REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ZERO-PRODUCT PRESERVING OPERATORS AND
PRODUCT-FACTORABILITY OF BILINEAR MAPS

EZGI ERDOGAN

PhD THESIS
DEPARTMENT OF MATHEMATICS
PROGRAM OF MATHEMATICS

ADVISER
PROF. DR. OMER GOK

ISTANBUL, 2018



REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ZERO-PRODUCT PRESERVING OPERATORS AND
PRODUCT-FACTORABILITY OF BILINEAR MAPS

A thesis submitted by Ezgi ERDOGAN in partial fulfillment of the requirements for the
degree of DOCTORATE OF PHILOSOPHY is approved by the committee on
13.11.2018 in Department of Mathematics, Mathematics Program.

Thesis Adviser
Prof. Dr. Omer GOK
Yildiz Technical University

Co- Adviser
* Prof. Dr. Enrique A. SANCHEZ PEREZ

Universitat Politécnica de Valéncia

Approved By The Examining Committee
Prof. Dr. Omer GOK
Yildiz Technical University

Prof. Dr. Mert CAGLAR, Member
Istanbul Kiiltiir University

Assoc. Prof. Dr. Ozgiir YILDIRIM, Member
Yildiz Technical University

Prof. Dr. Davut UGURLU, Member

Piri Reis University

Assist. Prof. Dr. Ozlem BAKSI, Member
Yildiz Technical University




This study was supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) Grant No: 2211/E.



ACKNOWLEDGEMENTS

I would like to take a moment to thank all those who laid a helping hand to help me come
to what | am today. First and foremost, | owe my deepest gratitude to my advisor
Professor Omer Gk and my co-advisor Professor Enrique Alfonso Sanchez Pérez. It is
only with their guidance, support, and encouragement that | have been able to complete
this process. Through their actions, they have shown me how research should be done
and how an academician should be, and it has been a privilege to study under their
guidance. | am grateful to Professor Sanchez Pérez for agreeing my visit to Valencia and
being co-advisor of this work, | learned much from him not only academically but in
every aspect of life.

I also would like to extend my sincere appreciations to the members of the examining
committee Professor Mert Caglar, Associate Professor Ozgiir Yildirim, Professor Davut
Ugurlu and Assistant Professor Ozlem Baksi for their guidance and insightful comments
for the thesis.

I would like to thank The Scientific and Technological Research Council of Turkey
(TUBITAK) for supporting me financially throughout this work.

I am heartily thankful to Professor Luis Miguel Garcia, Professor José Manuel Calabuig
and Professor Antonia Ferrer Sapena for the helpful conversations and the hospitality they
showed me in Valencia.

I would like to express my special thanks to Professor A. Nese Dernek and Professor
Unsal Tekir from the Department of Mathematics of Marmara University for their
encouragement and suggestions during the process.

I also would like to thank all my friends who support me and encourage me, especially
Niliifer Hamarat. This process would be more difficult without your pleasant friendship.

Lastly, but definitely not least, | would like to give special thanks to my parents, who
have supported me in many ways during my life, and, in particular, throughout this
endeavor. Without you, this work couldn't have known existence.

November, 2018

Ezgi ERDOGAN



TABLE OF CONTENTS

Page

LIST OF SYMBOLS. ... e vii

LIST OF ABBREVIATIONS . ... ot e iX

A B S T R A C T . e X

OZETE ... W .. A A & A & A Xii
CHAPTER 1

INTRODUCTION . L. e e e et e e e e e e e e e neeeaenes 1

1.1 LIterature ReVIEW . ......oiuii it e e 1

1.2 Objective 0F the TheSIS. .....ouvieii e, 3

L B FINAINGS. et 4
CHAPTER 2

PRELIMINARIES AND NOTATIONS. ...t 6

2.1 Measures and SPACES.........euineritii ettt et e 10

2.1 Group Algebras and L1(G)-Modules ................oevueeeiuiinaiieeiaiinnnn. 14
CHAPTER 3

THE NOTION OF PRODUCT FACTORABILITY FOR BILINEAR MAPS........... 18

3.1 A Brief Glance at Zero Product Preserving Maps...........ccovvvieeviennnne. 18

3.2 A Generic Map: Products and Properties. ...........coooveveveiiinienenineinenn, 24

3.3 Product-Factorable Bilinear Maps in Banach Spaces........................... 28
CHAPTER 4

FACTORABILITY THROUGH POINTWISE PRODUCT .......ccceiiiiiiiieeee, 31

4.1 Product Factorability of Symmetric Operators on Function Spaces........... 31

4.1.1 Factorization Through Particular Function Spaces ........................ 36

4.1.1.1 Factorization Through r-Convexification ............................ 38

4.1.1.2 Factorization Through The Duality Map......................ooue 39

4.1.2 Properties of Symmetric Bilinear Operators..............cocoeviivninnnn 42

\Y



4.1.2.1 Compactness Properties of SymmetricMaps ....................... 42

4.1.2.2 Summability Properties. ...........coooviiiiiiiiiiiiiieieeea 46
4.1.3 Lattice Geometric Inequalities For (O-Factorable Maps ................. 48
4.1.4 Applications: Representation Formulas for Integral Bilinear Maps ...52
4.2 Opxo-Factorable Bilinear Operators acting in Sequence Spaces ............ 59
4.2.1 Compactness and Summability Properties..................cooevnvn.nn. 65
4.2.2 Applications of Zero (O pyq-Preserving Bilinear Maps .................. 67
CHAPTER 5
CONVOLUTION FACTORABILITY OF BILINEAR OPERATORS .................. 70
5.1 =-Factorable Bilinear Maps on Hilbert Spaces of Integrable Functions ....71
5.1.1 Properties of =-Factorable Maps on Hilbert Spaces ...................... 76
5.1.1.1 Compactness Properties .........ccoeveiiiiiiiiiiiiiiiaieennnn, 76
5.1.1.2 Summability Properties ............ccoiiiiiiiiiiiiiieee, 78
5.1.2 Applications of x-Factorable Maps Acting in Hilbert Spaces ........... 80
5.2 Factorization for Bilinear Maps Defined on Banach Modules ................ 83
5.2.1 Properties of *-Factorable Operators on Banach Modules ............... 87
5.2.1.1 Summability Properties ............coooiiiiiiiiiiiiiiee, 87
5.2.1.2 Compactness Properties ...........cooeveiiiriiiiiiiiiiiiaieenenn, 90
5.2.2 Integral Representation for *-Factorable Maps ........................... 92
5.2.3 Applications of x-Factorable Operators ...................cccooeviininnnn.. 95
CHAPTER 6
RESULTS AND DISCUSSION. ...ttt e e, 98
REFERENCES ... e, 99
APPENDIX A
BASIC DEFINITIONS ..o e 104
A-LWeaK TOPOIOQY .. v, 104
A-2 VeCtor LattiCeS ...veie i 104
A-3Banach AlQeDras ..........c.oiiii 107
APPENDIX B
TENSOR PRODUCTS AND LINEARIZATION ..., 109
B-1 Tensor Product of Banach Spaces...............ccoevviiiiiiiiiiiecieeneene. .. 109
B-2 The Projective Tensor NOMM..........c.oiiriieiiii i e 110
B-3 The Injective Tensor NOMM.........oouviniiniii i e 111
B-4 Reasonable CroSSNOMM. . .....u.e it 112
CURRICULUM VI AE .o e 113

Vi



LIST OF SYMBOLS

HRORZ

E+

(r2)
o(E,E)
L(X,Y)
L(X,Y)
XXY

B(X xY,2)

B(X X Y,Z)

C(K)
2P (A)
(&N
M,,(X,Y)
Q,%, u)
B(Q)
No(w)
Sim(%)
(D)
LP(u)
LP(E)
Lp.q

My,

©

set of natural numbers

field of real numbers

field of complex numbers

tscalar field R or C

real line mod 27

characteristic function defined on the set A

ith coordinate function

topological dual of the Banach space X

Kathe dual of the Banach function space X (u)

open unit ball of X

closed unit ball of X

closure of the set A

positive cone of the lattice E

duality bracket

Weak topology on E

space of all Y- valued linear operators on X

space of all Y- valued linear and continuous operators on X
topological product of the spaces X,Y

space of all Z- valued bilinear operators on the topological product space
XXxY

space of all Z- valued bilinear and continuous operators on the
topological product space X X Y

space of continuous functions f: K — I, where K is compact
space of the all scalar valued p-summable functions
continuous embedding (inclusion)

set of all (p, g)-summing operators

measure space

Borel o-algebra on Q

collection of u-null sets

set of Z-simple functions

space of all u-measurable functions

space of classes of p-integrable functions

space of (classes of) Bochner p-integrable functions f: Q - E
Lorentz function space

multiplication operator

convolution product

pointwise product

vii



XQ®,Y
X®,Y
xVy
XAy

xly

topological group

set of the characters of a topological group
algebra of functions with absolutely convergent Fourier series
Wiener algebra

space of all trigonometric polynomials on G
Fourier transform of the function f

inverse Fourier transform of the function g
p-convexification of the space E
linearization of the bilinear map B
elementary tensor

tensor product of the spaces X,Y

tensor product X & Y equipped with a
completion of X Q, Y

sup(x,y)

inf(x, y)

xV (—x)

x and y disjoint

viii



LIST OF ABBREVIATIONS

B.fs.
LCA
l.u.b.

p-a.e.

n.p.
o.C.

0-0.C.

Ppp
r.i.

Zpp

Banach function space

Locally compact Abelian group
least upper bound

p-almost everywhere

norm preserving

order continuous

o-order continuous

positive product preserving
rearrangement invariant

zero product preserving



ABSTRACT

ZERO-PRODUCT PRESERVING OPERATORS AND
PRODUCT-FACTORABILITY OF BILINEAR MAPS

Ezgi ERDOGAN

Department of Mathematics
PhD Thesis

Adviser: Prof. Dr. Omer GOK
Co-adviser: Prof. Dr. Enrique A. SANCHEZ PEREZ

The present dissertation deals with bilinear operators acting in pairs of Banach spaces that
factor through a canonical product. We find similar situations in different contexts of the
functional analysis, including abstract vector lattices —orthosymmetric maps—, C*-
algebras —zero product preserving operators—, and classical and harmonic analysis
—integral bilinear operators. We purpose the use of a generic product as a linearizing tool
for bilinear maps.

Concretely, in this dissertation we introduce a certain bilinear map, called product, by
some inclusion and norm equality requirements and present a factorization through the
product given in terms of a summability condition for bilinear continuous operators acting
in topological product of Banach spaces. If we specialize the product and the domain
space of the bilinear map, this factorization also concerns about zero product preserving
bilinear maps.

In a second step, we center our attention to the pointwise product and convolution product
particularly. In the case of pointwise product, we consider the bilinear maps acting in
couples of Banach function spaces and sequence spaces. We obtain that a bilinear map
can be pointwise product factorable if and only if it is zero product preserving. In the
sequel, we notice that the same result works if we take into account convolution product
and the bilinear maps acting in a product of Hilbert spaces of integrable functions,
respectively, a product of Banach algebras of integrable functions. In this case, we get
that all bilinear maps that are 0-valued for couples of functions whose convolution equals
zero have a factorization through convolution.



The other objective of the dissertation is to apply these factorizations to provide new
descriptions of some classes of bilinear integral operators, and to obtain integral
representations for abstract classes of bilinear maps by some concavity properties of
operators. In addition to them, we give also compactness and summability properties for
these operators under the assumption of some classical properties for the range spaces,we
adapt and apply our results to the case of some particular classes of integral bilinear
operators and kernel operators and explain some consequences in a more applied context.

Key words: Factorization, zero product preserving map, bilinear operators, symmetric
operators, pointwise product and convolution.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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OZET

SIFIR CARPIM KORUYAN OPERATORLER VE BILINEER
OPERATORLERIN CARPIM-CARPANLANABILMESI

Ezgi ERDOGAN

Matematik Anabilim Dali
Doktora Tezi

Tez Danismani: Prof. Dr. Omer GOK
Es Danisman: Prof. Dr. Enrique A. SANCHEZ PEREZ

Bu tez galismasi Banach uzay ciftleri iizerinde tanimli olan ve kanonik bir ¢arpim
araciligiyla ¢arpanlanabilen ikilineer operatorler ile ilgilidir. Benzer durumlar
fonksiyonel analizin soyut vektor latisleri —ortosimetrik doniistimler—, C*-cebirleri —
sifir ¢arpim koruyan doniisiimler—, ve klasik ve harmonik analiz —integral ikilineer
operatorle— gibi farkli igeriklerinde  bulunabilir. Bir jenerik c¢arpimin ikilineer
operatorler i¢in bir lineerlestirme araci olarak kullanilmasi amaglanmistir.

Temel olarak, bu tez calismasinda bazi kapsama ve norm esitlikleri sartlar1 ile ¢carpim adi
verilen bir ikilineer doniisiim tanimlanmis ve Banach uzaylarinin topolojik ¢arpiminda
hareket eden ikilineer siirekli operatorlerin bu ¢arpim vasitasiyla ¢arpanlanmasi bir
toplanabilirlik kosulu ile verilmistir. Ozel olarak belirli bir carpim ve ikilineer operator
icin belirli bir tanim uzay1 ele alindiginda, bu ¢arpanlama sifir carpim koruyan ikilineer
operatorlerle yakindan ilgilidir.

