the aggregated pair-wise matrix, the next step is to calculate the fuzzy

synthetic extent Si using the following equation:

(2.1)

(2.2)

39

Once the fuzzy synthetic extent values are obtained, we use Chang’s method to calculate

the degree of possibility which represent the non-fuzzy weight-value criterion Sb ≥ Sa.

This value is calculated as follows:

In this research, we use the method proposed by Srichetta and Thurachon (2012), as

shown in the Methodology section (see Chapter 3), in order to obtain the degree of

reliability by applying the min operation on the vector of synthetic extent. This will

produce the non-fuzzy weight-value for each criterion so that the normalized weights can

be calculated. After the criterion weights are estimated, we compute the scores of all

identified case alternatives in accordance with each criterion and then calculate the

aggregate weights of the alternatives by accumulating the weights via a pre-defined

hierarchy.

(2.3)

(2.4)

40

CHAPTER 3

3. METHODOLOGY

3.1 Evaluation of Existing Stand-alone Social Provenance Systems

One of the purposes of this study is to analyze stand-alone provenance systems to

determine whether they are capable of processing large-scale social provenance data.

Hence, we need a test suite to test these stand-alone provenance systems and analyze the

results. This raises some questions: How can the capability of these stand-alone

provenance systems be analyzed? Which tests are required? The systems should be

analyzed for both performance and scalability. Hence, a test suite was developed to test

Karma, Komadu, and PReServ to analyze these systems in terms of performance and

scalability. Three types of tests have been implemented in this test suite to analyze the

capability of the stand-alone provenance systems.

The first test includes latency tests to analyze the response performance of the stand-alone

provenance systems. This experiment measures the ability of the stand-alone provenance

management systems to respond to queries on different provenance sizes and investigates

the performance of both key-value-based queries and multi-criteria (find) queries.

The second test includes simultaneous client connections to analyze the scalability and

performance of the stand-alone provenance systems. The test increases the number of

clients connected to the server and measures the response times on different numbers of

client connections. This test investigates the behavior of the system as the number of

concurrent clients querying the provenance data grows.

The third test includes different message rates to analyze the scalability of the stand-alone

provenance systems. The test increases the incoming message rate and measures the

41

response times of different message rates. This test investigates the behavior of the

provenance database when the load (number of incoming messages per second) is

increased.

3.1.1 Experiment Setup

All code was written in Java, using version 1.7 of the Java Standard Edition compiler.

The tests were conducted with Karma software (version 3.2.3), Komadu software (version

1.0), and PReServ software (version 0.3.1). The System.getTimeinmillis() function that

comes with Java 1.7 software was used as the timing function.

Komadu, Karma and PReServ services were set up to run on an Ubuntu 14.04 node with

two virtual CPUs, 7.5 GB of memory, 30GB IDE storage on a Google Compute Engine,

a Tomcat Apache Server (version 6.0.45), and Axis software (version 1.6.2) as a

container. A MYSQL database (version 5.5.47) was used on both provenance systems as

back-end storage.

The Provenance Generator and Query Test clients ran on multiple remote Ubuntu 14.04

nodes, each equipped with one virtual CPU and 3.75 GB of memory on Google Compute

Engine. The standard out-of-the-box settings of Tomcat, Axis, Karma, Komadu and

PReServ software were used. To facilitate testing of the system as-is, none of the

configurations were altered.

3.1.2 The Experiment

This research focused on the largest possible provenance size that is possible using the

existing implementation of a provenance database. This experimental study showed that

the large size of the graph provenance to be one with 4,000 social operations. When more

than 4,000 social operations were ingested, errors occurred while querying the

provenance database. Tests were conducted on both key-value-based query operations

and multi-criteria query (find) operations provided by the programmable WSDL (Web

Services Description Language) interfaces of Karma and Komadu. PReServ has no

specific query function, but it allows provenance retrieval using XQueries. Hence, XPath

queries were written for PReServ as a counterpart of the Karma and Komadu query

functions. This experimental study examined the performance of the systems through the

synchronous communication channel, as a Web Service approach provides a uniform

42

programming interface to ingest provenance for social network clients and was the most

appropriate method for both data and application integration.

The experiments started by first evaluating the performance of ingesting the provenance

for a single social workflow as the number of social operations involved in a workflow

increased. The results of this test were expected to provide an idea of the needs to capture

real-time data from social networks and help further explore whether the large-sized

provenance ingestion in centralized provenance management systems would create a

bottleneck in the future. The system ingested social workflows of 100, 1,000, 2,000,

3,000, and 4,000 social operations. The social operations include “tweet”, “like”,

“retweet”, and “reply”. The data ingestion process was conducted 10 times for each

workflow size and the average times were recorded. Figure 3.1 illustrates the average

time of generation and ingestion provenance data into Karma, Komadu, and PReServ for

each of the workflows. The X-axis of the plot shows the workflow sizes and the Y-axis

shows the average ingestion times. Figure 3.1 shows that there was a linear increase in

both of the stand-alone provenance systems, while the number of social interactions

increased. The data ingestion process in PReServ took the least amount of time, while the

data ingestion process in Komadu took the longest time.

43

Figure 3.1 Average population time of different social workflow sizes

This study included two types of query experiments, performance and scalability, to

analyze the capability of the stand-alone provenance systems.

3.1.2.1 Performance (Responsiveness) Experiment

The performance (responsiveness) experiment measured the centralized provenance

management systems’ ability to respond to queries on different provenance sizes and

investigate the performance of both key-value-based queries and multi-criteria (find)

queries. Each of the functions provided by Karma, Komadu, and PReServ web services

was run 100 times and the average latency on each of the ingested social workflows was

recorded.

Key-Value-Based Query Operations: The Karma and Komadu interfaces provide three

functions to retrieve provenance documents from activities (execution trace of social

operation), entities (data/artifact), and social workflow trace. Karma and Komadu provide

a programming interface to retrieve these documents based on workflow-ID, activity ID,

and entity ID. To do this, Komadu provides key-value-based querying operations:

getContextGraph(), getActivityGraph(), and getEntityGraph(); while Karma provides

7
6

3
1

2
4

5
0

2

4
3

4
0

0

6
7

6
7

4

7
4

4
7

0

7
3

1
4

3
2

1
3

7

5
8

7
5

3

8
2

3
9

6

1
0

0
9

4
2

3
0

0
6 8
5

8
0 1

5
8

8
1

2
1

7
1

4

2
4

5
7

9

0

20000

40000

60000

80000

100000

120000

100 1000 2000 3000 4000

M
ill

is
e

co
n

d
s

Number of Social Interactions

Karma

Komadu

Preserv

44

key-value-based querying operations: getWorkflowGraph(), getServiceGraph(), and

getProvenanceHistory(). In PReServ, XPath queries were written as a counterpart of

these Karma and Komadu query functions. Each of the query functions ran for 100

iterations on the generated social workflow sizes and the average latencies were recorded.

Figures 3.2, 3.3, and 3.4 show the average results of these tests. The X-axes of the plots

show the workflow sizes and the Y-axes of the plots show the average response times of

the query. These tests were executed on larger workflows, but when running

getActivityGraph() and getEntityGraph() functions, the system did not respond. Hence,

provenance data with 4,000 social operations was the large-provenance size limit in the

experiments.

Figure 3.2 Average Latency for getWorkflowGraph() operation on different workflow

sizes

1
7

.2

1
8

.1

1
8

.2

1
8

.7

2
1

.4

1
4

.5

1
7

.6

3
0

.7

3
1

.8

3
2

.6

2
7

5
.6

2
3

6
7

.9

1
9

5
3

9
.1

3
6

8
1

3
.2

5
7

1
5

7
.1

0

10000

20000

30000

40000

50000

60000

70000

100 1000 2000 3000 4000

M
ill

is
e

co
n

d
s

Number of Social Interactions

Karma

Komadu

Preserv

45

Figure 3.3 Average Latency for getActivityGraph() operation on different workflow sizes

Figure 3.4 Average Latency for getEntityGraph() operation on different workflow sizes

9
.2

9
.7

1
8

.3

3
2

.2

4
8

.8

1
8

4
.2 4

0
8

5

1
6

6
3

6
.8

2
6

4
8

2
.7

5
2

8
3

6
.4

2
6

3
.7

2
3

8
4

.5

1
8

8
9

2
.2

3
6

8
1

8
.2

5
7

1
3

1
.8

0

10000

20000

30000

40000

50000

60000

100 1000 2000 3000 4000

M
ill

is
e

co
n

d
s

Number of Social Interactions

Karma

Komadu

Preserv

1
3

.3

1
3

.8

1
4

.1

1
4

.4

1
4

.5

1
7

6
.9 4
1

1
2

.6

1
6

2
5

8
.6

3
3

5
7

2
.5

6
0

4
8

2
.8

2
7

5
.1

3
0

1
5

2
0

2
3

3
.8

3
7

3
8

2
.4

6
4

2
2

8
.6

0

10000

20000

30000

40000

50000

60000

70000

100 1000 2000 3000 4000

M
ill

is
e

co
n

d
s

Number of Social Interactions

Karma

Komadu

Preserv

46

Multi-criteria Query (find) Operations: In Komadu and Karma, the given provenance

database programming interfaces provide multi-criteria querying (find operation) types.

A performance (responsiveness) test similar to key-value operation tests was executed on

findEntity() functions, in which returns results matched a given criteria. As before, an

XPath query was written in PReServ as a counterpart of the Karma and Komadu find

operations. This test investigated the performance (responsiveness) of the find operation

when it returns only one result matching the given criteria under investigation. Each of

the find functions was executed 100 times on our generated social workflow sizes and the

average latencies were recorded. Figure 3.5 presents the average results of these tests.

The X-axis of the plot shows the workflow sizes and the Y-axis shows the average

response times of the find operation. Specifically, Figure 3.5 indicates that there was a

linear increase in PReServ find operation when the number of social interactions

increased, while there was only a slight increase in Karma and Komadu. This is because

PReServ is less optimized for querying and all provenance records must be accessed for

resolving a query.

Figure 3.5 Average Latency for findEntity() operation on different workflow sizes

6 6
.1

6
.3

6
.6

8
.2

6
.1

6
.1

6
.2

6
.7

8
.42
4

2
.5 6

8
6

8
.2

1
8

6
7

6
.9

3
6

7
9

7
.6

5
8

0
7

3
.3

0

10000

20000

30000

40000

50000

60000

70000

100 1000 2000 3000 4000

M
ill

is
e

co
n

d
s

Number of Social Interactions

Karma

Komadu

Preserv

47

3.1.2.2 Scalability Experiment

This experiment evaluated the scalability of retrieving provenance by conducting two

tests. Test 1 investigated the behavior of the system as the number of concurrent clients

querying the provenance data grew. The key value-based query functions

(getContextGraph() and getWorkflowGraph()) that receives provenance documents with

a given workflow-ID were used in this test. As a result of the query, the system returns

the social workflow graph as a whole. A social linear workflow consisting of 4,000 social

operations was used to conduct this experiment, because it was the largest provenance

size limit in the experiments conducted here. The experiment was run iteratively by

increasing the number of clients querying the database by 10 at every phase and recording

average latencies. The average latencies were computed over 100 iterations. Figure 3.6

illustrates the result of the test. The X-axis of the plot shows the concurrent clients and

the Y-axis shows the average response times of the query. Because PReServ is less

optimized for querying, Figure 3.6 indicates that there was a linear increase in PReServ

and that it took the most time for PReServ to query the provenance database. There were

also increases in Karma and Komadu as the client size increased but these increases were

smaller than PReServ.

Figure 3.6 Latency of simultaneous querying clients on a 4K social workflow

5
8

7

7
4

4

9
0

6

1
1

8
1

1
4

0
2

2
1

0
4

2
8

7
4

3
5

7
3

3
8

5

4
3

1

5
1

8

6
3

9

8
1

6

1
3

8
0

2
1

5
3

3
2

4
5

6
9

2
6

5

1
3

2
8

2
1

2
0

4
6

9
8

2
7

4
3

2
5

3
3

4
3

0
5

6
6

4
0

3
5

9
9

9
5

3
6 1
3

1
6

4
9

5

0

200000

400000

600000

800000

1000000

1200000

1400000

10 20 30 40 50 100 150 200

M
ill

is
e

co
n

d
s

Simultaneous Clients

Karma

Komadu

Preserv

48

Test 2 investigated the behavior of the provenance database while the number of incoming

messages per second was increased. The key value-based query functions

(getContextGraph() and getWorkflowGraph()) that receives provenance documents with

a given workflow-ID were used in this test. Again, a social linear workflow consisting of

4,000 social operations was used to conduct this experiment. The experiment was run

iteratively by increasing the message rate and recording average latencies. The average

latencies were computed over 100 iterations. This test was performed only for Karma and

Komadu, since PReServ was less optimized for querying. Figure 3.7 presents the result

of the test. The X-axis of the plot indicates the message rates and the Y-axis indicates the

average response times of the query. When the message rate was increased, average

latencies were increased, too. Figure 3.7 clearly shows that Komadu gave better results

than Karma in this test.

Figure 3.7 Latency with different message rates on a 4K social workflow

3.1.3 Findings and Discussions

In Karma and Komadu, the provenance queries translate to SQL queries that leverage

indices present on key fields. However, PReServ provides an XQuery interface for

querying provenance records. The PReServ database does not use any indices. This

1
0

4 1
6

3 2
5

4

3
6

4

4
7

6

6
2

3

7
7

2

9
8

0

7
2 1

0
2 1

8
5 2
3

0 2
9

0 3
5

7

4
7

6

6
6

7

0

200

400

600

800

1000

1200

50 75 100 125 150 175 200 250

M
ill

is
e

co
n

d
s

Message Rate (msg/sec)

Karma

Komadu

49

causes all provenance records to be accessed for resolving a query. Hence, Karma and

Komadu provided better results than PReServ in most cases.

Data streams in social media networks have a very high volume. For example, Twitter

produces over 100 terabytes of raw data each day [84]. Therefore, a large number of

provenance (semi-structured) input rates should be expected. In addition, as the size of

social interactions on the data published in social domain increases, the size of the social

provenance graphs will increase. The results of the experiments indicated the need for

additional research that explores whether the performance of large-size provenance

ingestion in centralized provenance management systems can be further optimized. The

results of the scalability experiments show that centralized, stand-alone provenance

management systems can achieve a good linearly increasing performance for increasing

simultaneous requests and can produce a relatively large-size provenance graphs with up

to 4,000 social operations.

However, this experimental study indicates that, due to limitations of the centralized

provenance management systems (errors due to lack of memory, HTTP connection

timeouts, etc.), centralized solutions do not perform well when dealing with social

workflows that exceed 4,000 social operations for simultaneous requests. To overcome

these limitations, an attempt was made to increase timeout values in HTTP connections

and the number of threads in the connection pool, but this did not change the system

behavior. The performance (responsiveness) experiment also indicated that the

centralized solutions do not scale to provenance sizes that are above certain thresholds

(i.e. provenance graphs with 4,000 social operations). To conduct the analysis and other

experiments on such large-size social provenance data, it should be sorted, processed, and

retrieved in a fast manner. This demonstrates the need for solutions for scalable

decentralized stand-alone provenance management systems that can process such data.

3.2 Generating a Synthetic Social Provenance Dataset

We observe several challenges related to provenance in social networks domain. First,

existing social networks do not provide any programming interfaces to access provenance

information of data published in it. There are no existing mechanisms to identify and trace

data objects. Provenance collection systems capture provenance on the fly. However,

their provenance collection mechanism may be faulty and drop provenance notifications.

50

Hence, social provenance records can be partial, partitioned and simply inaccurate.

Incompleteness and inconsistency of provenance records, “if existing”, are a challenge

for analyzing provenance datasets [18], [55]. There is a need for a synthetically created

social provenance database that is modeled based on real-life social interactions and

populated with known failure patterns. Although synthetic provenance databases are

available in other domains such as e-Science, there is a need for one within the social

networking domain. Second, social provenance records can quickly grow large because

of the high number of participating actors involved. Although the number of services

involved in e-Science workflows is in the order of hundreds, this number can grow to a

scale in the order of thousands or millions in social interactions that happen in social

media.

To address the abovementioned challenges, this study introduces a large-scale, noisy,

synthetic social provenance database, which includes a high volume of large-size social

provenance graphs. It introduces metrics that can be used to capture vital information as

provenance for calculating the data quality and user credibility.

3.2.1 Social Provenance Dataset Requirements

Cheah et al. identified several large-scale, diversity and realism requirements that must

be met for a provenance database [85]. A provenance database should consist of a

significant number of provenance records to support research at scale. The provenance

database should be drawn from varied workflows that have different characteristics in

terms of size, breadth, and length. The composition of workflows used to generate the

provenance should have failure characteristics. In addition to the abovementioned

requirements, we add another requirement, usability. We argue that a provenance

database should address not only the generic requirements of a provenance database but

also its domain-dependent requirements.

In this study, we generated a social provenance database that meets the abovementioned

requirements. We met the diversity requirement by generating three different types of

social provenance, each represents a different scale of social interactions. The categories

of social interactions are 100, 1K and 5K. For each type of social interaction, we created

a 100-social-workflow execution trace. We met the realism requirement by generating

the same dataset with a 10% notification failure and 10% execution failure rate. Cheah et

51

al. generated a noisy, 10 GB provenance database with failure characteristics [85] for

scientific datasets. Their study includes failure characteristics for both provenance

notification failures and workflow execution failures. Note that we do not consider the

latter since a social workflow is not dependent on a specific workflow. Finally, we met

the usability requirement by considering the major research problems in the social

network domain. Here, we are particularly motivated by research problems that are

investigated by the PRONALIZ project, a Turkish National Science Foundation-funded

Research Project [86]. PRONALIZ investigates the use of provenance in social media to

develop methodologies for the detection of information pollution and violation of

copyrights. Throughout the experience of using social media, it can be inferred that its

users face two major problems. One is the determination of data authenticity and quality.

It is hard to rate the reliability of a source in a user-generated-content platform where

sources of information might propagate false information which in turn causes the spread

of a polluted information. Thus, it would be hard to determine the actual quality of data

and how much emphasis should be given to it. The second problem is the uncertainty of

data visibility due to the dynamic changeability of content shared in social media, where

change can occur on the platform’s privacy settings or a change can occur on a user level

by applying more restrict privacy measures. These policies determine the copyrights of

the user’s shared data. User’s data, which are intended to be disseminated among friend

circles, may be disseminated via re-sharing within the social media. Users are not aware

of who actually can see his/her data and are unable to apply a process on it. As a result,

problems like violation of copyrights can arise. In order to create a social provenance

database that can be usable by researchers addressing these problems, we identified a

number of metrics.

In order to obtain a better understanding of metrics and have a better definition of

credibility of information or the trustworthiness of information source we first need to

present our social network provenance model. We believe our model can be used as a

generic model for provenance representation in all existing social networks.

Users in social networks tend to provide numerous information about themselves; this

information varies from one social network to another as, for example, in Twitter where

a user has a dedicated place only for bio, place, personal website and birthday. A

Facebook user can provide a lot more information about himself/herself, such as personal

52

interests, political affiliation, books they’ve read, movies they’ve watched, educational

background, and schools they’ve attended. Table 3.1 shows some of these attributes and

information with the percentage of users who have added this information to their

Facebook profiles and left it publicly viewable, according to G. Barbier et al. (2013).

Table 3.1 List of attributes and percentage of users who reveal them on Facebook.

Attribute Percentage

Current City 30.17

Gender 81.77

Relationship Status 26.24

Education and Word 25.13

Email 1.32

Interested in 18.66

Music 45.77

Movies 27.92

Activities 18.74

Television 33.30

The availability of such information plays an important role in the creation of social

network provenance metrics. The metrics used in the generated social workflows are

discussed in the following sections.

3.2.1.1 User information provenance availability measure

The availability of a user’s personal information indicates the trustworthiness of a social

network user as getting information from another well-known user adds credibility to this

information. The availability function, as defined by G. Barbier et al. (2013), objectively

quantifies progress in obtaining a user’s personal attribute values. The availability

function describes how much user provenance metadata is available for the statement of

interest, since it allows a user to perform simple comparison of search strategies that are

employed to obtain provenance attributes. It also allows prioritizing attributes by giving

each a specific weight in which the sum of weights of all attributes equal 1 and an attribute

with the weight of 0 will have no effect on the result of the measure.

53

 A → [0, 1]

In Equation 1, for every attribute n, Wn represents its weight. Xn = 1 if n is present or Xn

= 0 if the attribute is unknown. The availability function defines the amount of user

provenance metadata that is obtainable. It also prioritizes obtained attributes by giving

them weights with a sum that is equal to one. Attributes that have zero weight have no

impact on the metric value.

3.2.1.2 User Information Provenance Legitimacy Measure (Verifiability)

Finding a user provenance attribute might provide some insight; however, a certainty

measure of those attributes is needed to indicate the validity of found attributes. This can

be made by matching found attribute values with attributes found in other sources. The

legitimacy function is computed by averaging the number of independent social media

sites that are used to verify the attribute and is proposed to quantify whether or not the

provenance attribute values found are valid [9].

Cross-matching a user provenance attribute with different sources indicates the validity

of these attributes. The verifiability function is calculated by considering the number of

matches found on other social media sites [6], and is defined as:

V → Real Numbers

In Equation 2, for every attribute n, in equal to the source count for attribute n.

Furthermore, C is the average number of external sources of all attributes multiplied by

the number of attributes. We call a user account as verifiable when V ≥ 1.

