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ABSTRACT

A STUDY OF LEBESGUE CONSTANTS
IN BARYCENTRIC RATIONAL AND
MULTIVARIATE POLYNOMIAL INTERPOLATION

Bayram Ali IBRAHIMOGLU

Department of Mathematics

Ph.D. Thesis

Advisers: Prof. Dr. Mustafa BAYRAM, Prof. Dr. Annie CUYT

The Lebesgue constant is a valuable numerical instrument for linear interpolation, because
it indicates how the interpolant of a function compares to the best linear approximant of
that function. Furthermore, if the interpolant is computed by making use of the Lagrange
basis functions, then the Lebesgue constant also expresses the conditioning of the inter-
polation problem at hand. Many publications have been devoted to the search for optimal
interpolation points, optimal in the sense that these points lead to a minimal Lebesgue
constant for interpolation problems on the interval [-1,1].

In this thesis, the best results obtained in univariate polynomial interpolation are gen-
eralized to univariate rational interpolation. In addition, this generalization provides a
very practical and useful result in the case of barycentric rational interpolation, where
simple equidistant interpolation points apparently yield very slowly increasing Lebesgue
constants.

The literature demonstrates a direct link between the orthogonality of polynomials and
optimal interpolation points for polynomial interpolation. In this thesis, this connection is
further explored for the case of linear interpolation, using rational functions with a prede-
termined denominator (preassigned poles) on the one hand and multivariate polynomial
functions on the unit disk on the other hand.

Keywords: Lebesgue constants, condition number, polynomial interpolation, barycentric

rational interpolation, interpolation points, preassigned poles, orthogonal polynomials.
YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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OZET

A STUDY OF LEBESGUE CONSTANTS
IN BARYCENTRIC RATIONAL AND
MULTIVARIATE POLYNOMIAL INTERPOLATION

Bayram Ali IBRAHIMOGLU

Department of Mathematics

Ph.D. Thesis

Advisers: Prof. Dr. Mustafa BAYRAM, Prof. Dr. Annie CUYT

Lebesgue sabiti (Lebesgue constant) lineer 6zellikli interpolasyon i¢in, bir fonksiyonun
interpolasyonu ile o fonksiyonun en iyi lineer yaklagiminin kiyaslanmasi bakimindan
cok degerli bir niimerik enstriimandir. Dahasi, eger interpolasyon Lagrange bazlar kul-
lanilarak hesaplaniyorsa Lebesgue sabiti interpolasyon yonteminin kogullanmasin ifade
eder. Bu baglamda optimal interpolasyon noktalarinin aragtirilmast pek ¢ok bilimsel
yayinin konusu olmustur. Burada optimallik [-1,1] araliginda Lebesgue sabitini minu-
numa gotiiren noktalar1 ifade etmektedir.

Bu tezde, tek degiskenli polinom tipi interpolasyon yontemi i¢in elde edilmis sonuglar tek
degiskenli rasyonel tipi interpolasyon yontemine genellestirilmigtir. Buna ilaveten, esit
aralikli interpolasyon noktalar1 belirgin bir gsekilde ¢ok yavag biiyliyen Lebesgue sabit-
lerine sahip olmasi dolayisiyla, bu genelleme barisentrik rasyonel interpolasyon yontemi
icin ¢cok kullanigl ve pratik sonug saglar.

Literatiir polinom tipi interpolasyon icin optimal interpolasyon noktalar ile polinomlarin
ortogonalligi arasinda dogrudan bir iligski oldugunu gosterir. Bu tezde bu iligki durumu
lineer 6zellikteki interpolasyon yontemleri i¢in, bir yandan paydasi dnceden belirlenmig
tekil noktalar (preassigned poles) kullanilarak rasyonel fonksiyonlar icin, diger yandan
ise birim disk tizerinde ¢ok degigkenli polinom tipi fonksiyonlar i¢in arastirilmigstir

Anahtar Kelimeler: Lebesgue sabitleri, kosul sayisi, polinom interpolasyon, barisentrik
rasyonel interpolasyon, interpolasyon noktalari, 6nceden belirlenmis tekil noktalar, orto-
gonal polinomlar.

YILDIZ TEKNIK UNIVERSITESI FEN BILIMLERI ENSTITUSU




SAMENVATTING

A STUDY OF LEBESGUE CONSTANTS
IN BARYCENTRIC RATIONAL AND
MULTIVARIATE POLYNOMIAL INTERPOLATION

Bayram Ali IBRAHIMOGLU

Department of Mathematics

Ph.D. Thesis

Advisers: Prof. Dr. Mustafa BAYRAM, Prof. Dr. Annie CUYT

De Lebesgue constante is een waardevol numeriek instrument bij lineaire interpolatie,
omdat ze aangeeft hoe de interpolant van een functie vergelijkt met de beste lineaire
approximant van die functie. Als de interpolant tevens berekend wordt met behulp van
de Lagrange basisfuncties, drukt de Lebesgue constante ook nog eens de conditionering
uit van het interpolatieprobleem in kwestie. Er zijn al zeer veel publicaties gewijd aan de
zoektocht naar optimale interpolatiepunten, optimaal in de zin dat de punten een minimale
Lebesgue constante opleveren voor interpolatieproblemen geformuleerd in het standaard
interval [-1, 1].

In deze thesis worden de beste resultaten, behaald in univariate veelterminterpolatie, ver-
algemeend naar univariate rationale interpolatie. Deze veralgemening levert daarenboven
een zeer praktisch bruikbaar resultaat op, omdat blijkbaar bij barycentrische rationale in-
terpolatie eenvoudige equidistante interpolatiepunten zeer traaggroeiende Lebesgue con-
stanten opleveren.

Uit de wetenschappelijke literatuur blijkt ook de directe link tussen orthogonaliteit van
veeltermen en optimale interpolatiepunten voor veelterminterpolatie. Deze link wordt
in de thesis verder uitgediept voor de interpolatie, met enerzijds rationale functies met
vooraf vastgelegde noemer (of polen) en anderzijds multivariate veeltermfuncties (op de
gesloten eenheidsschijf).

Keywords: Lebesgueconstanten, conditiegetal gegeven, veelterminterpolatie, barycen-
trische rationale interpolatie, interpolatiepunten, vooraf vastgelegde polen, orthogonale
veeltermen.
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

The Lebesgue constant is a valuable numerical instrument for linear interpolation, be-
cause it provides a measure of how close the interpolant of a function is to the best linear
approximant of the function. Moreover, if the interpolant is computed by using the La-
grange basis, then the Lebesgue constant also expresses the conditioning of the interpola-
tion problem. In addition, many publications have been devoted to the search for optimal
interpolation points, in the sense that these points lead to a minimal Lebesgue constant
for the interpolation problems on the interval [-1, 1]. An explicit formula for the x; that
minimize the Lebesgue constant is not known, and if no further constraints are imposed
on the interpolation points, then the solution is not even unique. But it is proved in [1, 2,
pp. 110-121] that the minimal growth of the Lebesgue constant, in terms of the number

of interpolation points n+ 1, is given by

2 4 2
= <ln(n—|— 1)+y+In (—)) ~ ZIn(n+1)+0.52125...
T T T

with 7y the Euler constant.

Several node sets {x,...,x,} come close to realizing this minimal growth, among which
the Chebyshev zeroes [3, 4, 5] and the Fekete points [6]. The node set known in closed
form that approximates the optimal node set best is probably the so-called extended

Chebyshev node set given by




The division by cos(m/(2n+2)) guarantees that xo = —1 and x,, = 1. The growth of the

Lebesgue constant for the extended Chebyshev nodes is bounded by [5, 7]
2
An(x0,...,xn) < %log(n—|—1)+0.5829..., n>4,

which is only slightly larger than the minimal growth. At the same time, it is known that

the Lebesgue constant A, for equidistant interpolation points grows exponentially [8, 9].

A rough analysis of the growth of the Lebesgue constant in the case of barycentric rational
interpolation at equidistant interpolation points, was made in [10] and [11], leading to the

conclusion that it only grows logarithmically.

The minimal growth of the Lebesgue constant for bivariate polynomial interpolation is
different for different bivariate domains. For instance, on the square the minimal order of
growth is O(In?(n+ 1)) and this order is achieved for the configurations of interpolation
points given in [12] and [13]. On the disk the minimal order of growth is quite different,
namely O(v/n+ 1), as proved in [14]. No configurations of interpolation points obeying
this order of growth are known. On the simplex the minimal order of growth is not even
known. Instead, in [15] some (non closed form) configurations of interpolation points are
obtained from the solution of a minimization problem. There is clearly a lot of interest in

the problem.

1.2 Objective of the Thesis

The search for sets of good interpolation points is highly motivated by the fact that, due
to the finite precision of digital computers, valid results can only be expected when the
interpolation problem is well-conditioned. In addition, the conditioning of polynomial
interpolation and of rational interpolation with preassigned poles is measured by the re-

spective Lebesgue constants.

Although near-optimal choices for basis and interpolation points are known in the uni-
variate case, little or nothing is known in the multivariate case. And when generalizing
the problem to rational interpolation (with a prescribed denominator to stick to a linear

problem statement), only partial results have been discovered. In this thesis we tackle

2



both these problems, the latter in more detail than the former.

1.3 Hypothesis of the Thesis

The choice of the polynomial basis and the location of the interpolation points play an im-
portant numerical role in univariate polynomial interpolation. The best results obtained in
univariate polynomial interpolation can be generalized to univariate rational interpolation
with preassigned poles discussed in Chapters 3 to 4. If the choice of the polynomial basis
and the location of the interpolation points play an important numerical role in univari-
ate polynomial interpolation, they do so even more in the multivariate case discussed in
Chapter 5. In this thesis, we also point out the many links of the close connection between
the orthogonality of polynomials and optimal interpolation points under discussion with

the existing literature.



CHAPTER 2

STATE OF THE ART IN UNIVARIATE POLYNOMIAL
INTERPOLATION

The classical problem of polynomial interpolation through data fy,..., f, given at in-
terpolation points xo,...,X,, can be expressed in several polynomial bases, each giving
rise to a different linear system of interpolation conditions. Among others, we mention
the standard monomial basis, the Newton basis for use with divided differences, the La-
grange basis for a simple explicit formula, or a choice of an orthogonal polynomial basis.
Although the choice of the basis does not make a difference from a mathematical point
of view, it influences the conditioning of the problem when computing the interpolating

polynomial numerically.

But the nature of the interpolation points always plays an important role, both mathe-
matically and numerically. Suffices to mention the well-known Runge phenomenon to
understand this. The quality of the polynomial interpolant depends heavily on the loca-
tion of the interpolation points. The general recommendation is to have significantly more
interpolation points towards the boundary of the interval. In addition, the conditioning of

the interpolation problem may vary greatly with the location of the points as well.

In Section 1 we introduce the univariate polynomial interpolation problem, for which we
give two useful error formulas in Section 2. The conditioning of polynomial interpolation
is analysed in detail in Section 3, in case of the Lagrange basis, and in Section 4 for
other bases. For the Lagrange form the condition number is the Lebesgue constant. For
other representations we inspect the condition number of the (generalized) Vandermonde

matrix.



2.1 Problem statement

In the classical (polynomial) theory of interpolation, several forms can be used to write
down the polynomial interpolation problem. This section introduces two of them: the La-
grange form, to be used in the definition of the Lebesgue constant in Section 2.3, and the
(generalized) Vandermonde system, to be used in the definition of the condition number

in Section 2.4.

For convenience, without loss of generality, we work with the interval [—1, 1], although
what we have to say about polynomial interpolation may be applied to any finite interval

by making a linear change of variable.

In this study, we assume that the values of a function are known a priori at some points.

The interpolating polynomial is then constructed from this information.

2.1.1 Lagrange form
Forn € N, let
X:{xj:j:O,l,...,n} (2.1)

be a set of n+ 1 distinct interpolation points (or nodes) on the real interval [—1,1] such

that
—1<xp<x1 <~ <x, <1, (2.2)

Let the function f € C([—1,1]). When approximating f by an element from a finite-
dimensional vector space ¥, = span{¢o,¢1,...,0,} and if ¢, ¢1,. .., ¢, are a Chebyshev
system with ¢; € C([—1,1]) for 0 <i < n, it is well known that there exists a unique

generalized polynomial

palx) = i)aiqx D

such that

pa(x)) =Y aidi(xj) = f(x;),  j=0,....n (2.3)
=0



Let &, be the (n+ 1) - dimensional vector space of polynomials of degree at most n,

Py =span{l,x,... . x"}.

The operator that associates with f its polynomial interpolant p,(x) can be expressed as

Palxo,. .., xa) : C([—1,1]) = Py :

n (2.4)
f@) = palx) = Y fxi)lix)
i=0
where the basic Lagrange polynomials £;(x) are given by
n

11 .(x—x i)
) P E— 2.5)

H (xi — x;)

J=0,j#i

The polynomials #;(x) have the property
1, i=],
E,-(xj): i,j:O,...,n.
0, otherwise,

2.1.2 Vandermonde system

An alternative method (and a natural approach) to the interpolation problem in (2.3) is to

consider it directly in matrix form as ®(xo, ..., x,)a =y, where y; = f(x;), or in detail as

do(x0) @1(x0) ¢2(x0) -+ @alx0) ao f(x0)
do(x1) (.X1) $2(x1) 0 Palxr) a | _ f(?Cl) . 2.6
P (xn) 0] (xn) [0)) (xn) o (xn) an S (xn)

The n x n matrix ® appearing here is called the generalized Vandermonde matrix. The
det®(xp,...,x,) # 0 for any set of distinct points xo, X1, - ,X, in [—1,1], if ¢o,1,...,p

are a Chebyshev system [16] on the interval [—1,1].