Ikinci bir adimda, 6zel olarak nokta ¢arpim ve konvoliisyon carpim ele alinmustir. Nokta
carpim durumunda, Banach fonksiyon uzay1 ve dizi uzayr giftleri iizerinde tanimli
ikilineer operator géz oniinde bulundurulmustur. Bir ikilineer operatdriin nokta ¢arpim
carpanlanabilir olmasi1 ancak ve ancak bu ikilineer operatoriin sifir ¢garpim koruyan
operatdr olmasi ile miimkiin oldugu goriilmiistiir. Ardindan, konvoliisyon carpim ve
integrallenebilir fonksiyonlarin Hilbert uzaylarinin, sirastyla Banach cebirlerinin ¢arpimi
tizerinde tanimli olan ikilineer operatdrler incelendiginde de ayni sonug elde edilmistir.
Bu durumda, sifir konvoliisyona sahip fonkiyon ¢iftleri i¢in sifir degerli olan tiim ikilineer
operatdrlerin konvoliisyon araciligiyla bir carpanlamaya sahip oldugu gosterilmistir.

xii



Tezin bir diger amaci da bu carpanlamalari kullanarak ikilineer integral operatorlerin bazi
siiflart i¢in yeni tanimlamalar saglamak ve operatorlerin konkavlik 6zellikleri ile
ikilineer operatorlerin soyut siniflari i¢in integral temsilleri elde etmektir. Bunlara ek
olarak, operatériin goriintii uzayimna klasik o6zellikler yiiklenerek ikilineer operatorlerin
kompaktlik ve toplanabilirlik 6zellikleri verilmistir. Son olarak, sonuclar integral
ikilineer operatorlerin belirli siniflarina ve ¢ekirdek operatérlerine uyarlanip uygulanmis
ve sonuglar uygulamali olarak agiklanmistir.

Anahtar Kelimeler: Carpanlama, sifir ¢arpim koruyan diintisiim, ikilineer operatorler,
simetrik operatérler, nokta ¢arpim ve konvoliisyon.

YILDIZ TEKNIiK UNiVERSITESI FEN BILIMLERI ENSTITUSU
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CHAPTER 1

INTRODUCTION

A particular class of bilinear operators that play a fundamental role in Functional Analysis
is the one defined by what we can call, broadly speaking, a product. We are thinking of for
example, the internal product of a Banach algebra, but also the pointwise or convolution

product acting on a couple of Banach spaces.

Consider a bilinear operator acting in a couple of Banach spaces in which a product is de-
fined. If the bilinear map factors through such a product, some of the good properties of
the factorization operator are preserved, so it is interesting to know which bilinear opera-
tors satisfy such a factorization. This general philosophy —factorization of maps— is one
of the main techniques that inspires classical and current developments in mathematical

analysis.

In this study, we will give the factorization for the class of the bilinear maps acting on
the Cartesian product of some particular Banach spaces that are 0-valued for the couples
of elements whose pointwise or convolution product is zero. These bilinear maps are

commonly called zero product preserving, also orthosymmetric, in the literature.

1.1 Literature Review

In the current literature, most of the studies of zero product preserving bilinear maps are

related with Banach algebras and vector lattices.

The first reference that we found on the literature related notions due to Lamperti [1].
However, we can find similar definitions in completely different mathematical setting.
For example, the notion of orthosymmetric was already used in the paper [2], and it is not

connected with convolution but lattice type properties.



In paper [3], Fremlin showed that given two Archimedean Riesz spaces E and F, there is
an Archimedean Riesz space EQF, called the Archimedean vector lattice tensor product
of E and F, in which the linear space tensor product £ ® F is embedded. He proved
that for Archimedean Riesz spaces E, F' and any positive bilinear map ¥ : E x F — H,
where H is a relatively uniformly complete Archimedean Riesz space, there is a unique

increasing linear map 7 : EQF — H such that T® = y.

In the same paper Fremlin proved that for any positive bilinear functional B : C(X) x
C(Y) — R there exists a unique increasing continuous linear functional 7 : C(X xY) —» R
such that T(f®g) = B(f,g) for all f € C(X), g€ C(Y), by considering the partial order-
ing on C(X)®C(Y) induced by the embedding C(X)®C(Y) in C(X x Y) [3, Corollary
3.6.].

Zero product preserving bilinear maps were studied by Buskes and van Rooij in [2] with
the term “orthosymmetric”. For an Archimedean Riesz space E, they called the vector
space-valued bilinear map B : E x E — F as orthosymmetric if f A g =0 implies B(f,g) =
0 for all f,g € E. To obtain the commutativity of f-algebras, they proved that every
positive orthosymmetric bilinear operator defined on a sublattice of an f-algebra can be

factored through a positive linear operator and the algebra multiplication [2].

The same authors noticed these results gave rise to the concept of the square of vector
lattices given in [4] and they introduced the relation between orthosymmetric maps and
squares of Riesz spaces [4]. A certain quotient of the Fremlin’s Archimedean tensor
product EQE is also a square of E. The authors defined the notion of square of Riesz
spaces and showed (via tensor products as introduced by Fremlin in [3]) the existence and

uniqueness of squares (see Definitinon 3 and Theorem 4 in [4]).

In the sequel, Buskes and Kusraev proved that symmetry is necessary and sufficient con-
dition for being orthosymmetric of a bilinear map [5]. By using the commutators, Ben
Amor gave a generalization of the symmetry theorem given by Buskes and Kusraev for
order bounded orthosymmetric bilinear maps in [5] to the class of orthosymmetric bilinear
maps B : X x X — Y that are continuous with respect to the relatively uniform topologies
of X and Y (r.u. continuous for short)[6, Theorem 14]. A more detailed information on

the orthosymmetric bilinear maps defined on vector lattices can be found in the survey

paper [7].



On the other hand, some authors studied zero product preserving bilinear maps defined on
product of Banach algebras and C*-algebras to obtain a characterization for (weighted)

homomorphisms and derivations (see [8, 9, 10, 11]).

Alaminos et al showed that any normed space valued zero product preserving bilinear
map defined on the Cartesian product of the C*-algebra C(I) of continuous functions on
a compact interval / of R is symmetric and this result was the main tool for their method

used for the characterization of homomorphisms [8].

The same authors have obtained a class of Banach algebras A that satisfy the equality
¢(ab,c) = ¢(a,bc) (a,b,c € A) for every continuous zero product preserving bilinear
map ¢ : A x A — B. By adding some conditions to the algebra, they have proved that
¢ (ab,c) = ¢(a,bc) gives a factorization for the bilinear operator ¢ as ¢(a,b) := P(ab)
for a certain linear map P : A — B (It is obvious that this factorization can be obtained for
all unital algebras by defining P(a) = ¢(a, 1)) and this factorization gives the symmetry

of the bilinear map whenever the initial Banach algebra is commutative [9].

Alaminos et al have shown that there are some Banach algebras that do not satisfy the
equality ¢(ab,c) = ¢(a,bc) such as the algebra C![0, 1] of continuously differentiable
functions from [0, 1] to C, although the bilinear operator ¢ is zero product preserving
map [10]. This shows that any bilinear operator cannot be factored through a product. In
the same paper, the authors obtained that a zero product preserving bilinear map B defined
on C'[0,1] can be expressed as B(f,g) = T(fg) +S(fg') + R(f'g’) for all f,ge C'[0,1],

where 7', S, R are linear operators [10, Theorem 2.1].

More recently, same authors investigated zero product preserving bilinear maps defined
on the algebra M, (F)(n = 2) of all n x n matrices over a field F of characteristic not 2
and obtained that the bilinear maps defined on M,,(F) x M,(F) such that for any rank one
idempotents f, g satisfying fg = 0 implies B(f, g) = 0 can be factored through M, (F) via

a linear map and algebraic multiplication of matrices [11, Corollary 2.3].

1.2 Objective of the Thesis

As the mentioned above, the factorization of a bilinear map via a product has been inves-
tigated for Banach algebras and vector lattices. As we know, a factorization for the zero

product preserving bilinear maps through a product defined on arbitrary Banach spaces



has not been introduced yet.

The purpose of this study is to obtain a class of Banach valued continuous bilinear maps
defined on the Cartesian product of Banach spaces that can be factored through a bilinear
map, called product, and a linear map. Besides, we will consider the continuous bilinear
maps acting on particular Banach spaces, as Banach function spaces, sequence spaces or
group algebras. In these particular cases, the product will be considered as the pointwise
product or convolution. In addition to these factorization results, we aim to show that the

initial bilinear map inherits some properties of the linear operator factored through.

The systematic analysis of some classes of bilinear operators that factor through relevant
product —pointwise product of functions and convolution of functions— will be the subject
of the thesis. We will provide fundamental structure results for characterization of the

general case and representation theorems for the above mentioned cases.

All these information will be used for obtaining the main obective of our work factoriza-
tion theorems and integral representations of families of classical and recently introduced

operators.

In this way, we will provide factorization theorems for convolution bilinear maps, integral

transforms and kernel bilinear operators.

1.3 Findings

In this study, we introduce a class of continuous bilinear maps defined on the Banach
spaces that can be factor through a spesific bilinear map, called product, typically with
some special properties and being canonical in some sense. The bilinear maps having
such a factorization are concidered in algebraic manner, thus we firstly give a summary
of existing theorems and results in the literature. In the sequel, we establish that holding
a particular summability condition is a necessary and sufficient condition for having such
a factorization for a continuous bilinear map defined on a product of the Banach spaces.
Following, we notice that this result can be improved if we specialize the mentioned
product as pointwise product or convolution product, in parallel with the domain space of

the bilinear map.

We consider these two product separately. Firstly, we obtain a factorization through point-



wise product for bilinear maps defined on a couple of Banach function spaces and se-
quence spaces, respectively. Secondly, we take into account the convolution operation
and give a factorization of bilinear maps defined on a couple of Hilbert spaces of inte-
grable functions, respectively, group algebras through convolution. For both cases it is
seen that such a factorization is equal to zero product preserving property and it implies
the symmetry condition. Using these factorizations, we investigate the compactness and
summability properties of bilinear maps inherited from their linearizations under the as-
sumption of some clasical properties for the range spaces as the cotype-related properties,
the Schur property or the Dunford—Pettis property. As a result, we obtain integral rep-
resentations of zero product preserving bilinear maps by using vector measures. Since
this factorization allows us to linearize a class of bilinear maps, we get some applications
of bilinear maps that factors through a linear map as integral transform or generalized

convolution.



CHAPTER 2

PRELIMINARIES AND NOTATIONS

Throughout the thesis, K represents the scalar field of all real or complex numbers. Z, N
and T denote the set of integers, natural numbers and real line mod 27, respectively. As
standard notation, the letters X, Y, Z are used to denote Banach spaces and X* is dual space
of the Banach space X with respect to its norm topology. The duality between a Banach
space X and its topological dual X* is denoted by (x, f) for x € X and f € X*. Uy and By
represent the open and closed unit balls of the Banach space X, respectively. For a subset
A of X, the A will denote the closure of A with respect to norm topology. We write x4 and
e; to denote characteristic function for a given set A and ith unit sequence, respectively.
For a positive real number p, £7(A) is the space of all scalar valued functions & on A such
that 3,4 [§ ()P < co. It is a Banach space with the norm [[§| = (X5,ex |E(y)|P)V/P, for
p=1

Recall that a set A is called partially ordered if there is a reflexive, antisymmetric, transi-
tive relation < on the set A. The partially ordered set A is called directed whenever every
pair of elements has an upper bound. A neft (x) );ca in a Banach space X is a function of

a directed set A into X.

Let K be a compact set. C(K) denotes the space of all continuous scalar valued functions

on K. It is a Banach space with the uniform norm | f|c(x) = sup,eg |f(x)]-

The support of a real valued function f : A — R is the set {x € A : f(x) # 0}. A function

is said to have compact support if this set is compact.

The space of all (bounded) linear operators between Banach spaces X,Y is denoted by

L(X,Y) (L(X,Y)). If Y = X, then it will denote by L(X) (£(X)).



Since we will be concerned with bilinear maps through the thesis, we give a detailed
description for them. Consider the Banach spaces X, Y, Z over the same scalar field K. A

Z-valued map B : X xY — Z is called bilinear if
forany yeY, x+—— B(x,y)
forany xe X, y~— B(x,y)

are linear maps from X to Z and Y to Z, respectively. That is, it is a map such that it is
linear in each of variables. The vector space of all bilinear maps is a normed space with

the norm
1B = sup{ |B(x,3) |z : (x.y) € (Bx x By)}.

We say a bilinear map is bounded if |B| < co. Similar to linear case, a bilinear map is

continuous if and only if it is bounded (see [12, Proposition 1.2]).

The vector space of all (bounded) bilinear operators defined on the topological product
space X x Y into the Banach space Z is denoted by B(X x Y,Z) (respectively B(X x
Y,Z)). A bilinear continuous map is separately continuous, that is, continuous in each

coordinate.

The handicap of working with the bilinear maps is the fact that the range and the null sets
of a bilinear map are not linear spaces in general. As a natural consequence of this rough
the well-known relations between the dimensions of the kernel and the range in the linear
case do not hold necessarily in the bilinear case. The general theory of bilinear maps can

be found in [12] or [13].

If the range of a linear (bilinear) operator is the field K, then this linear (bilinear) operator

is called functional or form.