(3. 1)

(3. 2)

𝐼𝑣𝜕 =
∑ 𝑖𝑛𝑁

𝑛=1

𝐶

54

3.2.1.3 User Information Provenance Social Popularity Measure (Prestige

Centrality)

Typically, a high-profile social network user, who might represent a celebrity or an

important individual, has a large number of followers. In other words, a famous user

enjoys high popularity, indicated by having many ties with others. In the case of an

undirected graph, which is the situation in some social networks, such as Facebook, this

metric can instead be represented by centrality, where an actor with a high degree of

importance maintains numerous contacts with other network users. A central user

occupies a structural position (network location) that serves as a source or conduit for

larger volumes of information exchange and other resource transactions with other actors.

This can be measured by simply calculating the summation of each actor’s number of

degrees in a nondirected graph and then normalizing it by dividing it by the maximum

number of degrees allowed by the social network.

A social network user with a high profile or a famous person having followers in large

numbers represents a bigger impact. In particular, prestigious users enjoy higher

popularity, as shown by gaining numerous followers and subscribers. We define the

popularity function as:

 P → Real Numbers

In Equation 3, Followers indicates the number of followers of a given user account, while

Followee indicates the number of a user accounts that this user account follows.

3.2.1.4 Information Provenance Social Impact Measure

The importance of a piece of information may be inferred by the number of social

activities associated with it. For example, a tweet with a high number of favors, retweet,

and reply operations may reflect the controversial nature of that information.

Thus, we calculate data proximity in the context of a user’s relationships by measuring

the social interactions of users who are not directly connected to the subject, divided by

the total number of interactions on a piece of information, and divide the set of all users

not directly connected, who have performed a social action on a piece of posted

information, by the set of all unique users who have performed a social action.

(3.3)

55

The importance of a piece of information can be inferred by the number of social activities

made upon it. For example, a tweet with a high number of favors, retweets and reply

operations may reflect controversy of that information. We define the measure of

information provenance Iiα → Ƞ as:

𝑆𝑜𝑐𝑖𝑎𝑙 𝐼𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 =
∑ 𝐶𝑖+𝑃𝑖+𝐴𝑃𝑖𝑁

𝑛=1

∑ 𝐶𝑖+𝑃𝑖+𝐴𝑖𝑁
𝑛=1

Where: Ci is the number of countenance operations, Pi number of Propagation operations

and APi number of sentimentally positive annotations.

3.2.1.5 Information Prominence or Proximity Prestige

Thus, we calculate data proximity in the context of a user’s relationships by measuring

the social interactions of users who are not directly connected to the subject, divided by

the total number of interactions on a piece of information, and dividing the set of all

directly not connected users, who have performed a social action on a piece of posted

information, by the set of all unique users who have performed a social action.

Thus, we calculate the data proximity in relation to a user’s relations by measuring social

interactions made by users who are not directly connected to the subject, divided by the

total number of interactions made upon a piece of information:

𝑃𝑟𝑒𝑠𝑡𝑖𝑔𝑒 𝑢𝑠𝑒𝑟, 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 =
∑ 𝐺𝑖𝑁

𝑛=1

∑ 𝑈𝑖𝑁
𝑛=1

Where G is the set of all directly not connected users, who have performed a social action

upon a piece of information posted by User u divided by the set of all unique users who

have made a social action.

Another view of a data proximity measure is by finding D (i,j) where j is the user who

has made a social interaction upon a specific data item and is the most distant among all

other users.

3.2.1.6 The Impact of a Post on A User’s Prestige

An increase in the number of followers in response to a post on a social network might

provide an indication of the importance of these data. For example, on Twitter, a non-

(3.4)

(3.5)

56

prestigious user may gain a very large number of followers by posting valuable

information or introducing a piece of information. This should show the impact of the

information published on the prestige of its publisher. Table 3.2 illustrates the different

categorizations of the presented metrics.

The increase of a number of followers upon posting information on a social network

might give an indication of the importance of these data as, for example, in Twitter a non-

prestigious user gains a very large number of followers upon posting valuable information

the introduction of a piece of information. We propose measuring the impact of i

information posted by user u on a time interval T starting at posting time as:

𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝐼𝑚𝑝𝑎𝑐𝑡 𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 =
#𝑁𝑒𝑤 𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠∗

∑ 𝐴𝑖𝑁
𝑛=1

∑ 𝐴𝑖,𝑇𝑁
𝑛=1

#𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠
∗ 100

Where Ai is the number of social actions performed by users upon information i, and is

the total number of social actions made upon all posts shared in time interval T. This

should give a percentage that shows the impact of an information i upon the prestige of

user u.

Table 3.2 List of social provenance attributes captured in the social provenance database

Metric

Graph Type Perspective
Time-

Dependen

t
Directed

Non-

Directed

Data in

the

Center

User in

the

Center

Verifiability

X X X

Popularity Prestige Centrality X

Availability X X X

Social Impact X X X

Prestige X X X

Artifact Impact X X X X

3.2.2 Generation of The Synthetic Dataset

Normally, a scientific workflow describes the accomplishment of a scientific objective

process, which is expressed by the task being done and its dependencies. Typically,

scientific workflow tasks are computational steps for scientific simulations or data

(3.6)

57

analysis steps [87]. On the other hand, a social workflow is always bound to run on a

social network. Its operations and its data are defined by the social network itself. In turn,

each social network names the social operations and data formats differently. In this

study, we introduce a set of properties that can be used to map the social operations to

PROV-O entities. Table 3.3 lists these properties along with their explanations. Figure

3.8 illustrates how we map social provenance attributes to each PROV-O entity.

Figure 3.8 PROV-O specification-based provenance nodes

and social provenance sub-types

58

Table 3.3 Terminology in the proposed social network provenance model

Sub-Type

(Properties)
Explanation

Equivalence in Social

Networks

Countenance
To support or approve a statement or an entity or its

content.
Like(v), Favor(v)

Annotation to remark, make an observation or make criticism. Reply, Comment

Publishment
To issue textual or graphical materials for public

distribution.
Post(v), tweet(v)

Subscription
To follow or watch the movement or

course/progress of something or someone.
Follow, get notified

Propagation To reproduce transmit, spread or disseminate. Share, Retweet

Follower
A person who follows another and becomes a

subscriber to his/her feed of tweets.
Follower, Liker

Followee
A person who is being tracked on a social media

website or application.
User

Original
The blog or post in its state at time of creation by its

original creator.
Tweet(n), Post(n)

Revised
Reconsider and alter (something) in the light of

further evidence.
Retweet, Shared post

Twitter is described to be the biggest data source openly accessible to everyone through

its stream and search API. Thus, it is the source for many recent research studies. There

are currently many tools developed based on mining a large amount of data for

information such as tracking earthquakes, world’s health and spread of epidemic diseases,

or even providing real-time information during crisis times by extracting information

from users’ Twitter feeds. In short, Twitter nowadays is used to mobilize users

emotionally and physically. Social workflows represent an abstract view of the various

social patterns observed on Twitter. Since it can be understood, visualized and

represented in different formats, thus analysis can also be conducted upon it. In order to

obtain a dataset with controllable characteristics that capture the nature of information

propagation in social media, we created a fully synthetic dataset imitating Twitter. This

synthetic dataset was designed to meet criteria that may not be achievable when collecting

data from Twitter’s live feed due to users’ privacy setting and availability of different

personal information which can impose a real issue when evaluating the to-be-developed

misinformation detection algorithms.

59

A simple workflow normally represents tweets of users not using a hashtag because they

have no intention of engaging in or creating a general topic. Such tweets usually tend to

get minimal engagement that is limited to the user’s followers. However, highly

prestigious users who have very large numbers of followers can get large interactions and

a wide impression spread. In contrast, we define a composite social workflow as a group

of separate workflows where all of them use a unified topic. Generally, the majority of

such participating users use a global hashtag or directed mention of a celebrity official’s

Twitter account. An example of such social interactions is in a solidarity group debate

where normally an opinion-based community is polarized [88]. Users’ interaction

dynamics and interaction patterns were observed and analyzed in different social events

that belonged to different topics [89]. The study indicated there were different

characteristics in the collected social workflows observed from real Twitter data. The

possible number of user engagements and the number of social interactions of our

generated social workflows were derived from these observations as shown in Table 3.4.

We generated 100 workflows of each of the described categories in which each of these

generated workflows is executed four times with different failure generation modules.

Table 3.4 Generated social workflows users' pool and number of social interactions

Users Pool Number of Social Interactions
Number of Generated

Workflows

10 10 100

10 100 100

100 100 100

100 1000 100

1000 1000 100

5000 5000 100

3.2.2.1 Database Generation Framework

The four components used in the creation of the provenance database are WorkflowGen,

WorkflowSim, ProvToolbox, and the Komadu provenance repository. Figure 3.9 shows

an overview of the framework.

60

Figure 3.9 Social provenance dataset generation framework

Komadu [46] is a stand-alone provenance capture and visualization system for capturing,

representing and manipulating provenance. It uses the W3C PROV standard [15], which

is considered to be the successor of the Karma [44] provenance capture system.

WorkflowSim is an open-source workflow simulator. It models workflows with a DAG

model and supports implementations of some popular dynamic and static workflow

schedulers and task-clustering algorithms [90]. WorkflowSim also has failure

modeling that supports two types of failure on both job and task level. Failure rates

generated by WorkflowSim are modifiable according to user’s preference [90].

WorkflowGen, on the other hand, is a tool developed by the same team for the purpose

of creating custom DAX workflows to facilitate evaluation of workflow algorithms and

systems on a range of workflow sizes, thus generating realistic, synthetic workflows

resembling those used by the real world similar to the ones gathered from Twitter [91].

We used WorkflowSim as a simulation environment to execute DAX files generated by

WorkflowGen. The provenance recorded from the logs of the simulation are generated

using ProvToolbox and put into Komadu [92].

3.2.2.2 Generated workflows

The client responsible for the generation of random tweet data considers that any social

visualized scenario, no matter how many users are engaged in it or how many social

61

activities has been made upon it, will be shaped as a multi-forked sequential graph. First,

the client keeps track of entities linked to the main workflow created either by re-tweeting

or replying. In addition, the client considers only social activities that may be done upon

a tweet, such as tweet, like, retweet and reply. The client also creates a pool of agents

where each agent has its own set of popularity, availability and verifiability values.

Finally, the client considers that every social operation is affected by the last social

operation made upon the same entity. The clients start by creating an initial activity

representing a “tweet operation” that leads to the creation of the original tweet entity.

From that point, the client will randomly invoke social operations until the wanted

number of operations is reached. Table 3.5 shows the PROV-O representation of

relationships between entities, agents and activities created at every iteration, depending

on the social operation type:

Table 3.5 PROV-O representation of social operations and entities

Social Operation PROV-O Representation

Post

Generation(tweet_activity, main_tweet)

Attribution(main_tweet, agent1)

Association(tweet_activity, main_tweet)

Like
Association(new_agent, like_activity)

Usage(like_activity, tweet_x)

Retweet

Association(new_agent, retweet_activity)

Generation(retweet_activity, new_tweet)

Usage(retweet_activity, tweet_x)

Attribution(new_tweet, new_agent)

Derivation (new_tweet, tweet_x)

Reply

Association(new_agent, reply_activity)

Generation(reply_activity, new_tweet)

Usage(reply_activity, tweet_x)

Attribution(new_tweet, new_agent)

62

We generated 300 workflows with 100, 1,000 and 5,000 social operations with 100

workflows for each category. The workflows were generated with different sizes of agent

pools ranging from 10 to 1,000 agents that were then executed in the following forms:

• Social workflows with complete successful runs.

• Social workflows with simulation execution faults generated using

WorkflowSim’s fault generation module which represents missing notifications

coming from the social network to specific actions.

• Social workflows with provenance collection faults in which some of the

provenance data extracted is dropped. This kind of fault represents errors that

might happen during provenance ingestion into the data repository. The dropped

provenance data is selected randomly during workflow simulation at a 10% rate.

• Social workflows with faults on both execution and provenance collection level.

We observed 1,200 workflow execution. Figure 3.10 shows the distribution of workflows

by execution case. We had a total of 361 successfully executed workflow provenances,

239 workflows with execution failure, 358 workflow execution provenances with 10%

notification drops, and 242 workflow execution provenances with both failure types.

Figure 3.10 Distribution of workflows by execution cases

63

Our observations of individual faulty runs also show that that the larger a workflow, the

higher the failure rate and dropped notification rate gets. Figures 3.11, 3.12, and 3.13

illustrate samples from all different kinds of generated provenance data from all types of

social workflows. Figure 3.11 shows the visualization of a successful run for 10 social-

operations workflows.

Figure 3.11 Provenance visualization of a successful workflow run

Figure 3.12 shows a provenance visualization of 10 social operations workflow with

provenance collection failure. It can be observed that some of the relationships are

missing within the provenance visualization presented in Figure 3.12.

Figure 3.12 Provenance visualization of a workflow execution

with provenance collection 10% error rate

64

Figure 3.13 shows the provenance visualization of the same execution of a 10 social

operations workflow including both the errors on notification collection level and the

provenance ingestion level. Missing activities and missing dangling entities are both

observed in the visualization below.

Figure 3.13 Provenance visualization of a workflow execution with

both provenance collection error and notification failure error

The social provenance database was developed to serve as a test platform for the

development of failure resilient misinformation detection algorithms.

3.3 Misinformation Detection Algorithm

Ward Cunningham, the father of the wiki, stated that "the best way to get the right answer

on the Internet is not to ask a question, it's to post the wrong answer". This concept is

called Cunningham's law. Our proposed methodology relies mainly on the collaborative

wisdom of the public interacting with information in social networks by calculating the

weighted impact of a user. This calculation is done based on the user's credibility metrics.

Most social networks provide the means for a user to give sentiment feedback without the

needing to write a comment. The types of these feedbacks may vary from one social

network to another. For example, a Facebook user has the option of leaving one of six

different sentiment feedbacks, while a Twitter user can only give the like sentiment.

However, many of the most popular social networks have a similar like functionality

which implies positive feedback. Our proposed algorithm has the following assumptions:

Assumption 1: A like is a social operation that is considered positive feedback and

therefore is given a positive value. Most social networks provide a means for the user to

65

give sentiment feedback without the need to write a comment. Therefore, we assume that

whenever a user uses a like operation on a post, that user wants to give positive feedback.

Assumption 2: Pairs of social operations, where the operations are applied within a pre-

set time interval and where one of the operations is the like operation, are considered

positive feedback. Some social networks provide different feedback options such as

sentiment feedbacks and comments. Therefore, for users of such networks, using

sentiment feedback along with a comment is common usage. Given a time interval,

whenever a user gives multiple feedbacks that includes a like operation, we assume that

the user wants to give positive feedback.

Assumption 3: Social operations made by a user without like operations is considered

negative feedback. We assume that when a user does not specifically use a like operation

on a post, we cannot tell exactly if that user likes the post. Therefore, we assume that the

user is not giving positive feedback.

Assumption 4: The state of a data entity (the original Twitter post or tweet) changes

periodically for a predefined period. During this period, social operations can be grouped

together. As the social operations may be applied simultaneously, users will only be able

to see the operations that happened before they take any action. Therefore, we group

together the social operations that happen in small time window. We assume that social

network users decide whether they like a post based on its state (i.e. the number of likes,

friends who like the post, friends who commented on the post etc.).

Figure 3.14 The proposed misinformation detection algorithm

66

The proposed algorithm shown in Figure 3.14 takes the provenance graph of the generated

social workflow and extracts a user’s metrics as discussed in the metrics section 3.1. The

algorithm calculates changes in distance for every new state the main tweet goes through.

The main tweet updates the stated value in the provenance graph during a predefined

period, where actions upon the tweets aren’t affected by each other but rather only

affected by the actions and users that interacted in prior states. Thus, the output is a series

of values that shows the changes in the proposed metric value.

The proposed approach takes the provenance graph of the generated social workflow and

extracts users’ metrics, as discussed in the metrics section. It calculates the credibility of

the metric values for all users engaged in workflows and users who may have seen the

data. We believe that trustworthiness, user credibility and social status make a large

impact on the type of social privacy policy used toward such accounts. For example,

Twitter is known to have a large number of programmable bots and trolls which makes

the real users social networks experience bad and sometimes even malicious when

promoting fake news. Generally, users prefer debating and communicating with real and

credible users when expressing their views and sharing personal information.

Figure 3.15 Visualization sample of a social workflow

Figure 3.15 shows a visualization sample of a social workflow generated with our

synthetic social provenance data generator. The orange pentagons represent Twitter users,

while the attached rectangles represent the values of the user’s recorded provenance

metrics and the darker dotted rectangle is the user’s list of followers; the blue rectangles

represent one or more social activities (post, like, reply, re-tweet) and the yellow ovals

represent tweets generated by the users invoking one of the social operations. This

example shows the interaction of three Twitter users. Our developed framework extracts

67

a list of users who took a social action within the workflow and their followers. Then it

calculates their provenance metric values. Finally, it returns a list of users with credibility

values less than the predefined threshold. The credibility of a user Ux is calculated using

the following equation:

𝑪𝒓𝒆𝒅𝒊𝒃𝒊𝒍𝒊𝒕𝒚 𝑼𝒙 = 𝑽𝒆𝒓𝒊𝒇𝒊𝒂𝒃𝒍𝒊𝒍𝒊𝒕𝒚 × 𝑾𝒗 + 𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 × 𝑾𝒂
+ 𝑷𝒐𝒑𝒖𝒍𝒂𝒓𝒊𝒕𝒚 × 𝑾𝒑

In Equation 4, Wv, Wp and Wa are the weights assigned to the verifiability, popularity

and availability metrics, respectively. Each of the metrics that we use is given a weight-

value ranging between 0 and 1 and the summation of all weights should be equal to 1. For

the sake of demonstrating the algorithm execution, we calculated the credibility value of

users in the social workflow visualization sample in Figure 3.12, where we gave the used

metrics equal weights. However, the calculation of the metric weights may change

according to the presence of such metrics. It can also be observed from Figure 3.12 that

user-1 and user-3 are in each other’s immediate network. While user-3 is in user-2’s

reach network, user-2 is outside of user-3’s immediate and reach networks.

3.3.1 Analytic Hierarchy Process

According to the proposed distance from positivity algorithm assumptions, the developed

module has no restriction for obtaining data on published content, friends or follower

lists. Therefore, the popularity value will always be present and is thus an invariant

variable. Taking into consideration the different categories of the proposed metrics, we

identify 21 possible variations. Since verifiability is required to find the availability value

and for it to be larger than zero, we ignore cases where the availability value equals zero

and the verifiability is larger than zero. Figure 3.16 shows the hierarchal structure of

evaluating social provenance metric variations.

(3.7)

68

Figure 3.16 Hierarchal structure of evaluating social provenance metrics weights

We introduce a way to construct the pair-wise comparison matrix of our proposed social

provenance metrics, the construction of hierarchical structure to be analyzed, and the

steps of generating the relative and normalized weights. We begin by identifying the

different categories of proposed social metrics values. Table 3.6 shows the proposed

categories.

Table 3.6 Categories of Metrics Values

Popularity (P) Availability (A) Verifiability (V)

- A=0 V=0

- 0 < A ≤ 25% 0 < V ≤ 2

- 25 < A ≤ 50% 0 < V ≤ 5

- 50 < A ≤ 75% 0 < V ≤ 7

- 75 < A ≤ 100% V > 7

We construct the fuzzy pair-wise comparison matrix in accordance with what is presented

in (2), based on the transformed TFNs shown in Table 3.6. Meanwhile, Table 3.7

illustrates the fuzzy pair-wise comparison matrix of the criteria level.

Table 3.7 Fuzzy pair-wise comparison matrix in criteria level

CRITERION POPULARITY AVAILABILITY VERIFIABILITY

POPULARITY 1 (1.5, 2, 2.5) (1.5, 2, 2.5)

AVAILABILITY (0.4, 0.5, 0.67) 1 (0.4, 0.5, 0.67)

VERIFIABILITY (0.4, 0.5, 0.67) (0.67, 1, 1.5) 1

69

The sums of the rows and columns are shown in Table 3.8. These sums will be used to

calculate the fuzzy synthetic extent values.

Table 3.8 The sums of horizontal and vertical directions

Criterion ROW SUMS COLUMN SUMS

POPULARITY (4, 5, 6) (1.8, V2, 2.34)

AVAILABILITY (1.71, 2, 5) (3.17, 4, 5)

VERIFIABILITY (2.07, 2.3, 3.17) (3.17, 4, 5)

SUMS (7.77, 9.5, 11.67) (8.14, 10, 12.34)

The fuzzy synthetic extent value Si with respect to the ith criterion can be computed with

(4). Table 3.9 shows the fuzzy synthetic extent values for each criterion.

Table 3.9 The fuzzy synthetic extents

CRITERION FUZZY SYNTHETIC EXTENT

POPULARITY (0.324, 0.5, 0.737)

AVAILABILITY (0.137, 0.2, 0.61)

VERIFIABILITY (0.167, 0.25, 0.389)

From the fuzzy synthetic extent values, the non-fuzzy values that represent the relative

preferences or weights of one criterion over other criteria will be approximated as shown

in (5). Table 3.10. shows the calculated relative weights and its corresponding normalized

weights of our proposed social provenance metrics.

Table 3.10 Criteria’s approximated fuzzy priorities (relative and normalized)

CRITERION RELATIVE WEIGHT NORMALIZED WEIGHT

POPULARITY 1 0.438

AVAILABILITY 0.488 0.213

VERIFIABILITY 0.794 0.347

70

The normalized criterion weights are substituted to calculate the relative weights of

metrics for each identified alternative case. Table 3.11. shows the weights for the

corresponding cases. This serves as a reasoning base for our developed framework.