In (2.6), replacing ¢; by x’ gives the special case

1 xo x3 - X ao J(x0)
1 x x - ar [ | fG) 27
1 x, x2 - x an S (xn)

which has a unique solution for the real coefficients a;. These coefficients can be com-
puted by solving a structured linear system of equations, the so-called Vandermonde sys-

tem, with a coefficient matrix given by

1 X0 x% x8
1 xp 3 - X

Vn(.XO, 7.Xn) — ) ) ) ) ) . (2.8)
1 Xn x% xz

2.2 Interpolation error
2.2.1 Explicit formula

When we interpolate the function f € C?*1 ([—1,1]) over the interval [—1, 1] at the (n+
1) distinct points x;, the error associated with f(x) and its polynomial interpolant p, (x)

at a non-interpolation point x, can be expressed as

S
m+w1;y”ﬁﬁ 29

J(x) = pa(x) =
where the point &, € (xo,x,) and V(&) is the (n+ 1) -st derivative of f (x) evaluated
at &,. The point &, depends on the function f, the points x; and the evaluation point x.

In most cases, the value of &, is not known exactly and the following estimate becomes

important [17, pp. 56-57]:

S )| -
— Pnlle £ max | ————— | max I I X—x;|. 2.10
1/ =Pl  xe[-1,1] < (n+1)! xE[l,l]jO| i 19
Here and throughout this chapter, except where indicated otherwise, ||-|| denotes the max-

imum norm (ee -norm or uniform norm) on [—1, 1] defined by

I/ llee = max |f(x)],  feC(=1,1]).

—1<x<1



In many cases, of course, the actual error is much smaller than predicted by (2.10).
This inequality indicates that any influence on the interpolation error can only be ex-
pected from controlling the location of the points x; because the behavior of f (and
its derivatives) is fixed by the problem. Therefore, it is natural to look for x; such that

|(x—x0) - (x —xp)]|., is minimized.
It is well known that

I(x = x0) - (x = xn) [l

is minimized on [—1, 1] with minimum value 27", by choosing xo, ..., as the zeros of
the (n+ 1) - th degree Chebyshev polynomial of the first kind 7}, 1 (x) = cos ((n+ 1) arccosx),

in other words [ 18]
n 1
[]Gx—x) = ?Tnﬂ(x).
j=0
Then we obtain the following upper bound for the maximum error
1= palle < (Gt ) max |70 0)
T2 (4 1)) xe[-1] ‘

If we choose equidistant interpolation points xo = —1,x, = 1,x; = —1+ %, then we obtain

the following estimate [19, pp. 266-267]

(2n)!
CYTERPYI [(x—x0) - (x —xn) [|o -
On comparing 2" and %, using Stirling’s formula for large n, it follows that
_ (2n)! n
n . o n
2 TZQ’TW—%(O.6796...) .

This indicates that the ratio of the maximum error factors decreases at least exponentially.

2.2.2 Mini-max polynomial approximation

A best polynomial approximation p,, in terms of the maximum norm is called a mini-max

approximation, because

If = Palle S 1F = Palless P € P



Mini-max approximations are important because of the famous Weierstrass approxima-
tion theorem [20] stating that every continuous function over a closed interval can be

approximated to arbitrary accuracy by polynomials.

Theorem 2.2.1 (Weierstrass) Given f € C([—1,1]) and € > 0, there exist n and a poly-

nomial py, of degree n, such that

If =Pl = max |f(x)—pa(x)] <e.

—1<x<1

The first constructive proof of this theorem was given by Bernstein (1912). A detailed
explanation of this proof can be found in [17, pp. 108-111] (or in [21, pp. 66-69]). Addi-
tionally, it is known that for every continuous function f over a closed interval, a mini-max

approximation of a given degree n exists and is unique [17, pp. 140-146].

The mini-max polynomial approximation is characterized completely by the equioscilla-
tion property. The error curve takes on extreme values in at least n 4 2 points with alter-
nating signs. As an example, since 2771 (x) equioscillates on n+ 2 points belonging
to [—1,1], it follows that ¥**! — 2777, (x) is the mini-max polynomial approximation

of degree at most n for x**! on [—1, 1].

The equioscillation property indicates that there exist n+ 1 points xj,...,x; in [—1,1]
where p,, interpolates f. If we apply these points for the error formula (2.9) combined
with the upper bound (2.10), then we obtain the two-sided estimate

1 min‘f("“)(x)‘ 1 max‘f(”“)(x)‘

— <|f=pil. <= —1<x<1.
Another bound for the interpolation error is given by
1/ = Pallee < (A BID S = Palle, — [Pall = sup [|Pf]]s

[flle<1

where P, := Py[xo, . .., X,] is the linear operator defined by (2.4) and p}, is the best uniform
polynomial approximation to f. It is easy to show how to obtain this inequality. From the

uniqueness of the interpolating polynomial, we have p, = P,(f) and p,, = P,(p,;). Now



by employing this, it follows that

|f = Palle = Il.f = Pn+ P — Prllo
<N f =Pl + 11Pa(Pr— )l

< (T BID 1S = Palle-

As the computation of the best approximation is more complicated than that of the inter-
polant (2.3), there is interest in interpolating polynomials that are near-best approximants.
Indeed, in most cases, the small difference between the approximation errors of p; and
Pn 18 easily compensated by increasing the degree of the interpolation polynomial. There-
fore, in practice, interpolation polynomials are often used instead of best approximating

polynomials.

2.3 Lebesgue Function and Constant
2.3.1 Definition and Properties

Recall from (2.4) that

n

pu(x) =) f(x)i(x)

i=0

where p,(x) is the Lagrange form for the polynomial that interpolates f in the interpo-

lation points xp, X1, - - , X, defined by (2.2) and the basic Lagrange polynomials ¢;(x) are
defined by (2.5).
For fixed n and given xp, - - - , X,, the Lebesgue function is defined by

Ln (%) := Ly (X0, ,Xn3X) = i)|£,-(x)|

and the Lebesgue constant is defined by

n
An:=An (X0, Xn) = jn;}él ;6 [£i(x)] -

It is clear that both L, (x) and A, depend on the location of the interpolation points x; (and

also the degree n) but not on the function values f (x;). Note that the operator norm of P,

10



defined by (2.4) is equal to the oo -norm of its Lebesgue function:

=N\ = L .
Pl =An= max 1,2

Here and in the following, with the set X defined by (2.1), we sometimes write L, (X;x) :=

Ly (X0, ,Xp:x) and Ay, (X) := Ay (X0, -+ ,Xp) to simplify the notations.

The following presents some basic properties of Lebesgue functions for LLagrange inter-

polation (see e.g., [22, 23]):

(1)

(ii)

(1i1)

(iv)

v)

For any set X, with n > 2, L, (X;x) is a piecewise polynomial satisfying L, (X;x) >

1 with equality only at the interpolation points x;, j = 0,...,n.

On each subinterval (x J1,X j) for 1 < j <n, L, (X;x) has precisely one local max-
imum that is denoted by 4; (X). If the endpoints —1 and +1 are not interpolation
points, i.e. —1 < xp and x, < 1, then there are two other subintervals and thus, two
other local maxima that are at —1, and +1. We denote the latter two local maxima

by Ao (X) and A1 (X).

The greatest and the smallest local maxima of L, (X;x) are denoted correspond-
ingly by .#, (X)and my, (X) and let &, (X) denote the maximum deviation among
the local maxima &, (X) = .#, (X) —m, (X). We also denote the position of the
Lebesgue constant (by taking one of the greatest local maxima) by x* (X) for the set

of interpolation points X.

The equality L, (X;x) = L, (X; —x) ,x € [—1,1] holds if and only if X, j = —x;, j =
0,...,n.

The Lebesgue constant is invariant under the linear transformation 1; = dx; + b,j=
0,...,n, (@ #0). Interpolation sets that include the endpoints of the interval as in-
terpolation points are called canonical interpolation sets. Let X denote a canonical
interpolation set. In particular, we may construct a set X, obtained from X by map-
ping [xo,x,] onto [—1,1] by the unique linear transformation t; = x;+b,i =0,...,n
where 4 and b are determined by —1 =axp+ 13, 1 =dax,+ b. Here the set X is also

called the canonicalization of the set X. It can be seen that the Lebesgue constant

11



for X is [22, 24, pp. 104-105]

Anto, =+ tn) = max Lp(Xo, - XpiX) < mMax Ln(xo, - %niX).

We use these properties in the sequel.

2.3.2 Importance of Lebesgue constants

One motivation for investigating the Lebesgue constant is that another upper bound for

the interpolation error (2.9) is given by (see, e.g., 25, 2, 24])

1f = Prllee < (L4 An) 1/ = Pl (2.11)

where p;: is the best polynomial approximation to f on [—1, 1] and therefore A, quantifies

is compared to the smallest possible

||oo

how much larger the interpolation error || f — pn
error || f — pill.. in the worst case. In this study, we call this inequality the Lebesgue
inequality or the second error formula. As a simple consequence of this inequality, it

is obvious that p, — f whenever the factor A, ||f —p,||.. — 0. Namely, the Lebesgue

||oo

inequality indicates that for the interpolation of a fixed function f on [—1, 1], convergence

can be expected only if f is smooth enough such that || f — p||,, decreases as n — oo,

||oo

faster than A,, increases.

Another motivation for investigating the Lebesgue constant is that the Lebesgue constant
also expresses the conditioning of the polynomial interpolation problem in the Lagrange
basis. Let p,(x) denote the polynomial interpolant of degree n for the perturbed function

f in the same interpolation points:
n ~
Zf xi)
Since ||pnlle > max;—o,. n|f(x;)| we have

[P0 = Pnllee _ My, 1o lf(x) — Fxa)]6i(x)]

[[palle ™ maXz:o,...,n|f(xz)|

max; o, | f(x;) — f(xi)]
T

max;—o,...n | f(x:)]

This indicates that if we are able to choose interpolation points such that A, is small,

< An(X0s -+ - 1 Xn) (2.12)

then we have found the Lagrange interpolant that is less sensitive to errors in the function

12



values. For this reason, numerical interpolation in floating-point arithmetic will generally
be useless, even for smooth functions f, whenever the Lebesgue constant A, is larger than

the inverse of the machine precision, which is typically about 10,

2.3.3 Some specific sets of points

This subsection gives a summary of some results for particular sets of interpolation points
for which the behavior of the Lebesgue function has been investigated [23, 7, 26] and the

references therein for more detailed results.

Equidistant nodes F:

There are many studies on the behavior of the Lebesgue function corresponding to the set
of equidistant points, although this set is a bad choice for polynomial interpolation owing

to the Runge phenomenon.

For the set of equidistant points

5
E:{w:>4+7%j:OJ,”m} (2.13)
the Lebesgue constant A, (E), grows exponentially with the asymptotic estimate [8, 9]
2n+1
Ap(E) 2 ——— ) 2.14
n(E) en(logn+7)’ " @14

: =1
y:r}grolo <Z?—10gn> =0.577...

i=1

is BEuler’s constant (or the Euler-Mascheroni constant). Also, an asymptotic expansion
that improves (2.14) (with unknown explicit general formula for the series coefficients) is

found in [27].

For A,(FE), the upper and lower bounds

2n72 2n+3

o <A(E) < n21 (2.15)

have been suggested [28]. In [8], an upper bound is given for the smallest local maxima

13



mn (E) :

mn (E) < r21 (log(n+ 2) + log2+ 7) (2.16)

From (2.15) together with (2.16), it follows that An(E) and mn (E) are of different orders
of magnitude and hence, the maximum deviation & (E) of the local maxima tends to
infinity exponentially fast. As Figure 2.1 (left) illustrates, the Lebesgue function Ln (E;Xx)
has wild oscillations near the endpoints, like the Runge phenomenon in the error curve.
The local maxima of Ln(E;x) decrease strictly from the outside towards the midpoint
of the interval [—1,1] [29]. This behavior suggests that the location of the Lebesgue
constant is in the first subinterval (or due to symmetry in the last subinterval). Numerical
observation shows that the location of the Lebesgue constant occurs near the midpoint of

the last (or first) subinterval, i.e., xX* (E) « (n—1)/ n for the interval [ - 1,1].

Figure 2.1 Graphs of L5(E;x) (left), L5(T;x) (center), L5 (T;x) (right).

From the Lebesgue inequality (2.11), it is known that equidistant points with this very fast
growth of the Lebesgue constant give very poor approximations as n increases. Indeed,
numerical experiments show that for degree n > 65, the Lebesgue constant An (E) reaches

the inverse of the machine precision.

Chebyshev nodes of the first kind T

The literature describes numerous investigations for the behavior of the Lebesgue function
corresponding to the set of Chebyshev nodes. They are a very good choice of points
for polynomial interpolation and as was discussed in Section 2.2, they give the smallest

upper bound for the first error formula (2.9) of polynomial interpolation. As mentioned in

14



Section 2.2, they are the zeros of the (n+ 1) - th degree Chebyshev polynomial of the first

kind and their explicit formula is known by (2.17), below. The set of Chebyshev points

w2j+1 ,
T:{xj:—cos <§((n]+1))>,]20,1,...,n} (2.17)

are distributed more densely towards the endpoints of the interval [—1, 1], as illustrated in

Figure 2.2 for n = 32.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Figure 2.2 Graphs of sets of 33 nodes; (x)T, (0)U, (&)T, (o)T, (x)U, (0)E from top to

bottom.