Let X and Y be Banach spaces. X <X ¥ means that ||x|y < K|x|x for any x € X, i.e. the

embedding X — Y is continuous. X < ¥ means X <X ¥ for some K > 0.

The Banach spaces X and Y are said to be (isometrically) isomorphic if there exists a
(isometric) isomorphism X onto Y, where the (isometric) isomorphism referes a (norm
protect) bijective linear operator such that both it and its inverse are continuous; [14,

Definitions 1.4.13].



The uniform boundedness principle or Banach—Steinhaus theorem that is one of the
fundamental results in functional analysis states that if .o/ is a nonempty family of bounded
linear operators T : X — Y such that sup{|Tx| : T € &} < oo for each x € X, then sup{|T| :
T € o/} is finite ([14, Theorem 1.6.9]).

A linear operator 7 : X — Y is called (weakly) compact if it maps the unit ball of X onto
arelatively (weakly) compact set —that is, a set having a (weakly) compact norm closure—
in Y. An equivalent definition for these operators is the following; an operator is (weakly)
compact if and only if, given any bounded sequence (x;)°, € X, the image (7 (x;));2, has

a (weakly) convergent subsequence in Y (see [14, Section 3.4]).

A (weakly) compact bilinear operator is defined similarly. We say a bilinear map B :
X xY — Zis (weakly) compact if it takes the unit ball of X x Y onto a relatively (weakly)

compact set in Z.

It is well known that, every linear operator with a reflexive domain or range space is
weakly compact. Other useful theorem known as Pitt’s theorem states that every linear

operator from ¢4 into ¢” is compact whenever 1 < p < g < oo (see [15, Chapter 12]).

A linear operator is called completely continuous (or Dunford—Pettis operator) if it takes
weakly compact sets into norm compact sets. Due to the Eberlein-Smulian Theorem this
happens when it takes weakly convergent sequences to norm convergent sequences (see
[15, Chapter 2]). This concept is original definition of compact operators given by Hilbert
in [16], but these two definitions do not coincide exactly. Completely continuity exists

between compactness and boundedness; see [14, Chapter 3].

A Banach space E is said to have the Dunford—Pettis property if each weakly compact
linear operator from E into F' is completely continuous for every Banach space F, that is,
every weakly compact operator acting on £ maps weakly compact sets to norm compact

ones (see [14, Definition 3.5.15]).

An operator T : X — Y is said to be (p,q)-summing if there is a constant k > 0 such that

for every xp,...,x, € X (regardless of the choise of the natural number n),

(Z?:1 HT()@)H;;) 1/p < ksupgep, , (Z?:l |<Xi,x*>|q) l/q‘

This means that it images weakly g-summable sequences (x;)7°, € X to absolutely p-



summable sequences (T (x;))72, € Y. We will write IT, ,(X,Y) —I1,(X,Y) if p = g —for

the set of all (p, g)-summing operators; see [15, Chapter 10].

A characterization of a p-summing operator is given by classical Pietsch’s domination
theorem by virtue of a norm domination inequality. This theorem states that an operator
T :X — Y is p-summing (for 1 < p < o0) if and only if there exists a constant ¢ and a reg-
ular probabiliy measure [ on By —equipped with the compact topology o (X*,X)- such
that the inequality ||Tx| < C(SBX* |G, x| P (x*)) '/ holds for each x € X [15, Theorem

2.12] (see page 10 for regular measure).

Recall that a Banach space is said to have Schur property if weakly and norm convergent
sequences coincide in it. Namely, for a sequence (x,),” ; and an element x in the space,
(xn)52; converges weakly to x if and only if (x,);2; converges to x in norm ([14]). The
sequence space ¢! and some other spaces have the Schur property (for example, some
discrete Nakano spaces, see (IV) in [17]).

The Rademacher functions ry(t) is defined on the interval [0, 1] by r,,(¢) := sign(sin2"xt),
i i+l
21 on
tion, we get r,,(t) := (—1) ([18, §8.5]).

and for each subinterval [ ), where i = 0,...,2" — 1, n € N and sign is signum func-

A Banach space E is said to be of type p for some p € [1,2] if there exists a positive

constant K so that, for every finite set of vectors (xx){_, € E

1 2 1/2 N\ 1/p
(]St yar) ™ < K ([ Sirn)
We say that E has cotype q for some 2 < ¢ if there exists a positive constant K so that, for

every finite set of vectors (xx)}_, € E

1/2

(stevnll) < s(8] tmon )

For these definitions, see [19, Definition 1.e.12] and also [18, Section 7.7]. It is well-
known that every space is of type 1 and cotype oo, and Hilbert spaces have both type 2 and
cotype 2. Moreover, infinite dimensional C(K) and L! (1) do not have proper type/cotype,

that is they do not have neither cotype < oo nor type > 1.

Now we will recall a property that is named as Orlicz property, particularly for Banach

spaces being of cotype 2. If a Banach space X is of cotype 2, it implies that every weak



¢! sequence in X is a strong ¢4 sequence. In other words, identity map on X is (g,1)-
summing; see [15, Corollary 11.17]. Note that a Banach space has the Orlicz property if
it is of cotype 2; see [18, §8.9].

2.1 Measures and Spaces

Consider a set Q. A collection X of subsets of the set Q is called a 6-algebra (or o-field)
if it contains the Q and is closed under the operations of difference and countable union.
The dual (Q,X) is called a measurable space and every element of the ¥ is a measurable
set. A measure [ on a o-algebra X is a set operation such that it is extended real valued,
non negative, and countably additive with the condition p(¢¥) = 0. The triple (Q,X, 1)
will denote a measure space. The measure L is said to be complete if any subset of a set
E with zero measure is measurable. It is said that the measure u is regular if every E € X
can be approximated by a class of the open measurable sets from above (outer regularity)
and a class of the compact measurable sets from below (inner regularity). A set A < Q is
said to be p-null set if A€ X and u(A) = 0. The collection of p-null sets is denoted by
Ao(u). These definititions can be found in [20].

Let € be a topological space. The smallest o-algebra that contains all open sets is called
the Borel o-algebra and denoted by B(Q). A measure defined on the c-algebra of Borel
sets is called Borel measure ([20, §52]). A Radon measure is a Borel meause which is

inner regular.

Let us consider a measurable set E in a measure space, we say the measure of the set £
is finite if ;1(E) < oo and E has o-finite measure if there is a sequence (E,);- ; of sets in
¥ such that E = | J; | E, and p(E,) < oo for all N. A measure y on X is said to be finite

(o-finite), if every set E in X has finite (o-finite) measure; see [20, Chapter 2].

An atom A € ¥ in a measure space (Q,X, i) is a measurable set with a positive measure
such that if B < A then p(B) = 0. A measure y with no atoms is called non-atomic ([20,

§40]).

A function f, defined on the measurable space Q, is called simple function if it takes a
finite number of values and it can be written as f = >7/_; a;xg,, where {a, ..., 04} is a
finite set of numbers and {Ey,...,[E,} is a finite, disjoint class of measurable sets; see [20,

§20]. We will show the set of simple functions by Sim(X). A function f : Q — X is said to
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be u-measurable if there is a sequence (f,,) -, € Sim(X) such that lim, . | f, — fllx =0

u-almost everywhere.

Let f: Q — X be a u-measurable function. The function f is called Bochner integrable if
there exists a sequence of simple functions (f,);2, such that lim, .o §,, | f» — fllxdu = 0.
In this case, § fdu is defined for each E € X by § fdu = lim,, {,, f,du; see [21, Chapter
1].

Let (Q,X, 1) be a complete o-finite measure space. Lo(u) denotes the space of (equiva-
lence classes of) all p-measurable functions on Q. LP(u) (p = 1) is the Banach space of
functions for which the p-th power of the absolute value is p-integrable equipped with its

standard norm | f]| = ({5 |f|Pdp)"/?.

A Banach space (X (), | -||) of (equivalence classes of) p-measurable functions is a Ba-
nach function space —sometimes called also a Kothe function space— (briefly B.f.s)

over i (or over (Q,X, 1) if

(i) if ge X(u) and f is a measurable function such that | f| < |g| —a.e., then fe X (u)
and ||| < llg

)

(ii) for all A € X with positive measure there exists B € X such that B A, u(B) > 0 and
xB€X(1).

The assumption (ii) is equivalent to saturation property, that is, there is no A € ¥ with
1(A) > 0 such that fy4 = 0 a.e. forall f € X(u). Since the measure space is assumed to
be o-finite, this is also equivalent to X (ut) having a weak unit, i.e. a function g € X(u)

such that g > 0 a.e. (see [22]).

It is worth noting that if the measure u is finite, the requirement (i) simply means integra-

bility, and also that all simple functions must be contained in X ().
We shortly write X instead of X () if the measure is clear in the context.

Since every function f € X is locally integrable by the definition of the Banach function
space, it follows that for every measurable set E € Z, the functional f — (o, f(x)xz(x)du
is an element of topological dual X* of X. These functionals are called integral and the
space of all integrals is denoted by X’ that is known as Kothe dual space, also called

associate dual space, of the X and X' = X*. Namely,

11



X' = {feLO(X,,u):SX|fg|d,u<ongeX}.

It is known that the topological dual X* is a Banach lattice and associate dual X’ is a

Banach function space; see [23, Lemma 2.8(i) and Proposition 2.16].

For a linear continuous operator 7 : E — F between Banach function spaces E and F, T*,
respectively, 7/ will denote its adjoint operator, respectively, Kothe adjoint operator —the

restriction of adjoint operator to Kothe dual.

A Banach function space X (i) is order continuous (briefly o.c.) if downward directed
nets converging u-a.e. to 0 converge also in the norm, i.e. any (fy)o \, 0, we have
limg, || fo|| x(u) = 0 ([19, Definition 1.a.6]). If the limit is defined by sequences, it is said
X(p) is o-order continuous (shortly c-o.c.). It is shown that these two concepts coincide
in Banach function spaces (see [23, Remark 2.5]). One of the important result of the
order continuity is that; the order continuity of the norm of the B.f.s. X(u) implies the
density of the set Sim(X) (see [22, Lemma 3] or [23, Remark 2.6]). Another important
characterization: a B.f.s. X(u) has o.c. norm if and only if its Kéthe and topological

duals coincide, that is X’(p) = X*(u).

A Banach function space X (i) has the Fatou property if any increasing positive sequence
(fn)nen converging p-a.e. to a measurable function f with sup,cy || fulx (n) < oo implies
feX(u)and | fulx ) /" [ flx(u) (19, Section 1.b]). A B.f.s. X (i) has Fatou property if
and only if X”(u) = X (u), where X” denotes the space (X’)’ that can be defined for every
Banach function space. It is known that the Kéthe dual X’ of a Banach function space X

has Fatou property.

Given Banach function space E < L°(u) and p > 1, we will denote its p-convexification
by E (P) in the sense of [19, Section 1.d] (see also the equivalent notion of 1/p-th power in
[23, Chapter 2] for a more explicit description). Recall that, when E is a Banach function
space, E (P) is the space of t-measurable functions such that the pth power of its modulus

belongs to E itself. That is,
EW) = {fel(u) : |f|P € E}.

In this case, E(?) is also a Banach function space with the norm || £z, = H\f]PH;;/p, for

f € E (see [24, Proposition 1]).

12



It is known that the p-convexification E(?) (0 < p < o) of E is order continuous, if E is

so. In this case the set Sim(X) is dense in E(P), for 1 < p < 0.

In the paper [24], authors obtained the following version of well-known Holder inequal-
ity;

Holder-Rogers inequality: Let E be a B.f.s. and p,g > 0. Forx e EWP), yE EW@, Xy € E"

1 1
and |xy|, < |||, [y[lg» Wwhere — = — + —; see [24, Lemma 1].
r-p q

The following definitions can be found in [19, Chapter 1.d.]. Let us consider a pair of
Banach function spaces X and Y. A linear operator 7 : X — Y is said to be p-convex
if there is a constant C,, such that regardless of the choise of the n and regardless of the

choise of the vectors x1,x2,...,x, € X

y 2\ VP n AN
(S ) Tl e (Simblr) L i1 <p<on,

or
[V x| < Comaxicjen gl it p= oo

A linear operator 7 : X — Y is p-concave if there is a constant C? such that for every

choise of the elements xq,...,x, € X

, 1f1<p<oo,

(Spairs)'” <l (57or)

or

, ifp=o0.

maxi <jn | T35 < Coe |V [

A Banach function space X is p-convex (p-concave) if the identity operator defined
on X is p-convex (p-concave). Every operator and every Banach function space is 1-

convex.
For a couple of Banach function spaces (Eg, E) and a concave function ¢ : [0,00) x
[0,00) — [0,0) which is positively homogeneous —that is, ¢ (ka,kb) = k*@(a,b) for all
k > 0— such that ¢(a,b) = 0 < a = b = 0, the Calderén- Lozanovskii space ¢(E, E)
generated by the couple (Ey, E;) and the function ¢ is defined as all z € L%(Q) such that
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for some a € Ey, b € E| with |a|g, < 1, |b|g, <1 and for & > 0 we have |z| < a¢(|al,|b|)
a.e. on Q. The norm of an element z € ¢(Ey,E}) is the infimum of o satisfying the
above inequality. If the power function @g(a,b) = a®bh'=%(0 < 8 < 1), @g(Eo, E;) is the
well-known Calderdn space EQE| ™% ([25]).