Table 3.11 Metrics weights for each identified alternative case

ALTERNATIVES POPULARITY AVAILABILITY VERIFIABILITY

A1 1 0 0

A2 0.892 0.108 0

A3 0.805 0.194 0

A4 0.732 0.267 0

A5 0.672 0.327 0

A6 0.759 0.091 0.149

A7 0.695 0.168 0.136

A8 0.64 0.233 0.125

A9 0.597 0.289 0.116

A10 0.659 0.079 0.26

A11 0.61 0.147 0.241

A12 0.568 0.207 0.224

A13 0.531 0.258 0.209

A14 0.584 0.07 0.345

A15 0.545 0.132 0.322

A16 0.511 0.186 0.302

A17 0.481 0.234 0.284

A18 0.522 0.063 0.414

A19 0.491 0.118 0.389

A20 0.463 0.169 0.367

A21 0.438 0.213 0.347

71

3.3.1.1 Application of AHP

This section presents the way to construct the pair-wise comparison matrix of our

proposed social provenance metrics, the construction of hierarchical structure to be

analyzed, and the steps of generating the relative and normalized weights.

We started by identifying the different categories of proposed social metrics values. Table

3.13 indicates the proposed categories. Note that the artifact impact metric is affected by

trust factor of sentiment analysis tools being used.

Table 3.12 Categories of metrics values

Artifact Prestige (AP) Artifact Impact (At) Social Impact (Si)

- At =0 Si =0

- 0 < At ≤ 25% 0 < Si ≤ 25%

- 25 < At ≤ 50% 25 < Si ≤ 50%

- 50 < At ≤ 75% 50 < Si ≤ 75%

- 75 < At ≤ 100% 75 < Si ≤ 100%

According to the proposed distance from positivity algorithm assumptions, the developed

module has no restriction in obtaining data on published content or friends and followers

lists. Therefore, the artifact prestige value will always be present. Taking into

consideration the different categories of the proposed metrics where social impact relies

directly on the level of confidence that we put into sentiment analysis tools used, we

categorized confidence into four different level. Thus, we identify 21 possible different

variations.

We construct the fuzzy pair-wise comparison matrix in accordance with what is presented

based on the transformed TFNs shown in Table 3.13. Meanwhile, Table 3.14 illustrates

the fuzzy pair-wise comparison matrix on criterial level.

72

Table 3.13 Fuzzy pair-wise comparison matrix in criteria level

 Artifact Prestige (AP) Artifact Impact (At) Social Impact (Si)

Artifact Prestige

(AP)

1 (1.5, 2, 2.5) (1.5, 2, 2.5)

Artifact Impact

(At)

(0.4, 0.5, 0.67) 1 (0.4, 0.5, 0.67)

Social Impact (Si) (0.4, 0.5, 0.67) (0.67, 1, 1.5) 1

The sums of the rows and columns are shown in Table 3.14. These sums will be used to

calculate the fuzzy synthetic extent values.

Table 3.14 The sums of horizontal and vertical directions

CRITERION ROW SUMS COLUMN SUMS

Artifact Prestige (AP) (4, 5, 6) (1.8, V2, 2.34)

Artifact Impact (At) (1.71, 2, 5) (3.17, 4, 5)

Social Impact (Si) (2.07, 2.3, 3.17) (3.17, 4, 5)

SUMS (7.77, 9.5, 11.67) (8.14, 10, 12.34)

The fuzzy synthetic extent value Si with respect to the ith criterion can be computed with.

Table 3.15 shows the fuzzy synthetic extent values for each criterion.

Table 3.15 The fuzzy synthetic extents

CRITERION FUZZY SYNTHETIC EXTENT

Artifact Prestige (AP) (0.324, 0.5, 0.737)

Artifact Impact (At) (0.137, 0.2, 0.61)

Social Impact (Si) (0.167, 0.25, 0.389)

From the fuzzy synthetic extent values, the non-fuzzy values that represent the relative

preferences or weights of one criterion over other criteria will be approximated as shown

73

in Table 3.16 shows the calculated relative weights and its corresponding normalized

weights of our proposed social provenance metrics.

Table 3.16 Criteria’s approximated fuzzy priorities (relative and normalized)

CRITERION RELATIVE

WEIGHT

NORMALIZED WEIGHT

Artifact Prestige (AP) 1 0.438

Artifact Impact (At) 0.488 0.213

Social Impact (Si) 0.794 0.347

The normalized criterion weights will be substituted in order to calculate the relative

weights of metrics for each identified alternative case. Table 3.17 shows the weights for

their corresponding cases. This will serve as a reasoning base for our developed

framework.

74

Table 3.17 Metrics Weights for Each Identified Alternative Case

ALTERNATIVES Artifact

Prestige (AP)

Social

Impact (Si)

Artifact

Impact (At)

Values

A1 1 0 0 Ap=1, At = 0,

Si= C0

A2 0.892 0.108 0 Ap=1, At = 0,

Si= C1

A3 0.805 0.194 0 Ap=1, At = 0,

Si= C2

A4 0.732 0.267 0 Ap=1, At = 0,

Si= C3

A5 0.672 0.327 0 Ap=1, At = 0,

Si= C4

A6 0.759 0.091 0.149 Ap=1, At = 25,

Si= C1

A7 0.695 0.168 0.136 Ap=1, At = 25,

Si= C2

A8 0.64 0.233 0.125 Ap=1, At = 25,

Si= C3

A9 0.597 0.289 0.116 Ap=1, At = 25,

Si= C4

A10 0.659 0.079 0.26 Ap=1, At = 50,

Si= C1

A11 0.61 0.147 0.241 Ap=1, At = 50,

Si= C2

A12 0.568 0.207 0.224 Ap=1, At = 50,

Si= C3

A13 0.531 0.258 0.209 Ap=1, At = 50,

Si= C4

A14 0.584 0.07 0.345 Ap=1, At = 75,

Si= C1

A15 0.545 0.132 0.322 Ap=1, At = 75,

Si= C2

A16 0.511 0.186 0.302 Ap=1, At = 75,

Si= C3

A17 0.481 0.234 0.284 Ap=1, At = 75,

Si= C4

A18 0.522 0.063 0.414 Ap=1, At = 100,

Si= C1

A19 0.491 0.118 0.389 Ap=1, At = 100,

Si= C2

A20 0.463 0.169 0.367 Ap=1, At = 100,

Si= C3

A21 0.438 0.213 0.347 Ap=1, At = 100,

Si= C4

75

3.4 Calculation of Data-based Credibility and Its Usage in Proposed Algorithms

Based on this understanding the new credibility equation would be as follows:

𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑈𝑥 = 𝑉𝑒𝑟𝑖𝑓𝑖𝑎𝑏𝑙𝑖𝑙𝑖𝑡𝑦 × 𝑊𝑣 + 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑊𝑎 + 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 × 𝑊𝑝

While Artifact credibility within time window T would be calculated as:

𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑇)𝐴 = 𝑆𝑜𝑐𝑖𝑎𝑙 𝐼𝑚𝑝𝑎𝑐𝑡 × 𝑊𝑠 + 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑃𝑟𝑒𝑠𝑡𝑖𝑔𝑒 × 𝑊𝑝𝑝

+ 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝐼𝑚𝑝𝑎𝑐𝑡 × 𝑊𝑎𝑖

Thus, the credibility of user published data within a T time would be:

𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑈𝑥 × 𝑊𝑐𝑢 + 𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑇)𝐴𝑥 × 𝑊𝑎𝑥

Where Wcu is the weight assigned to user-based metrics credibility value, while Wax is

the weight assigned to data-based metrics value.

3.5 Privacy Violation Detection

The proposed methodology handles the described problem by utilizing provenance graphs

obtained from users’ social profile data and activities. We use the provenance data to

track data propagation and lifecycles.

The goal of CEP is to process real-time events. It is concerned with instantaneous events.

An event represents the current state of something or a specific change or action;

furthermore, it can represent the absence of an action. CEP, if supported with reasoning

abilities, can leverage real-time, intelligent decision making [93]. Adding such

capabilities can improve social network user experience. Utilizing flexible CEP in social

networks requires a temporal description of events, which can be achieved by utilizing

provenance graphs.

(3.8)

(3.9)

(3.10)

76

We introduced several custom user privacy policy infringement cases to demonstrate our

approach. Table 3.18 shows the formal representation of the policies that were used. Each

policy is formulated as a rule. When creating the privacy policy detection rules, we

identified various patterns. Those patterns were derived from simple events, as shown in

Table 3.18. The simple/basic event becomes complex through combining patterns for a

specific period, wherein the patterns are sequenced, aggregated, conjoined, disjointed and

negated.

Table 3.18 Formal representation of rules

Rule

ID

Formal Representation Description

Rule1

ON PATTERN (→Action on

(MainTweet (τ)) By User ɥ ∉

Originator’s Network (Ŋ))

DO ACTION (Launch

Notification)

Data being touched by a user outside

of the originator’s immediate network

(not in friends list).

Rule2

ON PATTERN (→Action on

(MainTweet (τ)) By User ɥ ∉

Originator’s Reach Network (Ň))

DO ACTION (Launch

Notification)

Data being touched by a user outside

of the originator’s reach network (not

a friend & not a friend of a friend).

Rule3

ON PATTERN (→Action on

(MainTweet (τ)) By User ɥ ∉

Originator’s Network (Ŋ) & ɥ

Credibility < Threshold)

DO ACTION (Launch

Notification)

Data being touched by a user outside

of the originator’s immediate network

with credibility lower than the

specified threshold.

Rule4

ON PATTERN (→Action on

(MainTweet (τ)) By User ɥ

Credibility > Threshold)

DO ACTION (Launch

Notification)

Data being touched by a user with a

very high social impact (Credibility).

Rule5

ON PATTERN (→Action on

(MainTweet (τ)) By User ɥ ∉

Originator’s Reach Network (Ň) &

ɥ Credibility >= Threshold)

DO ACTION (Launch

Notification)

Data being touched by a user with a

very high social impact from outside

the originator’s immediate network.

Rule6

ON PATTERN (→Action on

(MainTweet (τ)) By User ɥ ∉

Originator’s Reach Network (Ň) &

ɥ Credibility <= Threshold)

DO ACTION (Launch

Notification)

Data being touched by a user with a

very low social impact from outside

the originator’s immediate network.

77

We use CEP in the window of the event, i.e., provenance notifications, to search for a

pattern that matches the rules identified in Table 3.18. Whenever a match is detected, a

privacy policy violation is also detected. The rules work on three different levels. The

first level concerns an immediate network resembling users’ friends/follower. The second

level concerns a user’s reach network, which represents a user’s friends and friends of

friends all together. The last level concerns everything outside of the first two levels. As

can be seen in Table 3.18, in some rules we introduce a social metric called user

credibility.

We argue that a user’s credibility has a large impact on social privacy policy used social

media. Our argument is based on the following assumption: If a user account has a low

user credibility in a social network, then such user account is a good candidate for a

possible copyright violation activity within that network. Our assumption is based on the

real-life examples. For example, Twitter is known to have a large number of

programmable bots and trolls that are programmed to replicate a user’s original content

in other networks. Such fake user accounts have low user credibility values. The proposed

architecture is designed to detect user accounts with low user credibility values so that

the candidates for copyright violation can be identified. Below, we discuss, in great detail,

the details of how user credibility is calculated.

3.5.1 Proposed Software Architecture

In order to detect a policy violation, we employ concepts from CEP so as to detect

previously defined rules (see Table 3.18). We introduce a software architecture of a policy

violation detection system that can be integrated with existing social media platforms.

Figure 3.17 depicts the layered software architecture of this platform.

78

Figure 3.17 Layered software architecture of privacy policy

violation detection framework

Figure 3.17 shows the abstract layers of the proposed architecture of the system. As

shown in the proposed software architecture, the event-streaming engines (streaming

engine and CEP engine) receive the notification graphs deriving from the outside stream

or from a provenance repository. Provenance graphs are then grouped and converted into

provenance events, which are sent into a pattern detection module through facade objects.

The facade design pattern is being used here both to hide the complexity of the system

and to facilitate future integration of other CEP engines. The pattern detection module is

responsible for analyzing the incoming provenance events and checking for matches

against the defined rules. Once a pattern match is detected, the pattern detection module

signals the notification module, which sends the appropriate notification message

accordingly. The pattern detection module consists of two main layers: the event

subscriber layer which contains corresponding representation of a privacy rule pattern

and is responsible of generating pattern match flags; and the event handler, which works

as a mediator between the incoming events stream that needs to be assigned to its

appropriate subscriber and the notification module.

3.5.2 Implementation of the Proposed Approach

To facilitate testing the proposed software architecture, we developed a prototype

implementation that is responsible for extracting the list of users engaged in a social

79

workflow in accordance with their credibility, and applied CEP to detect previously

identified patterns.

For evaluating our proposed framework, we developed a module that is responsible for

extracting the list of users engaged in a social workflow in accordance with their

credibility. We integrated the module into our previously implemented social workflow

generation framework. The social provenance workflow generation framework [34] uses

WorkflowSim (an open-source workflow simulator) and WorkflowGen (an open-source

workflow generator) to create DAG model-based workflows and provide implementation

interfaces for task-clustering algorithms, while showing common dynamic and static

workflow schedulers [90]. Figure 3.18 shows the main parts of this framework.

Figure 3.18 Workflow generation and user provenance analysis framework

As a simulation environment, we utilized WorkflowSim in our social provenance

workflow generation and simulation framework. The DAX files ingested were created

using Workflow-Gen. The XML-based DAX files resemble the abstraction of a single

workflow, an XML-based file is utilized for workflow as well [94]. Provenance records

representing simulation log output were created using ProvToolBox [15] and then

ingested into Komadu, which is a provenance repository that can visualize provenance

graphs [47]. ProvToolBox is an open-source provenance processing library. Komadu,

which uses W3C PROV-O notation, is the successor to Karma, which uses an OPM

provenance notation [44] provenance capture system. The information quality evaluation

module retrieves provenance graphs from Komadu, extracts the ingested user-based

80

attributes and calculates the value of the user credibility metric. We should note that as

the size of the provenance dataset grows, this may affect the performance of the

provenance storage, i.e. Komadu. Hence the performance of the provenance retrieving

module is dependent on the KOMADU’s provenance retrieval capability.

As it is the main contribution of this study, the architecture of the privacy policy violation

framework is the illustrated in Figure 3.18 in detail. We developed a prototype of this

proposed architecture. The developed system has a set of extendible facade classes

responsible for hiding the complexities of the utilized streaming and CEP engines. The

streaming façade and the CEP engine façade make the prototype dynamic in terms of

utilization of different libraries. The streaming façade receives provenance graphs

generated statically and the prototype performs under the assumption that they have to be

complete and have already reached the end of their cycle. Here, we utilize the Spring

Framework in order to add inversion of control and dependency injection design pattern

capabilities so as to delegate the creation of stream listeners and event handlers according

to the user’s preference. In turn, this approach makes our implementation highly

decoupled. In addition, it adds an extra level of layer segregation by making it much easier

to switch to different tools, libraries and technologies.

Giving all data-based metrics similar equal weights would be a valid assumption since

we have no clear indication of the importance of one of metric over the others. However,

considering the efficiency of sentiment analysis tools, which take part in the calculation

of social impact metric, and the fact that most social provenance graphs are incomplete,

one can argue that the artifact impact metric can have precedence over the other two

metrics. Using fuzzy AHP, previously used in the creation of a dynamic weighting model

for user-based metrics, can help determine configurable weighting according to the

completeness of social provenance graphs and the level of confidence in used tools. Either

way, credibility would be calculated in terms of the time window that examined artifacts

took place in.

81

CHAPTER 4

4. EVALUATION, RESULTS AND DISCUSSION

4.1 Evaluation of Misinformation Detection Algorithm

Existing misinformation detection methodologies rely on comparing information

published on social networks against reliability results determined by fact-checking

agencies, which are maintained manually and that monitor a limited number of

information and news sources. We discussed such approaches in the Related Work

section. Other methodologies consider the originator’s credibility or social interaction

with the published information and the way the information is disseminated. However, in

our approach we introduce a new approach that utilizes a wide set of metrics that cover

both data-related and user-related aspects and consider both aspects with metrics that can

cover all facets.

4.1.1 Type of Evaluation Scenarios

To test the algorithm, we used our synthetic social provenance workflow generator [95]

to generate workflows with the following characteristics:

This scenario considers social workflows, where users apply their actions without looking

at the additional metadata (i.e., who touched the data and when). In other words, users

make their decisions (i.e., decisions on whether to like the data or not) based on the

content of the data. We assume that if the content contains misinformation, a user will

most likely give a negative feedback. If the content is correct information, then the user

might give positive feedback with a higher probability. The workflows are generated

randomly, and all the actions have an equal probability (like, reply, retweet).

82

Users apply an action after reviewing additional metadata (such as the user credibility of

the originator) in addition to the content of data, as they make decisions. Here, verification

is affected by the originator's credibility. In this scenario, social workflow generation is

done in a biased random fashion, where the higher the originators credibility metrics are,

the more likely they are to get a positive feedback.

To evaluate the usefulness of the proposed algorithm, we examine up to 2,000 social

workflows. Half of them are generated with biased randomness, according to originator’s

credibility value. Table 4.1 shows the details of the generated workflows.

Table 4.1 List of social provenance attributes captured

in the social provenance database

Number of

Workflows

Generated

Number

Of

Social

Operations

Users Pool
Biased

Randomness

100 1000 100 YES

100 1000 200 YES

100 1000 300 YES

100 1000 400 YES

100 1000 500 YES

100 100 10 YES

100 100 20 YES

100 100 30 YES

100 100 40 YES

100 100 50 YES

100 1000 100 NO

100 1000 200 NO

100 1000 300 NO

100 1000 400 NO

100 1000 500 NO

400 100 20 NO

100 100 50 NO

83

4.1.2 Developed Framework

The social provenance workflow generation framework (Baeth & Meh Aktas, 2017) uses

WorkflowSim and WorkflowGen, an open-source workflow generator and simulator. It

models workflows using a DAG model and supports implementations of some popular

dynamic, static workflow schedulers and task-clustering algorithms [90]. Figure 4.1

shows the main components of our framework.

We used WorkflowSim as a simulation environment to execute the DAX files generated

by WorkflowGen that represent the abstract description of a single workflow in XML

format. The provenance recorded from the simulation logs were generated using

ProvToolBox [92] and put into Komadu [46], a stand-alone provenance capture and

visualization system for capturing, representing, and manipulating provenance. It uses the

W3C PROV standard [96], which is considered as the successor to Karma [44]

provenance capture system. The information quality evaluation module retrieves

provenance graphs from Komadu, extracts user-based and content-based attributes, and

calculates the quality metric of the proposed information.

Figure 4.1 Workflow generation and information quality evaluation framework

84

4.1.3 Analysis and Insights

By examining the data obtained from analyzing our pre-generated social provenance

workflow data, we inferred that there is a proportional relationship between the distance

of a positive metric and the amount of negative feedback a tweet has received. Both

Figure 4.2 and Figure 4.3 illustrate this relationship. Fig 4.3 shows the total number of

users engaged in a workflow and shows how users engaged in negative feedback affect

the distance from the positivity metric in workflows with 100 social operations.

Figure 4.2 The relationship between negative feedback and distance from positivity

value for 500 randomly generated workflows, each with 100 social operations in the X-

axis represents the ID of the workflow, the left-hand Y-axis represent workflow’s

distance from

Figure 4.2 illustrates the total number of users engaged in a workflow, who are engaged

only with negative feedback and their relationship and effect on the distance from a

positivity metric for workflows with one thousand social operations.

85

Figure 4.3 The relation between negative feedback and distance from positivity value

for 500 randomly generated workflows, each with 1,000 social operation the X-axis

represents the ID of the workflow, the left-hand Y-axis represent workflow’s distance

from positivity score and right-hand Y-axis represent number of engaged users with

negative feedback.

The other observations were made by examining the results of the proportional

relationships between the value of the distance from positivity, the originator’s credibility

value, and the amount of negative feedback based on the tweet. Figure 4.4 shows a plot

of the number of users engaged only in negative feedback. Their relationship and distance

from the positivity metric for randomly-biased generated workflows are shown with one

thousand social operations. The value of the originator’s credibility fluctuates in

accordance with the number of users with negative feedback.

86

Figure 4.4 Relation between distance from positivity value, originator’s credibility and

amount of negative feedback in randomly biased workflows# the relation between

negative feedback and distance from positivity value for 500 randomly generated

workflows, each with 100 social operation the x-axis represents the ID of the workflow,

the right-hand Y-axis represent workflow’s distance from positivity score and

originator’s credibility score, while the left-hand Y-axis represent number of engaged

users with negative feedback.

4.2 Evaluation Against a Real-life Social Provenance Dataset

The PHEME rumor dataset was collected and annotated within the project’s journalism

use case [97]. These rumors were associated with nine different breaking news. It was

created for the analysis of social media rumors and contains Twitter conversations which

are initiated by a rumourous tweet and conversations that include tweets responding to

those rumourous tweets. These tweets have been annotated for support, certainty, and

evidentiality. The dataset contains 330 conversational threads (297 in English, and 33 in

German), with a folder for each thread, and is structured as follows:

• source-tweets: this folder contains a JSON file with the source tweet.

• reactions: this folder contains the JSON files for all the tweets that participated in

the conversations by replying.

• url-content: this folder contains the content of the Web pages pointed to from the

tweets.

87

• structure.json: this file provides the structure of the conversation, making it easier

to determine what each tweets are children’s tweets and to reconstruct the

conversations by putting together the source tweet and the replies.

• retweets.json: this file contains the tweets that retweeted the source tweet.

• who-follows-whom.dat: this file contains the users, within the thread, who are

following someone else. Each row contains two IDs, representing that the user

with the first ID follows the user with the second ID. Note that following is not

reciprocal, and therefore if two users mutually follow each other it will be

represented in two rows, A B and B A.