The Lebesgue constant A, (T'), for polynomial interpolation, grows logarithmically with

the asymptotic expression [5]

2 8 v
Ap(T)=—=[logln+1)+7y+log— |+, O0<0f<———, n>1
n(T) ﬂ( gn+1)+vy gﬂ> n " R mil)?

from which, the upper and lower bounds

2 2

%log(n%— 1)+0.9625... < Ay(T) < %log(n%— 1)4+09734..., n>1 (2.18)
can be deduced.

For A,(T), an asymptotic series expansion, which is valid for all finite n, is given by

[30, 31, 5]

2 8 o
An(T):%<10g(n+1)+y+10g%>+21m, n>1

where the coefficients <7, have alternating signs and can be calculated as

gt o L) (21
A= e b ol )

where

15



> 1
C(6) =Y 5
k=1
is the Riemann zeta function.

Using the little-o notation defined by €(n) = o(e(n)) when £(n)/e(n) — 0,n — oo, Brut-

man showed [32] that

mn(T>:ALJ(T)+0(1)7 n>2

n
2

from which the lower bound

2 2 4

—1 1 —{ log — < T

- og(n+ )+7;<0g7;+y> my, (T)
0.521251...

is obtained. Later, this bound was improved [33] as follows

T 4973
2 7 <
18(n+1) 10800 (n+41)

% <10g(n+ 1) +10g%+ Y) + mp (T). (2.19)

A comparison of (2.18) and (2.19) shows that the deviation between any two local maxima
of the Lebesgue function L, (T;x) does not exceed 0.4522. This result was improved in

[5] to
2
On(T) = Aty (T) —my, (T) < %10g2 =0.44127.
As Figure 2.1 (center) suggests, the local maxima of L, (T;x) are decreasing strictly from
the outside towards the midpoint of the interval [—1, 1], which was proven in [32]. The

figure also shows that the location of the Lebesgue constant occurs at +1, i.e. x* (T) = £1

[4, 34].

We know from the first error formula (2.9) that the Chebyshev points are a good choice
for polynomial interpolation. Now, this slow growth of the Lebesgue constant confirms

that they are also a good choice for the second error formula (2.11), which becomes

2 *
I =pal < (1084 1)42) 1 - il

for the Chebyshev nodes. For example, for n = 100, the interpolation error based on the
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Chebyshev points is

If —Pn|L < (4.9 x 10°) IF - rf]],,,

i.e., even in the worst case, the interpolation error ||f —pn||* is only 4.9 times larger than
the smallest possible error. For comparison, if we choose equidistant points for the same

degree, then the upper bound for the interpolation error is

If —PnIL < (1.8 x 1027) If —pni],,.

Extended Chebyshev nodes T:

The extended Chebyshev nodes T are defined by

_ e n(2j+ 1) n :
T= X = —cos cos J=2°,1,....,n 2.20
1 2 (n+ 1) o+ 1) M (220
where the division by cos (n/2 (n+ 1)) guarantees that x°> = —1 and xn = 1, the set T

is obtained from the set T by the linear transformation, which maps [x°,xn] onto [—1,1].
Therefore, the set T is the canonicalization of the Chebyshev set T (see Figures 2.3 and

2.2).

Figure 2.3 6 Chebyshev (0) and extended Chebyshev (¢) nodes.

From the monotonicity result for the local maxima of Ln (T;X) and the property (v) given

in Section 2.3.1 [22, 34],

© oo . < O eee -
XonfX”L” (x°, ,Xn ;X) —ﬂ%l Ln (X°, ®**, Xn;X)
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it follows that the Lebesgue constant A, (T) is equal to the second local maximum A (T),
(or A, (T)) [32, 35, 34]. By using this characterization, an asymptotic expression for the

Lebesgue constant for the extended Chebyshev nodes is given by [5]

A2 8 4
An(T) = p <10g(n—|— 1)+ y+1log %> ~3n + B,

0.01
log ((n+1)/4)

0< B < n>4. (2.21)

Hence one can derive the upper and lower bounds,
2 . 2
%log(n+ 1)4+0.5381... <A (T) < %log(n+ 1)+0.5829..., n>4.

Also, an asymptotic expansion of f8, (with unknown explicit general formula for the series

coefficients, in contrast to the Chebysev nodes) can be found in [35].

As for the maximum deviation .7, (T) —my, (f) of the extended Chebyshev nodes, the

following estimate is given [5],
& (T) = 4, (T) —my, (T') <0.0196, n>70.
From (2.21) together with (2.19), it follows that this maximum deviation converges to

lim &, (T) =0.016858....

n—roo

Chebyshev extrema U':

The Chebyshev extrema U are the zeros of the polynomial (1 — xz) T (x) and are given

in explicit form as

- T
U:{xj:—cos<]7>, j:O,l,...,n}.

The Lebesgue constant A, (U) for polynomial interpolation is [4, 36]:

- Anfl (T)v n odd
An(U) =

A 1(T) =0, 0<oy<-5, neven

It is shown in [32] that the smallest local maxima my, (U) are bounded (in contrast to the

18



case of the Chebyshev nodes T') by
my (U) < 1.57079....

Thus, as in the case of the set E, A,(U) and m,, (U) are of different orders of magnitude

and the maximum deviation of the local maxima &, (U) tends to infinity logarithmically.

As was proven in [32], the local maxima of L, (U;x) increase strictly monotonically from
the outside towards the midpoint of the interval [—1,1]. This behavior suggests that the
Lebesgue function L, (U;x) achieves its maximum value on the subinterval (xn/z, X(n+2) /2)

(or its mirror) for even degrees and on the subinterval (x(n,l) /2 X(n11) /2) for odd degrees.

Numerical observation indicates that the location of the Lebesgue constant occurs at

x"(U) ~ 4 (or its mirror) for (large) even degrees and at x* (U) = 0 for odd degrees.

Chebyshev nodes of the second kind U:

The Chebyshev nodes of the second kind U are the zeros of the (n+ 1) -th degree Cheby-
shev polynomial of the second kind

_sin((n+2)arccos(x))
Unin(x) = sin(arccos(x))

and are given in closed form by

(j+ D= .
U:{xj:—cos< i ) j=0,1,....n5.

For the Lebesgue constant, it is known that A,(U) = O (n) [37, pp. 335-339]. In [32], an

exact expression for A,(U) is given by
A(U) =n+1,
and a lower bound for m, (U) is given by
2
%log(n+ 1)+0.3259... <my(U).

Thus, as in the cases of the sets E and U, A,(U) and m, (U) are of different orders of
magnitude. In this case, the maximum deviation of the local maxima &, (U) has a linear

growth.
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Note that these interpolation points can be obtained from the zeros of the polynomial
(1 —xz) T, ,(x) by deleting the zeros £1.Thus, it follows that the Lebesgue constants

are sensitive to the deletion of the endpoints.

Fekete nodes F':

The nodes F are the zeros of the polynomial (1 —xz) Q,, (x), where Qp, is the Legendre

polynomial of degree n. There is no explicit expression for these nodes.

It is well known that Fekete points maximize the Vandermonde determinant, |V (xo, - -+ ,Xy,)|
defined by (2.8) on the interval [—1, 1]. Since the basic Lagrange polynomials #;(x) may
be expressed with V(xg, - ,x,) in the form

|V(x07 XL A XiEL, 7x7’l)|
[V (X0, ,%n)] 7

5,‘ (x) =

< 1, for 0 <i < n and thus, the corresponding Lebesgue constant is

||(>O

we have ||4;(x)

bounded by (at most) the dimension of the interpolation space,
n
Ap(F) = Li(x)] < 1.
(P = ax B [60)] <0+

Moreover [38], the Fekete points minimize max Y o (4(x))? and for these points
- X

max Yoo (x))? = 1. From this, by applying the Cauchy-Schwartz inequality,
exe

Ay(F) <vn+1.

This upper bound, however, is very pessimistic. In [6], an improved upper bound for

A, (F) is given by
An(F) < clog(n+1)

with the positive constant ¢ not determined. In addition [7], based on numerical experi-

ments, the estimate
2
A (F) < Elog(n%— 1)+ 0.685
was conjectured. Accordingly, this confirms the conjecture in [22] that
An(T) < Ap(F) < Ap(T), n>3.
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Optimal nodes X *:

The set of interpolation points is said to be optimal if it minimizes the Lebesgue constant.

We denote the set of optimal nodes by X* (or the Lebesgue-optimal point set in [—1, 1]):

Owing to the second error formula (2.11) and also formula (2.12) (for sensitivity to per-
turbations in the function values), it is desirable to minimize the Lebesgue constant. How-
ever, the set of optimal nodes on the interval [—1, 1] is known explicitly only for degrees
less than four [39], although their characterization is known from the Bernstein-Erdos

conjectures.

In 1931, Bernstein [40] conjectured that the greatest local maxima of the Lebesgue func-

tion is minimal when L, (x) equioscillates,

MX) =4 (X) = = A (XY).

Later, Erdos [41, 42] added to this conjecture that there is a unique canonical set X* for
which the smallest local maxima achieve its maximum. This is the case when the local

maximum values are equal, or in other words

my (X) <my (X)) =AM (X7) = M0 (XT) < My (X), foreverysetX. (2.22)

These conjectures were proven by Kilgore [43, 44] and by de Boor and Pinkus [45]. They
showed that for degree n, the optimal canonical interpolation set is unique, symmetric and
that its Lebesgue function must necessarily equioscillate. By using these basic properties
of the optimal nodes, a numerical procedure based on a nonlinear Remez search and
exchange algorithm is given to compute the optimal nodes for polynomial interpolation
on [—1,1] [46]. Moreover, many authors [7, 47] have investigated (near) optimal point

sets (in different norms) defined by the solution of certain optimization problems.

The first sharp estimate for the optimal Lebesgue constant is given by Vértesi [1]. By

constructing the following modification of the Chebyshev nodes, asymptotically optimal
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upper and lower bounds are given [1, 48, 2, pp. 110-121]. Let us denote this set by

cos (% ((2]11111)) )

T{xj . 1 , J=1.n—1, anO1}.
cos (2(n+1) (1 + 410g(n+1)))

The Lebesgue constant A, (T) satisfies

loglog (n+1)\* 2 4
=2V T ) S A -2 (1 1 log —
c( log (1 1) > Ap(T) p ogln+1)+7v+ 0g

_ T .
18(n+1)2+0<(n+1)4> nodd

2 1
—n(n+1)+0<(n+1)2> n even

>

where c is a an undetermined positive constant.

An application of the Erdos inequality (2.22) combined with the lower bound for m, (T')

(2.19) and the upper bound for A,(T), gives

2 4

loglog (n+ 1) 2
C<< log(n+1) ))

From this, one can deduce that the precise growth formulas for A, (X*) and A, (T) are,

T
18(n+1)2+0<(n+1)4

respectively,

Ap(XF) = % <10g(n+ 1)+ Y+10g%> +o(1)

and

A (T) = % <10g(n+ 1)+ Y+10g%> +o(1).

As Ay (T) and A, (X*) have the same asymptotic growth, one can conclude that the set 7

has asymptotically minimal Lebesgue constants.

At this point, some remarks are useful. The precise growth formula for An(T),
. 2
Ay(T) = = log(n+1)+0.5381...40(1)

can be derived from (2.21). On comparing An(T) and A, (T), it can be seen that the set
T is better than the set 7' in minimizing Lebesgue constant. Indeed, numerical results

confirm this (see Table 2.1 and also Figure 2.4). The maximum deviation of the nodal set
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T converges to (see [48, (39)])

lim 8n T

=0.089245....

Table 2.1 The values of the maximum deviations and Lebesgue constants for sets T, T

n set T

8n (T) An(T)
10 0.050 781 2.056 087
20 0.056 995 2.463 129
40 0.061 827 2.887 067

AA
it & AT A

and X *.

set T
8n (T) An(T)
0.019 471 2.068 744
0.019 340 2.479 193

0.018 952 2.904 441

set X *
An (X *)
2.051 706
2.460 788

2.885 809

Figure 2.4 Graphs of L10 (T;x),L10(T;x),L10(X*;x) from left to right.

The nodal sets studied in this section can be ordered with respect to their maximum devi-

ation 8n(X) = M n—mn(X) and their Lebesgue constant An(X), in the following way

8n(E) >8n(U)> 8n(U)> 8n(T)> 8n(T)> 8n(T) > 8n(X* =0

and

An (E) > An (U)

> An(T) >

An (U) > An

23
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2.4 Vandermonde Condition number

Recall (2.8),

1 X0 x% Ce x8

1 x x2 X
Vn(x07 7xn) =

1 Xn x% Ce xz

which is the coefficient matrix of the Vandermonde system (2.7)
n .
Za,-x} =f(xj), j=0,...n
i=0
where xo, X1, - - , X, are the interpolation points.