2.2 Group Algebras and L' (G)-Modules

In this section we are going to set out the basic terminology of abstract harmonic analysis
and we establish the terminology concerning group algebra L' (G) and its modules that are
essential tools for Chapter 5. See the Appendix A-3 for the basic information on Banach

algebras.

A topological group is a group with a topology such that the group operations —multiplication
and inversion— are continuous. A topological group G is called locally compact group,
respectively, Abelian group if it is at the same time a locally compact Hausdorff space, re-

spectively, an Abelian group. We will use the notation LCA for a locally compact Abelian
group.
Let (G,X, 1) be a measure space, where G is a topological group.

On every locally compact group G, there exists a non-zero, positive, regular (see page 10
for definition of regular measure), left-translation invariant —that is, u(E + x) = u(E) for
all £ € ¥ and x € G— measure i on G. This measure, called Haar measure, is uniquely
determined up to multiplication by a positive constant. If we consider G as the circle

group T, then the Haar measure is normalized Lebesgue measure.

Let us denote the Haar measure on LCA group G by du(t). LP(G) (p € [0,00]) denotes
the space L”(u) on G corresponding to Haar measure. One defines the integral of a
function f on G by § f(r)du(r) with respect to the Haar measure du(z). Convolution
of the elements f,g € L'(G) on G is defined by f+g(x) = . f(r"'x)g(t)du(r) and f
g € L'(G). The Banach space L!(G) is a non-unital Banach algebra under convolution
product by ||/ =g|| < | f]|g|. These concepts can be found in references [26, 27, 28] more

detailed.

A character of a LCA group G is a continuous group homomorphism from G to the circle

group T. We will denote by I' the set of all continuous characters of the LCA group G.
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The set I' forms also a group and it is called dual group, or Pontryagin dual of G. By the
duality between G and I, we denote the value of a character £ at a point x € G by (x,&).

The space of all trigonometric polynomials on G is defined as the following set;

J(G) = span{(:,§) : § e T'}.

The set J(G) is an algebra and consists of all finite linear combinations of the characters

of an Abelian group G.

In reference [26, pp. 204] we can find the following characterizations: if I" is dual of
G, then G is dual group of I'. The dual of a compact group is discrete and the dual of a

discrete group is compact.

The very well-known examples of LCA groups are R, T and Z. The circle group T —the
real line mod 27— will be essential on Chapter 5, so we establish its dual. Any character
on T with the usual topology has the form ¢ — e~ for an integer n and the dual group
of T is the discrete group Z; see [26, §VII]. Therefore, J(T) consists of all functions in
the form >}, oy ¢, namely, all trigonometric polynomials in ordinary sense. By the
Pontryagin duality theorem the dual group of discrete group Z is isomorphic to T ([26,
§VII]).

Let G be a LCA group and f € L'(G). The Fourier transform of f denoted by f is the
map f : ' — C defined by

= fx dx = §; f(x)(—x,E)dx, & el see [26,§VII].

—_—

The Fourier transform satisfies the equalities (f + g) = f+gand f/*\g — 8 ([26, §VIL4)).

Since the Haar measures on G and I" are properly normalized, inversion formulas states
that f(—x) is the Fourier transform of f € L!(I"). The inverse Fourier transform of g €

L' (I") will be denoted g; see [26, §VIL.4].

We give below some examples of well known LCA groups with their dual groups and

Fourier transforms;

G=R, T=R:  f(y) =12, flx)e ™ dx (veR),
G=T, TI'=17Z: f(n) =5 §"_fle®)e "dx (neZ),
G=172, I'=T: flei®) = SO_OOO f(n)e mdx (e9 eT).



The well-known Plancherel’s Theorem states that Fourier transformation defines a linear
isometry from L?(G) onto L?>(T) and inverse Fourier transformation is an linear isom-
etry from L2(T") onto L?(G). Moreover, the Fourier transformation and inverse Fourier
transformation are inverse of each other. That is, (f) = f and (&) = g, for f € L*(G)
and g € L*(T), respectively. These notions with their proof can be found in references

[26, 27, 28, 29].

For a compact group G, the Banach function space L?(G) (1 < p < «) with normalized
Haar measure is a Banach algebra under convolution. Thus, f * g € LP(G) and the norm
satisfies | f = g[, < | f]plig], for all f,g € LP(G). Moreover, the function space C(G) of
scalar valued continuous functions is a Banach algebra under convolution multiplication

endowed with uniform norm ([29, Theorem 28.46]).

The Banach algebra L!(G) is not unital however it has a bounded approximate identity
for any LCA group (see the Appendix A-3 for approximate identities). If the group G is
compact, then we can construct a special approximate identity for L! (G). For a compact
group G, there is a bounded left approximate identity (k) for L!(G) such that e € 37 (G)
—that is, hg is a positive trigonometric polynomial— and ||y [; < 1 for each «; see [29,

Theorem 28.53].

Recall that a function ¢ defined on the group G is said to be positive-definite, also called
function of positive type, if the inequality quv 1 @nlm® (Xn — x,) = 0 holds for every
choice of x1,x2,..,xy of the distinct elements of G and for every choice of complex num-
bers ay,as,...,an [29, Definition 32.1]. Every character is positive definite and it follows
that if the coefficients are positive, then any finite linear combination of characters is so.
W(G) will denote the complex space of functions defined on G spanned by all contin-
uous positive-definite functions on G. It is a unital algebra of functions under pointwise
operations [29, Theorem 32.10]. If G is a compact group then W(G) coincides with the
set of functions with absolutely convergent Fourier series. For a function f € W(G), we

1, where f denotes the Fourier transform of f. For a compact

denote the norm | f|v = | /
Abelian group G with character group I', W(G) is the space of all functions f on G of
the form f = > "7, ay&,, where &, in the dual space I' and (ay) is a sequence of complex

numbers such that > ° | |a,| < o ([29, 34.13]).

The convolution of two functions in L?(G) is positive definite if G is compact Abelian,
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besides it is continuous. This means that the set L?(G) « L?(G) gives the Banach algebra
W(G); see [29, 34.16]. Consequently, for a compact Abelian group G with the character
group I' we get that W(G) is isomorphic to the Banach algebra ¢;(T") via the Fourier
transform and any function f € W(G) can be written as factorization of two functions of

L2(G) (see [26] or [29, 34.34(a)]).

Particularly, we will deal with the compact Abelian group T. It is useful to note that,
for the group T, the Banach algebra W(T) is the algebra known as Wiener algebra. It is
isomorphic to the Banach algebra ¢! (Z) by the isomorphism given by Fourier transform
and it is endowed with the norm | f|yy = | f|; for f € W(T), where f denotes the Fourier

transform of f.

Now we will give a characterization for Banach algebras and Banach modules, the defini-
tion of modules can be found in Appendix A-3. Remark 38.6 in [29] states that if a sub-
algebra U(G) of the algebra L!(G) with the norm I-lu(g) is a left Banach L'(G)-module
with respect to convolution for a compact group G such that J(G) is dense in U(G), then
we get L' (G) *U(G) = U(G). Moreover, a left bounded approximate identity of L!(G) is
also a left bounded approximate identity for U(G), i.e. limg|/hq * g — g|y () = O for all
g€ U(G), where (hg) is a left bounded approximate identity of L' (G).

The algebras L?(G) (1 < p < ), C(G), W(G) enjoy the properties ascribed to U(G)
written above. Each of these spaces contains J(G) as a dense subspace and each of them

is a left Banach L! (G)-module with respect to convolution (see [29, Remark 38.6]).
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CHAPTER 3

THE NOTION OF PRODUCT FACTORABILITY FOR BILINEAR
MAPS

In this chapter, firstly we will gather the existed results both for showing the importance
and currentness of the topic and for giving a general aspect to the reader. In the sequel,
we introduce the notions of product and product factorability with examples and we will

finish the chapter by giving a necessary and sufficient condition for product factorabil-

ity.

3.1 A Brief Glance at Zero Product Preserving Maps

The notion of zero product preserving map appeared second half of the last century. This
concept was introduced by Lamperti to give a complete proof of isometries on L”(X),
(1 < p < oo, p #2) firstly characterized by Banach for L7 ([0, 1]) in the monograph [30]
without a full proof. Lamperti showed that any isometry on L”(X) must image func-
tions with disjoint support, that is, their supports do not intersect, to functions with dis-
joint support ([1]). These operators called Lamperti operators gave rise to various sit-
uations and were investigated widely in literature, for instance for operators defined on
vector lattices and function spaces. Recall that any elements x;, x; in a vector lattice
is called disjoint (in symbols x; L x ) if |x;| A |x2] = 0. In the context of the vector
lattices, several authors have considered the linear operator 7" defined from a vector lat-
tice to a vector lattice satisfying Tx; L Tx, whenever x; L x,. Such kind of operators
are called disjointness preserving operators or d-homomorphisms and their inverses with
spectral properties have extensively been investigated by various authors (see [31, 32]

and references therein). This notion was conveyed to the function algebras to establish a
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Stone-Banach theorem by Beckenstein and Narici in [33]. They called separating maps
the linear maps 7 : C(X) — C(Y) (with X and Y compact Hausdorff spaces) acting be-
tween the Banach spaces of continuous functions that satisfies the Lamperti’s property.
This property shows that if 7' is a separating map, then fg = 0 implies T(f)T(g) =0
for the functions f,g € C(X) ([34]). Zero product preserving maps, whose typical ex-
amples are weighted composition maps, are especially studied in algebraic manner and
the standard aim of the studies is to characterize them as weighted homomorphisms (see
[35, 36, 37, 38]). Since zero product structure of a Banah algebra determines the full
algebraic structure, zero product preserving linear operators are used as a tool for inves-
tigation of the algebraic properties. One of the known result in this direction is that two
Abelian C*-algebras are #-isomorphic whenever there exists a bijective zero product pre-
serving linear map between them (see [39] and references therein). Also, Araujo and
Jarosz obtained that two operator algebras are isomorphic as Banach algebras if there
is a bijective zero product preserving linear map with a zero product preserving inverse
[38]. In addition, compactness properties of separating maps have been investigated by
some authors. Kamowitz proved that any compact separating map defined on the space
of all continuous functions on a compact Hausdorff space is of finite rank [40]. Lin and
Wong showed that if ones considers locally compact space, the situation become richer
[41]. The necessary and sufficient conditions for the compactness of the separating maps
acting on the space of all vector-valued continuous functions were given by Jamison and

Rajagolalan in [42].

In recent years, this notion was exported the bilinear maps. In this study we will concern
with the bilinear maps preserving zero product, so let us give the results that are found
in the current literature. Note that the notions that will be mentioned below —as bimor-
phism, regular or positive map, relatively uniform topology— can be found in Appendix

A-2.

In paper [3], Fremlin showed that given two Archimedean Riesz spaces E and F, there is
an Archimedean Riesz space EQF, called the Archimedean vector lattice tensor product
of E and F, in which the linear space tensor product £ ® F' is embedded. He defined the
following universal property to introduce this space.

Theorem 3.1 [3, Theorem 4.2] Let E, F, H be Archimedean Riesz spaces and y: E x F —

H be a Riesz bimorphism. Then there is a unique Archimedean Riesz space G and Riesz
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bimorphism ¢ : E x F — G such that
1. there is a unique Riesz homomorphism 7' : G — H satisfying T¢ = v,
ii. ¢ induces an embedding of E® F in G such that E® F is dense in G.

By this new tensor product space, Fremlin obtained the following factorization;
Theorem 3.2 [3, Theorem 5.3] Let E, F be Archimedean Riesz spacesand y: E x F — H
be a positive bilinear map, where H is a relatively uniformly complete Archimedean Riesz

space. Then there is a unique increasing linear map 7 : EQF — H such that T® = y.

This shows that for the same E, F,H, the correspondence T < T® is an isomorphism
between the vector space of the regular linear operators from EQF to H and the vector

space of the regular bilinear operators from E x F to H.

For the topological spaces X and Y, C(X) ® C(Y) can be considered as a subspace of
C(X xY). The following corollary was obtained by Fremlin by considering the partial
ordering on C(X)®C(Y) induced by the embedding C(X)®C(Y) in C(X xY).
Corollary 3.1 [3, Corollary 3.6.] Let X and Y be compact Hausdorff spaces, and B :
C(X) x C(Y) — Riis a positive bilinear functional. Then

i. there exists a unique increasing continuous linear functional 7' : C(X x Y) — R such

that T(f®g) = B(f,g) forall fe C(X),geC(Y),

ii. consequently there is a Radon measure it on X x Y such that B(f,g) = { f(t)g(s)du
for feC(X),geC(Y).

Zero product preserving bilinear maps defined on vector lattices were studied by Buskes
and van Rooij in [2] with the term “orthosymmetric”. For an Archimedean Riesz space E,
they called the vector space-valued bilinear map B : E x E — F as orthosymmetric if f A
g = 0implies B(f,g) =0 for all f, g € E. To obtain the commutativity of f-algebras, they
proved that every positive orthosymmetric bilinear operator defined on a sublattice of an
f-algebra can be factored through a positive linear operator and the algebra multiplication;
see [2].