• annotation.json: this files includes the manual annotations at the thread level,

which is especially useful for rumors and contains the following fields:

o is_rumour: which is rumor or non-rumor.

o category: which is the title that describes the rumorous story and can be

used to group with other rumors within the same story.

The following chart shows the number of reactions in every thread and the number of

effective (non-neutral) reactions. A neutral reaction is a comment which adds no value to

the certainty of an original tweet.

Figure 4.5 Number of reactions compared to the number

of effective (non-neutral) reactions in every thread

0

20

40

60

80

100

120

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

Number of Reations/Non-Neutral Reaction for
Every Thread

 Number of Interactions Number of effective reaction

88

The graph shows that the number of effective reactions per thread is relatively low. This

can cause some inconsistency when evaluating our proposed distance from positivity

algorithm since it’s highly dependent on large number of interactions. The PHEME

dataset also has no record of user information, growth of the number of followers as the

thread grows, users’ specific list of followers and followees, or any chronological

indication. This renders it unusable for most of our proposed metrics except for

popularity.

4.2.1 Threats to Validity of Proposed Approach

The results obtained by running DfP on the PHEME dataset may be affected by the

validity of the following assumptions and aspects:

1 We’re assuming that no “Human error” happened during the process of collecting and

classifying tweets in PHEME dataset.

2 The proposed algorithm depends mainly on data with large magnitude of size “The

more interactions we have upon a piece of information the more accurate our detection

algorithms performs” However as presented earlier, number of effective interactions

in most of collected social workflows threads are small.

3 The graph shows that the number of effective reactions per thread is relatively low.

This can cause some inconsistency when evaluating our proposed Distance from

positivity algorithm since it’s highly dependent on large number of interactions.

4 The PHEME dataset also has no record of user information, growth of the number of

followers as the thread grows, user’s specific list of followers and followees, or any

chronological indication. Rendering it unusable for most of our proposed metrics

except for the POPULARITY.

4.1.1 Results Obtained from running DfP on PHEME Dataset

We implemented a java-based prototype that loads the JSON files of the PHEME dataset

into memory and processes them in order to calculate the distance of positivity value for

every English thread. The number of threads analyzed was 297. Then we normalized the

obtained value to match the classification criterion defined by the PHEME developers.

The results of our prediction against the real classification is in the appendix section. We

89

calculated the confusion matrix and calculated necessary metrics to evaluate our

prediction.

Table 4.2 Prediction results confusion matrix

 True Positive True Negative

Predicted Positive 228 56

Predicted Negative 7 5

Table 4.3 Different evaluation metric values

MEASURE VALUE DERIVATIONS

SENSITIVITY 0.9702 TPR = TP / (TP + FN)

SPECIFICITY 0.0820 SPC = TN / (FP + TN)

PRECISION 0.8028 PPV = TP / (TP + FP)

NEGATIVE PREDICTIVE VALUE 0.4167 NPV = TN / (TN + FN)

FALSE POSITIVE RATE 0.9180 FPR = FP / (FP + TN)

FALSE DISCOVERY RATE 0.1972 FDR = FP / (FP + TP)

FALSE NEGATIVE RATE 0.0298 FNR = FN / (FN + TP)

ACCURACY 0.7872 ACC = (TP + TN) / (P + N)

F1 SCORE 0.8786 F1 = 2TP / (2TP + FP + FN)

The fact that threads existing in the PHEME dataset are mostly labeled positive (certain)

may give wrong indications about the quality of our predictions. The following graph

shows the number of threads per its certainty classification.

Figure 4.6 Prediction results compared to actual classification

0 50 100 150 200 250

certain

somewhat-certain

uncertain

Prediction VS Actualy Classification using DfP Algorithm

Count of Prediction Count of Classification

90

However, our classifier performed well considering that we were able to use only one of

the proposed metrics. We expect to get even better results if we had access to all required

data.

4.2 Evaluation of Privacy Violation Detection Algorithm

Twitter is one of the major data sources that has open access to its feed for everyone

through its APIs (Twitter stream and search APIs). Social network users’ patterns of

interactions form a workflow. We previously developed a synthetic dataset that imitated

Twitter, wherein we generated controlled workflows [34] as part of our research. As part

of the PRONALIZ research, we explained the need for a synthetically generated, large-

scale social provenance dataset and then developed a model with which to generate it.

We created various social workflows with both user-based and content-based metrics

[56]. Details of the developed generation framework and characteristics of generated

workflows can be found in a study by Baeth and Aktas (2017). Using a slightly modified

version of this synthetic social workflow generator, we created 1,000 social workflows,

each with 1,000 social operations which range between 5,000 and 12,000 provenance

notifications. The design of the experiment is depicted in Figure 4.7.

Figure 4.7 Design of the evaluation experiment

We conducted performance testing on our overall system to evaluate its performance and

scalability. For each rule, the tests were conducted on a sample of 1,000 synthetically

generated social workflows, each with 1,000 social operations using our simulation

91

environment. We recorded the time that it took the event processing engine to analyze

and send a notification for each of the defined rules. This analysis was conducted using a

test environment, as specified in Table 4.4. Our developed simulation environment was

running on a workstation, while the social provenance processing and rule verification

framework was running on a virtual machine hosted on the same computer.

Table 4.4 Details of the testing environment:

CPU Intel Core I5-6500 CPU 3.20GHz

Memory 16 Gigabytes

Operating System Windows 10

Java Version 1.8

SSD SSD 750 EVO 250GB

Figure 4.8 The results of the average processing time (seconds) of 1,000 social

operation workflows in the developed framework. The X-axis indicates the tested Rule

ID, while the Y-axis indicates the average processing time in milliseconds.

Table 4.5 Latency in detecting faulty running behavior

for the defined privacy policy rules

Rule ID
Runtime Verification Software Prototype

Average Time (S) Standard Deviation

Rule 1 0.074674367 0.007133121

Rule 2 0.202734350 0.040959625

Rule 3 0.202671522 0.048038539

Rule 4 0.190684251 0.044241382

Rule 5 0.20020108 0.048001567

Rule 6 0.198688868 0.044528124

92

Figure 4.8 shows the average processing of 1,000 social operation workflows, while

Table 4.5 shows the results and their respective standard deviation. It can be observed

that Rule 1 has a relatively lower average processing time, which is expected because it

only looks to the originators’ immediate network and does not need to calculate the

credibility of any of the users engaged in the workflow. The relatively higher

computational overhead in the other rules is caused by either the credibility calculation

or the lookup of many user connections, or even both. The small value of the standard

deviation shows that the randomness of social actions conducted, and user-user

connections have little effect; moreover, with larger workflows, processing time will

increase linearly. Therefore, test results for the developed framework show that the

performance remains steady even with a high number of requests. Consequently, we

believe that the developed system performed well under with the ingested large number

of provenance workflows because the processing overhead is negligible. However, the

current implementation of the prototype is limited by Komadu’s provenance graphs

retrieval capabilities. We believe that Komadu may be the bottleneck when processing

large-scale workflows since it uses a MYSQL database to store data. The capabilities of

Komadu to process large workflows was tested by Tas, Baeth, and Aktas (2017).

93

CHAPTER 5

5. CONCLUSION AND FUTURE WORK

In this research we’ve shown that the solution to uncertainty or ambiguity of information

can be solved by extraction of data provenance in social media by determining origins,

custody, and ownership of this information. Here, we present a summary of this work in

the form of answers to research questions presented earlier in Chapter 1.

How to determine the origin, custody, and ownership of information in large-scale,

growing social workflows?

The origins of information are described as the metadata about the user and the context

in which the propagation occurred. Such metadata are called provenance attributes, and

the formulation of these attributes will be creating the metrics by which credibility of

information can be measured. Despite the existence of many information diffusion

models, there is currently no unified, conceptual model for information diffusion and

provenance that can be applied to different social networks.

We have presented a provenance-data-based misinformation detection algorithm in social

networks, which utilizes a variety of metrics in order to use the collective wisdom of a

social network users to determine the authenticity of data dissemination. The proposed

algorithm aggregates two different sets of metrics: one that places data in the center and

the other that places the user in the center. We created a general provenance representation

that suits all types of social networks derived from the PROV-O provenance model. We

identified several variations in the cases of our proposed social provenance metrics that

is used in the calculation of a social network user’s credibility. To dynamically give

proper weights in accordance with the identified cases, we used a Fuzzy AHP method.

94

Developing a large-scale provenance repository prototype system capable of

auditing different social media platforms to generate analyzed information

provenance by Designing and developing algorithms for converting distributed

provenance graphs.

Recognizing the need for a synthetic social provenance dataset, we investigated whether

the current state-of-the-art, stand-alone, centralized provenance systems are capable of

handling large-size social provenance data. To do this, a test suite was developed and a

performance evaluation of stand-alone provenance systems when handling large-size

social provenance data was examined by conducting responsiveness and scalability

experiments. The experimental study used Karma, Komadu, and PReServ as stand-alone,

centralized provenance systems. Although the centralized approaches to provenance

collection systems scales well for collecting and querying small-size provenance records,

the results demonstrated that they cannot handle large-size provenance records. The

amount of data generated by social media every day is well beyond the capabilities of

existing provenance repositories. Thus, it is inevitable to leverage provenance repositories

to handle such data volumes. After identifying the characteristics of the dataset in this

discussion and taking Twitter as an example, we introduced a large-scale noisy synthetic

social provenance database, to which we applied various social provenance metrics and

attributes to capture vital information for calculating data quality and user credibility. The

introduced provenance database consisted of social workflows of different sizes and

different breadths where each was created with randomly generated social interaction

scenarios utilizing WorkflowSim and WorkflowGen tools. It also had failure

characteristics that represented both notifications drop failures and provenance collection

failures to simulate real-life provenance capture. We created a publicly accessible website

to make the dataset available for research that dealt with large-size and high-volume

provenance graphs that are downloadable directly as XML files and are accessible

through a Komadu repository query interface.

Evaluating the credibility of spreading information in social media and Improve

existing popularity-based ranking algorithms.

In our proposed misinformation detection algorithm, we classified the credibility of

information in three different classifications: message credibility, source credibility, and

media credibility. This research demonstrated the results of a study that assessed the

95

credibility of users on social media networks. To utilize the collective wisdom of users in

social networks, we proposed an algorithm that calculated the distance between a

positivity metric and a developed framework that implemented it. In order to test our

framework, we used a previously generated social provenance workflow framework [34].

We generated workflows with different characteristics in two different scenarios. The

first was for workflows generated with random activity selection, representing users who

reacted to information without considering the context. The other scenario was generated

with a controlled randomness. The different scenarios represented users reacting to

information depending on the originator’s credibility. The results demonstrated that both

the relationship between the proposed metric, the number of engaged users and the

relationship between the originator’s credibility and distance from positivity had a

positive correlation. This occurred because both values fluctuated in the same fashion

accordingly. Future work would extend the use of the obtained results to train a machine

learning classifier and test it on real-life Twitter data.

Checking the copyright ownership of media files being re-shared in social media.

Due to the nature of social media networks where data dissemination is very hard to

control, ownership should be taken into consideration. In this study, we introduced a

generic software architecture that can be integrated with existing social media software

to enable users to track the dissemination of their data and generate special notifications

by using CEP. The proposed solution utilizes social provenance data, which are defined

as the metadata that describe the lifecycle of the data. To facilitate testing of the software

architecture, we developed a large-scale synthetic provenance dataset, discussed the

details of the prototype implementation and evaluated its performance. The developed

system performed well under with the ingested large number of provenance workflows

because the processing overhead was negligible.

1.1. Future Research Opportunities

To this end, there is an emerging need for decentralized approaches to provenance

management that can handle high-volume, large-size social provenance data.

Specifically, there is an emerging need for a provenance capture and management service

that addresses the scalability, data quality, and privacy-awareness properties of social

networking domains. To fill in this gap, we have presented an architecture of a

96

decentralized bigdata-based social provenance repository system. We believe that this

design will satisfy the need for a scalable, quality and privacy-aware provenance

management service for social networking environments. The detailed design and the

implementation of this architecture is left for future further research as one of our next

steps.

Recently, blockchain technology has gain momentum in both business and academia. It’s

being used in a wide range of different fields. A block chain is a distributed data storage

system which keeps multiple copies of data in chronological lists (also called blocks).

Before a block can be added to the storage systems it should be verified by undergoing a

mathematical calculation which involves input from all sources that keep copies of the

existing blocks. Blockchain technology provides many advantages starting from

immutability, high security, reliability, transparency, privacy and efficiency [98]. The

provenance academic community has already started taking leverage utilizing blockchain

technology. An ontology-driven blockchain design was introduced by Kim and

Laskowski (2018); a blockchain-based provenance architecture with improved privacy

and availability was introduced by Liang et al. (2017); a blockchain-based provenance

model for tracking ownership of art in the Internet was proposed by McConaghy,

McMullen, Parry, McConaghy, and Holtzman (2017); and even a blockchain-based

provenance repository system was made by Ramachandran and Kantarcioglu (2018).

However, and to the best of our knowledge there has been no research done on utilizing

blockchain technology in the field of storing, modeling and analyzing social provenance.

We believe that blockchain technology will yield a transparent ownership detection and

credibility evaluation system that is incorruptible by external sources. We see this as one

of our future research opportunities.

Lastly, while conducting this research and for the purpose of evaluating our proposed

misinformation detection algorithm, we need a complete real-life social provenance

dataset. Other than the PHEME dataset, which we were able to use by utilizing one out

of six metrics used by the algorithm, we couldn’t find any other suitable dataset. Creating

a dataset would be a big challenge as it requires collaboration with journalists and fact-

checking professionals, along with approvals from both the data originators and the

publishers. We believe that creating such a dataset will have immense benefits for

studying misinformation detection and privacy protection in social networks.

97

REFERENCES

[1] A. M. Kaplan and M. Haenlein, “Users of the world, unite! The challenges and

opportunities of Social Media,” Bus. Horiz., vol. 53, no. 1, pp. 59–68, 2010.

[2] S. Ranganath, P. Gundecha, and H. Liu, “A tool for assisting provenance search

in social media,” Proc. 22nd ACM Int. Conf. Conf. Inf. Knowl. Manag. - CIKM

’13, pp. 2517–2520, 2013.

[3] I. Taxidou, T. De Nies, and R. Verborgh, “Modeling Information Diffusion in

Social Media as Provenance with W3C PROV,” Proc. 24th …, pp. 819–824,

2015.

[4] M. Mendoza, B. Poblete, and C. Castillo, “Twitter Under Crisis: Can we trust

what we RT?,” Work. Soc. Media Anal., p. 9, 2010.

[5] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on twitter,”

Proc. 20th Int. Conf. World wide web - WWW ’11, p. 675, 2011.

[6] G. P. Barbier, H. Liu, H. Bell, B. Li, and A. Sen, “Finding Provenance Data in

Social Media,” 2011.

[7] J. Berti, “Copyright Infringement and Protection in the Internet Age,” vol. 1, no.

December, pp. 42–45, 2015.

[8] L. Moreau, “The Foundations for Provenance on the Web,” Found. Trends Web

Sci., vol. 2, no. 2–3, pp. 99–241, 2010.

[9] G. Barbier, Z. Feng, P. Gundecha, and H. Liu, Provenance Data in Social Media,

vol. 4, no. 1. 2013.

[10] Y. Gil et al., “Provenance XG Final Report,” Final W3C Incubator Group

Report, 2010. [Online]. Available:

http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/. , 20 April 2019.

[11] Z. Feng, P. Gundecha, and H. Liu, “Recovering Information Recipients in Social

Media via Provenance,” pp. 706–711, 2013.

[12] L. Salisbury, A. Sujo, L. Salisbury Sujo, Aly., L. Salisbury, and A. Sujo,

Provenance: How a Con Man and a Forger Rewrote the History of Modern Art.

2009.

98

[13] and L. C. Jonathan Gray, Liliana Bounegru, “Data Journalism Handbook,”

Choice Rev. Online, 2013.

[14] T. Berners-Lee and M. Fischetti, “Weaving the Web: the original design and

ultimate destiny of the World Wide Web by its inventor,” Choice Rev. Online,

2013.

[15] L. Moreau and P. Groth, Provenance: An Introduction to PROV, vol. 3, no. 4.

Morgan & Claypool, 2013.

[16] L. Moreau et al., “The Open Provenance Model core specification (v1.1),” in

Future Generation Computer Systems, 2011, vol. 27, no. 6, pp. 743–756.

[17] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson, “The

Open Provenance Model,” Futur. Gener. Comput. Syst., vol. 27, no. 6, pp. 743–

756, 2011.

[18] P. Chen, B. Plale, and M. S. Aktas, “Temporal representation for scientific data

provenance,” in 2012 IEEE 8th International Conference on E-Science, e-Science

2012, 2012.

[19] S. Jensen, B. Plale, M. S. Aktas, Y. Luo, P. Chen, and H. Conover, “Provenance

capture and use in a satellite data processing pipeline,” IEEE Trans. Geosci.

Remote Sens., 2013.

[20] M. S. Aktas, B. Plale, D. Leake, and N. K. Mukhi, “Unmanaged workflows:

Their provenance and use,” Stud. Comput. Intell., vol. 426, pp. 59–81, 2013.

[21] M. S. Aktas and M. Astekin, “Provenance aware run-time verification of things

for self-healing Internet of Things applications,” Concurr. Comput. Pract. Exp.,

vol. 31, no. 3, p. e4263, 2019.

[22] M. J. Baeth and M. S. Aktas, “Detecting misinformation in social networks using

provenance data,” Concurr. Comput. Pract. Exp., vol. 0, no. 0, p. e4793.

[23] M. J. Baeth and M. S. Aktas, “An approach to custom privacy policy violation

detection problems using big social provenance data,” in Concurrency

Computation, 2018, vol. 30, no. 21.

[24] M. Riveni, T. D. Nguyen, M. S. Aktas, and S. Dustdar, “Application of

provenance in social computing: A case study,” in Concurrency Computation ,

2019.

[25] M. S. Aktas, “Hybrid cloud computing monitoring software architecture,”

Concurr. Comput. Pract. Exp., vol. 30, no. 21, p. e4694, 2018.

[26] M. S. Aktas, S. Kaplan, H. Abacı, O. Kalipsiz, U. G. Ketenci, and U. O. Turgut,

“Data Imputation Methods for Missing Values in the Context of Clustering,”

2019.

[27] M. Aktas and A. Baloglu, “An Automated Framework for Mining Reviews from

Blogosphere,” Int. J. Adv. Internet …, vol. 3, no. 3, pp. 234–244, 2011.

99

[28] A. Baloglu and M. S. Aktas, “BlogMiner: Web blog mining application for

classification of movie reviews,” in 5th International Conference on Internet and

Web Applications and Services, ICIW 2010, 2010, pp. 77–84.

[29] G. C. Fox et al., “Algorithms and the Grid,” Comput. Vis. Sci., vol. 12, no. 3, pp.

115–124, Mar. 2009.

[30] G. C. Fox et al., “Real Time Streaming Data Grid Applications,” in Distributed

Cooperative Laboratories: Networking, Instrumentation, and Measurements,

2006, pp. 253–267.

[31] M. S. Aktas, G. C. Fox, and M. Pierce, “Information services for dynamically

assembled semantic grids,” in Proceedings - First International Conference on

Semantics, Knowledge and Grid, SKG 2005, 2006.

[32] Y. Tas, M. J. Baeth, and M. S. Aktas, “An Approach to Standalone Provenance

Systems for Big Social Provenance Data,” in Proceedings - 2016 12th

International Conference on Semantics, Knowledge and Grids, SKG 2016, 2017,

pp. 9–16.

[33] M. J. M. J. Baeth and M. Aktas, “On the Detection of Information Pollution and

Violation of Copyrights in the Social Web,” in 2015 IEEE 8th International

Conference on Service-Oriented Computing and Applications (SOCA), 2015, pp.

252–254.

[34] M. J. Baeth and M. S. Aktas, “A Large Scale Synthetic Social Provenance

Database,” 2017, pp. 16–22.

[35] M. Riveni, M. J. Baeth, M. S. Aktas, and S. Dustdar, “Provenance in Social

Computing: A Case Study,” in 2017 13th International Conference on Semantics,

Knowledge and Grids (SKG), 2017, pp. 77–84.

[36] D. Shah and T. Zaman, “Rumors in a network: Who’s the culprit?,” IEEE Trans.

Inf. Theory, vol. 57, no. 8, pp. 5163–5181, 2011.

[37] B. A. Prakash, J. Vrekeen, and C. Faloutsos, “Spotting culprits in epidemics:

How many and which ones?,” in Proceedings - IEEE International Conference

on Data Mining, ICDM, 2012, pp. 11–20.

[38] Weller, K., Bruns, A., Burgess, J., & Mahrt, M. (2013). Twitter and Society (2nd

ed.). Switzerland: Peter Lang International Academic Publishers.

[39] Z. Chu, S. Gianvecchio, and H. Wang, “Who is Tweeting on Twitter : Human ,

Bot , or Cyborg ?,” in In Proceedings of the 26th Annual Computer Security

Applications Conference (2010), 2010.

[40] R. Wald, T. M. Khoshgoftaar, A. Napolitano, and C. Sumner, “Predicting

susceptibility to social bots on Twitter,” in Proceedings of the 2013 IEEE 14th

International Conference on Information Reuse and Integration, IEEE IRI 2013,

2013.

[41] G. W. Allport and L. Postman, “An analysis of rumor,” Public Opin. Q., 1946.

100

[42] L. Zhao, J. Yin, and Y. Song, “An exploration of rumor combating behavior on

social media in the context of social crises,” Comput. Human Behav., vol. 58, pp.

25–36, 2016.