The condition of the Vandermonde system (2.7) in terms of a suitable matrix norm (e.g.,

the p -norm, p = 1,2, or the Frobenius -norm) is given by the condition number

Kp (Vn) = Kp (Vn;xOy"' 7xn) = ||Vn(x07"' ,Xn)Hp anil(xov"' 7xn)Hp

In the following, sometimes we use K, (V) 1= K, (Vaixo, - -+ ,x,) to simplify the notations.

It is obvious that K, (V,,) depends on the location of the interpolation points x; and the
norm (and also the number of points n). But any two condition numbers, e.g., K, () and
Kp, (+) are equivalent in that positive constants ¢; and ¢, (depending only on n) can be

found for which
C1Kp, (A) < Kp, (A) < C2Kpy (A), AeR"™ (2.23)

For example, k (+) and K. (-) satisfy

1

K (4) < Ko (4) <’k (A).

Let the vector @ denote the coefficients @; for the interpolant of the vector § of the per-

turbed function values f(x,) in the same interpolation points on the interval [—1,1]:

n
Zflix}zf(xj), j=0,...n, Vod = 3.
i=0
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Then

la—all, <[V, '], Iy =7l

Combining this with [|y[|, < [[V4[, [lal, yields

a—a y—3
| I, < (V) Iy =731,
I,

From this, the condition number indicates by how much the relative error in the solution of

lall,

the coefficients ag,a; - - - ,a, is, compared with the relative change in the function values
f(x;). If the condition number is very large, then the solution a of (2.7) is considered
unreliable and the system is said to be ill-conditioned. Note that owing to the equivalence
property given above, if a system is ill-conditioned in the p;-norm, then it is also ill-
conditioned in the py-norm. Therefore, the smaller the condition numbers x, (V,,), the

better the condition of the Vandermonde system.

For x; € [—1,1], we find in [49, 50] that for the Vandermonde matrix in the 1-norm,

n n 1_|_ X;
e (W) = (V) < gmax, 35 &

j=0,j#i \x,-—xj\

with equality if the x; all lie in [0, 1] or [—1,0]. Thus, in the latter case, condition num-
bers k1 (V,,) can be computed directly without requiring matrix inversion. Moreover, any
results of condition numbers k, (V;,) in the case x; € [0, 1] hold in the case x; € [—1,0] as

well.

2.4.1 Condition number for some specific sets of points

Here we summarize some results for the condition number of the Vandermonde matrix of
size n+ 1. It is well known that Vandermonde matrices with real nodes are ill-conditioned,
even for not very high orders [51, pp. 428]. The ill-conditioning is a consequence of the
monomials. For large n, the monomials are less distinguishable from one another and this
causes the columns of the Vandermonde matrix to become nearly linearly dependent in

this case.

Let us denote f(n) ~ g(n),n — o when lim,_.. f(n)/g(n) = 1. For the Chebyshev nodes

on (—1,1) defined by (2.17), the condition number of the Vandermonde matrix of size
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n+ 1 1in the 1-norm satisfies [50]
3
31 n+1
K1 (Voi T) ~ T4 (1+v2)" . n—e 2.24)

For equidistant nodes on [— 1, 1], it satisfies [50]

2 T\
K1 (Vs E) ~ % (ﬁez) . . (2.25)
For nonnegative equidistant nodes on [0, 1], it satisfies [52]
242
K1 (Vi E) ~ T\[S”, n— oo, (2.26)

Comparing (2.24) and (2.25), it is easy to see that the growth rate of the condition number
for Chebyshev nodes is smaller than that for the equidistant nodes. Comparing (2.25) and

(2.26) reveals that the rate of growth can be reduced by using symmetric nodes.

2.4.2 Optimally conditioned Vandermonde matrices

We introduce the notation K, (Va; [, B]) := infk}, (V) , where [o, B] denotes the real
xOv"'vxﬂE[avﬁ}

interval. While the exact growth formula of the minimal condition number is not known,

for any Vandermonde matrix of size n+ 1 the lower bound for the condition number is

of exponential order of growth [53]. More precisely, for symmetric real nodes (x; =

—Xn—j,J=0,1,...,n) it is proven that

K (Vs R) > 20001/2 0 >

and for nonnegative ones (x; > 0), it is proven that

ki (VeRT) 22" n>1.

It is also shown in [53, 54] that these lower bounds can be improved slightly.

In [55], lower and upper bounds for the condition number x5 (V,; [—1,1]) of the Vander-

monde matrix for the interval [—1, 1] are given by

va(i+va)"
VAT

<15 (Vs [-1,1]) < (n+ 1)\/§<1+\@>n1 n>1.
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For the interval [0, 1], they are given by

(1 +ﬁ)2n+ (1 +ﬁ)72n
2v/n+1

These are asymptotically optimal condition number estimations for real Vandermonde

(1+ﬁ)2n+ (1+ﬁ)72n
2

<k (Vs [0,1]) < (n+1)

,h> 1.

matrices. Related results involving condition numbers in the 1-norm, using Chebyshev

nodes mapped onto the real interval (o, B] with —a = B or aff > 0, are given by [56]

3/4 V2 /4 (1442 e
7miinﬁ ki (Vs [or, B]) < 37 <%> / <—>\ﬁ47 —a=p>0,
“ 2(n+1) /
min &7 (Vu: [, < , =o <.
0=a<p St ym)YH

For fixed n the value for B that minimizes the aforementioned condition numbers is always
close to 1 [57]. Asymptotically, the best interpolation interval with respect to k3 (V,,) is in
the symmetric case [—1,1] and in the non-symmetric (for nonnegative nodes) case [0, 1]
[56]. From the exponential growth of k; (V,: [, B]) together with equivalence property

(2.23), it follows that

1/(n+1)
r}glgo <n)1$n1(p (Vn;R)> = (1—|—\/§>,

1/(n+1) 5
lim <min K (Vn;Rﬂ) = (14—\/5) )

From these formulas, it can be concluded that for the best possible conditioned Vander-
monde matrix V,, without restriction on the nodes x;, K; (Vs R) still goes to oo as fast as
n+1
(1 + \/§> and that subject to all being nonnegative nodes, K, (VisRT) goes to o as
2(n+1) ) . . :
fast as (1 + \/§> . It was proven in [53] that subject to all x; being nonnegative, the
best possible condition number goes to oo at least as fast as 2", whereas with symmetric

. n+1
nodes, it goes to oo at least as fast as (x/i) .

The problem of finding the location of nodes minimizing the 1- condition number of the
Vandermonde matrices has been solved analytically in [58] for symmetric nodes forn <5
(for nonnegative ones for n < 2). In addition, assuming that the optimally conditioned V,,
is unique, Gautschi showed that the optimally conditioned V,, must have symmetric nodes
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(with respect to the origin).

Table 2.2 The condition numbers K.. (Vn) for the monomial, Chebyshev and Legendre

basis.
n | Basis Koo (Vi3 E) Koo (Vs T)
Monomial 5.3333 E+1 4.6951 E+1
4 | Chebyshev 6.6667 E+0 | 4.7336 E+0
Legendre 1.2190 E+1 9.6909 E+0
Monomial 2.0562 E+3 6.7024 E+3
9 | Chebyshev 7.5880 E+1 8.7616 E+0
Legendre 1.1243 E+2 2.8058 E+1
Monomial 1.7511 E49 | 6.3678 E+7
19 | Chebyshev 3.4032 E+4 1.6857 E+1
Legendre 3.8688 E+4 8.0575 E+1
Monomial 1.2084 E+19 | 4.1684 E+15
39 | Chebyshev 1.9360 E+10 | 3.3064 E+1
Legendre 2.1448 E+10 | 2.2984 E+2
Monomial 5.6019 E+38 | 1.1415 E+23
79 | Chebyshev 1.2224 E+22 | 6.5484 E+1
Legendre 1.3143 E+22 | 6.5300 E+2

Owing to the exponential growth of the condition number when the number of interpola-
tion points increases, the Vandermonde system (2.7) becomes ill-conditioned. Changing
the monomial basis to an orthogonal basis is necessary to improve the conditioning of the

system.

2.4.3 Vandermonde-like matrices

In (2.6), substituting ¢; by polynomials p;(x) of exact degree i, i = 0,1,...,n, gives a

special case for the matrix P,
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/PO(XO) Pl(x0) P2(X0) oo pn(xO)\

PoO(xi) Pl(xi) P2(Xi) e Pn(Xi)

Vn(x0,"" " ,xn)

POo(Xn) Pl(Xn) P2(Xn) e Pn(Xn)

which is called a Vandermonde-like matrix. These Pi(X) are often orthogonal polynomi-
als, such as Chebyshev polynomials, Legendre polynomials and Jacobi polynomials, and
often the nodes X are the zeros of PN+l (x) in the orthogonal family. Regarding the con-
ditioning of \/h(XO,"' ,xn), the Vandermonde-like matrices with Chebyshev polynomials

and points are perfectly conditioned [59] with respect to the Frobenius norm and their

condition numbers satisfy kFf (Mn) = n.

Therefore, changing the monom ial basis to an orthogonal basis improves the conditioning
of the system. We show this in Table 2.2 and in Figure 2.5 for increasing values of n, for

the sets E and T defined by (2.13) and (2.17), respectively.

40

IBlo(\V->)
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Figure 2.5 Condition numbers of Vandermonde matrices (0)k1(M:E), (o ki (V:T)
using the monomial basis. Condition numbers of Vandermonde-like matrices

(o)ki (M;E), (*)ki (Mh;T) using the Chebyshev basis. Note the logarithmic scale.
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CHAPTER 3

RATIONAL INTERPOLATION WITH FIXED POLES

3.1 Problem statement

When moving to rational interpolation, the conclusions in Chapter 2 do not hold anymore.
For instance, rational interpolation using the Chebyshev nodes may yield worse results
than using equidistant interpolation points. As an example we mention f(x) = arctan(3x)
on [—1, 1] with the numerator and denominator degrees of the rational interpolant respec-
tively equal to 5 and 4. In addition, the approximation and interpolation problems become
nonlinear unless one considers the case of a priori fixed poles as we do in this chapter. So

let gim(x) = H’,?;Ol (1 —x/&) with & & [—1, 1] and interpolate
pn(xj) :f(xj)Qm(xj)v j:O,...,I’l (3.1)

with p,(x) € span{1,...,x"}. In the sequel we restrict ourselves to polynomials g, (x)
having real coefficients, in other words having poles that are real or appear in complex

conjugate pairs.

3.2 Minimizing the interpolation error bound

With x; € [—1,1] and & ¢ [—1,1] the rational interpolation error is bounded above by

(n+1) n .
Hf— Prll < max <|(f61m) (x)|> max [] il (3.2)
dm xe[—1,1]

(n+1)! xe[=1,1] g lgm(x)|
The factor (x—xo) - - - (X —Xz) /qm(x) has minimal absolute value if the x; are the Chebyshev-

Markov nodes [60]. As defined as follows [61], these are also the zeroes of the orthogonal
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rational function 7}, 1 (x) with numerator of degree n+ 1, denominator equal to g,,(x) and

satisfying [62]

) dx
9 :O, k=0,...,n.
If n > m then we first complement the set of poles & with &, = ... = &, = oo. Consider

the Joukowski transform
1 1
J:(C—><C:z—>](z)=§ z+- .
z

For x = J(z) also x = J(1/z) and so we restrict the inverse of the Joukowski transform to

|z| < 1. Now take &, 0 < k < n such that & = J(&;) and define

_ [1=1%P ( B !
T (x) = \/7(1 By p- Cn)Bn(Z)> '

This orthogonal Chebyshev rational function has the preassigned poles & ¢ [—1,1] and

so is different from the classical Chebyshev rational function with coinciding poles in —1:

%Jrl (x) is of the form Pn+1 (x) /Qm (x)

If the poles & are real or appear in complex conjugate pairs, then the zeroes of 7,11 (x)

are indeed real, simple and belong to the open interval (—1,1) [62].

3.3 Minimizing the Lebesgue constant

The rational interpolant can also be seen as an element of span{1/g,,(x), x/gm(x),...,
2 /qm(x)}. Since & & [—1,1],0 < k < m— 1 these functions form a Chebyshev system
and hence the existence of the unique best approximant and of the interpolant are both
guaranteed. The operator R, that associates with f the rational interpolant p,/q, with

preassigned poles is linear and so we can define the Lebesgue constant
My = My(xo, .- %0380, Em1) = ||RA,

Xi
M= sup [Rofllo = max 319 E0R00L

fllmsl LS [gm( )
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In [63] the authors determine the location of the poles &,0 < k < n— 1 that minimize the
Lebesgue constant M, for given interpolation points x;,0 < j < n. In [10] the asymptotic
behavior of the Lebesgue constant M, is given for equidistant nodes x; and

@ =Y 1 ] G- (3.3)

i=0 J=0,i#j

also defined in terms of the nodes. In both studies m = n and g, (x) has real coefficients.
When using rational interpolants with preassigned poles, none of the above situations is
very practical. The location and the number of the poles is usually determined by the
nature of the function f that one is modelling. Hence optimal interpolation points need to

be found in terms of the poles and not vice versa.

Another practical drawback is the following. The values for M,, obtained in [63] are opti-
mal in the sense that they are minimal for the considered (xo, . .., xn: o, - .., En—1) combi-
nation: changing either the poles or the interpolation points may increase M,,. Hence these
values provide the rational analogue of the minimal growth behavior in the polynomial
case. Note that neither these optimal poles &1, ..., &, 1 nor the minimal value for M,, are
known by an explicit formula. All are obtained from the solution of a hefty optimization

problem.