Theorem 3.3 [2, Theorem 1] Let K be a compact Hausdorff space, E is a uniformly
dense Riesz subspace of C(K), F is an Archimedean Riesz space and B is a positive
orthosymmetric bilinear map B : E x E — F. Let E? be the linear hull of {fg: f,g€ E}.
Then there exists an increasing linear map T : E> — F such that B(f,g) = T(fg) for all
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/g€ C(K).
Corollary 3.2 [2, Corollary 2] For the Archimedean Riesz spaces E and F, any orthosym-
metric positive bilinear map B : E x E — F is symmetric, that is, B(f,g) = B(g, f) for

f.8€E.

These results gave rise to the concept of the square of the vector lattices. The same authors
noticed the relation between orthosymmetric maps and squares of Riesz spaces defined
as E2 = {fg: f,g € E} for a Riesz space E ([4]). A certain quotient of the Fremlin’s
Archimedean tensor product ERE is also a square of E. The authors gave the definition
of the square of vector lattices and showed, the existence and uniqueness of squares as
follows by the tensor products as introduced by Fremlin;

Definition 3.1 [4, Definition 3.] The square of a Riesz space E denoted by (E®,(®) is a

Riesz space such that
1) O:EXE — EC® is an orthosymmetric bimorphism.

i1) For any Riesz space valued orthosymmetric bimorphism 7" : E x E — F, there is a
unique Riesz homomorphism TO:E® - F suchthat T®0o® = T.

Theorem 3.4 [4, Theorem 4.] Every Riesz space has a unique square.

Finally, Buskes and Kusraev proved that being symmetric is necessary and sufficient con-

dition that for being orthosymmetric and they also obtained the following factorizations
[5].

Theorem 3.5 [5, Theorem 3.1.] Let X be a vector lattice and H is a relatively uniformly
complete vector lattice. For any orthoregular bilinear operator B : X x X — H, there is a

unique regular linear operator ¢ : X© — H such that B(f,g) = ¢(f©Og).

The Fremlin’s construction is essential for this theorem. To obtain the result, the authors

used the commutativity of the following diagram;

X xX

where T : X®X — H is the linear map obtained by the Fremlin’s factorization theorem
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and  is lattice homomorphism implementing an isomorphism of X®X and X©.

By using the commutators, Ben Amor gave a generalization of the symmetry theorem
given for order bounded orthosymmetric bilinear maps by Buskes and Kusraev in [5] to
the class of orthosymmetric bilinear maps B : X x X — Y that are continuous with respect
to the relatively uniform topologies of X and Y (r.u. continuous for short).

Theorem 3.6 [6, Theorem 14] Let X and Y be Archimedean vector lattices. Any r.u.

continuous orthosymmetric bilinear map B : X x X — Y is symmetric.

The symmetry condition of a positive orthosymmetric bilinear operator defined on Archimedean
Riesz spaces was proved using analitic methods by Buskes and van Rooij [2]. For this
reason, Chil considered the question by an algebraic approach and he proved that for
Archimedean vector lattices X and Y, any orthosymmetric lattice bimorphism B: X x X —

Y is symmetric [43, Theorem 3].

On the other hand, some authors studied zero product preserving bilinear maps defined
on product of Banach algebras and C*-algebras to obtain a characterization of (weighted)

homomorphisms and derivations (see [8, 9, 10, 11]).

Alaminos et al gave the following symmetry theorem for the zero product preserving
bilinear maps defined on the Cartesian product of the C*-algebra C(I) of continuous func-
tions on an interval / that was the main tool for their method used for the characterization
of homomorphism.

Theorem 3.7 [8, Lemma 2.1] Let Y be a normed space and let / be a compact interval
of R. Consider a bounded bilinear map B : C(I) x C(I) — Y in which fg = 0 implies
B(f,g) = 0. Then B is symmetric for all f,g e C(I).

Same authors of the paper [8] investigated the zero product preserving bilinear maps to
show that there is a close relation with Lamperti maps —zero product preserving linear—
and homomorphisms. It is already clear that any homomorphism 7 : A — B is a Lamperti
map where A and B are Banach algebras, since ab = 0 implies T'(a)T (b) = T (ab) = 0 for
all a,b € A. Their aim was to obtain the inverse: how close is a zero product preserving
linear map defined on Banach algebras to being a homomorphism? To get the answer, they
considered zero product preserving bilinear maps and proved the following factorization
and symmetry theorems.

Theorem 3.8 [9, Lemma 2.3] Let X be a Banach algebra with a bounded left approxi-
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mate identity and let B : X x X — Y be a zero product preserving bilinear map satisfying
B(f,gh) = B(fg,h) for all f,g,heX. Then there is a continuous linear map 7 : X> — Y
such that B is of the form B(f,g) = T (fg).

Theorem 3.9 [9, Corollary 2.4] Let X be a commutative Banach algebra with a bounded
left approximate identity. Any zero product preserving bilinear map B : X x X — Y satis-

fying B(f,gh) = B(fg,h) is symmetric.

It is worth saying that the authors obtained a class of Banach algebras X that for any
bilinear map B defined on X x X to Y, the zero product preserving property implies
B(f,gh) = B(fg,h) for all f,g,he X. If we consider a unital Banach algebra X with
this property, we can define a linear map 7 : X — Y for any bilinear map B: X x X — Y
by B(a,b) = T (ab). Indeed, B(a,b) = B(a,b1) = B(ab,1) = T (ab), where 1 denotes the
unital element of X. This class of Banach algebras is rather large, it includes group alge-

bras, C*-algebras and Banach algebras generated by idempotents (see [9]).

The algebra C'[0,1] of continuously differentiable functions from the interval [0, 1] to
C can be given as an example of Banach algebra that is not included the mentioned
class of algebras. This means that there exists a zero product preserving bilinear map
B:C'[0,1] x C'[0,1] — Y which does not hold the equality B(f,gh) = B(fg,h) for all
f,g,heC'[0,1]. Indeed, if we consider the bilinear map B : C'[0,1] x C'[0,1] — C[0, 1]
defined by B(f,g) = fg', where g’ denotes the derivative of the function g, it is seen
that this map is zero product preserving but B(f,gh) # B(fg,h) ([10]). This shows that
it is hard to find a general form for zero product preserving bilinear maps. They ob-
tained the following characterization for zero product preserving bilinear maps defined
on C'[0,1].

Theorem 3.10 [10, Theorem 2.1] A Banach valued zero product preserving bilinear map
B:C'[0,1] x C'[0,1] — Y can be expressed as B(f,g) = T(fg) +S(fg') + R(f'g") for
all f,g e C'[0,1], where T,S, R are linear operators such that T : C'[0,1] — Y and R, S :
C[0,1] - Y.

In the paper [11], Alaminos et al obtained a factorization for zero product preserving
bilinear maps defined on the algebra M, (F)(n = 2) of all n x n matrices over a field F
of characteristic not 2, that is 2-1g # O, where 1 and Oy denote the multiplicative and

additive identity of the algebra M, (F).
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Theorem 3.11 [11, Corollary 2.3] Let B : M,(F) x M,,(F) — Y be a bilinear map such
that for any rank one idempotents f, g satisfying fg = 0 we have B(f,g) = 0. Then the
map B has the form B(fg) = T(fg) for all f,g € M, (F), where T : M,(F) — Y is a linear

operator.

3.2 A Generic Map: Products and Properties

Let us introduce some definitions that will be used in the rest of the study. We will use the
term product for a generic continuous bilinear map having some specific properties that
will play a central role in each fixed situation of the ones that follows.

Definition 3.2 Consider a bilinear operator ® : X x Y — Z, (x,y) v ®(x,y) = x®Y,
where X, Y, Z are Banach spaces. We say that the bilinear operator ® is a norming
product if it satisfies the inclusion Uz € ®(Ux x Uy).

Definition 3.3 We say that a bilinear operator ® : X x Y — Z, (x,y) v~ ®(x,y) =x®y is

a norm preserving product (n.p. product for short) if it is a norming product and satisfies

[x@ylz = inf{[x ||y : ¥ € X,y € ¥, x@y = ¥ @'}, for every (x,y) € X x ¥

Example 3.1 Let E, F' be normed spaces and E ® F denote their algebraic tensor product.

Projective norm 7 and injective norm € on E ® F' are calculated by

n(z) = inf{ S bxllyil 2 = Xy u @i,

and

8(Z> = sup {<x/®yl7z> X' e BE’a yl € BF’}7

respectively (see Appendix B). It is well-known that € < 7. By definition, any reasonable
tensor norm & on the tensor product E @ F' satisfies the inequality € < o0 < 7. For every

(x,y) € E x F, it is seen that by the definitions of these norms

e(x®y) < a(x®y) < T(x®y) = inf{ D lxillyill - x®@y = in®)’i}
i=1 i=1
< inf{|’[[y'] : ¥’ ®) = x®y}.

Besides, for every elemantary tensor x®y it is known that for any reasonable tensor norm
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o we have a(x®y) = |x|g|y|F (see [18, Section 12]). Then, any reasonable tensor norm
satisfies the equality involving the norm in Definition 3.3. But the tensor product does
not satisfy the norming property, since clearly it is not surjective. So, it is not a norm
preserving product.

Example 3.2 Let us define the following seminorm on X ® £(X,Y). If z = Z?:l x;®T;
is such that 377_, Tj(x;) = y. € Y, we define

Te(2) = inf{n(z’) 17 =231 W, ®Tj, such that 377, T/(x}) = yz}.

That is, 7, is the quotient norm given by the tensor contraction ¢ associated to the follow-

ing factorization.

X x L(X,Y)

®l ’

N

X®zL(X,Y) =Y.

The description of this seminorm can be found in [44]. It defines a norm if we construct
a quotient space X®z,L(X,Y) by identifying the equivalence classes of the projective
tensor product X®,L(X,Y) with the range of cinY, i.e. ¢(X®,L(X,Y)) < Y. Thus, for
z=2xj®Tjand 7' = 3"_ | ¥, ®T}, z ~ 7' if and only if > %L T;(x,) = D71 Tj(x;).

The norm of a class [z] = {z': 2 ~ 2}, for z = }7}_ x;®T, is given by

Te(z) = inf{n() : z ~ 7'}

Let us show that e is a norm preserving product.

Fix T € £(X,Y) and x € X and consider y, = T'(x); clearly the inequality |y.|| < |T| x|
holds. Now, consider another tensor z = Y, x; ® T; such that y, = >7"_, T;(x;). Since
[yell = 12251 i) | < 22 [ Talllbxil, we obtain that [x e 7 = |ly:| < 7a(2).

In the opposite direction, for y € Y there are elements 7y € £(X,Y) and x € X such that
To(xo) =y and |y|| = ||To|||lx0|. To see this, just take a couple (xo,xg;) of norm one elements
xo € X and xjj € X* such that (xo,x3) = 1. Now define Ty(x) := {x,x{)y, x € X, and note that
|To| = |y|. Therefore, if z = xo ® Tp, we have that y = y,. So, this gives in particular that
Uy < o(Ux x Ug(xy)), since Te(z) < |[y||. Together with the inequality in the previous

paragraph this also gives |xg e Tp|| = |y;| = 7.(z). More precisely, we have proven that
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|xe Ty = inf{[xolx | Tollc(x y) : X0 € X, To € L(X,Y), x0T = xo ® To}

forall T € £(X,Y) and x € X. Thus, e is a norm preserving product.

Example 3.3 A non zero Banach algebra A endowed with the norm ||.|| is called absolute-
valued if the product x,y — xy satisfies |xy| = |x[||[y|| for all x,y. Most of the classical
Banach spaces such as c¢o and ¢” are absolute-valued under suitable products (see [45]
and references therein). By the definition, the product operation of an absolute-valued
algebra satisfies norm property given in Definition 3.3, however it does not need to be
norming. But we can find a class of absolute-valued Banach algebras whose multiplica-
tion operation is an n.p. product. A Banach algebra A is said to factor weakly if A = A2.
Thus, the multiplication operation of any algebra factoring weakly is a norming product.
As aresult, if A is absolute-valued and factors weakly, then the algebra multiplication is
an n.p. product. Note that the well-known Cohen factorization theorem states that any
Banach algebra with a bounded left approximate identity factors weakly. Therefore, for
an absolute-valued Banach algebra with a bounded left approximate identity, the multi-

plication x,y — xy is a norm preserving product.

Absolute-valued algebras was introduced by Ostrowski in 1918 and then this notion ex-
ported to Banach spaces by the name absolute-valuable. A Banach space X is called
absolute-valuable if there is a bilinear map o, called a product, x x y — x<y on X satisfying
[xoy|l = [lx][ly]| for every x, y. Becerra et al showed that every infinite dimensional Hilbert
space are absolute valuable and also the classical Banach spaces c¢g and 7 (1 < p < o)
are so as mentioned above; see [46, Theorem 2.3 and Corollary 2.5]. However, the Ba-
nach space c of convergent sequences is an example for non-absolute-valuable space ([46,

Proposition 2.8]).

Let A be a Banach space that is absolute-valuable for the product ¢ satisfying surjectivity
and @1, ¢», ¢3 are any isometries from A onto A. The space A is again an absolute-valuable
space with respect to a new product A defined by a A b = ¢ L1 (a) o d2(b)); see [47].
Indeed, A is absolute-valuable with respect to A, that is seen by the isometries and the

absolute-valuability of A with respect to the product ¢ as follows;

la 28] =195 (¢1(a) o ¢2(b)) ]| = |91(a) © 92(b)| = [ #1(a)[[| 42(b)] = all|o].
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Moreover, this new product is also surjective. To show the surjectivity, assume that it is not
onto. Then there is not a couple (a, b) € A x A satisfiying z = a A b = ¢; ' (91(a) o $2(b))
for at least one element z € A. That implies the equality ¢3(z) = ¢;(a) o ¢»(b) does not
hold. Since the ¢1, ¢, ¢3 are onto isometries, it follows that there exists an element
7' = ¢3(z) such that it cannot be obtained as a product with respect to ¢. This contradicts

the surjectivity of the o.