[43] I. Taxidou, P. M. Fischer, T. De Nies, E. Mannens, and R. Van De Walle,

“Information Diffusion and Provenance of Interactions in Twitter: Is it only about

Retweets?,” pp. 1–2, 2015.

[44] B. Cao, B. Plale, G. Subramanian, E. Robertson, and Y. Simmhan, “Provenance

information model of Karma version 3,” in SERVICES 2009 - 5th 2009 World

Congress on Services, 2009, no. PART 1, pp. 348–351.

[45] P. Groth, S. Miles, and L. Moreau, “PReServ: Provenance Recording for

Services,” in Proceedings of the UK OST e-Science Fourth All Hands Meeting

(AHM05), 2005.

[46] I. Suriarachchi, Q. Zhou, and B. Plale, “Komadu: A Capture and Visualization

System for Scientific Data Provenance,” J. Open Res. Softw., vol. 3, no. 1, p. e4,

2014.

[47] T. Lebo, S. Sahoo, and D. McGuinness, “PROV-O: The PROV Ontology,” W3C

Recommendation, 2013. [Online]. Available: http://www.w3.org/TR/2013/REC-

prov-o-20130430/., 20 April 2019.

[48] L. Peng, Z. Zhang, Q. Huang, Z. Huang, and H. Zhuge, “Designing a novel

linear-time graph kernel for semantic link network,” Concurr. Comput. , vol. 27,

no. 15, pp. 4039–4052, 2015.

[49] K. Wu, S. Yang, and K. Q. Zhu, “False rumors detection on Sina Weibo by

propagation structures,” in Proceedings - International Conference on Data

Engineering, 2015, vol. 2015-May.

[50] M. Alrubaian, M. Al-Qurishi, M. Hassan, and A. Alamri, “A Credibility Analysis

System for Assessing Information on Twitter,” IEEE Trans. Dependable Secur.

Comput., vol. PP, no. 99, p. 1, 2016.

[51] C. Shao, G. L. Ciampaglia, A. Flammini, and F. Menczer, “Hoaxy: A Platform

for Tracking Online Misinformation,” pp. 745–750, 2016.

[52] H. Zhuge, “Communities and emerging semantics in semantic link network:

Discovery and learning,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 6, pp. 785–

799, 2009.

[53] H. Zhuge, “Semantic linking through spaces for cyber-physical-socio

intelligence: A methodology,” Artif. Intell., vol. 175, no. 5–6, pp. 988–1019,

2011.

[54] S. Ghorashi and C. Jensen, “The Leyline: A comparative approach to designing a

graphical provenance-based search UI,” in Proceedings of the Annual Hawaii

International Conference on System Sciences, 2013.

[55] P. Chen, B. Plale, and M. S. Aktas, “Temporal representation for mining

101

scientific data provenance,” Futur. Gener. Comput. Syst., vol. 36, pp. 363–378,

2014.

[56] G. P. Barbier, “Finding Provenance Data in SocialMedia,” 2011.

[57] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, “The Rise of Social

Bots,” arXiv Prepr. arXiv1407.5225, no. grant 220020274, pp. 1–11, 2014.

[58] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen, F. Menczer, and A.

Flammini, “Computational fact checking from knowledge networks,” PLoS One,

vol. 10, no. 6, pp. 1–13, 2015.

[59] M. Abbasi and H. Liu, “Measuring User Credibility in Social Media,” pp. 441–

448, 2013.

[60] P. Gundecha, S. Ranganath, Z. Feng, and H. Liu, “A tool for collecting

provenance data in social media,” Proc. 19th ACM SIGKDD Int. Conf. Knowl.

Discov. data Min. - KDD ’13, p. 1462, 2013.

[61] E. Seo, P. Mohapatra, and T. Abdelzaher, “Identifying rumors and their sources

in social networks,” Ground/Air Multisens. Interoperability, Integr. Netw.

Persistent ISR III, vol. 8389, pp. 83891I-83891I–13, 2012.

[62] A. La Fleur, K. Teymourian, and A. Paschke, “Complex event extraction from

real-time news streams,” in Proceedings of the 11th International Conference on

Semantic Systems - SEMANTICS ’15, 2015, no. company X, pp. 9–16.

[63] M. S. Aktas and M. Astekin, “Provenance aware run-time verification of things

for self-healing Internet of Things applications,” Concurr. Comput. Pract. Exp.,

p. e4263, Jul. 2017.

[64] D. Bamman and N. A. Smith, “Contextualized Sarcasm Detection on Twitter,”

Icwsm (International AAAI Conf. Web Soc. Media), pp. 574–577, 2015.

[65] K. Quinn, “Why We Share: A Uses and Gratifications Approach to Privacy

Regulation in Social Media Use,” J. Broadcast. Electron. Media, vol. 60, no. 1,

pp. 61–86, 2016.

[66] A. Mazzia, K. LeFevre, and E. Adar, “The PViz comprehension tool for social

network privacy settings,” Proc. Eighth Symp. Usable Priv. Secur. - SOUPS ’12,

p. 1, 2012.

[67] S. Amershi, J. Fogarty, and D. Weld, “ReGroup: interactive machine learning for

on-demand group creation in social networks,” Proc. 2012 ACM Annu. Conf.

Hum. Factors Comput. Syst. - CHI ’12, p. 21, 2012.

[68] J. Wang, D. Crawl, S. Purawat, M. Nguyen, and I. Altintas, “Big data

provenance: Challenges, state of the art and opportunities,” Proc. - 2015 IEEE

Int. Conf. Big Data, IEEE Big Data 2015, pp. 2509–2516, 2015.

[69] S. Sadiq, Ed., Handbook of Data Quality. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013.

102

[70] S. Sun et al., “Community cyberinfrastructure for advanced microbial ecology

research and analysis: The CAMERA resource,” Nucleic Acids Res., vol. 39, no.

SUPPL. 1, 2011.

[71] B. Glavic, “Big Data Provenance: Challenges and Implications for

Benchmarking,” Specif. Big Data Benchmarks, pp. 72–80, 2014.

[72] Groth, P. (2007). The Origin of Data: Enabling the Determination of Provenance

in Multi-institutional Scientific Systems through the Documentation of Processes.

[73] Simmhan, Y. L., Plale, B., & Gannon, D. (2008). Query capabilities of the Karma

provenance framework. Concurrency and Computation: Practice and Experience,

20(5), 441–451. https://doi.org/10.1002/cpe.1229

[74] R. Guruprasad and B. K. Behera, “Soft computing in textiles,” Indian Journal of

Fibre and Textile Research. 2010.

[75] P. Grant, “A new approach to diabetic control: Fuzzy logic and insulin pump

technology,” Med. Eng. Phys., 2007.

[76] R. Devi, E. Barlaskar, O. Binarani Devi, S. Medhi, and R. Ronra Shimray,

“Survey on Evolutionary Computation Tech Techniques and Its Application in

Different Fields,” Int. J. Inf. Theory, vol. 3, pp. 73–82, 2014.

[77] P. Srivastava, D. Bisht, and M. Ram, “Soft computing techniques and

applications,” 2018.

[78] P. O. Omolaye, “A Holistic Review of Soft Computing Techniques,” Appl.

Comput. Math., vol. 6, p. 93, 2017.

[79] T. L. Satty, “Axiomatic Foundation of the Analytic Hierarchy Process,” Manage.

Sci., 1986.

[80] T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. J. Serv.

Sci., 2008.

[81] W. Zeng and H. Li, “Weighted triangular approximation of fuzzy numbers,” Int.

J. Approx. Reason., vol. 46, no. 1, pp. 137–150, 2007.

[82] P. Srichetta and W. Thurachon, “Applying Fuzzy Analytic Hierarchy Process to

Evaluate and Select Product of Notebook Computers,” Int. J. Model. Optim., vol.

2, no. 2, pp. 168–173, 2012.

[83] J. J. Buckley, “Ranking alternatives using fuzzy numbers,” Fuzzy Sets Syst., vol.

15, no. 1, pp. 21–31, 1985.

[84] J. Lin and D. Ryaboy, “Scaling big data mining infrastructure: the twitter

experience,” ACM SIGKDD Explor. Newsl., vol. 14, no. 2, pp. 6–19, 2013.

[85] Y. W. Cheah, B. Plale, J. Kendall-Morwick, D. Leake, and L. Ramakrishnan, “A

noisy 10GB provenance database,” Lect. Notes Bus. Inf. Process., vol. 100

LNBIP, no. PART 2, pp. 370–381, 2012.

103

[86] M. S. Aktas and M. J. Baeth, “Pronaliz Project,” [Online]. Available:

https://sites.google.com/view/pronaliz/home, 20 April 2019.

[87] I. Wassink et al., “Analysing scientific workflows: Why workflows not only

connect web services,” in SERVICES 2009 - 5th 2009 World Congress on

Services, 2009, no. PART 1, pp. 314–321.

[88] M. Transfeld and I. Werenfels, “#Hashtagsolidarities: Twitter debates and

networks in the MENA region,” no. March, pp. 1–62, 2016.

[89] E. Del Val, M. Rebollo, and V. Botti, “Does the type of event influence how user

interactions evolve on twitter?,” PLoS One, vol. 10, no. 5, pp. 1–32, 2015.

[90] W. Chen, M. Rey, and M. Rey, “WorkflowSim : A Toolkit for Simulating

Scientific Workflows in Distributed Environments,” 8th IEEE Int. Conf. eScience

2012 (eScience 2012), pp. 1–8, 2012.

[91] R. Ferreira et al., “Community Resources for Enabling Research in Distributed

Scientific Workflows Community Resources for Enabling Research in

Distributed Scientific Workflows,” no. October, 2014.

[92] L. Moreau, “ProvToolbox: Java library to create and convert W3C PROV data

model representations.” [Online]. Available:

http://lucmoreau.github.io/ProvToolbox/ , 20 April 2019..

[93] A. Wagner, D. Anicic, N. Stojanovic, A. Harth, and R. Studer, “Linked Data and

Complex Event Processing for the Smart Energy Grid,” Work. Linked Data

Futur. Internet Futur. Internet Assem., vol. 2013, pp. 1–10, 2010.

[94] B. Yildiz and G. C. Fox, “Toward a modular and efficient distribution for Web

service handlers,” Concurr. Comput. Pract. Exp., vol. 25, no. 3, pp. 410–426,

2013.

[95] Mohamed Jehad Baeth and Mehmet S. Aktas, “A Large Scale Synthetic Social

Provenance Database,” DBKDA 2017 Ninth Int. Conf. Adv. Databases,

Knowledge, Data Appl., pp. 16–22, 2017.

[96] W3C, “The PROV Data Model.,” 2016. [Online]. Available:

https://www.w3.org/TR/prov-dm/, 20 April 2019.

[97] A. Zubiaga, M. Liakata, R. Procter, K. Bontcheva, and P. Tolmie, “Towards

Detecting Rumours in Social Media,” AAAI Work. AI Cities, 2015.

[98] H. T. Vo, A. Kundu, and M. Mohania, “Research Directions in Blockchain Data

Management and Analytics,” Proc. 21st Int. Conf. Extending Database Technol.,

2018.

[99] H. M. Kim and M. Laskowski, “Toward an ontology-driven blockchain design

for supply-chain provenance,” Intell. Syst. Accounting, Financ. Manag., 2018.

[100] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla, “ProvChain:

A Blockchain-Based Data Provenance Architecture in Cloud Environment with

104

Enhanced Privacy and Availability,” in Proceedings - 2017 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, CCGRID

2017, 2017.

[101] M. McConaghy, G. McMullen, G. Parry, T. McConaghy, and D. Holtzman,

“Visibility and digital art: Blockchain as an ownership layer on the Internet,”

Strateg. Chang., 2017.

[102] A. Ramachandran and M. Kantarcioglu, “Smartprovenance: A distributed,

blockchain based data provenance system,” CODASPY 2018 - Proc. 8th ACM

Conf. Data Appl. Secur. Priv., 2018.