Our aim is to present a node set that doesn’t suffer from the mentioned drawbacks: we
give interpolation points that are nearly optimal for given arbitrary poles outside the in-
terval of interpolation instead of vice versa, and our points can easily be obtained from a

generalized eigenvalue problem [62]. We make use of the formulas from Section 3.2

If the preassigned finite poles & are real or appear in complex conjugate pairs, then for
n—+ 1> mthe zeroes of 7, 1(x) are real, simple and belong to (—1,1) [61]. These zeroes
are the rational counterpart of what the Chebyshev nodes are in the polynomial case and
hence are suitable interpolation points for (3.1). And as with other orthogonal functions,
they can be obtained from a generalized eigenvalue problem. Unless there is a pole & at

a very small distance of the interval [—1, 1], the maximum value of the Lebesgue function

Lio lgm(xi)li(x)]
|gm(x)]|
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is not obtained near the endpoints of the interval. Hence extending the points as in the

polynomial case to place xp in —1 and x;, in +1 usually makes no sense.

In Figure 3.1 we compare

. (full line) the nearly optimal Lebesgue constant Ay, (Xo, . . ., X, ) for polynomial inter-

polation using the extended Chebyshev nodes (2.20),

. (o) the Lebesgue constant My, (xo, . .., xn; &, ... & 1) for the Chebyshev nodes Xj=

—cos((2j+ 1)m/(2n+ 2)) with g,(x) and the & given by (3.3),

° (0) the Lebesgue constant My, (xo, - .., Xn;&o, ... &y 1) for equidistant interpolation

points x; = —1 4 j/n and with g, (x) and & determined by (3.3),

. (+) the optimal Lebesgue constant obtained in [63] for the case of equidistant in-

terpolation points and optimally associated poles &,

. and our approach (x), where we take the &; from the same polynomial (3.3) to be

comparable, but take the interpolation points for (3.1) from 7, (x) = 0.

3.5

T T T T T T
5 10 15 20 25 30
n

Figure 3.1

In Figure 3.2 we present, from left to right, the Lebesgue functions for n = 10 associated

with the Lebesgue constants indicated by +, %, o respectively.

Note that the rational interpolants with preassigned poles all generate Lebesgue constants
that are very comparable to the one from the (almost) optimal polynomial interpolant.

This comes in addition to the well-known ease of rational interpolation to fit steep changes
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and asymptotic bahaviour and its tendency to oscillate less inbetween interpolation points
than polynomials. And the new technique allows to determine good interpolation points
for any set of preassigned poles |"O,..., also for m < n and not only for those
determined by (3.3). Also, the new technique leads to smaller Lebesgue constants Mn

than the ones from [10].

The latter is better illustrated in the Tables 3.1 and 3.2 where we show the variation be-

tween

. on the one hand the Lebesgue constants of the linear rational interpolation (3.1)

using equidistant (M °), Chebyshev (M,) or extended Chebyshev nodes (Mn), and

. on the other hand the Lebesgue constant from our technique (M*) that takes the

interpolation points from Tn+1(x) = 0.

In Table 3.1 we placed two poles at £ 1.001 and we choose the remaining poles random |y
in [- 50, —1[U]1,50]. For M* we extended the zeroes to put x0 in —1 and xn in +1. In
Table 3.2 all poles were complex conjugate pairs with real partin [—.,1] and imaginary
parts £0.01. Here we did not use extended nodes for M*. The displayed results are
typical. The rate of growth is different between the situation illustrated in Table 3.1 and
the one illustrated in Table 3.2. In the former the extended Chebyshev nodes maintain a
rather modest rate of growth while the Chebyshev nodes generate a clearly faster growth
and the equidistant nodes cause an explosion of the Lebesgue constant. In the latter both
Chebyshev sets perform equally bad. We stress that in [10] and [63] the poles are

preassigned but dictated by the interpolation procedure. In our approach the poles are
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Table 3.1

Mo 2491x 100 p\2p 3.006 x 100
Mo 2.017 x 101 Mo 7.743 x 101
Moo 3.586 x 102 pop 4.846 x 102
4.943 x 102 Mo 5.354 x 105

Table 3.2

M1 3.515 x 100
Mro  2.714 x 104
MO 2.971 X 104

1.702 x 109

freely preassigned and the interpolation points are adapted as in Section 3.2. In this more

general setting our method offers a clear advantage.

In Figure 3.3 we graph the Lebesgue functions for n = 10 associated with the Lebesgue

constants M*0,M[0,M”0 of Table 3.1 respectively.

3.4 Maximizing the determinant of the Haar system

The rational interpolant pn/gmis a linear combination of the = xi/gm(x),0 < i< nand

therefore can be expressed as

Figure 3.3

35



where the basic rational interpolants A;(x) equal the quotient of determinants

|H(x07“‘7xi*17x7xi+17”‘7xn)|
Aux) = |
) Hxo0,- )]
1/gm(x0) - X5/qm(x0)
H(XO,...,Xi...,Xn) = 1/qm(x,) x?/qm(x,) . (34)

Vgm(xn) - Xu/qm(xn)
The rational function A;(x) satisfies A;(x;) = &;; and further equals g, (x;)4;(x)/qm(x).
Maximizing the value of |H (xo,...,X,| is an unsolved problem that may provide another

explicitly knowns node set.
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CHAPTER 4

SHARP BOUNDS FOR LEBESGUE CONSTANTS OF
BARYCENTRIC RATIONAL INTERPOLATION

4.1 Lebesgue constants for barycentric rational interpolation

When m = n in (3.1), the operator that associates with f its rational interpolant p,/qn

satisfying (3.1) is still linear and given by

L , pax) _ N Gn(xi)li(x)
Ry :C([-1,1]) = Vp: f(x) — ) l;f(x,)iqn(x) :

In the same way as in Section 2.3, we obtain that the error in rational interpolation with

preassigned poles is bounded above by

where p, is the best polynomial approximant of degree n to fq,. Here M, := My(xo,

() ()]
L [Rall= “Paf‘uzo ()]

?

1%
< (1+]Rall Hf——"

X €r, ..., &) = ||Rn|| is the Lebesgue constant of rational interpolation in the points

X, - - -, Xp, With preassigned poles at &1, ..., &,. The function

Mn(x) ::Mn(x07...7.Xn;§17...7§n, Z |qn|q | |
5 lan(

is called the Lebesgue function of rational interpolation with predetermined poles.

In [64] the behaviour of M, is investigated in case the x; are the extended Chebyshev-
Markov nodes for some predetermined g, (x). The notion extended is again to be under-
stood in the way as in (2.20). It is important to note that 7,1 (x) is the rational function
with monic numerator of degree n+ 1 and denominator g, (x) having minimal norm || - ||o

n [—1,1]. So Z,11(x) minimizes the bound (3.2) in the same way as 7, (x) minimizes

(2.10).
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In [63] the poles & are determined in order to minimize M, in the case of equidistant
interpolation points x;. So there the location of the poles is adapted to the given equidis-
tant interpolation points, while in [64] the location of the interpolation points is optimized
for given poles. It depends on the numerical application of course, whether it is more
important to have equidistant data available than to make use of predetermined poles that

dictate the shape and the behaviour of the interpolant.

Here we want to give sharp bounds on the growth of the Lebesgue constant M, in the case

of n+ 1 equidistant interpolation points x; and n poles fixed by either [65]

w@=Y.(-1 ] ) @

=0 J=0,j#

as in Section 4.2, or by [66]

n>2d, d=1.2,... 4.2

as in Section 4.3. Tt is well-known that neither the polynomial g, (x) [65] nor the polyno-

mial s (x) [66] have zeroes on the real line. Hence in both cases & & [—1,1].

A first analysis of M, for equidistant interpolation points and poles preassigned by (4.1)
or (4.2) is given in [10] and [11] respectively. We denote the former Lebesgue constant
by

Mr(,o) = Mp(x0,.. ., %0 qn(&) = 0)
and the latter by
MY =My (o, st (&) =0),  d> 1.

In both cases we denote the Lebesgue function by M, (x), as it is clear from the context in
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which case we are.

4.2 Precise growth formula in case of Berrut’s rational interpolation

For g, (x) in ||R,|| given by (4.1), the expression for the Lebesgue function M, (x) can be

simplified to

izo 1/ P —xil

M) = e )

(4.3)

In [10] crude lower and upper bounds are given for Mr(,o):

(0)
1 In(n+1) <M, <2+I1In(n).

We illustrate these in Figure 4.1, where Mr(,o), for subsequent values of n, is indicated with

the symbol 0.

10 I 20 I 30 I 40 I 50 I 60 I 70 I 80 I 90 I l(I)O
Figure 4.1 Bounds for M\ as in [10].

As proved in Section 4.4, the growth rate of Mr(,o) is given more precisely by

2(In(n+1)+1In2+7) Y0NS 2<ln(n+ 1)+In2+y+ 2%) (4.4)
4 == . ' .
T+ a3 =z

This is the exact asymptotic growth of the Lebesgue constant Mr(,o). The new bounds are
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illustrated in Figure 4.2.

Figure 4.2 Sharpened bounds for Mr(,o).

The fine proof is based on numerical experiments carried out in exact arithmetic up to
n = 0(10'99)1 The advantage of exact arithmetic here (besides the absence of rounding
errors) is that, in computer algebra software, there is a nice compact expression for the
evaluation of M, (x) halfway between two neighbouring interpolation points in terms of
the digamma function W(x). This expression allows us to evaluate it for very high values
of n. When making the detailed analysis, the true problem to obtain an accurate bound
becomes clear. The maximum value of the Lebesgue function M, (x) is not taken near a
fixed location, independent of n, like the midpoint or the endpoints of the interval: for
n even, the location of the positive maximum 1is a function of log;yn. More precisely
: it changes with n mod 4 and moves up with log;,|n/4] when n is even! To illustrate
this, we show the value of M, (x) near the many local maxima (see also Figure 4.5). For
n=4x101 and x = (20i+9)/n,i = 0,...,9 the values can be found in Table 4.1:
a global maximum is (not even at, but) near x = 149/n (we also show the values of
M,(x) at x = 145/n and x = 153 /n for comparison). For n = 4 x 10190 + 2 and x =
(200i + 67) /n,i = 0,...,7 the values can be found in Table 4.2: a global maximum is

very near x = 1467 /n (compare with the value of M, (x) at x = 1463 /n and x = 1471 /n).
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Table 4.1 Local near-optima of M, (x),n = 4 x 101%°, 209 digits

M,(189/n) | 148.2784002 (189 digits) 1347141070

M,(169/n) | 148.2784002 (189 digits) 1371588542

M,(153/n) | 148.2784002 (189 digits) 1379687364

M,(149/n) | 148.2784002 (189 digits) 1380120520

M,(145/n) | 148.2784002 (189 digits) 1379917056

M,(129/n) | 148.2784002 (189 digits) 1372737004
(109/n)

148.2784002 (189 digits) 1349437993
M,(89/n) | 148.2784002 (189 digits) 1310223488
) | 148.2784002 (189 digits) 1255093489
M,(49/n) | 148.2784002 (189 digits) 1184047995
) | 148.2784002 (189 digits) 1097087007
M,(9/n) | 148.2784002 (189 digits) 0994210525

M,(1471/n) | 1467.562478 (1987 digits) 700047035547169
M, (1467 /n) | 1467.562478 (1987 digits) 700047058426038
M,(1463/n) | 1467.562478 (1987 digits) 700047017642930
M,(1267/n) | 1467.562478 (1987 digits) 699967033348511
M,(1067/n) | 1467.562478 (1987 digits) 699727853327892

M,(867/n) | 1467.562478 (1987 digits) 699329518364181
M,(667/n) | 1467.562478 (1987 digits) 698772028457378
M, (467/n) | 1467.562478 (1987 digits) 698055383607483
Mn(267/n) | 1467.562478 (1987 digits) 697179583814496
M,(67/n) | 1467.562478 (1987 digits) 696144629078418

4.3 Growth formulas in case of Floater and Hormann’s rational interpolation

For g, (x) in ||R,|| given by (4.2), the expression for the Lebesgue function M, (x) simpli-
fies to

Lizo Oi/ |x — xi|

M, (x) = |Z?:O(_1)i6i/(x_xi)| .

4.5)

Taking a closer look at the o;,i = 0,...,n, we see that

( i d
Z(), i<d,
j=0\J
T2 d<i<n—d,
\anh iZn_d
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The observation in [11] that with n odd for d = 1, the maximum of the Lebesgue function
occurs at the origin, is imprecise. We illustrate this in Figure 4.3: withn = 11,d = 1 the
Lebesgue function M, (x) achieves its maximum near +2/11. A correcter statement is
that for » mod 4 = 1 the maximum is at x* = 0 and for n mod 4 = 3 the maximum is near

+2/n. For d = 1 with n even, the maximum is near 1/n.

22

-1 -05 0 0.5 1
x

Figure 4.3 Graph of M, (x).

But the same sharp lower and upper bound estimates as given in (4.4) apply to Mr(,l) with

d =11in (4.2). An illustration is given in Figure 4.4, where Mr(,l) is indicated by ©.

Figure 4.4 Sharpened bounds for Mr(,l).
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When d > 1, then an improved (but not yet fine) upper bound is given by:

2 1

VAR L — <1n(n+1)+1n2+y+ g>, d>1. (4.6)

- n
n+2

The results mentioned in Section 4.3 for d > 1 can be proved in a similar way as we prove

(4.4) in Section 4.4.