Since to find the factors of a function space is a current problem in the mathematical
literature, there are found many examples of the norm preserving products including the
Lorentz and Cesaro function spaces (see [48, 49, 50, 51, 52, 53, 54]). We will already
mention and use some of them in Chapter 4, now we will give an example for Cesaro
function spaces.

Example 3.4 The Cesaro function spaces Ces? = Ces(I) = Ces?([0,0))(1 < p < o0) are

classes of all Lebesgue measurable functions f such that
I pl/p
Wlewr = [ [ (5 [ 171dx) " <cotor 1< p <
1 0
and

1 1
| fllces> = sup —J | f(x)|dx < oo for p = 0
0

tel,t>0 t

(see [49] and references therein). The dual space (Ces?)* = (Ces”)’ of the Cesaro function
space Ces? is defined by the norm | £ (coery = |71, where f(x) = €8SSUP;e [y o0y |/ (7))
and 1/p+1/p’ = 1. The p-convexification (Ces®)(P)(1 < p < ) of the space Ces™ is

the space with the norm

1 1 (" 1
I lcesyn = 1F1Plee = sup (- J F()Pdx) .
tel,t>0 0

Proposition 1 in [48] asserts that Ces? = L? - (Ces™)("") and
| Flces = (/1o | ooy : € € L1 € (Ces™) P, g h=g' I},

This implies that © : L? x (Ces®)(?") — Ces? is an n.p. product.
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Again, Proposition 2 in [48] indicates that (Ces?)’ - (Ces®)P) = L and
| £lzr = {1 cesry I | cogeyo < & € (Ces?)', W € (Ces™)\P), g-h =g H}.
Thus we get that © : (Ces?)’ x (Ces™)P) — LP is an n.p. product.

3.3 Product-Factorable Bilinear Maps in Banach Spaces

Now, we state our fundamental tools. Using the terminology coming from Banach alge-
bras and vector lattices, we will define zero product preserving bilinear maps.
Definition 3.4 We say that a bilinear map B : X x Y — Z is zero product preserving (short-

hly zpp) with respect to the norming product ® if
x®y=0 implies B(x,y)=0

for all (x,y)e X x Y.
Example 3.5 A bilinear continuous map B : A x A — Z defined on the product of an
absolute-valued algebra A is always a zero product preserving map. Indeed, by the bound-

edness of the map B, it follows that if xy = 0, then
1B(x,y)]z < [Bllx]|y] =0

since |xy| = [|x||y| = 0. This holds even without the boundedness of the operator B, due
to

xy=0< |xy| =0 < |x|[ly] =0 < xoryis zero.

This gives B(x,y) = 0 whenever xy = 0.

A bilinear operator B : A x A — Z defined on the Cartesian product of absolute-valuable
Banach space A with respect to multiplication ¢ is zero product preserving for the product
< if and only if it is zero product preserving for any product A defined in Example 3.3
by the isometries. It is seen from the equality acb =0 <= a A b =0, since |a A b| =
lall|b] = faeb].

Definition 3.5 A Banach valued continuous bilinear operator B : X x Y — Z will be called
®-factorable through the norming product ® : X x Y — G if it can be written as B=T o®

for a linear bounded map 7 : G — Z.
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Lemma 3.1 A bilinear operator B is ®-factorable through the norming product ® if and
only if there is a constant K such that for all xj, x2, ...,x, € X and y1, y2,...,yp €Y, we

have

| 2By, < K[ Y %@y G-
i=1 i=1

In this case, the following triangular diagram commutes;

Xxy 2.7

@ ]T
N

G.

Proof. If the map B is ®-factorable with the product &, then by definition of factorability
we have the factorization B = T o ® where T is a linear continuous operator. By the

continuity and the linearity of the operator 7', it follows that

12,80y, =1 2T o @iyl = | 2T (i@,

i=1 i=1 i=1

= [T xi@yl, < Tl @il

i=1 i=1

For the converse, define the map 7 : X ®Y — Z such that

n

2x1®y1 =2 (xi,yi) = BL( ) [ xi®yi)

i=1 i=1

where Y| x;®y; is a tensor in the projective tensor product space X®Y and By denotes
linearization of B from X®,Y to Z (see Appendix B). To prove that the mapping 7 is
well defined, let us assume that >, x;®y; = 0. Then |} ,x; ®yi|c = 0 and by the
inequality (3.1) we have | Y7, B(x;,yi)|z = 0. This shows that 7(>}}_, x; ®y;) = 0, then
the mapping 7 is well defined. The map 7' is linear since it is defined by the linear operator
B; . Finally, the inequality (3.1) gives the boundedness of the linear map 7 as follows;

(Yo, - HZB%% |, <Kl Y wes,

i=1 i=1
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Definition 3.6 A subset A € X x Y is called ®-(relatively) compact, respectively, -
(relatively) weakly compact if the set {x®y : (x,y) € A} is (relatively) compact, respec-
tively, (relatively) weakly compact.

Definition 3.7 We will say that a bilinear map B : X x Y — Z is equivalently zero product

preserving
if x®g = 0if and only if B(x,y) = 0 for every x,ye X x Y.

Finally, recall the definition of symmetric bilinear map. As usual, we will say a bilinear

map B: X x X — Y is symmetric if it satisfies B(x,y) = B(y,x) for all x,y € X.

Notice that there is a relation between (-factorability and symmetry or compactness of a

bilinear map.

Indeed, let us consider a @-factorable bilinear map B : X x X — Y with respect to com-
mutative norming product ®. By the ®-factorability of the map B and commutativity of

the product, we get B(x,y) = T(x®y) = T (y®x) = B(y,x).

Consider a ®-factorable bilinear map B : X x Y — Z to give a characterization for the

(weak) compactness, therefore the following is seen

®-factorable map B is (weakly) compact <= B(Ux x Uy) is relatively (weakly) compact
<= T (Ux ®Uy) is relatively (weakly) compact
<= T(Ug) is relatively (weakly) compact

<= T is (weakly) compact.

This shows that the (weak) compactness of a @-factorable bilinear map is possible only

with the (weak) compactness of the linear map that appears in the factorization.
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CHAPTER 4

FACTORABILITY THROUGH POINTWISE PRODUCT

In this chapter we will center our attention in the case when the product & is the point-
wise product ® among Banach function spaces and sequence spaces. It is useful to
recall that the pointwise product © is defined as f © g = f(x) - g(x) (Vx), respectively,
a®b = (a,-b,) (YN) for the functions f, g, respectively, the sequences a = (a,), b = (b,).
In the case of non-atomic measures (see page 10) the pointwise product can be changed by
the -almost everywhere pointwise product in the usual manner. Notice that this product
is commutative and associative. Together with the specific structure of the Banach func-
tion spaces and sequence spaces, pointwise product will allow us to improve the basic

characterization of ®-factorable operators given by Lemma 3.1.

Note that the results given in Section 4.1 were accepted for publishing in Positivity, see

[55].

4.1 Product Factorability of Symmetric Operators on Function Spaces

Now, we will give a factorization for zero product preserving bilinear maps acting on
Banach function spaces via pointwise product and we will show that Lemma 3.1 gives rise
to characterize the family of (O-factorable operators as the class of symmetric operators
defined below. Moreover, this class of operators coincides with the class of zero product

preserving bilinear maps acting in B.f.s.

The reader can find —versions of— the definition of symmetric operators in different
articles. We follow the one given below, introduced in [56].

Definition 4.1 [56] Let X(u), Y(u) and Z(u) be Banach function spaces over the (o-
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finite) measure p. A continuous bilinear map B: X (i) x Y (u) — Z() is called symmetric
if the equality B(xa, Xc) = B(Xa~c, Xauc) is satisfied for every A,C € ¥.
Remark 4.11t is clearly seen that a symmetric bilinear map B satisfies B()a, Xc) =

B(xc,xa) forevery A,C € £, since

B(xa, xc) = B(Xanc, Xauc) = B(Xcna, Xcoa) = B(Xxc, Xa)-

The inverse is not true in general. To show that consider the bilinear continuous form
B:L'(u) x L'(p) — R defined by B(f,g) = § fdu - §gdu for all £, ge L'(u). It holds
B(%a; xc) = B(xc, Xa), indeed

B(%a, xc) = 1(A) - u(C) = u(C) - u(A) = B(xc, xa)-
However, it does not satisfy the equality B(xa, xc) = B(Xa~c, Xauc), since in general
B(xa, xc) = w(A) - u(C) # (AN C) - u(A v C) = B(Xanc: Xauc)-

As a result, the above remark shows that Definition 4.18 is not equivalent to the usual
symmetry condition B(f,g) = B(g, f) for all f,g € X, where B: X x X — Z is a bilinear
continuous operator.

Theorem 4.1 Let (Q, X, 1) be a c—finite measure space and let X (1), Y (i) be B.f.s. over
U such that the set Sim(X) of simple functions is dense in both X () and Y (u). Let B be
a continuous bilinear map X () x Y (u) — E, where E is a Banach space. Suppose that
there is a Banach function space G(u ) such that the pointwise product ©®: X (u) x Y (i) —

G(u) is an n.p product. Then the following assertions are equivalent.
(1) B is a symmetric operator.

(2) B is O-factorable, that is, there is a continuous linear operator R : G(1) — E such

that B= Ro (.

(3) Forall f1,...,f,eX(u) and gy, ...,g, € Y (1) there exists a positive real number K

such that

| 2Bl < K[ X fiO8il g ) (4.1)
i=1 i=1

(4) The operator B is zero product preserving. That is, B(f,g) = 0 whenever f©Og =0
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forall feX(u)andgeY(u).

Proof. Let us assume that B : X(u) x Y (u) — E is a symmetric operator. Thus, we get
B(xa,xc) = 0 whenever (A nC) = 0. Indeed, B(xa, xc) = B(Xa~c, Xauc) = 0 holds for

a bilinear map under the assumption (A nC) = 0.

Since Q is o—finite, then there exists a sequence (Ej)ien in X such that Q = U/C;O:l E;
and [ (Ey) < oo for all k € N. Let us define the sequence of increasing sets ¥, = | J;_ Ex.
Consider a couple of simple functions f = .7 | A;xa, and g = Z;:l YjXc;> where (A;) and
(C;) are sequences of pairwise disjoint measurable sets. Definition of the simple functions
gives rise to define a common partition for each couple (f,g) of simple functions. Let us
rewrite them by a common partition f = >.;_; Aixp, and g = >3, ¥jxp,, Where (D;) is

the sequence of pairwise disjoint measurable sets.

By the properties of a characteristic function, the pointwise product of a simple function
f and yxy, isobtained as fOxy, = >, AiXp, O Xy, = 2y Mi(XD, O Xy,,) =

>y 1 AiXp;~y,,- For every m € N, let us define the bilinear operator By, : X (i) x Y (1) —
E.Bu(f,8) = B(fOxy,, 8O xy,)- Then (By)ueN is a sequence of well-defined, contin-
uous, bilinear maps. The symmetry and bilinearity properties of the operator B give the

following equality with some set operations;

- B ( Zr: AiXD; Y, s Zrl YJ%DJ“Y’")

i=1 j=1
r

li’}’jB(XDmYm ) XDjﬁYm)

I
.M‘

N
I
—_
~.
I
—_

z'l"}/iB(%DiﬁY}n?%Dif'\Ym)

I
.M‘

N
Il
—_

I
-

AY; [B (XDiY,s XDiY,) + B(XDiY,s X,\D;) + B (%DiﬁYm7X(DimYm)mYm\Di)]

N
Il
_

I
-

Y[ B(XD;~ Yy X1,) |

N
I
_

B(Y AV Dicstins X) = B(f O8O Ay, A, ).
i=1

Thus, B, (f,g) = B(f ©®g® Xy, Xy, ) holds for every couple of simple functions.
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Now let us show By, (f,8) = B(f ©gO Xy,,» Xv,,) holds for the elements of f € X (1) and g €

Y (u) which are not simple function. By density of Sim(X), there are sequences (f,),,

and (g,),2, of simple functions such that f = lim f, and g = lim g,. Applying the
n—o0 n—o0

separate continuity of both the bilinear map B and the product ®, we obtain

Bu(f:8) = B(lim f, © xy,,, lim g, O x,,)

lim B(f, © xv,,,8n O X¥,,)
n—o0

= 1im B(f, © 81 O Xy, X1,,)

n—o0
n—00 n—o0

= B(ngQXYm’XYm)
Therefore, we get that for every m € N the bilinear operator B,, can be written as B,,(f,g) =
B(f O8Oy, Xx,) forall f e X (u), g€ Y (H).

Now define the map Ry, : G() — E by Ry (h) = By (f,8) = B(fOgOxy,, Xy, ) for every
function 7 = f© g and every m € N. (Ry)nen is a sequence of well-defined continuous
linear operators from G(u) = X(u) ©Y (1) to E. Since it is easy to see that it is well-
defined linear, we only show the continuity. By the continuity of B, and taking into
account that ® is an n.p. product, we have that
sup R ()| £ = sup [B(f O8Oy, v, |E < .

heBg(y) (f:8)€Bx (u) X By ()

Indeed, note that the supremun over all the pairs (f, g), where the functions f and g are in
the corresponding unit balls, coincides with the supremum for all functions # in the ball

of G(u) as a direct consequence of the definition of n.p. product.