105

APPENDIX-A

Results Obtained from Analyzing PHEME dataset

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

577258317942
149000

0 0 certain
somewhat-

certain
5 0

576755174531
862000

-0.776610806 78 uncertain
somewhat-

certain
5 2

576319832800
555000

-0.393946111 40
somewhat-

certain
somewhat-

certain
15 3

576513463738
109000

-0.614002471 62
somewhat-

certain
certain 7 3

552783667052
167000

-0.303102109 31 certain certain 7 2

552793679082
311000

0 0 certain certain 15 1

553548567420
628000

-0.81251687 82 uncertain
somewhat-

certain
22 10

552832817089
236000

0 0 certain certain 12 1

552833028201
144000

0 0 certain certain 18 0

553184482241
814000

-0.253730909 26 certain
somewhat-

certain
28 3

553534838880
608000

-0.069263347 7 certain certain 7 2

553512735192
141000

-0.17075819 18 certain certain 5 2

552834961762
709000

0 0 certain certain 17 0

553197863971
610000

-0.417497938 42
somewhat-

certain
certain 23 6

552792802309
181000

-0.442427348 45
somewhat-

certain
certain 8 4

553586860334
010000

-0.474570272 48
somewhat-

certain
certain 19 5

553486439129
038000

-0.142876854 15 certain certain 9 2

552848620375
261000

-0.414145379 42
somewhat-

certain
somewhat-

certain
15 7

553588178687
655000

-0.393430282 40
somewhat-

certain
certain 12 3

553518472798
683000

0 0 certain certain 20 6

553503184174
710000

-0.291434018 30 certain certain 23 3

552805488631
758000

-0.856128044 86 uncertain certain 110 12

553506608203
169000

-0.538961644 54
somewhat-

certain
certain 24 6

553221600955
621000

0 0 certain certain 2 0

106

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

553549686129
561000

0 0 certain certain 23 3

552792913910
833000

0 0 certain certain 5 2

552996335319
007000

-0.499964188 50
somewhat-

certain
certain 15 2

552806309540
528000

-0.560215662 57
somewhat-

certain
certain 39 7

553550301886
955000

-0.569983087 57
somewhat-

certain
certain 19 7

529660296080
916000

0 0 certain certain 4 0

500295393301
647000

-0.090497376 10 certain certain 8 2

500278045597
368000

-0.086779795 9 certain certain 16 4

499612545909
415000

-0.708507703 71 uncertain certain 27 10

500279189405
433000

-0.342301295 35
somewhat-

certain
certain 38 3

500341884678
836000

-0.835237006 84 uncertain
somewhat-

certain
10 4

500270780832
174000

-0.366816274 37
somewhat-

certain
certain 16 3

500319801344
929000

-0.206090557 21 certain certain 17 9

499530130487
017000

-0.500067129 51
somewhat-

certain
certain 25 6

500298752469
770000

-0.957279692 96 uncertain certain 44 11

500327120770
301000

-0.435421107 44
somewhat-

certain
certain 19 3

500394061887
709000

0 0 certain
somewhat-

certain
15 2

500377145349
521000

-0.265958672 27 certain
somewhat-

certain
14 5

500381163866
062000

-0.059190888 6 certain certain 8 3

500258409988
763000

-0.005489083 1 certain
somewhat-

certain
8 2

580331561398
108000

-0.581359313 59
somewhat-

certain
certain 14 4

580319078155
468000

-0.327777871 33 certain certain 32 16

580320684305
416000

0 0 certain certain 4 1

581047170637
381000

-0.124617595 13 certain
somewhat-

certain
3 2

580333909008
871000

0 0 certain certain 4 2

580333763512
705000

0 0 certain certain 24 3

580371845997
682000

-0.048381382 5 certain
somewhat-

certain
2 1

580323060533
764000

0 0 certain certain 2 0

580321156508
577000

0 0 certain certain 2 0

580322453928
431000

0 0 certain
somewhat-

certain
2 1

524924619812
511000

-0.474438255 48
somewhat-

certain
certain 9 3

524922729485
848000

-0.992835123 100 uncertain certain 36 13

524941132237
910000

0 0 certain certain 2 1

107

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

524925987239
120000

0 0 certain certain 4 3

525025279803
424000

0 0 certain certain 8 0

524925730053
181000

-0.221178684 23 certain certain 18 4

524962142563
610000

-0.813731771 82 uncertain certain 5 2

525023025792
835000

0 0 certain certain 11 1

524937542131
793000

-0.401741649 41
somewhat-

certain
certain 6 2

524926235030
589000

-0.183267567 19 certain certain 6 2

524972443308
683000

-0.481939794 49
somewhat-

certain
certain 11 3

524936872666
353000

-0.002665429 1 certain certain 29 5

524993533212
897000

-0.358795361 36
somewhat-

certain
certain 6 2

524983581983
375000

-0.631278179 64
somewhat-

certain
certain 18 5

524991576163
250000

-0.633299998 64
somewhat-

certain
somewhat-

certain
9 5

524964948683
005000

-0.80944294 81 uncertain certain 45 10

544277860555
710000

-0.674184515 68 uncertain certain 14 3

544271069146
656000

-0.900072669 91 uncertain certain 12 8

544391176137
089000

-0.299175379 30 certain certain 22 3

544504183341
064000

0 0 certain certain 18 1

544271362022
338000

-0.995878369 100 uncertain certain 18 5

544292670336
925000

-0.131498081 14 certain certain 6 1

544520042810
200000

0 0 certain certain 2 0

544520273718
812000

-0.402802513 41
somewhat-

certain
certain 18 4

544518335019
229000

-0.475462834 48
somewhat-

certain
certain 16 4

544350712365
207000

-0.351590147 36
somewhat-

certain
certain 18 3

544515538383
564000

-0.645442436 65
somewhat-

certain
certain 19 5

544282005941
530000

0 0 certain certain 14 1

544278335455
776000

-0.562610175 57
somewhat-

certain
certain 18 7

544309275141
885000

-0.718132135 72 uncertain
somewhat-

certain
32 9

544310853613
281000

-0.805907479 81 uncertain
somewhat-

certain
19 11

544288681021
145000

-0.436587641 44
somewhat-

certain
certain 17 7

544319274072
817000

-0.634749184 64
somewhat-

certain
certain 13 6

544283772569
788000

-0.446433422 45
somewhat-

certain
certain 19 8

544282227035
869000

-0.401427385 41
somewhat-

certain
certain 18 9

553558982476
828000

-0.507458001 51
somewhat-

certain
certain 13 3

108

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

553212962044
149000

-0.244755018 25 certain certain 8 1

553538058440
941000

0 0 certain
somewhat-

certain
19 1

552984502063
337000

0 0 certain certain 3 1

553467311261
503000

0 0 certain
somewhat-

certain
2 0

552982613288
157000

0 0 certain certain 4 1

552792544132
997000

-0.288431853 29 certain
somewhat-

certain
17 2

553535829017
370000

0 0 certain certain 5 1

553590835850
514000

-0.604155518 61
somewhat-

certain
somewhat-

certain
20 5

553587672137
334000

-0.048718352 5 certain
somewhat-

certain
27 2

553470492565
602000

-0.514387775 52
somewhat-

certain
uncertain 8 2

552821069036
670000

0 0 certain certain 21 1

553531413459
660000

-0.603073676 61
somewhat-

certain
somewhat-

certain
14 4

553476490315
431000

0 0 certain certain 4 0

553589051044
151000

0 0 certain certain 8 2

552791578893
619000

-0.413213351 42
somewhat-

certain
certain 20 2

553152395371
630000

-0.271107569 28 certain certain 21 4

553505242554
175000

-0.468813836 47
somewhat-

certain
certain 15 2

553474188259
102000

-0.108975404 11 certain certain 12 1

529540733020
405000

-0.060483167 7 certain
somewhat-

certain
14 3

529720273285
566000

-0.67786233 68 uncertain certain 20 8

529695367680
761000

-0.462047028 47
somewhat-

certain
somewhat-

certain
8 2

529654186791
944000

-0.301712154 31 certain
somewhat-

certain
10 2

529695483661
664000

0 0 certain
somewhat-

certain
10 0

529653029747
064000

-0.042259514 5 certain
somewhat-

certain
6 1

500327106824
245000

0 0 certain
somewhat-

certain
7 0

500354773133
299000

0 0 certain
somewhat-

certain
25 1

500391222075
076000

-0.873797635 88 uncertain uncertain 53 15

499456140044
824000

-0.199407249 20 certain
somewhat-

certain
11 2

500363740311
982000

-0.493399905 50
somewhat-

certain
somewhat-

certain
20 6

498430783699
554000

0 0 certain
somewhat-

certain
22 3

499366666300
846000

-0.565600827 57
somewhat-

certain
certain 14 3

500294803402
137000

-0.563702541 57
somewhat-

certain
somewhat-

certain
19 4

500377906305
327000

-0.405584936 41
somewhat-

certain
somewhat-

certain
16 4

109

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

500290456845
299000

-0.696527382 70 uncertain certain 38 10

500280422295
937000

-0.327374943 33 certain
somewhat-

certain
14 3

500279160795
721000

-0.972922049 98 uncertain uncertain 95 16

581386094337
474000

-0.384857047 39
somewhat-

certain
certain 11 2

580324027715
063000

0 0 certain certain 3 0

580325090367
315000

-0.704157101 71 uncertain
somewhat-

certain
52 7

581063377226
637000

-0.14208522 15 certain certain 2 1

580326222107
951000

-0.425307112 43
somewhat-

certain
certain 11 2

580319184652
890000

-0.513628658 52
somewhat-

certain
certain 9 3

580339825649
291000

0 0 certain certain 10 1

580339547269
144000

-0.689000729 69 uncertain
somewhat-

certain
14 7

525003468659
228000

-0.847476578 85 uncertain certain 25 5

524975705206
304000

0 0 certain certain 23 2

524942470472
548000

0 0 certain certain 3 0

524932056560
963000

-0.048963657 5 certain
somewhat-

certain
3 1

525019752507
658000

-0.889672548 89 uncertain certain 34 16

524947416869
388000

0 0 certain
somewhat-

certain
3 0

524935485370
929000

-0.500235056 51
somewhat-

certain
certain 19 3

524925050739
490000

-0.442187573 45
somewhat-

certain
certain 11 3

524969201102
901000

0 0 certain
somewhat-

certain
17 0

524923462398
513000

-0.579046608 58
somewhat-

certain
certain 13 1

524925215235
911000

0 0 certain certain 18 1

524980744658
382000

-0.184892414 19 certain certain 9 2

524981436252
950000

-0.606393514 61
somewhat-

certain
somewhat-

certain
7 1

524931324763
992000

-0.666770559 67 uncertain certain 7 3

524926472432
410000

0 0 certain certain 3 0

524943490887
991000

0 0 certain certain 7 0

524944399890
124000

-0.233903116 24 certain certain 22 2

544380742076
088000

0 0 certain
somewhat-

certain
19 1

544358564484
378000

-0.184150464 19 certain certain 2 2

544510450101
415000

-0.189024464 19 certain
somewhat-

certain
11 2

544278985249
550000

-0.517188183 52
somewhat-

certain
certain 18 3

544514564407
427000

0 0 certain
somewhat-

certain
4 0

110

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

544512676643
500000

0 0 certain certain 3 0

544329935943
237000

-0.890056315 90 uncertain certain 102 29

544305540286
148000

0 0 certain
somewhat-

certain
15 0

544314234541
469000

-0.493886413 50
somewhat-

certain
somewhat-

certain
20 5

544291965513
134000

-0.723388422 73 uncertain
somewhat-

certain
24 4

544269749405
097000

-0.111580265 12 certain certain 15 1

544301453717
041000

0 0 certain
somewhat-

certain
23 0

544274934835
707000

-0.702308264 71 uncertain certain 41 12

544350567183
556000

-0.467500804 47
somewhat-

certain
somewhat-

certain
2 1

544271284796
784000

0 0 certain certain 8 0

544289311504
355000

0 0 certain certain 2 0

544513524438
155000

0 0 certain certain 2 0

544333764814
323000

-0.528460034 53
somewhat-

certain
certain 23 2

544517264054
423000

0 0 certain
somewhat-

certain
17 0

544391533240
516000

0 0 certain certain 4 0

544268732046
913000

0 0 certain certain 8 0

544512910538
838000

-0.522432862 53
somewhat-

certain
certain 14 3

544306402731
507000

0 0 certain
somewhat-

certain
3 0

544382892378
714000

-0.013783483 2 certain certain 8 3

544399927045
283000

-0.113799915 12 certain certain 31 4

544512664769
396000

-0.275584988 28 certain certain 5 3

544305745416
581000

0 0 certain certain 3 0

576323086888
361000

-0.212057296 22 certain certain 6 3

576829262927
413000

-0.967040913 97 uncertain
somewhat-

certain
7 3

576276947648
405000

-0.5 50
somewhat-

certain
somewhat-

certain
3 3

576796432730
071000

-0.979945456 98 uncertain
somewhat-

certain
14 6

576812998418
939000

0 0 certain certain 2 1

552978184413
921000

0 0 certain
somewhat-

certain
2 1

553575232867
672000

-0.412870345 42
somewhat-

certain
certain 12 3

553544694765
215000

0 0 certain certain 14 2

553476880339
599000

-0.142584446 15 certain
somewhat-

certain
14 1

552802654641
225000

-0.36705502 37
somewhat-

certain
certain 7 3

553579224402
235000

-0.480001965 49
somewhat-

certain
certain 25 4

111

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

553586897168
392000

0 0 certain certain 12 5

553566026030
272000

-0.044236173 5 certain certain 11 5

553164985460
068000

-0.289365615 29 certain
somewhat-

certain
14 2

553590459688
570000

-0.487730065 49
somewhat-

certain
certain 19 17

553160652567
498000

-0.02140854 3 certain certain 11 3

552785375161
499000

0 0 certain certain 3 2

552806757672
964000

-0.5744289 58
somewhat-

certain
certain 12 10

553107921081
749000

-0.200462496 21 certain certain 6 2

552810448324
943000

-0.205844058 21 certain certain 19 6

553576010898
497000

-0.202829446 21 certain
somewhat-

certain
19 6

553501357156
876000

-0.510847623 52
somewhat-

certain
certain 24 3

552978099357
237000

0 0 certain certain 3 2

553587013409
325000

-0.660270055 67 uncertain certain 34 8

553461741917
863000

-0.677889949 68 uncertain certain 19 5

553489393202
499000

0 0 certain certain 8 2

553543369604
210000

-0.613757636 62
somewhat-

certain
somewhat-

certain
22 8

553508098825
261000

-0.367336609 37
somewhat-

certain
certain 19 4

552816020403
269000

-0.598237973 60
somewhat-

certain
certain 5 1

553478289474
740000

0 0 certain uncertain 6 1

552811386259
386000

-0.204958011 21 certain
somewhat-

certain
18 7

553587303172
833000

-0.355739425 36
somewhat-

certain
certain 21 10

529689679411
810000

-0.764797583 77 uncertain certain 5 1

529713467184
676000

-0.434677023 44
somewhat-

certain
certain 5 4

529716453792
956000

0 0 certain uncertain 2 0

529687410611
728000

0 0 certain uncertain 5 2

500307001629
745000

-0.995305309 100 uncertain
somewhat-

certain
88 33

500303431928
922000

-0.562396429 57
somewhat-

certain
somewhat-

certain
18 6

500371149713
178000

-0.390269053 40
somewhat-

certain
somewhat-

certain
21 8

500413818368
184000

-0.942507995 95 uncertain
somewhat-

certain
19 7

500319675797
209000

-0.744827729 75 uncertain
somewhat-

certain
12 5

500284699546
517000

-0.461881823 47
somewhat-

certain
certain 16 8

500378522788
315000

-0.734065479 74 uncertain certain 21 9

500363126294
863000

-0.590676042 60
somewhat-

certain
certain 9 5

112

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

500347114975
944000

-0.795305328 80 uncertain certain 103 22

500308076004
929000

-0.78041691 79 uncertain
somewhat-

certain
19 6

500389488217
309000

-0.813792688 82 uncertain
somewhat-

certain
37 16

500288349924
782000

-0.049243161 5 certain uncertain 18 7

499368931367
608000

-0.953050633 96 uncertain certain 48 9

500332933098
385000

-0.761525429 77 uncertain
somewhat-

certain
9 4

581293286268
129000

-0.996138287 100 uncertain uncertain 20 8

580360165540
642000

-0.338636131 34
somewhat-

certain
certain 2 2

580882341880
446000

0 0 certain uncertain 5 2

580340476949
086000

-0.726109427 73 uncertain certain 19 10

580332109782
466000

0 0 certain certain 9 3

524923676484
177000

-0.753244524 76 uncertain certain 10 5

524947867975
561000

-0.536266088 54
somewhat-

certain
somewhat-

certain
17 5

524949443607
412000

-0.369983107 37
somewhat-

certain
somewhat-

certain
4 2

525032872647
065000

-0.805439187 81 uncertain certain 15 8

524940659778
920000

0 0 certain certain 6 4

525056576038
518000

-0.444107056 45
somewhat-

certain
certain 23 6

524948866773
184000

0 0 certain certain 3 1

525028734991
343000

-0.374218077 38
somewhat-

certain
certain 5 2

525025463648
137000

0 0 certain certain 10 3

524965775036
387000

0 0 certain certain 4 2

524927281048
080000

-0.999429654 100 uncertain certain 42 16

544512108885
725000

-0.407772337 41
somewhat-

certain
certain 19 9

544374511194
632000

-0.589916127 59
somewhat-

certain
somewhat-

certain
9 4

544292129972
170000

-0.737150904 74 uncertain
somewhat-

certain
14 8

544511199702
822000

-0.456549885 46
somewhat-

certain
certain 8 2

544272537341
812000

-0.715531846 72 uncertain certain 21 8

544306719686
656000

-0.599477562 60
somewhat-

certain
certain 16 8

544352727971
954000

-0.675252348 68 uncertain certain 8 5

544491151118
860000

-0.379864821 38
somewhat-

certain
certain 8 1

544287209730
236000

-0.079249312 8 certain certain 10 5

544328894812
549000

-0.716809672 72 uncertain certain 36 18

544514570367
168000

-0.500450695 51
somewhat-

certain
certain 15 10

113

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

544324444773
433000

-0.407100207 41
somewhat-

certain
certain 21 9

544277117039
837000

-0.866786276 87 uncertain
somewhat-

certain
30 10

544297696308
518000

-0.370842437 38
somewhat-

certain
certain 23 7

544381485591
982000

-0.272364646 28 certain uncertain 21 6

544290258951
892000

0 0 certain certain 10 4

498280126254
428000

0 0 certain certain 5 1

544476808566
276000

-0.602515293 61
somewhat-

certain
certain 31 8

552791196247
269000

-0.734583391 74 uncertain certain 22 11

524929497205
055000

-0.674890309 68 uncertain certain 12 6

524970851675
176000

-0.467036505 47
somewhat-

certain
certain 9 5

544293753130
082000

-0.356403375 36
somewhat-

certain
certain 10 3

553544252563
935000

-0.293058932 30 certain certain 14 9

552814494381
256000

-0.042264806 5 certain certain 10 5

529739968470
867000

-0.586069265 59
somewhat-

certain
certain 11 6

500378223977
721000

-0.532938352 54
somewhat-

certain
somewhat-

certain
17 9

580348081100
734000

-0.022449871 3 certain certain 23 5

581473088249
958000

-0.147878204 15 certain certain 7 4

524952883343
925000

-0.497648108 50
somewhat-

certain
certain 21 7

525060425184
858000

-0.438493204 44
somewhat-

certain
certain 21 4

524959809402
331000

-0.696775502 70 uncertain certain 19 10

525049639016
615000

-0.027416069 3 certain certain 6 3

524966904885
428000

-0.257273649 26 certain certain 6 3

524995771587
108000

-0.389766241 39
somewhat-

certain
certain 6 3

525058976376
193000

-0.430500553 44
somewhat-

certain
somewhat-

certain
4 3

525068915068
923000

0 0 certain certain 3 1

524956129017
995000

-0.739855767 74 uncertain
somewhat-

certain
33 9

524990163446
140000

-0.485852424 49
somewhat-

certain
certain 5 4

544462330105
712000

-0.361999201 37
somewhat-

certain
certain 33 5

544291804057
960000

-0.454017216 46
somewhat-

certain
somewhat-

certain
10 3

544289409294
553000

-0.671104584 68 uncertain
underspecifi

ed
11 6

544289941996
326000

-0.360295819 37
somewhat-

certain
underspecifi

ed
4 4

544358533819
420000

-0.590059908 60
somewhat-

certain
certain 18 9

544367462012
432000

-0.63942661 64
somewhat-

certain
certain 12 6

114

Thread ID
Distance from

Positivity
Normalize

DfP
Prediction

Thread
Certainty

Number of
Interactions

Number of
Effective Reactions

544319832486
064000

-0.737634347 74 uncertain certain 27 12

500280838710
247000

-0.841586956 85 uncertain
somewhat-

certain
39 14

500281094239
817000

-0.579040379 58
somewhat-

certain
certain 5 3

500281131057
811000

-0.628136759 63
somewhat-

certain
certain 21 5

500286058664
579000

-0.819180662 82 uncertain certain 74 16

524932935137
628000

-0.843733465 85 uncertain certain 35 20

524947674164
760000

-0.87161386 88 uncertain certain 20 10

521346721226
711000

-0.704596273 71 uncertain uncertain 26 6

521360486387
175000

-0.609888865 61
somewhat-

certain
certain 8 5

115

APPENDIX-B

CODE SAMPLES

package tr.edu.yildiz.phemeProcessing;

import com.fasterxml.jackson.databind.ObjectMapper;

import org.apache.commons.lang3.tuple.Pair;

import org.apache.log4j.Logger;

import tr.edu.yildiz.phemeProcessing.pojos.Annotations;

import tr.edu.yildiz.phemeProcessing.pojos.ReplyAnnotation;

import tr.edu.yildiz.phemeProcessing.pojos.Tweet;

import java.io.*;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.stream.Collectors;

public class PhemeProcessor {

 final static Logger logger = Logger.getLogger(PhemeProcessor.class);

 final static String SOURCE = "source-tweets";

 final static String REACTION = "reactions";

 public static void main(String[] args) {

 PrintWriter pw = null;

 try {

 pw = new PrintWriter(new

File("..\\phemeProcessor\\phemeDataset/output.csv"));

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 StringBuilder builder = new StringBuilder();

 String ColumnNamesList = "Thread ID,Distance From Positivity, Thread

Certainity, Number of Interactions";

 // No need give the headers Like: id, Name on builder.append

 builder.append(ColumnNamesList + "\n");

 final PhemeProcessor phemeProcessor = new PhemeProcessor();

ObjectMapper objectMapper = new ObjectMapper();

String datasetPath = "..\\phemeProcessor\\phemeDataset/";

 //start by loading annotation files to determine the threads

 File annotationsFile = new File(datasetPath +

"annotations/original_en-scheme-annotations.json");

 try {

 FileInputStream fileInputStream = new

FileInputStream(annotationsFile);

 BufferedReader bufferedReader = new BufferedReader(new

116

InputStreamReader(fileInputStream));

 String line = null;

 List<Annotations> annotationsList = new ArrayList<Annotations>();

 while ((line = bufferedReader.readLine()) != null) {

 if (line.startsWith("#")) continue;

 annotationsList.add(objectMapper.readValue(line,

Annotations.class));

 }

 Map<String, Annotations> annotationsMap = new HashMap<>();

 for (Annotations annotation : annotationsList) {

 annotationsMap.put(annotation.getThreadid(), annotation);

 }

 logger.debug("Finished importing main annotations file");

 logger.debug("number of annotations imported: " +

annotationsList.size());

 for (Annotations annotation : annotationsList) {

 logger.debug("First annotation imported is: " +

annotation.toString());

 Map<Pair<String, String>, ReplyAnnotation> replyAnnotationMap

= phemeProcessor.getAllAnnotations(datasetPath);

 //test

 String tweetPath = datasetPath + "threads/en/" +

annotation.getEvent() + "/" + annotation.getThreadid();

 File mainTweetJSONFile = new File(tweetPath + "/" + SOURCE +

"/" + annotation.getThreadid() + ".json");

 Tweet mainTweet = phemeProcessor.getTweet(mainTweetJSONFile);

 List<Tweet> reactions =

phemeProcessor.getReactions(annotation, datasetPath);

 double mainTweetPopularity =

phemeProcessor.getPopularity(mainTweet);

 List<Double> popularity = reactions.stream().filter(tweet -> {

 ReplyAnnotation replyAnnotation =

replyAnnotationMap.get(Pair.of(mainTweet.getIdStr(), tweet.getIdStr()));

 return replyAnnotation != null &&

!replyAnnotation.getResponsetypeVsSource().equals("comment");

 }).map(tweet -> {

 ReplyAnnotation replyAnnotation =

replyAnnotationMap.get(Pair.of(mainTweet.getIdStr(), tweet.getIdStr()));

 if (replyAnnotation != null &&

(replyAnnotation.getResponsetypeVsSource().equals("disagreed") ||

replyAnnotation.getResponsetypeVsSource().equals("appeal-for-more-

information"))) {

 return (-1 *

Math.abs(phemeProcessor.getPopularity(tweet)));

 } else {

 return Math.abs(phemeProcessor.getPopularity(tweet));

 }

 }).collect(Collectors.toList());

 logger.debug("List of popularity Size: " + popularity.size());

 popularity.stream().forEach(logger::debug);

 Double cumulativeCredibility = 0.0;

 cumulativeCredibility =

popularity.stream().mapToDouble(Math::abs).sum();

 cumulativeCredibility += mainTweetPopularity;

 double distanceFromPosititvity = mainTweetPopularity /

Math.abs(cumulativeCredibility);

 for (double creibility : popularity) {

 distanceFromPosititvity = distanceFromPosititvity +

(creibility / Math.abs(cumulativeCredibility));

117

 }

 builder.append(mainTweet.getIdStr() + ",");

 builder.append(distanceFromPosititvity + ",");

builder.append(annotationsMap.get(mainTweet.getIdStr()).getCertainty() + ",");

 builder.append(reactions.size());

 builder.append('\n');

logger.info("###");

 logger.info("DistanceFromPositivity equals: " +

distanceFromPosititvity);

 logger.info("Main Tweet Certainty: " +

annotationsMap.get(mainTweet.getIdStr()).getCertainty());

logger.info("###");

 }

 logger.info("###");

 logger.info("############### - Final Report - ################");

 logger.info(builder.toString());

 logger.info("############### - Final Report End -

###############");

 logger.info("###");

 pw.write(builder.toString());

 pw.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } finally {

 }

 }

 public double getPopularity(Tweet tweet) {

 return (double) (tweet.getUser().getFollowersCount() -

tweet.getUser().getFriendsCount())

 / (double) (tweet.getUser().getFollowersCount() +

tweet.getUser().getFriendsCount());

 }

 public Tweet getTweet(File tweetJSONFile) {

 ObjectMapper objectMapper = new ObjectMapper();

 Tweet tweet = null;

 try {

 FileInputStream fileInputStream = new

FileInputStream(tweetJSONFile);

 BufferedReader bufferedReader = new BufferedReader(new

InputStreamReader(fileInputStream));

 String tweetFileString = "";

 String line = null;

 while ((line = bufferedReader.readLine()) != null) {

 tweetFileString = tweetFileString.concat(line);

 }

 tweet = objectMapper.readValue(tweetFileString, Tweet.class);

 logger.debug("Finished importing tweet file");

 logger.debug("Tweet JSON file " + tweet.toString());

 } catch (FileNotFoundException e) {

 e.printStackTrace();

118

 } catch (IOException e) {

 e.printStackTrace();

 }

 logger.debug("Number of Favs: " + tweet.getFavoriteCount());

 logger.debug("Number of Retweets:" + tweet.getRetweetCount());

 return tweet;

 }

 public List<Tweet> getReactions(Annotations annotations, String

datasetPath) {

 String reactionPath = datasetPath + "threads/en/" +

annotations.getEvent() + "/" + annotations.getThreadid() + "/";

 File reactionsFolder = new File(reactionPath + REACTION);

 List<Tweet> reactions = new ArrayList<Tweet>();

 for (File tweetReaction : reactionsFolder.listFiles()) {

 logger.debug("List of Reaction JSON Tweet files");

 logger.debug(reactionsFolder.list());

 reactions.add(getTweet(tweetReaction));

 }

 logger.debug("Number of Reactions: " + reactions.size());

 return reactions;

 }

 public Map<Pair<String, String>, ReplyAnnotation> getAllAnnotations(String

datasetPath) {

 File annotationsFile = new File(datasetPath + "annotations/en-scheme-

annotations.json");

 ObjectMapper objectMapper = new ObjectMapper();

 Map<Pair<String, String>, ReplyAnnotation> annotationsMap = null;

 try {

 FileInputStream fileInputStream = new

FileInputStream(annotationsFile);

 BufferedReader bufferedReader = new BufferedReader(new

InputStreamReader(fileInputStream));

 String line = null;

 annotationsMap = new HashMap<>();

 while ((line = bufferedReader.readLine()) != null) {

 if (line.startsWith("#")) continue;

 annotationsMap.put(Pair.of((objectMapper.readValue(line,

ReplyAnnotation.class)).getThreadid(),

 (objectMapper.readValue(line,

Annotations.class)).getTweetid()), (objectMapper.readValue(line,

ReplyAnnotation.class)));

 }

 logger.debug("Finished importing all annotations file");

 logger.debug("number of annotations imported: " +

annotationsMap.size());

 } catch (FileNotFoundException e) {

 logger.fatal("an Error has occured " + e.getMessage());

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 logger.fatal("an Error has occured " + e.getMessage());

 } finally {

 }

 return annotationsMap;

 }

}

119

package tr.edu.yildiz.phemeProcessing.pojos;

import java.io.Serializable;

import java.util.HashMap;

import java.util.Map;

import com.fasterxml.jackson.annotation.JsonAnyGetter;

import com.fasterxml.jackson.annotation.JsonAnySetter;

import com.fasterxml.jackson.annotation.JsonIgnore;

import com.fasterxml.jackson.annotation.JsonInclude;

import com.fasterxml.jackson.annotation.JsonProperty;

import com.fasterxml.jackson.annotation.JsonPropertyOrder;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

import org.apache.commons.lang.builder.ToStringBuilder;

@JsonInclude(JsonInclude.Include.NON_NULL)

@JsonPropertyOrder({

 "contributors",

 "truncated",

 "text",

 "in_reply_to_status_id",

 "id",

 "favorite_count",

 "source",

 "retweeted",

 "coordinates",

 "entities",

 "in_reply_to_screen_name",

 "id_str",

 "retweet_count",

 "in_reply_to_user_id",

 "favorited",

 "user",

 "geo",

 "in_reply_to_user_id_str",

 "possibly_sensitive",

 "lang",

 "created_at",

 "in_reply_to_status_id_str",

 "place"

})

public class Tweet implements Serializable

{

 @JsonProperty("contributors")

 private Object contributors;

 @JsonProperty("truncated")

 private Boolean truncated;

 @JsonProperty("text")

 private String text;

 @JsonProperty("in_reply_to_status_id")

 private Object inReplyToStatusId;

 @JsonProperty("id")

 private Long id;

 @JsonProperty("favorite_count")

 private Long favoriteCount;

 @JsonProperty("source")

 private String source;

 @JsonProperty("retweeted")

 private Boolean retweeted;

 @JsonProperty("coordinates")

 private Object coordinates;

 @JsonProperty("entities")

 private Entities entities;