4.4 Proof of sharp growth estimates for Mr(,o)

Let the interpolation points x; be equidistant, x; = —1+2j/n,j = 0,...,n and let the
poles &1,...,&, lie outside [—1,1]. The Lebesgue function M, (x) given by (4.3) takes
the (minimum) value 1 at the interpolation points x;, j = 0,...,n and has n local maxima
inbetween each pair of consecutive interpolation points. It is clear that the Lebesgue
function M, (x) is symmetric with respect to the origin: M,,(—x) = M, (x). The graph of
M, (x) essentially takes 4 different shapes, depending on the value of n, and the proof of
the growth rate distinguishes these 4 different cases. In Figure 4.5 we show M,(x) for

n=dk 4k + 1,4k +2,4k+ 3 with k = 1.

As we prove further down and as is clearly visible from Figure 4.5, the position of a
global maximum x* of M, (x) changes with n mod 4 and is (except for n = 4k + 3) located
near (not precisely at!) a midpoint of two interpolation points (note that 2/n is the dis-
tance between two consecutive interpolation points). Also, because of the symmetry of
M, (x), whenever x* is a maximum, so is —x*. We focus on the positive argument of the

maximum.

For smalln >3 (forn=1,x"=0and forn =2,x" ~ 1/2) the statement can be made

rather precise:

nmod4=0:x*%%, n <24,

2
nmod4=1:x"~—,

’31 4.7
nm0d4:2:x*mﬁ, n <718,

nmod4=3:x"=0.
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Figure 4.5 Graphs of M4(x),M 5(x),M 6(x),M7(x) from left to right and top to bottom.

And more generally, fork = |_n/4j > 1:
2([log10k] + 2)
n mod 4 = 0 :x* G]x2k,x2k+ [logl0k]+2[= 0,
n
2
nmod4 = 1:x*~
" (4.8)
2 ToglOK
nmod 4= 2 :x*e]x2k+1,x2k+ [loglOk] + 1[= 0, 910K]
n
nmod4 = 3 :x* = 0.

To determine the location of the maximum we further make use of some simple rules.
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Rules

g %;»g g—iz, N.D.A,B> 0, (4.9a)
D<N= gig<g N.D.C>0, (4.9b)
D§N,B<D:>g1§§gi—2, N.D.AB>0, (4.9¢)
D§N,B<A:>gi§§gig, N.D.A.B> 0. (4.9d)

To prove the estimates, once the location of a maximum is known, we also need a lemma

[35] and bounds on the partial sums of the Leibniz series.

Lemma
" 1 Y 1
—1 1 +1In2 S 4.10
Z n(n+1)+1In +2+48(n+1) (4.10)
Series
n 1 (-1 om 1

- — < < —_—.
4 2n+3 ,;)2k+1 4 2n+3

Now let’s start by proving (4.8). In order to simplify the computations, we make a change
of variable, from x € [—1,1] to y € [0,1] by y := (x+ 1)/2. This way we are dealing
only with positive values in the subsequent sums. The interpolation points x; are then
mapped to equidistant points y; at a distance 1/n of each other. Because there is no
risk of ambiguity, when consistently using y-values with evaluations expressed in the
transformed variable and x-values with evaluations expressed in the original variable, the
same notation M,, is used for the L.ebesgue function in the variable x and the function after

the transformation of x to y.

We now investigate the value of the Lebesgue function M, (y) at the midpoints ¥; = (y;—1 +
vi)/2,i=1,...,n which are local near-maxima (the values displayed in Table 4.1 are for

instance My, (Y1 ¢) for £ =10i+5,i =0,...,9). It is easy to verify that
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Mn()’]\l):D (5]\)7 1217 1
n l
where
IYRCS T L E S (4.112)
N — : : , .1la
T &2+ &2+
i—1 (_1)j n—i (_1)j
D,P)=) ——+ ) —/——. (4.11b)
() JZ()ZH—I 1262]4—1

We write n = 4k + (n mod 4). For n mod 4 = 1 and n mod 4 = 2 we have

No(F1) < Nu(F2) < ... < Nu(P2kt1)
and
Dn()”\2i+l) >Dn()’7\2i+2)7 i:(),...,k—l,
Dy ($2i+1) > Dn(P2iv3), i=0,... k-1

For n mod 4 = 0, the statements about N, and D;, at ¥4 1 are dropped, and for n mod 4 =
3, similar statements at y,x » are added. From the above we can deduce that for n mod 4 =

1 and n mod 4 =2,
Mn()’}ZiJrl) <Mn()’7\2i+2)7 i:(),...,k—l,
Mp($2i11) < Mp($2i43), i=0,... k-1,

with a similar adjustment for n mod 4 = 0 and n mod 4 = 3 as before. Now we treat the

cases n odd and n even separately.
When 7 1s odd we find that for n mod 4 =1,
Mn(j}Zl)SMn(ka)? lzlvvk_l 4.12)

by combining (4.9a) for N = N, ($2;), D = Dy($2;) with

No(Pok) = Nu(F2i) _ Nu(Fok) — N (F2iv2)
Dun($ar) — Dn(F2:) — Dn(Pak) — Dn(Pair2)’

<

~—r

Analogously, for n mod 4 = 3, the statement (4.12) holds for i = 1,...,k with ¥, in the

right hand side replaced by P2z 2.
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The situation is more complicated when 7 is even though. But fortunately the following
inequalities for the near-maxima at Y5, and the other local maxima near ¥,;, help us out.

Using (4.9a) we find

M1 (%op) < Mygi3(Xogs2).

From (4.9b) we obtain

Mago(R2i) < M1 (R21),  i=1,... k.
And finally (4.9¢) gives

Myp(%2i) < Myp2(£2:),  i=1,....k

The question that remains is now whether in case n mod 4 = 1 or n mod 4 = 2 the maxi-

mum is near My, (¥ ) or near M, ($;.1). Using (4.9¢) we obtain

Mgy (Rogr1) < Mager1 (Xo)

and at last from (4.9d)

Mukr(For1) < Mago (Xok)-

Since we know that when n mod 4 = 3, a maximum is exactly at M, (£, 2), we can use
. . 0) 1 ox
this value to compute an upper bound estimate for the Lebesgue constant Mr(, ) Likewise

. . 0 0
a lower bound for Mr(,o) can be obtained because My (%) <M L(lk) < Mr(, ) for general n.

To conclude:

max max M, (x) ~ My3(0)
n oxel-1,1]

and

min max M,(x) > My (1/n).
n xe[-1,1]

In other words, a sharp upper bound for My 3(0) is an accurate estimate for M, (x*),n =
4k +1,0 <i <3, and a lower bound for My (1/n) is a lower bound for M, (x*),n = 4k +

i,0<i<3.
To prove the actual bounds, we make use of the transformed variable y again. For the
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upper bound we have:

Nye+3(1/2)
My 3(H2) = L
w3(/2) Dagy3(1/2)

) 2k+1 1
Nay3(/2) =2 —
ath=2 % 5y

< In(8k+8 _—

< In(k+8) + Y+ Sk a2
1

< 1n(2 2 —

<In(2n+ )—I—Y+24n

2t )itk

Dy3(/2) =2 —

ath=2 X 50

2
n+2

T
>Z
-2

From these inequalities it follows that (stated in the variable x again)

2 1
max max M,(x) ~ 3 <ln(n—|— D+In2+7y+ —> .
n XE[*L” T — m 241’1

For the lower bound, expressed in the transformed variable y, we use the fact that the
numerator of My ("*1/2,) can be expressed using the digamma function ¥(x) where for

x > 0 it holds that In(x) — 1 /x < ¥(x):

N ("1 /2)
4k( /Zn) D4k(n+l/2n) >
) 2k+2 1 2k+1 1
Ny(" o)=Y —+ Y ——

A2+l =2+

> In(8k+2)+7=In(2n+2)+7,

2k+2 (_1)1'
2

n+3

Dy (") <2

ST
-2

from which (4.4) follows.
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CHAPTER 5

RADIAL ORTHOGONALITY AND LEBESGUE CONSTANTS ON
THE DISK

In polynomial interpolation, the choice of a polynomial basis and the location of the inter-
polation points greatly influence the numerical conditioning of polynomial interpolation,
and hence the quality of the computed interpolant. Moreover, some sets of interpolation
points deliver near-best polynomial approximants, while others lead to divergence of the
interpolation scheme. Fortunately, a univariate polynomial basis is always a Chebyshev
system, thereby guaranteeing the existence and unicity of the polynomial interpolant for
a set of distinct interpolation points. In the multivariate case, the situation is much more
difficult. The location of the interpolation points also needs to be such that it guarantees
unisolvence of the interpolation problem because no polynomial basis is a Chebyshev
system. And because of the curse of dimensionality faced in polynomial interpolation,
alternative techniques like radial basis interpolation have become very popular. But then
the latter are prone to ill-conditioning. Here we propose an extremely well-conditioned
alternative to radial basis interpolation on the disk (see Sections 5.1 and 5.2 ). At the
same time we identify sets of interpolation points that guarantee a very small Lebesgue
constant and consequently interpolants that are near-best polynomial approximants (see
Sections 5.3 and 5.4 ). Both results follow from a detailed study of radial or spherical

orthogonality on the disk.

5.1 Radial orthogonality

Let By ,(0;1) denote the closed unit ball centered at the origin in R? equipped with the
{p-norm. For each /,-norm this ball is a d-variate analogue of the closed interval [—1,1].
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For p = oo and d =2 it is the unit square [—1, 1] X [=1, 1], for p =2 and d = 2 the unit disk

{(x,9);0<x*+y?> <1} and for p = 1 and d = 2 it is the simplex {(x,y);0 < |x|+[y| < 1}.

For the definition of our multivariate orthogonal polynomials we replace the cartesian
coordinates X = (x1,...,x7) € R? by the new spherical coordinates X = (xi,...,xg) =
(Mz, ..., Agz) with A = (4y,...,A4) belonging to the £, unit sphere Sy ,(0;1) C RY and
z € R. While A contains the directional information of X, the radial variable z contains

the signed distance information. A signed distance function is defined by
sd(X) = sgn(xx) || X]|p, k=min{j:x;# 0}. (5.1)

Since A is not unique, we choose it such that for given X we have z = sd(X). We denote
by R[A] = R[Aq,...,Ay] the linear space of d-variate polynomials in the A; with real
coefficients, by R(1) = R(Ay,...,44) the commutative field of rational functions in the
Ar with real coefficients, by R[A4][z] the linear space of polynomials in the variable z with
coefficients from R[A] and by R(A)[z] the linear space of polynomials in the variable z

with coefficients from R(4).

In the bivariate case we mostly use the notation X = (x,y) instead of X = (x1,x2) and

A = (a,B) instead of L = (A1, 42).

We introduce d-variate functions V,,(X) that are polynomials in z with coefficients from

RIA]:
m .
Vn(X) = T(A:z) = } b i(A)2"
i—0
The b, ;(A) are homogeneous polynomials in the A; of degree m? —i. Note that the

functions V,,,(X) do not belong to R[X] but they belong to R[A][z]. Therefore the V,,(X)
can be viewed as spherical polynomials: for every A € Sy ,(0;1) the function V},(X) =
Im(A;z) is a polynomial of degree m in the radial variable z = sd(X). In addition, the

functions
Im(Asx1+ ... 4 Agxa)

are polynomial in the xz, they belong to R[A][X] and play a crucial role in the sequel.
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On the V,,(X) we impose the orthogonality conditions

/ /X <1<Zxklk> m< Zxklk> 2)dX=0,i=0,....m—1 (5.2)

where w(z) is a non-negative weight function with

/.../Xp<1 W(z)dX < o,

The coefficients b,,»_;(4) are obtained from the (symbolic/parameterized) linear system
chﬂ by (A)=0, i=0,....m—1 (5.3)

where c;(A) are the moments given by

d i
:// <Zxk/1k> w(x) dX,  i=0,...2m—1. (5.4)
X<t \ =

The ¢;(A) are homogeneous polynomials in the A; of degree i. This radial or spherical
orthogonality was already introduced in [67] and [68] although it was not yet termed like
that in the early references. An explanation why b,» (1) needs to be of degree m? — i is

also given there.

For a fixed directional vector A = A%, the projected spherical polynomials 7, (A "; A, x; +
..+ A x4) are univariate polynomials in the variable z = A1x1 + ... 4+ Agx4, orthogonal

on the interval [A, B] C span{A*} with

A= min (A x1+ ..+ Agxa)
(xl,...,xd)EBdm(O;l) (5 5)

B= max (Ax1 4.+ A xg)
()Cl 7"'7xd)EBd,p(O;l)

and A* € S4,(0;1). Note that the weight function is multivariate instead of univariate.
In addition, the weight at X = (x1,...,X4) € By ,(0;1) is w(sd(X)) with z = sd(X) and

—1<z<1andnot w(A1x; + ...+ Ayxy) which has a different support.

We point out the similarity of the 7,,(A;A1x1 + ... + Agxy) with radial basis functions.