It follows that (R,,)en is a sequence of bounded, linear operators. Moreover, it is point-
wise convergent. Indeed, for each f(®g, the sequence (R, (f®g))men satisfies the fol-

lowing

Jim Ry, (fOg) = lim B(fOxy,,¢O Xx,)
= B( lim fOxy,, lim ¢Oxy,)
=B(f,8)

Consequently, we have the pointwise limit operator R := lim R,,. It is clear that this
m—a0
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operator is well-defined and linear. As a result of the Uniform Boundedness theorem, it
is obtained that R is a continuous operator. This shows that the map R: G(u) — E is a

linear continuous operator such that R(f©g) = B(f,g) forall fe X(u),geY(u).

Moreover, it is independent of the representation of f(®g. Assume that h = fi O g =
f2082. Then, R(f1©g1) —R(f2082) = B(f1, 81) — B(f2, §2) = 0. Therefore, we obtain
the required factorization for a symmetric operator. The equivalence of (2) and (3) is

proved in Lemma 3.1 and it is obvious that (3) implies (4).

Finally, it only remains to show that for every A, C € X, the symmetry condition B(xa, X¢) =
B(Xa~c, Xauc) holds when the operator is zero product preserving. The characteristic
functions corresponding to the sets A,C € X satisfy x4 © Xc = Xa~c- It follows that y4 ©
Xc =0 u-a.e. if and only if t(A n C) = 0. By considering the assumption (4), we conclude
that B(xa, xc) = 0 whenever u(A nC) = 0. It is already trivial that B(Ya~c, Xauc) =0
if (AN C) = 0. Thus, we get that the symmetry condition holds for disjoint sets. To see
that it is satisfied for arbitrary sets, consider M,N € X such that u(M n N) # 0. By the
fact that B(4, xc) = 0 whenever u(A nC) = 0, the following equality holds for the sets

M N € X by set operations and properties of the characteristic functions;

B(xms AN) = B(X(MAN)L(MAN)> XN)

X(MANE) T XMAN) = X(MAN) A(MAN)s XN)

S T T W W W

X(MNe)s XN) + B(X(atanys XN) — B(X(MAN) A (MAN) s XN)

(
X(MAN)s XName)) T BXmany Xvam)) = BX ANy X(NaMe) ~(Nam))

(
(
(
(XmAN) XN) = B(X(MAN) X(NAME) O (NaM))
(
(% MAN)> NmM))

(

XMAN)s X(Nam)) + BNy s X(NaMe)o (MANE))
+ B(X(MAN)» X[(NAME)O(MAN)]A(NAM))

= B(X(MN) X(NoM))-

Thus, the equality B(xum, Xn) = B(X(m~n)s X(mun)) is obtained for arbitrary sets M,N € X

and it follows that B is a symmetric operator. This completes the proof. [

Remark 4.2 If we have a finite measure space (Q, X, it ), the factorization is obtained more

easily. Indeed, xo € X (1) and yq € Y (1) since the measure u is finite. We can obtain in
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this case an equivalent definition of symmetric operators as below;

B(Xa, xc) = B(Xancs Xaoc

)

XAAC XAnC) + B(XAnC; X(AUC)A(ANC)e)
)
)

XAACs XAnC) + B(XAnC, X(anc)e)

I
T I > =

(
(
(Xancs Xanc
(
(Xanc, X AmC)u(AmC)")
(

= B(XAnCs X0)-

This means that the map B is symmetric if and only if B(xa, Xc) = B(Xa~c, Xq) for all
A, C € X for a finite measure . Using the density as in the proof of Theorem 4.1, we get
that a symmetric operator B is of the form B(f,g) = B(fg, xo) forall fe X(u),geY(u).
If we defineamap 7T : G(u) - E, T(h) =T(fOg) =B(fOg, xa), we get the desired
bounded linear continuous operator 7 satisfying B:=T o (©.

Corollary 4.1 Under the assumptions of Theorem 4.1, a bilinear map B: X (i) x X (u) —
Y is symmetric in the manner that B(f,g) = B(g, f) for all f,g € X (u) if the map B is zero

product preserving.

Proof. Let us assume that B is zero product preserving, then it has factorization operator

R sayistying B(f,g) = R(f©Og) forall f,ge X (u). Thus, B(f,g) =R(f©Og) =R(gOf) =
B(g, f) holds. O

Converse of the above corollary is not provided in general, i.e. being symmetric in the
manner that B(f,g) = B(g, f) does not give rise to be zero product preserving. Indeed,
we obtain in Theorem 4.1 that zero product preservation holds only if the map satisfy the
equality B(xa, xc) = B(Xa~c, Xauc) for all A, C € X. But it was noted in Remark 4.1 that
the condition B(f, g) = B(g, f) does not involve the condition B()4, Xc) = B(Xa~cs XaucC)
forall A, C € £. Therefore, it is seen that a symmetric map in the manner B(f,g) = B(g, f)

does not give the zero product preservation property.

4.1.1 Factorization Through Particular Function Spaces

As a consequence of Theorem 4.1, it is desirable to know what a symmetric operator is

factored through. In this section, we establish some results for bilinear operators defined
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on some particular spaces.
We shortly write X instead of X () if the measure is clear in the context.

Let X(u) and Y (i) be Banach function spaces over the measure (. We will say that they

are compatible —or that they form a compatible couple— if the product space

X(u) Y(u):={fgel’(n): feX(u),gey(u)}

is a Banach function space again when it is endowed with the norm

|2l = inf{[f] gl - f-g =R}

Remark 4.3 The fact that the pointwise product X ®Y of Banach function spaces X and
Y is an n.p. product is related to the Fatou property of the spaces involved. In the case

that
G=XQY={f-g:feX, geY}

is a Banach function space with the norm

|2lxer = inf{|flx|gly : h = fg, feX, geY},

we have that the Fatou property of both X and Y implies the Fatou property of G (see
[51, Corollary 1] or [52, Theorem 2.3]). By Theorem 2.4 in [52], we have that for all
he Gthereare fe X and g€ Y such that f = g-hand ||f||g = | f]x |lg]y, what means that
Bs < O(Bx X By).

The factorization of Banach function spaces are considered by some authors to answer
the questions of when the pointwise product of Banach function spaces are again a B.f.s.
and it is possible to factor a B.f.s. through some Banach function spaces. The product of
Banach function spaces, called product Banach function space or generalized Kothe dual
in the literature, is indeed a Banach function space with the mentioned norm under some
assumptions (see [50, 51, 52]). Since this gives rise to a factorization of a Banach function
space through a couple of Banach function spaces by definition, it is closely related with
the notion of compatibility of Banach function spaces. Now, by using the results of the
factorization of Banach function spaces obtained in the references [50, 51, 52], we will
investigate some particular cases for the domain of the linear operator that the symmetric

map is factored through.
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4.1.1.1 Factorization Through r-Convexification In this section, we will take into
account the Banach function spaces with their r-convexifications. Recall that the r-
convexification of a B.f.s. E is denoted by E(") that is defined in page 12.

Remark 4.4 Let us consider the bilinear operator defined by the (u-a.e.) pointwise prod-
uct ©: EP) x E@ - E() (. g) wo f-g, where l—i—l = ; for 1 <r<p,q <. This
bilinear map is a norm preserving product (cf. [5]17, E;]ample 1], [24, Lemma 1] or [23,

Lemma 2.21(i)]). In particular, it is a norming product.

Proof. For any function f € Uy, we can define the functions 4 := | f|" /Psgnf e E(P) and

g:=|fl" /4 ¢ E@, where sgnf denotes the sign function of f. By the definition of the

norm of the p-convexification, it follows that HhHE(,,) = H’\f\” Psgnf‘ H =|IA"Z7 =
£ < 1. Similarly. |gl = £, < 1. Therefore, Uy S OUgan x Upio) is
obtained.

Let us show now that |- g|z) = inf{|W'|| ;0| &| g : W € EP), g e ED h-g=h-g'}

for he E?) and g € E\@. By the Holder-Rogers inequality we have that /- g € E(") and
|h- gl gy < |hlgo |8l g@ (see page 13 or [24, Lemma 1]). Since this inequality holds for
all couples (',¢") such that f = h-g = h' g, we obtain |h- gz <inf{|A'|||g'|:h-g=
I -g'}. Conversely, consider an arbitrary element f € E ("), Then f has the following
factorization: i = |f|"/Psgnf e EW), g = |f|"/4€ E(@ and h-g e EU"). Moreover, | ] )

71772, and lglp = [ £17/%). Therefore [l el p = 122 1£174) = |l - This

proves

Hf”E(p) = Hh'gHE(r) = inf{Hh/HE(p) Hg/HE(q) th-g= h,'gl}7

thus the pointwise product ® from E (P) x E@ to E() is an n.p. product. U

It is known that the p-convexification E(?) (0 < p < o) of E is order continuous, if E is
so. Consequently, Sim(X) is dense in E (P) 1 < p < oo whenever E is o.c. Therefore, we
get the following corollaries;

Corollary 4.2 Let E be an order continuous Banach function space. Let 1 <r < p,qg < o0,
where — + — = —. For a Banach space valued bilinear operator B : E () x E@ - Y, the

p q r
following statements imply each other.

(1) The operator B is symmetric.
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(i) The bilinear operator B is (O-factorable, that is, there exists a bounded operator

T:E") Y suchthat B:= T o Q.
(iii)) The operator B is zero product preserving.

Note that if we consider the Banach function space E = L' () we obtain that the pointwise

1 1 1
product is an n.p. product from LP(u) x L(u) to L"(u) for — + — = — where 1 < r <
p

P,q < %0, by the definition of p-convexification. S

Corollary 4.3 Let (Q,X, 1) be a o-finite measure space and let | < r < p,q < oo such that
! + ! =2 Consider a Banach space valued bilinear operator B : L”(u) x Li(u) — Y.
{“)henqthe following statements imply each other.

(1) The bilinear operator B is symmetric.
(ii) The operator B is ®O-factorable through a linear bounded operator 7 : L" (i) — Y.

(iii)) The operator B is zero product preserving.

4.1.1.2 Factorization Through the Duality Map Let £ be an order continuous Ba-
nach function space over u and consider its Kothe dual space E’. In this section we will
show the case when we consider the pointwise product ® : E x E’ — L () associated to
the duality map, as product. Several well-known results allow to assert that it is in fact an
n.p. product.

Remark 4.5 Recall that the well-known factorization theorem of Lozanovskii states that
for any Banach function space with the Fatou property E and its associate space E’, the
product space EOQE' := E - E' is a product Banach function space that is isometrically
equal to L (1) (see [53], also [54]). In other words, E and E’ always form a compatible

couple.

By Theorem 4.1 we immediately obtain the following.
Corollary 4.4 Let the set Sim(X) be dense in both E and its associate space E’, and as-
sume that £ has the Fatou property Y is a Banach space. Then, for any bilinear continuous

operator B : E x E' — Y the following statements are equivalent.
(i) The bilinear operator B : E x E’ — Y is ®-factorable.

(i1) The operator B is zero product preserving, that is, for each pair of elements f € E

and & € E’ we have that
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(f,hy=(ofhdu=0 = B(fh)=0.
(ii1)) The operator B is symmetric.

Unifying the classical setting for the relation among the Calderén construction and the
pointwise product, Kolwicz et al have considered the product spaces with the Calderén
construction in [51, Theorem 1]. For example, for a couple of Banach function spaces

X(u) and Y (u), they obtained the following isometric equalities in [51]:

o X() P @Y (1)) is equal to the Calderén space X (1)/PY (u)V/¥ for 1 < p < o
1 1 _
and 1—7 + F = 1,
o X(u)P) oY (u)P gives the p-convexification of the product B.f.s. X () ®OY (i)
for 0 < p < oo, ie. X(1)P) OY ()P = (X (1) OY (1)),

e X(u)®Y(u) can be represented as %—convexiﬁcation of the Calderdn space

X (1)'2y (u)'/2, that is, X (1) O (1) = (X (1)/2y (u)"/2)1/2),

By this compatible couples, we get the following corollary;

Corollary 4.5 Let X (1) and Y (1) be order continuous Banach function spaces. Then

1) If 1 < p <o and 1%—#}% = 1, the Banach space valued symmetric operator B :
X(u)®) x ¥ (1)) - Z factors through a linear operator T : X (1) /7Y (u)'/?' — Z,
where X (11)"/7Y (1)V/7" is the corresponding Calderén space.

ii) If X(u)®) and ¥ (u)(P) form a compatible couple, then every symmetric operator
B:X(u)P) xy(u)P) — Z factors through a linear operator T : (X (1) QY (u))?) —

Z,where 0 < p < o0.

iii) If X(u) and Y (u) form a compatible couple, then every symmetric operator B :
X (1) x Y (u) — Z factors through a linear operator T': (X (u)"/2y (u)"/>)(1/2) - 7.
Remark 4.6 The abstract requirement on the space G(t) in Theorem 4.1 is clearly ful-
filled when G(u) is the product space of X (u) and Y (i), when they form a compatible
couple. This can be easily checked just by considering its definition. Order continuity of
this space will be relevant through the paper, in particular because it implies density of
the set Sim(X). When a product space is order continuous in terms of the properties of the
factor spaces is nowadays well-known. The reader can find complete characterizations or
sufficient conditions for this property to hold in several recent papers. For example, the

reader can find in Section 5 of [57] (Corollary 5.3) the following result: if X (1) and Y (i)
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define a compatible couple of order continuous B.f.s. over a finite measure y such that
X(u) =Y (), then the product X () -Y (i) is order continuous. Another result in this
direction is the following. Take 1 < p,p’ < oo such that 1/p+ 1/p’ = 1, and consider two
Banach function spaces X (i) and Y (u). The Calderén space X (u)/?Y (u)V/?" is order

continuous if at least one of the spaces X () and Y (u) is order continuous; see [52].