 @JsonProperty("in_reply_to_screen_name")

 private Object inReplyToScreenName;

 @JsonProperty("id_str")

120

 private String idStr;

 @JsonProperty("retweet_count")

 private Long retweetCount;

 @JsonProperty("in_reply_to_user_id")

 private Object inReplyToUserId;

 @JsonProperty("favorited")

 private Boolean favorited;

 @JsonProperty("user")

 private User user;

 @JsonProperty("geo")

 private Object geo;

 @JsonProperty("in_reply_to_user_id_str")

 private Object inReplyToUserIdStr;

 @JsonProperty("possibly_sensitive")

 private Boolean possiblySensitive;

 @JsonProperty("lang")

 private String lang;

 @JsonProperty("created_at")

 private String createdAt;

 @JsonProperty("in_reply_to_status_id_str")

 private Object inReplyToStatusIdStr;

 @JsonProperty("place")

 private Object place;

 @JsonIgnore

 private Map<String, Object> additionalProperties = new HashMap<String,

Object>();

 private final static long serialVersionUID = 3942418562524754126L;

 /**

 * No args constructor for use in serialization

 *

 */

 public Tweet() {

 }

 /**

 *

 * @param contributors

 * @param text

 * @param geo

 * @param inReplyToUserIdStr

 * @param retweeted

 * @param retweetCount

 * @param inReplyToScreenName

 * @param truncated

 * @param lang

 * @param entities

 * @param possiblySensitive

 * @param idStr

 * @param inReplyToStatusId

 * @param id

 * @param favoriteCount

 * @param source

 * @param inReplyToStatusIdStr

 * @param favorited

 * @param createdAt

 * @param inReplyToUserId

 * @param place

 * @param user

 * @param coordinates

 */

 public Tweet(Object contributors, Boolean truncated, String text, Object

inReplyToStatusId, Long id, Long favoriteCount, String source, Boolean

retweeted, Object coordinates, Entities entities, Object inReplyToScreenName,

String idStr, Long retweetCount, Object inReplyToUserId, Boolean favorited,

User user, Object geo, Object inReplyToUserIdStr, Boolean possiblySensitive,

String lang, String createdAt, Object inReplyToStatusIdStr, Object place) {

 super();

121

 this.contributors = contributors;

 this.truncated = truncated;

 this.text = text;

 this.inReplyToStatusId = inReplyToStatusId;

 this.id = id;

 this.favoriteCount = favoriteCount;

 this.source = source;

 this.retweeted = retweeted;

 this.coordinates = coordinates;

 this.entities = entities;

 this.inReplyToScreenName = inReplyToScreenName;

 this.idStr = idStr;

 this.retweetCount = retweetCount;

 this.inReplyToUserId = inReplyToUserId;

 this.favorited = favorited;

 this.user = user;

 this.geo = geo;

 this.inReplyToUserIdStr = inReplyToUserIdStr;

 this.possiblySensitive = possiblySensitive;

 this.lang = lang;

 this.createdAt = createdAt;

 this.inReplyToStatusIdStr = inReplyToStatusIdStr;

 this.place = place;

 }

 @JsonProperty("contributors")

 public Object getContributors() {

 return contributors;

 }

 @JsonProperty("contributors")

 public void setContributors(Object contributors) {

 this.contributors = contributors;

 }

 public Tweet withContributors(Object contributors) {

 this.contributors = contributors;

 return this;

 }

 @JsonProperty("truncated")

 public Boolean getTruncated() {

 return truncated;

 }

 @JsonProperty("truncated")

 public void setTruncated(Boolean truncated) {

 this.truncated = truncated;

 }

 public Tweet withTruncated(Boolean truncated) {

 this.truncated = truncated;

 return this;

 }

 @JsonProperty("text")

 public String getText() {

 return text;

 }

 @JsonProperty("text")

 public void setText(String text) {

 this.text = text;

 }

 public Tweet withText(String text) {

 this.text = text;

 return this;

122

 }

 @JsonProperty("in_reply_to_status_id")

 public Object getInReplyToStatusId() {

 return inReplyToStatusId;

 }

 @JsonProperty("in_reply_to_status_id")

 public void setInReplyToStatusId(Object inReplyToStatusId) {

 this.inReplyToStatusId = inReplyToStatusId;

 }

 public Tweet withInReplyToStatusId(Object inReplyToStatusId) {

 this.inReplyToStatusId = inReplyToStatusId;

 return this;

 }

 @JsonProperty("id")

 public Long getId() {

 return id;

 }

 @JsonProperty("id")

 public void setId(Long id) {

 this.id = id;

 }

 public Tweet withId(Long id) {

 this.id = id;

 return this;

 }

 @JsonProperty("favorite_count")

 public Long getFavoriteCount() {

 return favoriteCount;

 }

 @JsonProperty("favorite_count")

 public void setFavoriteCount(Long favoriteCount) {

 this.favoriteCount = favoriteCount;

 }

 public Tweet withFavoriteCount(Long favoriteCount) {

 this.favoriteCount = favoriteCount;

 return this;

 }

 @JsonProperty("source")

 public String getSource() {

 return source;

 }

 @JsonProperty("source")

 public void setSource(String source) {

 this.source = source;

 }

 public Tweet withSource(String source) {

 this.source = source;

 return this;

 }

 @JsonProperty("retweeted")

 public Boolean getRetweeted() {

 return retweeted;

 }

 @JsonProperty("retweeted")

123

 public void setRetweeted(Boolean retweeted) {

 this.retweeted = retweeted;

 }

 public Tweet withRetweeted(Boolean retweeted) {

 this.retweeted = retweeted;

 return this;

 }

 @JsonProperty("coordinates")

 public Object getCoordinates() {

 return coordinates;

 }

 @JsonProperty("coordinates")

 public void setCoordinates(Object coordinates) {

 this.coordinates = coordinates;

 }

 public Tweet withCoordinates(Object coordinates) {

 this.coordinates = coordinates;

 return this;

 }

 @JsonProperty("entities")

 public Entities getEntities() {

 return entities;

 }

 @JsonProperty("entities")

 public void setEntities(Entities entities) {

 this.entities = entities;

 }

 public Tweet withEntities(Entities entities) {

 this.entities = entities;

 return this;

 }

 @JsonProperty("in_reply_to_screen_name")

 public Object getInReplyToScreenName() {

 return inReplyToScreenName;

 }

 @JsonProperty("in_reply_to_screen_name")

 public void setInReplyToScreenName(Object inReplyToScreenName) {

 this.inReplyToScreenName = inReplyToScreenName;

 }

 public Tweet withInReplyToScreenName(Object inReplyToScreenName) {

 this.inReplyToScreenName = inReplyToScreenName;

 return this;

 }

 @JsonProperty("id_str")

 public String getIdStr() {

 return idStr;

 }

 @JsonProperty("id_str")

 public void setIdStr(String idStr) {

 this.idStr = idStr;

 }

 public Tweet withIdStr(String idStr) {

 this.idStr = idStr;

 return this;

 }

124

 @JsonProperty("retweet_count")

 public Long getRetweetCount() {

 return retweetCount;

 }

 @JsonProperty("retweet_count")

 public void setRetweetCount(Long retweetCount) {

 this.retweetCount = retweetCount;

 }

 public Tweet withRetweetCount(Long retweetCount) {

 this.retweetCount = retweetCount;

 return this;

 }

 @JsonProperty("in_reply_to_user_id")

 public Object getInReplyToUserId() {

 return inReplyToUserId;

 }

 @JsonProperty("in_reply_to_user_id")

 public void setInReplyToUserId(Object inReplyToUserId) {

 this.inReplyToUserId = inReplyToUserId;

 }

 public Tweet withInReplyToUserId(Object inReplyToUserId) {

 this.inReplyToUserId = inReplyToUserId;

 return this;

 }

 @JsonProperty("favorited")

 public Boolean getFavorited() {

 return favorited;

 }

 @JsonProperty("favorited")

 public void setFavorited(Boolean favorited) {

 this.favorited = favorited;

 }

 public Tweet withFavorited(Boolean favorited) {

 this.favorited = favorited;

 return this;

 }

 @JsonProperty("user")

 public User getUser() {

 return user;

 }

 @JsonProperty("user")

 public void setUser(User user) {

 this.user = user;

 }

 public Tweet withUser(User user) {

 this.user = user;

 return this;

 }

 @JsonProperty("geo")

 public Object getGeo() {

 return geo;

 }

 @JsonProperty("geo")

 public void setGeo(Object geo) {

125

 this.geo = geo;

 }

 public Tweet withGeo(Object geo) {

 this.geo = geo;

 return this;

 }

 @JsonProperty("in_reply_to_user_id_str")

 public Object getInReplyToUserIdStr() {

 return inReplyToUserIdStr;

 }

 @JsonProperty("in_reply_to_user_id_str")

 public void setInReplyToUserIdStr(Object inReplyToUserIdStr) {

 this.inReplyToUserIdStr = inReplyToUserIdStr;

 }

 public Tweet withInReplyToUserIdStr(Object inReplyToUserIdStr) {

 this.inReplyToUserIdStr = inReplyToUserIdStr;

 return this;

 }

 @JsonProperty("possibly_sensitive")

 public Boolean getPossiblySensitive() {

 return possiblySensitive;

 }

 @JsonProperty("possibly_sensitive")

 public void setPossiblySensitive(Boolean possiblySensitive) {

 this.possiblySensitive = possiblySensitive;

 }

 public Tweet withPossiblySensitive(Boolean possiblySensitive) {

 this.possiblySensitive = possiblySensitive;

 return this;

 }

 @JsonProperty("lang")

 public String getLang() {

 return lang;

 }

 @JsonProperty("lang")

 public void setLang(String lang) {

 this.lang = lang;

 }

 public Tweet withLang(String lang) {

 this.lang = lang;

 return this;

 }

 @JsonProperty("created_at")

 public String getCreatedAt() {

 return createdAt;

 }

 @JsonProperty("created_at")

 public void setCreatedAt(String createdAt) {

 this.createdAt = createdAt;

 }

 public Tweet withCreatedAt(String createdAt) {

 this.createdAt = createdAt;

 return this;

 }

126

 @JsonProperty("in_reply_to_status_id_str")

 public Object getInReplyToStatusIdStr() {

 return inReplyToStatusIdStr;

 }

 @JsonProperty("in_reply_to_status_id_str")

 public void setInReplyToStatusIdStr(Object inReplyToStatusIdStr) {

 this.inReplyToStatusIdStr = inReplyToStatusIdStr;

 }

 public Tweet withInReplyToStatusIdStr(Object inReplyToStatusIdStr) {

 this.inReplyToStatusIdStr = inReplyToStatusIdStr;

 return this;

 }

 @JsonProperty("place")

 public Object getPlace() {

 return place;

 }

 @JsonProperty("place")

 public void setPlace(Object place) {

 this.place = place;

 }

 public Tweet withPlace(Object place) {

 this.place = place;

 return this;

 }

 @JsonAnyGetter

 public Map<String, Object> getAdditionalProperties() {

 return this.additionalProperties;

 }

 @JsonAnySetter

 public void setAdditionalProperty(String name, Object value) {

 this.additionalProperties.put(name, value);

 }

 public Tweet withAdditionalProperty(String name, Object value) {

 this.additionalProperties.put(name, value);

 return this;

 }

 @Override

 public String toString() {

 return new ToStringBuilder(this).append("contributors",

contributors).append("truncated", truncated).append("text",

text).append("inReplyToStatusId", inReplyToStatusId).append("id",

id).append("favoriteCount", favoriteCount).append("source",

source).append("retweeted", retweeted).append("coordinates",

coordinates).append("entities", entities).append("inReplyToScreenName",

inReplyToScreenName).append("idStr", idStr).append("retweetCount",

retweetCount).append("inReplyToUserId", inReplyToUserId).append("favorited",

favorited).append("user", user).append("geo",

geo).append("inReplyToUserIdStr",

inReplyToUserIdStr).append("possiblySensitive",

possiblySensitive).append("lang", lang).append("createdAt",

createdAt).append("inReplyToStatusIdStr",

inReplyToStatusIdStr).append("place", place).append("additionalProperties",

additionalProperties).toString();

 }

 @Override

 public int hashCode() {

 return new

HashCodeBuilder().append(inReplyToUserIdStr).append(retweeted).append(retweetC

127

ount).append(truncated).append(lang).append(id).append(inReplyToStatusIdStr).a

ppend(createdAt).append(place).append(coordinates).append(text).append(contrib

utors).append(geo).append(inReplyToScreenName).append(entities).append(possibl

ySensitive).append(idStr).append(inReplyToStatusId).append(source).append(favo

riteCount).append(favorited).append(additionalProperties).append(inReplyToUser

Id).append(user).toHashCode();

 }

 @Override

 public boolean equals(Object other) {

 if (other == this) {

 return true;

 }

 if ((other instanceof Tweet) == false) {

 return false;

 }

 Tweet rhs = ((Tweet) other);

 return new EqualsBuilder().append(inReplyToUserIdStr,

rhs.inReplyToUserIdStr).append(retweeted, rhs.retweeted).append(retweetCount,

rhs.retweetCount).append(truncated, rhs.truncated).append(lang,

rhs.lang).append(id, rhs.id).append(inReplyToStatusIdStr,

rhs.inReplyToStatusIdStr).append(createdAt, rhs.createdAt).append(place,

rhs.place).append(coordinates, rhs.coordinates).append(text,

rhs.text).append(contributors, rhs.contributors).append(geo,

rhs.geo).append(inReplyToScreenName, rhs.inReplyToScreenName).append(entities,

rhs.entities).append(possiblySensitive, rhs.possiblySensitive).append(idStr,

rhs.idStr).append(inReplyToStatusId, rhs.inReplyToStatusId).append(source,

rhs.source).append(favoriteCount, rhs.favoriteCount).append(favorited,

rhs.favorited).append(additionalProperties,

rhs.additionalProperties).append(inReplyToUserId,

rhs.inReplyToUserId).append(user, rhs.user).isEquals();

 }

}

package tr.edu.yildiz.phemeProcessing.pojos;

import com.fasterxml.jackson.annotation.*;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

import org.apache.commons.lang.builder.ToStringBuilder;

import java.io.Serializable;

128

import java.util.HashMap;

import java.util.Map;

@JsonInclude(JsonInclude.Include.NON_NULL)

@JsonPropertyOrder({

 "event",

 "threadid",

 "tweetid",

 "support",

 "evidentiality",

 "certainty"

})

public class Annotations implements Serializable

{

 @JsonProperty("event")

 private String event;

 @JsonProperty("threadid")

 private String threadid;

 @JsonProperty("tweetid")

 private String tweetid;

 @JsonProperty("support")

 private String support;

 @JsonProperty("evidentiality")

 private String evidentiality;

 @JsonProperty("certainty")

 private String certainty;

 @JsonIgnore

 private Map<String, Object> additionalProperties = new HashMap<String,

Object>();

 private final static long serialVersionUID = -1946548778095666557L;

 /**

 * No args constructor for use in serialization

 *

 */

 public Annotations() {

 }

 /**

 *

 * @param support

 * @param certainty

 * @param evidentiality

 * @param event

 * @param tweetid

 * @param threadid

 */

 public Annotations(String event, String threadid, String tweetid, String

support, String evidentiality, String certainty) {

 super();

 this.event = event;

 this.threadid = threadid;

 this.tweetid = tweetid;

 this.support = support;

 this.evidentiality = evidentiality;

 this.certainty = certainty;

 }

 @JsonProperty("event")

 public String getEvent() {

 return event;

 }

 @JsonProperty("event")

 public void setEvent(String event) {

 this.event = event;

 }

129

 public Annotations withEvent(String event) {

 this.event = event;

 return this;

 }

 @JsonProperty("threadid")

 public String getThreadid() {

 return threadid;

 }

 @JsonProperty("threadid")

 public void setThreadid(String threadid) {

 this.threadid = threadid;

 }

 public Annotations withThreadid(String threadid) {

 this.threadid = threadid;

 return this;

 }

 @JsonProperty("tweetid")

 public String getTweetid() {

 return tweetid;

 }

 @JsonProperty("tweetid")

 public void setTweetid(String tweetid) {

 this.tweetid = tweetid;

 }

 public Annotations withTweetid(String tweetid) {

 this.tweetid = tweetid;

 return this;

 }

 @JsonProperty("support")

 public String getSupport() {

 return support;

 }

 @JsonProperty("support")

 public void setSupport(String support) {

 this.support = support;

 }

 public Annotations withSupport(String support) {

 this.support = support;

 return this;

 }

 @JsonProperty("evidentiality")

 public String getEvidentiality() {

 return evidentiality;

 }

 @JsonProperty("evidentiality")

 public void setEvidentiality(String evidentiality) {

 this.evidentiality = evidentiality;

 }

 public Annotations withEvidentiality(String evidentiality) {

 this.evidentiality = evidentiality;

 return this;

 }

 @JsonProperty("certainty")

 public String getCertainty() {

 return certainty;

130

 }

 @JsonProperty("certainty")

 public void setCertainty(String certainty) {

 this.certainty = certainty;

 }

 public Annotations withCertainty(String certainty) {

 this.certainty = certainty;

 return this;

 }

 @JsonAnyGetter

 public Map<String, Object> getAdditionalProperties() {

 return this.additionalProperties;

 }

 @JsonAnySetter

 public void setAdditionalProperty(String name, Object value) {

 this.additionalProperties.put(name, value);

 }

 public Annotations withAdditionalProperty(String name, Object value) {

 this.additionalProperties.put(name, value);

 return this;

 }

 @Override

 public String toString() {

 return new ToStringBuilder(this).append("event",

event).append("threadid", threadid).append("tweetid",

tweetid).append("support", support).append("evidentiality",

evidentiality).append("certainty", certainty).append("additionalProperties",

additionalProperties).toString();

 }

 @Override

 public int hashCode() {

 return new

HashCodeBuilder().append(support).append(certainty).append(evidentiality).appe

nd(additionalProperties).append(event).append(tweetid).append(threadid).toHash

Code();

 }

 @Override

 public boolean equals(Object other) {

 if (other == this) {

 return true;

 }

 if ((other instanceof Annotations) == false) {

 return false;

 }

 Annotations rhs = ((Annotations) other);

 return new EqualsBuilder().append(support,

rhs.support).append(certainty, rhs.certainty).append(evidentiality,

rhs.evidentiality).append(additionalProperties,

rhs.additionalProperties).append(event, rhs.event).append(tweetid,

rhs.tweetid).append(threadid, rhs.threadid).isEquals();

 }

}

package tr.edu.yildiz.phemeProcessing.pojos;

import com.fasterxml.jackson.annotation.*;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

import org.apache.commons.lang.builder.ToStringBuilder;

import java.io.Serializable;

131

import java.util.HashMap;

import java.util.Map;

@JsonInclude(JsonInclude.Include.NON_NULL)

@JsonPropertyOrder({

 "event",

 "threadid",

 "tweetid",

 "responsetype-vs-source",

 "certainty",

 "evidentiality"

})

public class ReplyAnnotation implements Serializable {

 private final static long serialVersionUID = 3870105215280666259L;

 @JsonProperty("event")

 private String event;

 @JsonProperty("threadid")

 private String threadid;

 @JsonProperty("tweetid")

 private String tweetid;

 @JsonProperty("responsetype-vs-source")

 private String responsetypeVsSource;

 @JsonProperty("certainty")

 private String certainty;

 @JsonProperty("evidentiality")

 private String evidentiality;

 @JsonIgnore

 private Map<String, Object> additionalProperties = new HashMap<String,

Object>();

 /**

 * No args constructor for use in serialization

 */

 public ReplyAnnotation() {

 }

 /**

 * @param evidentiality

 * @param certainty

 * @param responsetypeVsSource

 * @param event

 * @param tweetid

 * @param threadid

 */

 public ReplyAnnotation(String event, String threadid, String tweetid,

String responsetypeVsSource, String certainty, String evidentiality) {

 super();

 this.event = event;

 this.threadid = threadid;

 this.tweetid = tweetid;

 this.responsetypeVsSource = responsetypeVsSource;

 this.certainty = certainty;

 this.evidentiality = evidentiality;

 }

 @JsonProperty("event")

 public String getEvent() {

 return event;

 }

 @JsonProperty("event")

 public void setEvent(String event) {

 this.event = event;

 }

 public ReplyAnnotation withEvent(String event) {

 this.event = event;

132

 return this;

 }

 @JsonProperty("threadid")

 public String getThreadid() {

 return threadid;

 }

 @JsonProperty("threadid")

 public void setThreadid(String threadid) {

 this.threadid = threadid;

 }

 public ReplyAnnotation withThreadid(String threadid) {

 this.threadid = threadid;

 return this;

 }

 @JsonProperty("tweetid")

 public String getTweetid() {

 return tweetid;

 }

 @JsonProperty("tweetid")

 public void setTweetid(String tweetid) {

 this.tweetid = tweetid;

 }

 public ReplyAnnotation withTweetid(String tweetid) {

 this.tweetid = tweetid;

 return this;

 }

 @JsonProperty("responsetype-vs-source")

 public String getResponsetypeVsSource() {

 return responsetypeVsSource;

 }

 @JsonProperty("responsetype-vs-source")

 public void setResponsetypeVsSource(String responsetypeVsSource) {

 this.responsetypeVsSource = responsetypeVsSource;

 }

 public ReplyAnnotation withResponsetypeVsSource(String

responsetypeVsSource) {

 this.responsetypeVsSource = responsetypeVsSource;

 return this;

 }

 @JsonProperty("certainty")

 public String getCertainty() {

 return certainty;

 }

 @JsonProperty("certainty")

 public void setCertainty(String certainty) {

 this.certainty = certainty;

 }

 public ReplyAnnotation withCertainty(String certainty) {

 this.certainty = certainty;

 return this;