The variable of our multidimensional function is
(X Ay =Ax1+ ...+ Agxy (5.6)

which is the projection of X onto a directional unit vector A € Sz ,(0;1) and this for
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continuously varying X. When X EspanjX }, then {X X} = z\x In the case of radial
basis functions the variable is a weighted WX —C\\p for a set of distinct vectors C. So
for the user the choice is between spherical orthogonality or radial functions forming a
Chebyshev set. More on the comparison with radial basis functions is to be found in

Section 5.5.

For symmetric weight functions w(z), the zeroes Zim(X),i = 1,...,m of the spherical
orthogonal polynomials Ym(X;z) appear in symmetric pairs, with one zero describing a
curve in the right halfplane because of (5.1) and the other zero tracking the same curve in
the left halfplane but mirrored with respectto the origin. In Figure 5.1 we show the zeroes
for the case d = 2,p = <>m = 3 and w(z) = 1: £1,3(X) lies in the left half plane, Z2,3(X)
equals zero, Z3,3(X) lies in the right half plane. For X* = (1,1) for instance, the zeroes
Z13(X*), 223(X*), zZ3,3(X*) lie in the interval [—2,2] which is the support of orthogonality

in span{(1,1)}.

Figure 5.1 Zero curves of V3(X;z) orthogonal on B2,7(0; 1) for w(z) = 1.

In the case of Theorem 5.2 below, each curve Zim(X) is a half circle. So a symmetric pair
of zeroes describes a full circle. We then simply say that the radius of the circle equals
the zero of the spherical orthogonal polynomial, and this is to be understood as a positive
and a negative zero each describing half a circle. A use of this can be found in Section

5.3.
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Note that for the moment the functions V,,(X) = 7;,(4;z) are unnormalized. We usually
normalize them by requiring that ged(b, 2 ,,(A),...,b,2(A)) = 1, thus decreasing the
degree of the b,>_;(A) with the same amount for each i. When the b,»_;(4) reduce to a
constant, then the V,,(X) = 7,,,(A;z) can be made monic. Examples of V,,(X) = 7,,,(1;z)

for different weight functions are given in [69].

5.2 Bivariate orthogonal cartesian basis

Now assume that d = 2, in other words we are considering the /,-ball B ,(0;1), and
denote A; = o and A, = B. When substituting actual values for the A; then the function
Im(AsAx1 + ... + Agxg) becomes a polynomial function in the x;. The question that
arises is whether these radially orthogonal functions can be used to construct a cartesian
orthogonal basis for the linear space R[X]. The answer is affirmative and the construction
goes in three steps. Theorem 5.1 applies to general weight functions w(z) and all /-
norms. Theorem 5.2 holds for specific weight functions and the closed Euclidean d-ball
B42(0;1). Theorem 5.3 is only valid for the specific weight function w(z) = 1 on the

Euclidean disk By »(0;1).

Theorem 5.1 The set {7 (0 i, Bk Ompx + Buiy),0 < k < m,m € N} is a basis for

Rix,y] if
a’{;’;?O a’{;’/;lvalﬁm70 am70 nr:lyal 7;11170
W B e B | A0 meN
agj,m O‘nn:ﬁlﬁm,m "'OCm,mﬁnTﬁl ﬁnnfm

proof 5.1 It suffices to prove that for each m the (04, g x+ By xy)" with k =0,...,m are
a basis for the homogeneous polynomials of degree m in x and y. So let us assume that a

nontrivial vector (W, . .., Yn) exists such that

m
Y ne( o x+ Bugy)" = 0.
=0
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Then

Y ('?)xm"y" <kZO Hog! ,i;,k> =0

=0
and hence
m . .
Y wo B =0, i=0,...,m
k=0
But the latter is impossible because of the regularity of the coefficient matrix

A = (Qi1 jr1)0<ik< =<06"H. i ) .
( i+ B + ) ~LK~m m,k m,k Ogl,kgm

A suitable selection for the values o, x and B, x is for instance

o k B m—k
k=TT k=T
(e m =), (e m =)l

So with 7,,(A;z) computed for a general weight function w(z), the functions

1

71((1,0);x)

71((0,1);5)

72((2,0)/11(2,0)11psx) (5.7)
P2 (L D/ D ps e +2) /11 D)

72((0,2)/11(0,2)11p3¥)

provide a basis for the bivariate polynomials, but not yet an orthogonal basis. We now
indicate how this can be achieved. In the sequel we focus on the Euclidean norm (p = 2)

and we consider weight functions of the form
wz) = (1= /7 (5.8)

because this class is large enough for our purpose. The following result holds in d dimen-

sions.

Theorem 5.2 For w(z) given by (5.8) the radial polynomials 7/;,(A;z) are independent of
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A and we have the additional orthogonality

[ ( kzxkuk) ( zxm)

r2(2v+d—1)r (v+1/2 o
2v+2m+d—-1DI'(v4+(d+1) < ZMNk) i=m.

proof 5.2 For the polynomials V(A Aix1+. ..+ Agxy) satisfying the orthogonality con-
ditions (5.2) with w(z) given by (5.8) and a continuous function f defined on [—1,1] the
Funk-Hecke formulain [70] gives

//X 1f(.“1xl+...+HdXd)7/m(7L;7le1+,,,+)ded)(1_zz)v71/gdx
2<

ATy + 1/2)
Ay +d/2)

X V(A + ..o+ Aalha) / 0 clvrd- 1)/2)()(1_[2)v71+d/2d[

(v)

where Cy, ' (z) are the univariate Gegenbauer polynomials orthogonal with respect to the
weight (1 —22)Y=1/2 on [=1,1]. For the moments c;(1) defined by (5.4) we thus obtain
with f(t) =t', 1 = A and m =0 that

://X . (;lel—I—...—I—/ﬁded)i(l—Zz)vi]/QdX:
2<

m 4012 (v 4 1/2)
I'(v+d/2)

/1 (1 =214/ 2
-1

Since these ci(A) do not depend on A, the coefficients solved from (5.3) do not either and

SO we can write
Im(A;2) = Vim(32).

At the same time we see that the moments co(-),c1(:),c2(), ... equal up to the factor

L(v+1/2)gd-1/2
I'(v+d/2)

the moments of the univariate Gegenbauer polynomials C,%w(d*l)/ 2) (z). Hence we can
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also write

. [Tv+1/2mld D2 )
A%n('aZ) - < F(V—I—d/Z) ) mJr (Z)

The expressions for the integral in the proposition follow from the Funk-Hecke formula in

a similar way, now with

foy =/ IR,

1

The above theorem guarantees the orthogonality of polynomials of different degree irre-
spective of the choice of A, which may indeed be different when the degrees differ. In
other words, with the 7,(A;z) orthogonal with respect to the weight function w(z) =
(1—2%)V='/2 on the Euclidean disk, each of the m -+ 1 functions ¥p,(+; 0y X + B i)
of degree m is orthogonal to each of the i + 1 functions 7;(-; & xx + Bixy) of degree i.
So the functions 71(-;x) and 71(-;y) are orthogonal to the functions 75(-;x), 72 (+; (x +
¥)/V2), 73(:;¥). Let us now deal with the remaining problem, being that of the mutual

orthogonality of the m+ 1 polynomials of degree m in the basis.

Theorem 5.3 The set {7:,(On i, Bn ki Con X + Bniy),0 < k <mm € N} with 0 =
cos (kw/(m+1)) and By = sin((kr/(m+ 1)) is an orthogonal basis for R[x,y] with

respect to the weight function w(z) = 1.

proof 5.3 The proclaimed result can be obtained from [70]. But a separate proof is
immediate now and goes as follows. From Theorem 5.2 we know that functions of different
degree are orthogonal because the weight function has the form (5.8) with v =1/2. We

also know that different functions of equal degree are only orthogonal if

d
T < Y /lk.uk> =0.
k=1
Since for w(z) = 1 the Y3 (-;z) coincide up to a factor with the Gegenbauer polynomials

ciy (z) we need to have

;Ll‘lll + ;Lz‘llz = Oy Ol ¢ —+ ﬁmkﬁm’g = COS (m/(m+ 1))

for some i = 1,...,m and whatever O < k, ¥ < m,k # { which is satisfied for the above

ke m and ﬁk,m~
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So with 7;,(+;z) orthogonal with respect to the weight function w(z) = 1 on the Euclidean

disk, the polynomials

1

71 (%)

T1(+y)

72(55%) (5.9)
Y5 (sxcosm/3 4 ysinm/3)

Y3 (;xcos2m /34 ysin2m/3)

are a fully orthogonal basis on B, 2(0; 1) for R[x,y]. In Section 5.5 we give an illustration

of the use of this basis in least squares approximation.

5.3 Small Lebesgue constants on the disk
When moving to more variables, we face some immediate problems since
span{1,x,y,x%,xy,y%,...}

is not a Chebyshev system anymore. So an additional concern in polynomial interpolation
is the unisolvence of the interpolation problem. Unless otherwise indicated, we consider
polynomials of full homogeneous degree. In two variables this means that a polynomial

of degree n has the form

n
pa(x,y) =) aix'y!
i+ =0

with N+ 1= (n+1)(n+2)/2 coefficients. We consider the interpolation problem

pn(xkvyk) = f(xkvyk)v k= 07‘ .. 7N7 (xkvyk) S FZ,p(O; 1)

Let {¢o,...,¢n} = {x'y/;0 < i+ j < n} and let {(x,):0 < k < N} be such that the

matrix

Vv = (q)é+l,k+l>(N+1)X(N+1) ; D11 = Pelxe,ve), 0</lk<N
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is regular. The node sets that we consider in the sequel always guarantee this. Then the

polynomial interpolant can be written as

N
pa(x,y) = Y f (i, y0)4i(x,)
i—=0
with
B detVy ;
gl(xvy) - detVN )

where the matrix Vi ; equals the matrix Vy except that the i-th row is replaced by

(do(x,y),...,0n(x,y)). With the functions /;(x,y) we define the Lebesgue constant

N

AP = Ay ((50,30),--- (xn,yn)) = max 1£:(x, 7).
(x,Y)€B2 ,(0:1) ;=

The minimal growth of Aﬁ,z)

is different for different £,-balls. For instance, on the square
the minimal order of growth is O(In?(n+ 1)) and this order is achieved for the configura-

tions of interpolation points given in [12] and [13].

On the disk the minimal order of growth is quite different, namely O(y/n+ 1), as proved
in [14]. No configurations of interpolation points obeying this order of growth are known.
We analyze the Lebesgue constant on the disk for different unisolvent configurations and

present the best that can be obtained so far.

On the simplex the minimal order of growth is not even known. Instead, in [15] some
(non closed form) configurations of interpolation points are obtained from the solution of

a minimization problem. There is clearly a lot of interest in the problem.

Several configurations of interpolation points on concentric circles guarantee unisolvence
on the disk. Among others we mention [71, 72, 73]. We tried all configurations but report
here only on the closed form set that gives the smaller Lebesgue constant Aﬁ,z) on the disk.
As can be expected, it is a configuration that increases the number of interpolation points

towards the boundary.

Let us divide a total of |n/2|+ 1 concentric circles with center at the origin into k groups,

n

Vi+.. ..+ V= \;2

J+1, vieN, i=1,.. .k
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(/) (i:). On each circle

with the j-th group containing v; circles with respective radii ;" ..., ry
in the j-th group we take the same number of 2n; + 1 equidistant interpolation points

where
n=n—vi+1,

np=n—2vi—va+1,

ng=n—2vi—...—=2v;_ 1 — v+ 1.

Then it is easy to see that

vinmi+1)+...+v(Cm+1)=N+1

and that the Lebesgue constant Aﬁ,z) decreases if k increases, for the simple reason that

the points become more uniformly distributed over the circles as k approaches |[n/2] + 1
with v =1for j=1,...,[n/2] + 1. In [71] it is proved that this configuration of points
is unisolvent on the disk. For which of the larger k exactly the minimal value of Aﬁ,z)
is attained, depends on the interplay between the radii of the concentric circles and the
distribution of the interpolation points over the disk. Smaller Lebesgue constants can be
expected if the Dubiner distance between the interpolation points varies less [74]. We

return to this issue in Section 5.4.

Remains the problem of how to choose the radii. In the Figures 5.2-5.5 we have taken
the radii equal to the extended zeroes of the spherical Legendre polynomials, where this
has to be interpreted as explained at the end of Section 5.1. In Figure 5.6 we illustrate
that the growth rate of the Lebesgue constant Aﬁ,z) is slowest for this choice: we compare
the Lebesgue constants for the radii being the extended zeroes of the spherical Legendre,
the extended zeroes of the spherical Chebyshev and the extended zeroes of the univariate
Chebyshev polynomials, the latter being given by (2.20). Unless otherwise mentioned
Chebyshev polynomials are of the first kind, in other words orthogonal with respect to the

weight function w(z) = 1/v/1 — z2. For each degree n we have immediately taken k to be

the maximal value |n/2] + 1.
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We illustrate this forn = 6 and N + 1= 28. We point out that additional rotations with
respect to each other of the concentric circles containing the interpolation points, have
an effect on the Lebesgue constant under study, but never to the point that its order of
magnitude for acertain configuration (meaning a certain value for k) is altered. A decrease
of the Lebesgue constant due to such rotations is only marginal. In Figure 5.2 one finds
the case k = 1, so vl= 4 with nl= 3, where the 28 interpolation points are distributed
over 4 concentric circles each containing 7 equidistant points. The Lebesgue constant in
this case is a whopping 6648. In Figure 5.3 the number k is increased to 2 and we take
vl= 2,v2= 2, so 11 points on each of the 2 outer circles and 3 points on each of the 2
inner circles. This clearly improves the Lebesgue constant to about 51.17. In Figure 5.4
we take k = 3 with vl= 1,v2= 1,v3 = 2, so 13 interpolation points on the outer circle,
another circle with 7 points and 3 interpolation points on each of the 2 inner circles. The
Lebesgue constant is further going down to approximately 10.58. Finally with k = 4
and all Vj = 1 forj = 1,...,4 the Lebesgue constant is smallest, namely 4.68. We have
respectively 13, 9 and 5 interpolation points on 3 concentric circles and the last point at
the origin. We repeat that the radii in the Figures 5.2-5.5 are taken as the extended zeroes

of the spherical Legendre polynomials of respective degrees 8, 8, 8 and 7.