 }

 @JsonProperty("evidentiality")

 public String getEvidentiality() {

 return evidentiality;

 }

133

 @JsonProperty("evidentiality")

 public void setEvidentiality(String evidentiality) {

 this.evidentiality = evidentiality;

 }

 public ReplyAnnotation withEvidentiality(String evidentiality) {

 this.evidentiality = evidentiality;

 return this;

 }

 @JsonAnyGetter

 public Map<String, Object> getAdditionalProperties() {

 return this.additionalProperties;

 }

 @JsonAnySetter

 public void setAdditionalProperty(String name, Object value) {

 this.additionalProperties.put(name, value);

 }

 public ReplyAnnotation withAdditionalProperty(String name, Object value) {

 this.additionalProperties.put(name, value);

 return this;

 }

 @Override

 public String toString() {

 return new ToStringBuilder(this).append("event",

event).append("threadid", threadid).append("tweetid",

tweetid).append("responsetypeVsSource",

responsetypeVsSource).append("certainty", certainty).append("evidentiality",

evidentiality).append("additionalProperties",

additionalProperties).toString();

 }

 @Override

 public int hashCode() {

 return new

HashCodeBuilder().append(evidentiality).append(certainty).append(responsetypeV

sSource).append(additionalProperties).append(event).append(tweetid).append(thr

eadid).toHashCode();

 }

 @Override

 public boolean equals(Object other) {

 if (other == this) {

 return true;

 }

 if ((other instanceof ReplyAnnotation) == false) {

 return false;

 }

 ReplyAnnotation rhs = ((ReplyAnnotation) other);

 return new EqualsBuilder().append(evidentiality,

rhs.evidentiality).append(certainty,

rhs.certainty).append(responsetypeVsSource,

rhs.responsetypeVsSource).append(additionalProperties,

rhs.additionalProperties).append(event, rhs.event).append(tweetid,

rhs.tweetid).append(threadid, rhs.threadid).isEquals();

 }

}

134

PROV EVALUATE

package edu.yildiz.pronaliz;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.PrintWriter;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import org.apache.commons.collections15.list.SetUniqueList;

import org.dom4j.Document;

import org.dom4j.DocumentException;

import org.dom4j.Element;

import org.dom4j.Node;

import org.dom4j.io.SAXReader;

public class DistanceCalculator {

 public static void main(String[] args) throws FileNotFoundException {

 File folder = new File("/home/jihad/Desktop/Results/");

 File[] listOfFiles = folder.listFiles();

 PrintWriter pw = new PrintWriter(new

File("/home/jihad/Desktop/Results/distances.csv"));

 StringBuilder sb = new StringBuilder();

 sb.append("FileName");

 sb.append(',');

 sb.append("Distance");

 sb.append(',');

 sb.append("Total Number of Tweeps");

 sb.append(',');

 sb.append("Number of Tweeps with positive Feedback");

 sb.append(',');

 sb.append("Number of Tweeps with Ngeative Feedback");

 sb.append('\n');

 for (File file : listOfFiles) {

 if (file.isFile()) {

 System.out.println(file.getAbsolutePath());

 String[] results = distanceCalculator(file.getAbsolutePath());

 sb.append(file.getName());

 sb.append(',');

 sb.append(results[0]);

 sb.append(',');

 sb.append(results[1]);

 sb.append(',');

 sb.append(results[2]);

 sb.append(',');

 sb.append(results[3]);

 sb.append('\n');

 System.out.println("done!");

 }

 }

 pw.write(sb.toString());

 pw.close();

135

 }

 public static String[] distanceCalculator(String path) {

 double distance = 0;

 String[] resutls = new String[4];

 try {

 File inputFile = new File(path);

 SAXReader reader = new SAXReader();

 Document document = reader.read(inputFile);

 List<Tuple> tupleList = new ArrayList<>();

 List<Node> nodes =

document.selectNodes("/document/prov:wasAssociatedWith");

 System.out.println("----------------------------");

 HashMap<String, Agent> ahm = new HashMap<String, Agent>();

 ArrayList<String> positive = new ArrayList<String>();

 ArrayList<String> negative = new ArrayList<String>();

 int i = 1;

 for (Node node : nodes) {

 String activityID = node.valueOf("@prov:id");

 if (activityID.length() > 45) {

 if (i == 3) {

 i = 1;

 } else {

 i++;

 }

 String[] contents = activityID.split("(?=activity)");

 Tuple t = new Tuple();

 t.setActivityID(contents[i]);

t.setAgentID(node.selectSingleNode("prov:agent").valueOf("@prov:ref"));

 tupleList.add(t);

 String[] activitySplits = t.getActivityID().split("__");

 String activityType = activitySplits[4].substring(0, 1);

 double cred =

AgentMetricsRetriver.getAgentMetrics(t.getAgentID(), path).getCredibility();

 double avail =

AgentMetricsRetriver.getAgentMetrics(t.getAgentID(), path).getAvailability();

 double veri =

AgentMetricsRetriver.getAgentMetrics(t.getAgentID(), path).getVerifiability();

 Agent tweep = new Agent();

 tweep.setId(t.getAgentID());

 tweep.setCredibility(cred);

 tweep.setAvailability(avail);

 tweep.setVerifiability(veri);

 ahm.put(t.getAgentID(), tweep);

 if (activityType.equals("1")) {

 if (!positive.contains(tweep.getId()))

 positive.add(tweep.getId());

 if (negative.contains(tweep.getId())) {

 negative.remove(tweep.getId());

 }

 } else if (activityType.equals("2") ||

activityType.equals("3")) {

 if (!positive.contains(tweep.getId())) {

 if (!negative.contains(tweep.getId()))

 negative.add(tweep.getId());

 }

 }

 }

 }

 System.out.println("===============");

 System.out.println("List of Tweeps");

136

 resutls[1] = ahm.size() + "";

 for (String temp : ahm.keySet()) {

 System.out.print(temp + " ");

 System.out.println(ahm.get(temp).getCredibility());

 }

 System.out.println("===============");

 System.out.println("List of Tweeps with Positive Feedback");

 for (String temp : positive) {

 System.out.println(temp);

 }

 resutls[2] = positive.size() + "";

 System.out.println("===============");

 System.out.println("List of Tweeps with Negative Feedback");

 for (String temp : negative) {

 System.out.println(temp);

 }

 System.out.println("===============");

 System.out.println();

 System.out.println();

 System.out.println();

 System.out.println();

 System.out.println("Calculating Distance from Positivity");

 double sumOfCred = 0;

 for (Agent temp : ahm.values()) {

 sumOfCred = sumOfCred + temp.getCredibility();

 }

 System.out.println("Summation of tweeps credibility: " +

sumOfCred);

 for (String temp : negative) {

 distance = distance + (ahm.get(temp).getCredibility() /

sumOfCred);

 }

 resutls[3] = negative.size() + "";

 System.out.println("Distance from positivity= " + (1 - distance));

 System.out.println();

 } catch (DocumentException e) {

 e.printStackTrace();

 }

 resutls[0] = distance + "";

 return resutls;

 }

}

package edu.yildiz.pronaliz;

interface Item {

 double getWeight();

 String getOperation();

}

public class Operation implements Item{

 public double weight =0;

 public String operation ="";

 public String getOperation() {

 return operation;

 }

 public void setOperation(String operation) {

 this.operation = operation;

 }

 public void setWeight(double weight) {

 this.weight = weight;

 }

137

 @Override

 public double getWeight() {

 return weight;

 }

 public Operation(double weight, String operation) {

 super();

 this.weight = weight;

 this.operation = operation;

 }

}

package edu.yildiz.pronaliz;

import java.util.ArrayList;

import java.util.List;

class RandomItemChooser {

 private static ArrayList<Item> items;

 public static void main (String []args)

 {

 RandomItemChooser ric = new RandomItemChooser();

 items = new ArrayList<Item>();

 items.add(new Operation(5,"Like"));

 items.add(new Operation(0.2,"Retweet"));

 items.add(new Operation(0.2,"Reply"));

 }

 public Item chooseOnWeight(List<Item> items) {

 double completeWeight = 0.0;

 for (Item item : items)

 completeWeight += item.getWeight();

 double r = Math.random() * completeWeight;

 double countWeight = 0.0;

 for (Item item : items) {

 countWeight += item.getWeight();

 if (countWeight >= r)

 return item;

 }

 throw new RuntimeException("Should never be shown.");

 }

}

Privacy Control

package tr.yildiz.edu.privacyControl;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import javax.xml.parsers.DocumentBuilder;

138

import javax.xml.parsers.DocumentBuilderFactory;

import java.io.File;

import java.util.ArrayList;

public class DaxParser {

 public static ArrayList<Jobs> getDax(String path) {

 ArrayList<Jobs> listOfJobs = new ArrayList<Jobs>();

 try {

 File inputFile = new File(path);

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

 Document doc = dBuilder.parse(inputFile);

 doc.getDocumentElement().normalize();

 NodeList nList = doc.getElementsByTagName("job");

 for (int temp = 0; temp < nList.getLength(); temp++) {

 Jobs jobs = new Jobs();

 Node nNode = nList.item(temp);

 if (nNode.getNodeType() == Node.ELEMENT_NODE) {

 Element eElement = (Element) nNode;

 jobs.setActivityID(eElement.getAttribute("id").trim());

jobs.setUserData(eElement.getElementsByTagName("argument").item(0).getTextCont

ent());

 jobs.setOpType(eElement.getAttribute("name"));

 NodeList nodeList = nNode.getChildNodes();

 for (int j = 0; j < nodeList.getLength(); j++) {

 Node childNode = nodeList.item(j);

 if (childNode.getNodeType() == Node.ELEMENT_NODE) {

 //Element element = (Element) childNode;

 if (childNode.getNodeType() == Node.ELEMENT_NODE)

{

 if

(childNode.getNodeName().equals("metadata")) {

jobs.setTimestamp(childNode.getTextContent());

 }

 if (childNode.getNodeName().equals("uses") &&

childNode.getAttributes().getNamedItem("link").toString().contains("input")) {

jobs.setTweetAffected(childNode.getAttributes().getNamedItem("name").getTextCo

ntent());

jobs.setDerrivedFrom(childNode.getAttributes().getNamedItem("name").getTextCon

tent());

 }

 if (childNode.getNodeName().equals("argument")

&& !jobs.getOpType().equals("like")) {

jobs.setTweetID(childNode.getChildNodes().item(1)

.getAttributes().getNamedItem("name")

 .getTextContent());

 }

 }

 }

 }

 }

139

 jobs.setMetricValues();

 listOfJobs.add(jobs);

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 return listOfJobs;

 }

 public static void main(String[] args) {

 ArrayList<Jobs> listOfJobs = new ArrayList<Jobs>();

 try {

 File inputFile = new

File("C:\\Users\\jehad\\Desktop\\Dax\\dax_401_1K_.dax");

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

 Document doc = dBuilder.parse(inputFile);

 doc.getDocumentElement().normalize();

 NodeList nList = doc.getElementsByTagName("job");

 for (int temp = 0; temp < nList.getLength(); temp++) {

 Jobs jobs = new Jobs();

 Node nNode = nList.item(temp);

 if (nNode.getNodeType() == Node.ELEMENT_NODE) {

 Element eElement = (Element) nNode;

 jobs.setActivityID(eElement.getAttribute("id").trim());

jobs.setUserData(eElement.getElementsByTagName("argument").item(0).getTextCont

ent());

 jobs.setOpType(eElement.getAttribute("name"));

 NodeList nodeList = nNode.getChildNodes();

 for (int j = 0; j < nodeList.getLength(); j++) {

 Node childNode = nodeList.item(j);

 if (childNode.getNodeType() == Node.ELEMENT_NODE) {

 //Element element = (Element) childNode;

 if (childNode.getNodeType() == Node.ELEMENT_NODE)

{

 if

(childNode.getNodeName().equals("metadata")) {

jobs.setTimestamp(childNode.getTextContent());

 }

 if (childNode.getNodeName().equals("uses") &&

childNode.getAttributes().getNamedItem("link").toString().contains("input")) {

 System.out.println("HERE!!!!!!!!!!!!!!!!"

+ childNode.getAttributes().getNamedItem("name").getTextContent());

jobs.setDerrivedFrom(childNode.getAttributes().getNamedItem("name").getTextCon

tent());

 }

 if

(childNode.getNodeName().equals("argument")) {

jobs.setTweetID(childNode.getChildNodes().item(1)

.getAttributes().getNamedItem("name")

 .getTextContent());

 }

140

 }

 }

 }

 }

 jobs.setMetricValues();

 listOfJobs.add(jobs);

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 for (Jobs j : listOfJobs) {

 System.out.println(j.toString());

 }

 }

}

package tr.yildiz.edu.privacyControl; /**

 *

 */

import java.util.ArrayList;

/**

 * @author jihad

 */

public class Jobs {

 private String activityID;

 private String userData;

 private String opType;

 private String timestamp;

 private String derrivedFrom;

 private String legitimacy;

 private String availability;

 private String username;

 private String popularity;

 private String tweetID;

 private String[] followers;

 private String tweetAffected;

 public Jobs() {

 }

 public Jobs(String activityID, String userData, String opType, String

timestamp, String derrivedFrom,

 String legitimacy, String availability, String username,

String popularity, String tweetID, String[] followers,

 String tweetAffected) {

 super();

 this.setActivityID(activityID);

 this.setUserData(userData);

 this.setOpType(opType);

141

 this.setTimestamp(timestamp);

 this.setDerrivedFrom(derrivedFrom);

 this.setLegitimacy(legitimacy);

 this.setAvailability(availability);

 this.setUsername(username);

 this.setPopularity(popularity);

 this.setTweetID(tweetID);

 this.setFollowers(followers);

 this.setTweetAffected(tweetAffected);

 }

 public String getTweetAffected() {

 return tweetAffected;

 }

 public void setTweetAffected(String tweetAffected) {

 this.tweetAffected = tweetAffected;

 }

 public String getTweetID() {

 return tweetID;

 }

 public void setTweetID(String tweetID) {

 this.tweetID = tweetID;

 }

 public void setMetricValues() {

 //System.out.println("User's data before parsin: "+ getUserData());

 String[] tokens = getUserData().split(",");

 //for(int i=0;i<tokens.length;i++)

 //{

 //System.out.println(" -->"+aList.get(i));

// System.out.println("0: "+tokens[0].split(" ")[1]);

 setUsername(tokens[0].split(" ")[1].trim());

 //System.out.println(tokens[1].split(" ")[2]);

// System.out.println("2: "+tokens[2].split(" ")[2]);

 setPopularity(tokens[2].split(" ")[2].trim());

// System.out.println("3: "+tokens[3].split(" ")[2]);

 setAvailability(tokens[3].split(" ")[2].trim());

// System.out.println("4: "+tokens[4].split(" ")[2]);

 setLegitimacy(tokens[4].split(" ")[2].trim());

 ArrayList<String> followersList = new ArrayList<String>();

 for (int numOfFollowers = 5; numOfFollowers < tokens.length;

numOfFollowers++) {

 followersList.add(tokens[numOfFollowers]);

 }

 setFollowers(followersList.toArray(new String[0]));

 }

 public String getDerrivedFrom() {

 return derrivedFrom;

 }

 public void setDerrivedFrom(String derrivedFrom) {

 this.derrivedFrom = derrivedFrom;

 }

 public String getActivityID() {

 return activityID;

 }

 public void setActivityID(String activityID) {

 this.activityID = activityID;

 }

 public String getUserData() {

142

 return userData;

 }

 public void setUserData(String userData) {

 this.userData = userData;

 }

 public String getOpType() {

 return opType;

 }

 public void setOpType(String opType) {

 this.opType = opType;

 }

 public String getTimestamp() {

 return timestamp;

 }

 public void setTimestamp(String timestamp) {

 this.timestamp = timestamp;

 }

 public String getLegitimacy() {

 return legitimacy;

 }

 public void setLegitimacy(String legitimacy) {

 this.legitimacy = legitimacy;

 }

 public String getAvailability() {

 return availability;

 }

 public void setAvailability(String availability) {

 this.availability = availability;

 }

 public String getUsername() {

 return username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 public String getPopularity() {

 return popularity;

 }

 public void setPopularity(String popularity) {

 this.popularity = popularity;

 }

 @Override

 public String toString() {

 return "Jobs [activityID= " + getActivityID() + " , opType=" +

getOpType() + ", timestamp="

 + getTimestamp() + " Derrived from: " + getDerrivedFrom() +

"]" + "TweetID" + getTweetID()

 + " Popularity " + getPopularity() + " Legitimacy " +

getLegitimacy() + " Availability " + getAvailability();

 }

 public String[] getFollowers() {

 return followers;

143

 }

 public void setFollowers(String[] followers) {

 this.followers = followers;

 }

 public boolean existInFollowersList(String userID) {

 for (String temp : followers) {

 if (temp.equals(userID)) {

 return true;

 }

 }

 return false;

 }

}

package tr.yildiz.edu.privacyControl;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class PrivacyControlRunner {

 public static void main(String[] args) {

 ClassPathXmlApplicationContext context =

 new ClassPathXmlApplicationContext("application-context.xml");

 for (int i = 0; i < 10; i++) {

 new Thread(context.getBean("ruleSelector",

RuleOneVerifier.class)).start();

 }

 }

}

package tr.yildiz.edu.privacyControl;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

public class RuleOneVerifier implements Runnable, RuleVerifier {

 public static void main(String[] args) {

 for (int i = 0; i < 10; i++) {

 new Thread(new RuleOneVerifier()).start();

 }

 }

 public void run() {

 verifyRule();

144

 }

 public void verifyRule() {

 try {

 File folder = new File("C:\\Users\\jehad\\Desktop\\Dax\\");

 File[] listOfFiles = folder.listFiles();

 FileWriter f0 = new

FileWriter("C:\\Users\\jehad\\Desktop\\Dax\\results\\output.csv");

 String newLine = System.getProperty("line.separator");

 for (File file : listOfFiles) {

 if (file.isFile()) {

 long startTime = System.nanoTime();

 ArrayList<Jobs> jobs;

 jobs = DaxParser.getDax(file.getAbsolutePath());

 Jobs mainTweet = jobs.get(0);

 int numberOfTocuhes = 0;

 for (int index = 1; index < jobs.size(); index++) {

 Jobs temp = jobs.get(index);

 if (temp.getTweetAffected() != null &&

temp.getTweetAffected().equals(mainTweet.getTweetID()) &&

!mainTweet.existInFollowersList(temp.getUsername())) {

 System.out.println(temp.getUsername() + " Has

violated rule one policy");

 numberOfTocuhes++;

 }

 }

 System.out.println("Found " + numberOfTocuhes + " Rule one

privacy policy violations");

 long endTime = System.nanoTime();

 long totalTime = endTime - startTime;

 System.out.println("Execution time " + totalTime);

 f0.write(file.getName() + ", " + totalTime + newLine);

 }

 }

 f0.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

145

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname : Mohamed Jehad BAETH

Date of birth and place : 22 June 1985

Foreign Languages : English – Turkish

E-mail : jihadbaeth@gmail.com

EDUCATION

Degree Department University Date of

Graduation

Masters Master of Science

(Information

Technology)

Universiti Utara Malaysia,

Sintok, Malaysia

2010

Undergraduate Bachelor’s Degree in

software engineering

Philadelphia University of

Jordan

2008

High School Almotanabi High

School

 2002

WORK EXPERIENCE

Year Corporation/Institute Enrollment

2018 Amadeus IT Services Software development

engineer

2011 Ebdaa Engineering Co Web developer (frontend

& backend)

2008 Pioneers Solutions & Training Center Junior java programmer

and unit coordinator

146

PUBLISHMENTS

Journal Papers

1. Baeth, M. J., & Aktas, M. S. (n.d.). Detecting misinformation in social networks

using provenance data. Concurrency and Computation: Practice and Experience,

0(0), e4793.

2. Baeth, M. J., & Aktas, M. S. (2018). An approach to custom privacy policy

violation detection problems using big social provenance data. In Concurrency

Computation (Vol. 30).

Conference Papers

1. Baeth J., AKTAŞ M. S. (2017). An Approach to Copyright Violation Detection

Problem Using Big Social Provenance Data. 5. Ulusal Yüksek Başarımlı

Hesaplama Konferansı.

2. Riveni, M., Baeth, M. J., Aktas, M. S., & Dustdar, S. (2017). Provenance in Social

Computing: A Case Study. In 2017 13th International Conference on Semantics,

Knowledge and Grids (SKG) (pp. 77–84).

3. Baeth, M. J., & Aktas, M. S. (2018). Detecting misinformation in social networks

using provenance data. In Proceedings - 2017 13th International Conference on

Semantics, Knowledge and Grids, SKG 2017.

4. Baeth M. J. & Aktas M. S. (2017). A Large Scale Synthetic Social Provenance

Database. DBKDA 2017: The Ninth International Conference on Advances in

Databases, Knowledge, and Data Applications, 16–22.

5. Tas, Y., Baeth, M. J., & Aktas, M. S. (2017). An Approach to Standalone

Provenance Systems for Big Social Provenance Data. In Proceedings - 2016 12th

International Conference on Semantics, Knowledge and Grids, SKG 2016 (pp. 9–

16).

6. Baeth, M. J., & Aktas, M. S. (2015). On the Detection of Information Pollution and

Violation of Copyrights in the Social Web. In 2015 IEEE 8th International

Conference on Service-Oriented Computing and Applications (SOCA) (pp. 252–

254). IEEE.

Projects

1. National Young Researchers Career Development Program of TUBITAK (3501)

(Project No: 114E781, Title of Project: Provenance within the Social Media and

Development of Methodologies to detect Information Pollution and Copyrights’

Violation).