5000

:fm 1T M

4000 |
3000
1 1
2000
.1|::1I:: |
1000 | 1

0.5
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-05

Figure 5.2 Case k = 1.
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Figure 5.3 Case k = 2.

Figure 5.4 Case k = 3.

5.4 Exploring other configurations on the disk

The configurations leading to Lebesgue constants with minimal growth on the square
B 2,™(0; 1) are slightly different from the above. Let us analyze whether similar configu-
rations to the ones on the square can be considered on the disk and whether they are any

good. Our point of departure are the so-called Padua points [74].

A first observation is that the N + 1 Padua interpolation points are distributed over the

unit square on n concentric squares with increasing radius and with (from the center to
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Figure 5.5 Case k = 4.

Figure 5.6 Growth of A*2) for k = [n/2\ + 1.

the boundary) i points on the i-th square fori= 1,...,n—1and 2n+ 1lpoints on the n-th
square, being the boundary of B2,2(0; 1). Also, we show that the radii of the inner n —1
concentric squares are the zeroes of the univariate Chebyshev polynomials of the second
kind Un(z) and Un—1(z), excluding zero, where the symmetric zeroes are interpreted as
in the Sections 2.3.3 and 5.2. To see this we organize the Padua interpolation points for

degree n, explicited in [12] as

x(jk) = (—1)j+kcos Y'ji'k) = (—1)j+kcos - ,0<j+ k<n
n+ 1 n
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in the following way. First we note that the points in

S, = {(—1)”1 <cos (%) ,COS <n0+n1>> :l:O,...,n}U
{(—1)”1 <cos <O7”> ,COS <nlf1>> = ln}

lie on the boundary of the unit square. Then we take the collection of points consisting of

\im {(—1)”'"“ (cos () ceos (271) ) im= 21,

l:m,...,n—m},l§i§n—1,i0dd

(5.10)

- {(—1)”'"“ (cos (5) cos (57 ) ) m=Ti/21

lie on the same square of radius

‘ ‘(—1)”’”+1 (cos(Im/n),cos(mm/(n+ 1)))‘ L =cos(mm/(n+1)), iodd,

‘ ‘(—1)”’”+1 (cos(mm /n),cos(Im/(n+ 1)))‘ Lo =cos(mm/n), ieven.

In Figure 5.7 this is illustrated for n = 6. These /.. radii are the zeroes of
U,(z) = sin((n+ 1) arccos(z))sin (arccos(z)),

U,—1(z) = sin(narccos(z))sin (arccos(z) ).

This explains why the radii are two by two rather similar, except for the innermost square

that contains only one point.

When carrying this configuration to the disk, replacing concentric squares by concentric
circles, copying the distribution of the points and the values of the radii, then what remains
to specify is the distribution of the points on the i-th circle for i = 1,...,n. Here we
can follow the simple rule that the points on the boundary of the unit disk are taken
equidistantly and then (from the boundary to the center) the union of the points on each

pair of concentric circles is also distributed equidistantly as if the points were lying on
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Figure 5.7 Padua points in B2,2(0; 1) forn = 6.

only one circle. Figure 5.8 for n = 6 illustrates this best. The accompanying Lebesgue

@3]
constant An = 7.76. Another variation on this theme is to plainly take the set of the

Figure 5.8 Padua-like configuration on the disk forn = 6.

Padua points and map the square on the disk using

t(x,y)=( x SNICSIN (x,y) e #2,«(0;1).
HOcGy) I ixay) 112

Forn = 6 this leads to the configuration in Figure 5.9 with a matching Lebesgue constant
x
of A = 12.50. Remember that smaller Lebesgue constants are to be expected from sets

with a smaller variation in the Dubiner distance among the interpolation points [74]. The

64



Figure 5.9 Padua points forn = 6 mapped to the disk.

zeroes ofthe Chebyshev polynomials Tn+1 (x), for instance, are equidistant with respectto
the Dubiner distance. From this itis easy to conclude from Figure 5.10 forn = 33, that the
leftmost configuration which is the one described in Section 5.3, gives a smaller Lebesgue
constant than the configuration in the middle, which is similar to that in Figure 5.8, or the
rightmost one, which is similar to that in Figure 5.9. In the rightmost configuration there
are clearly accumulations of interpolation points, while in the configuration in the middle
the interpolation points are a bit too much pushed out of the center region. Hence our
conclusion that the sets of interpolation points leading to the better Lebesgue constants

on the disk are for the moment the ones given in Section 5.3.

Figure 5.10 Point configurations as in Figures 5.5, 5.8 and 5.9 forn = 33.
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5.5 Illustration
Letf (x,y) be the matlab peaks function (Figure 5.11) on the Euclidean disk # 22(0; 1),

f (x,y) = 3(1 - 3x)2exp (-9x2- (3y+ 1)2)
- 10(3x/5 - 27x3- 243y5)exp(-9(x2+ y2))

- (1/3)exp (- (3x+ 1)2- 9y2), (x,y) e #22(0;1).

Figure 5.11 Graph of peaks function.

We illustrate the usefulness of the new orthogonal cartesian basis derived in Section 5.2
and the configuration of interpolation points described in Section 5.3 with k = |_n/2j + 1,

by computing on the one hand the least squares approximant to f (x,y)

n m
£ VmkVm (m;xcos(kn/(m + 1))+ ysin(kn/(m + 1))),

an(x,y) = £
m=0 k=0

/1 b22(0;1) f (x,y)Vm (s;xcos(kn/(m + 1))+ ysin(kn/(m + 1))) dX

vm,k
IVm(m;xcos(kn/(m + 1)) + ysin(kn/(m + 1))) |2

and on the other hand the polynomial interpolant of the same form with vmk solved from

the system of interpolation conditions

Pn(xj,yj) = f (xj,yi), i =20,...,N, (5.11)

where the Vm are the spherical Legendre polynomials on the Euclidean unit disk and the
interpolation points (xj,yj) are chosen as in Figure 5.5. From Theorem 5.2 we easily find

that
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|7 (sxcos(km/ (m+ 1)) + ysin(kn/ (m+ 1)) |3 =

//B o) 772 (xcos(km /(m=+ 1)) + ysin(krw/(m+1))) dX = 7.

The polynomial g,(x,y) is the best £, polynomial approximant for f(x,y) on the disk
B2(0;1). Due to the mutual orthogonality of all basis functions ¥, (-;xcos(km/(m+
1)) + ysin(km/(m+ 1))) the coefficients v,, x do not have to be computed from a linear
system. Instead, an explicit formula for the best polynomial approximant on the disk can

now be written down.

Both p, and g, are also compared with the popular radial basis function interpolant [75]

N
mey) = Y oo/ 14 | =y =303
k=0

and the (better conditioned but slower converging) constrained radial basis function inter-

polant [75]

N
sn(%,9) = Y el (e —xe,y — v 13 In(]] (x — x5,y — i) ||2)
=

where the constraint comes from adding a quadratic bivariate polynomial as described in
[75]. In Table 5.1 we illustrate the errors || f — qn||eo, || f — Palleos [|f — Fal e and || f — S|
for different values of n. All errors were computed in higher precision (Maple) because
of the ill-conditioning of the RBF interpolation problems.

Table 5.1 /., errors of approximant g, (x,y), interpolant p,(x,y), and radial basis
interpolants 7, (x,y) and s,(x,).

L n [N+ —dnlle [ 1S = Palles | 1S = Falloo [ 1S = $nlles |

10 | 66 1.160 1.747 1.412 1.961
12| 91 0.596 0.909 0.648 1.091
14| 120 0.329 0.332 0.225 1.117
16 | 153 0.202 0.202 0.043 0.559
18 | 190 0.051 0.050 0.006 0.509
20| 231 0.030 0.018 0.001 0.255

In Table 5.2 we give ||f — gnl|2 and ||f — pnl|2 and in Figure 5.12 we show both the error

curves (g6 — f)(x,y) and (p1s — f)(x,).

Note that the interpolant computed for the interpolation points constructed in Section 5.3

67



Table 5.2 i2errors of approximant gn(x,y) and interpolant pn(x,y).

0.2

0.15

0.1

n N +
10 66
12 91
14 120
16 153
18 190
20 231

11/ qn]|2
494
.251
134
.058
.014
.007

O O O o o o

0.2

0.15

0.1

0.05

uf pnl|2

0.717
0.377
0.182
0.081
0.025
0.009

Figure 5.12 Error plots of polynomial approximant q16(x,y) (left) and polynomial

interpolant p 16(x,y) (right).

can indeed be called a near-best polynomial approximant, as one may expect from a set

of good interpolation points.

Table 5.3 Condition number using mutually orthogonal basis versus tensor product basis

10
12
14
16
18
20

N +

66

91
120
153
190
231

and radial basis functions.

1 vm( < »
6.99e+00
8.89e+00
1.24e + 01
1.82e + 01
2.78e + 01
4.42e+01

TiC)Tj(y)
4.67e + 03
2.88e + 04
1.76e + 05
1.07e + 06
6.41e + 06
3.83e + 07

W © N © W

In Table 5.3 one finds the condition numbers of the

1+ ()2 (9)2In(.)

.08e + 08 3.09e + 03
.14e+09 7.59e + 03
.70e+10 1.67e + 04
.95e+12 3.34e + 04
.17e+13 6.26e + 04
.04e+15 1.10e + 05

system of interpolation conditions

(5.11) when written down using the new fully orthogonal basis compared to the use of:

. the classical tensor products T(x) Tj(y) of Chebyshev polynomials,

. the radial basis functions
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e the constrained radial basis functions ||(x— -,y —)|[3In(]|(x— -,y —*)||2,

where the constraints come from adding a quadratic bivariate polynomial. The results
speak for themselves: the new basis gives extremely well-conditioned systems of inter-
polation conditions: on the disk the mutually orthogonal polynomials in (5.9) lead to far
better conditioning than the orthogonal polynomials in (5.7) of which the conditioning is
comparable to that of 7;(x)7;(y)! And it is just a matter of choosing the directions A in

(5.6) wisely.
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CHAPTER 6

RESULTS

After the introduction in Chapter 1, our investigations began in Chapter 2, where we
reviewed the known results on the conditioning of univariate polynomial interpolation.

We now summarize the results presented in the Chapters 3 to 5.

In Chapter 3, we present the best Lebesgue constants in existence for rational interpolation
with preassigned poles. The new results are based on a fairly unknown rational analogue

of the Chebyshev orthogonal polynomials.

The (extended) zeros of the orthogonal rational function 7, 1 (x) with predetermined de-
nominator g, (x) of degree m < n+ 1 and constructed in Section 3.2, provide interpolation
points for rational interpolation with poles prescribed by g,,(x) = 0, that are as good as
the (extended) Chebyshev zeroes for polynomial interpolation. In the case of poles close
to the interval of interpolation, they clearly outperform all other proposed sets of interpo-

lation points. We compare with the results obtained in [63] and [10].

A rough analysis of the growth of the Lebesgue constant in the case of barycentric rational
interpolation at equidistant interpolation points, is made in [10, 11], leading to the con-
clusion that it only grows logarithmically. In Chapter 4, we give a fine analysis, obtaining

the precise growth formula

2
p (In(n+1) +1In2+7y) +o(1)
for the Lebesgue constant under consideration, with ¥ being the Euler constant. The

similarity between barycentric rational interpolation at equidistant points and polynomial

interpolation at Chebyshev nodes (or the like) is remarkable.
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After introducing the rational interpolation case in Section 4.1, tight lower and upper
bound estimates are given in Section 4.2. The fine results are obtained from very high
order numerical experiments in exact arithmetic. In Section 4.3 we indicate that the results
can be extended to the rational interpolants introduced in[66]. The proof of the new

bounds is detailed in Section 4.4.

If the choice of the polynomial basis and the location of the interpolation points play an
important numerical role in univariate polynomial interpolation, they do so even more in
the multivariate case discussed in Chapter 5. In Section 5.3 we explore the concept of
spherical orthogonality for multivariate polynomials in more detail on the disk. We focus

on two items:

. on the one hand, the construction in Section 5.4, of a fully orthogonal cartesian basis
for the space of multivariate polynomials starting from this sequence of spherical

orthogonal polynomials,

° and on the other hand, the connection described in Section 5.5, between these or-
thogonal polynomials and the Lebesgue constant in multivariate polynomial inter-

polation on the disk.

We point out the many links of the two topics under discussion with the existing literature
and present a thorough discussion in Section 5.6. In Section 5.7 the new results are
illustrated with an example of polynomial interpolation and approximation on the unit
disk. The numerical example is also compared with the popular radial basis function

interpolation.
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