A necessary and sufficient condition for the order continuity of the Banach function space
X(p)-Y(u) can be given by means of the notion of jointly order discontinuity. Let X,
denote the subspace of all order continuous elements of the Banach function space X,
that is, the space of the elements f € X such that for any sequence (f,,),~; < X satisfying
0< f,<|f|and f, — 0 u—a.e. one has || f||x — 0. A couple of Kithe spaces (X,Y) is said
to be jointly order discontinuous if there are elements f € X\X,, g € Y\Y, and a sequence
of measurable sets A, \, & such that for each sequence (B,,)zo=1 € X with B, — A,, for all

n € N there are a number a > 0 and a subsequence (n;) € N such that either
| fxB, x =aand |gxs, |y >aforallkeN,

or

|fx8;, |x = aand |gxp, |y > aforall ke N,

where B), = A,\B, (see [58, Definition 12]). Corollary 1 in the paper [51] states that the
Banach function space X (i) - Y (i) is order continuous if and only if X (i) and Y () are
not jointly order discontinuous.

Corollary 4.6 Consider order continuous Banach function spaces E, F' and G over the
same measure space (L. Suppose that E and F have the Fatou property, G’ is order con-
tinuous, and E© F = G. Then if the bilinear operator B : E x FF — F is symmetric with
factorization operator Tp, the bilinear operator A : E x G’ — G’ given by A = T;0Q is
symmetric also. Conversely, if a bilinear operator A : E x G’ — G’ is symmetric with
factorization operator Ty, then the operator B : E x F — F given by B = T, 0 ©® is also

symmetric.

Proof. Assume that B is a symmetric operator. Then there is a linear operator 7p : G — F
defined by B(e, f) =T (e®f), e€ E, f € F. The linear operator T has an adjoint operator
T} that can be defined having the image in G’, due to the order continuity of G, and

so T : F' — G’ is defined by {g,T;(f")) = (Tp(g), f'). Theorem 3.7 in [52] states that
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if E, F have the Fatou property and E®F = G, then E® G’ = F’ holds, and so F’ is
also a product Banach function space, namely E and G’ are a compatible couple. Thus,
we can write [/ = e ©O g for every f € F/, where e; € E and g’ € G'. Tt is clear that
for the linear adjoint operator T} there is a symmetric operator A : E x G’ — G’ defined
by T4(f) = Ti(e1 ©g') = A(ey, g’'). Moreover by the definition of the adjoint operator
we obtain the symmetric operator A such that A(ey, g')g = (Tp(g), e1 ®g’). Conversely,
consider a symmetric operator A : E x G’ — G’. Since the space G’ is order continuous,
Sim—(Z) = G'. Thus, it allows us to get a factorization for the bilinear operator A such that
Ty : F' — G'. Therefore, by using adequately the duality properties of the spaces F, G
we obtain a well-defined adjoint operator 7, : G — F and we conclude that the operator

B =T, o(®is also a symmetric operator. U

Corollary 4.7 Suppose that the order continuous Banach function spaces E, F, G defined
over the same measure space have the Fatou property, and E forms a compatible couple
with both F' and G such that E©®F = E ® G isomorphically. Then, a bilinear operator
By : E x F — Y is symmetric if and only if there is a symmetric bilinear operator B> :

E x G — Y and an isomorphism ¢ : F — G such that By(+,-) = B1 (-, ¢(-)).

Proof. Let us assume that By is symmetric, then it has a linear factorization 71 : EQ F —
Y such that Bj(e,g) = T1(e®g). Since EOF = E® G isomorphically, it follows that
F = G isomorphically (see [52, Corollary 2.6]). Therefore, we obtain a bilinear operator
B :E x G —Y defined by By(e,g) =T o®o (Id x ¢)(e, g), where Id denotes the identity
operator defined on E and the ¢ is the isomorphism between the function spaces F and G.
Conversely, assume that B, is symmetric. Then, there is a linear operator 7> : EOG — Y
such that T3(e ©® g) = Ba(e,g). Define the map Bi(e, f) = Tho®o(Id~' x ¢~ (e, f) =

B> (e,g). It is easily seen that this is a bilinear map and symmetric. 0

4.1.2 Properties of Symmetric Bilinear Operators

Now, we will investigate the compactness and summability properties of zero product

preserving map acting on Banach function spaces.

4.1.2.1 Compactness Properties of Symmetric Maps Let us consider an n.p. prod-

uct defined from X (u) x Y (i) to G(u) and a symmetric map B : X(u) x Y(u) — Z.
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Assume that simple functions are dense in both X (1) and Y ().

It is easily seen that the symmetric map B is (weakly) compact if and only if the linear
operator T appearing in its factorization is (weakly) compact, due to the definition of the

product. Indeed,

the zpp map B is (weakly) compact <= B(UX( w) * Uy “)) is relatively (weakly) compact
—T o@(Ux(”) X Uy(“)> is relatively (weakly) compact
<= T(Ugy)) is relatively (weakly) compact

<= T is (weakly) compact.

Now, we will give more specific results for compactness.
I 1 1
Corollary 481f 1 <r < p,qg < o0 and — + — = —, each symmetric bilinear operator
p q T
B:LP(u) x L1(u) — Z is weakly compact.
Proof. By Corollary 4.3, B factors through a linear factorization operator 7 : L' (1) — Z.
Since a linear operator with a reflexive domain is weakly compact, the linear operator T

is weakly compact by the reflexivity of L" (i) for 1 < r < co. Therefore, the map B is

weakly compact. [

Corollary 4.9 Let X(u) and Y (1) be an order continuous compatible couple with the
Fatou property, and assume that (X (i)Y (u))’ is order continuous. Then, any symmetric

bilinear continuous operator B : X (i) x Y (u) — Z is weakly compact.

Proof. Since both X (i) and Y (i) have order continous norm and Fatou property, the
Banach function space X (u)-Y (1) has order continous norm and Fatou property, too (see
[51, Corollary 1]). Then, direct dual spaces computations show that the assumption on
the product X (u) - Y (u) implies that it is reflexive as a Banach space. By the symmetry

of B, it factors through a reflexive space, and so it is weakly compact. 0

For a range space Z with the Schur property this result can be improved.

Corollary 4.10 Under the assumptions on the compatible couple defined by X (¢) and
Y(u) given in Corollary 4.9, we have that every symmetric bilinear map B : X (i) x
Y (u) — Z is compact if Z has the Schur property.

Corollary 4.11 Let us consider the weakly compact symmetric bilinear map B : E x E/ —

Z and the set A € E x E’ be a ©-weakly compact set (see Definition 3.6 in page 29), then
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B(A) is compact.

Proof. Since B is weakly compact and symmetric map, it factors through a weakly com-
pact linear map T : L' (i) — Z defined by B(f,g) = T(f®g) forall fe E, g€ E'. By the
Dunford—Pettis property of L' (i), the weakly compact operator T maps weakly compact

sets to norm compact ones. Thus, we get B(A) =T ({f©g: (f,g) €A}) is compact. []

The following theorem is a consequence of some well-known results on integral repre-
sentation of weakly compact linear operators defined on L'(u) and our previous argu-
ments.

Theorem 4.2 Let (Q,X, 1) be a finite measure space and let the set Sim(X) be dense
in both E(u) and its associate space E’(i). A symmetric bilinear operator B : E() x
E'(1) — Z is weakly compact if and only if it has a representation as B(f,g SQ fghdu
forall fe E(u), g€ E'(1), where h is an essentially bounded Z-valued Bochner integrable

function defined on u with a u—essentially relatively weakly compact range.

Proof. The symmetric map B has a linear factorization through L' (i), that is, there is an
operator T such that B(f,g) = T(f-g), T : L'(u) — Z. On the other hand, B is weakly
compact if and only if 7 is weakly compact by the definition of the product acting in
B.f.s. Dunford—Pettis—Philips’ theorem states that a linear operator 7 defined on L! (1) to
Z is weakly compact if and only if there exists an essentially bounded Z-valued Bochner
integrable function 4 defined on u with a p—essentially relatively weakly compact range
such that T (k) = {,khdp for all k € L'(u) (see [21, Ch. III, Theorem 2.12]). Since
T(k)=T(f-g) = B(f,g), we get B(f,8) = {o fghdu for all fe E(u), g€ E'(i). This

gives the desired representation. O

Let us assume that the space Z is also a Banach lattice. We will say that a bilinear operator

B:X(u) xY(u) — Zis positive product preserving (ppp for short) if
B(f,g) =0 whenever f(Og >0for feX(u)and geY(u).

Remark 4.7 It is natural to ask for a relation between positive bilinear maps and positive
product preserving bilinear maps. (Recall that a bilinear map B : X(u) x Y(u) — Z is
positive if B(f,g) =0 for all fe X(u)*, geY(u)*, see Appendix A-2 or [7]). The

answer is the question; every positive product preserving bilinear map is positive bilinear
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map but the inverse is not true in general. Indeed, let us assume that B is positive product
preserving. The order relation of an arbitrary B.f.s. E is given as fi > f> if f1(x) = fo(x)
a.e.onQ,for fi, e E. For fe X(u)", ge¥Y(u)™, we get f(x) >0and g(x) >0a.e. on
Q and it follows that

{xeQ: f(x)gx) <0} c{xeQ: f(x) <0}u{xeQ: g(x) <0}.

By the monotonicity of the measure, we get
O<u(freQ: flx)elx) <0}) < p(fxeQ: fx) <O0}) +pu({xeQ: g(x) <0}) = 0.

This shows that f(x) > 0 and g(x) > 0 a.e. on Q implies f(x)g(x) >0 a.e. on Q, i..
f-g >0 whenever f > 0 and g > 0. By the assumption of positive product preservation

we get that B(f,g) >0 forall fe€ X(u)*, geY(u)". Thus B is a positive bilinear map.

To show the inverse is not true in general consider the measure space ([0, 1],B([0, 1]), dx)
and an arbitrary positive bilinear map B : L' ([0,1]) x L!([0,1]) — Z. For the functions
f=—-candg= —%, where c € (0, 1], notice that f-g = 1and f and g is notin L' ([0, 1])*.
This shows that we can find a couple of functions that are not in positive cone with a
positive product. Thus, we can not say B(f,g) = 0 for the functions f = —c and g = —%
even if B is positive and f - g > 0. Therefore, we get that the positive product preservation

of a bilinear map can not be decided by the positivitiy of the map.

Recall that a linear operator 7 between Banach lattices is called positive if T(x) = 0
whenever x > 0 (see Appendix A-2 or [59, Chapter 1]). Now we will give a factorization

of positive product preserving maps through a positive linear map.

It is clear that a symmetric bilinear map B : X(u) x Y (1) — Z with an order continuous
compatible couple X (1), Y (u) is positive product preserving if and only if its factoriza-
tion operator 7 : G(u) — Z defined by T(f ©g) = B(f,g) is a positive linear operator.
Indeed,
the symmetric map B is ppp < f©g = 0 implies B(f,g) >0

«— fOg=0implies T(fOg) =0

<= T is positive linear map.

Corollary 4.12 Let X () and Y(u) be a compatible couple such that Sim(X) is dense
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in both. A symmetric positive product preserving bilinear map B : X (i) x Y (i) — £! is
weakly compact —hence, compact— if and only if the associate space (X(u)-Y(u))" of

X(p)-Y(u) has order continuous norm.

Proof. By Theorem 4.1, a symmetric map B is weakly compact, positive product pre-
serving if and only if it has a weakly compact positive linear factorization operator 7T :
X(u)-Y(u)— €' defined by T(fOg) = B(f,g). It is known that a positive linear operator
from a Banach function space to ¢! is weakly compact if and only if the associate space of
its domain has order continuous norm (see [60, pp 275]). Therefore, T is weakly compact

/

and compact by the Schur property of ¢! if and only if the associate space (X (1) Y (1))

of X (u)-Y (u) has order continuous norm, what implies that B is compact too. O
. I 1 1 . .
For example, if 1 <r < p,q < o and — + — = —, every symmetric positive product
r

preserving bilinear map B : LP(u) x LI(u) — ¢! is compact. Finally, we show another
result for C(K)-type spaces. Recall that a Banach lattice Z has a strong order unit if there
is an element e in Z with the property that for every z € Z there exists a real number o
such that |z| < ae.

Corollary 4.13 Let Z be a Dedekind complete Banach lattice with a strong order unit.
Then every symmetric bilinear operator B : X (i) x Y (1) — Z can be written as a differ-

ence of two positive product preserving symmetric bilinear operators.

Proof. Since B is symmetric, there is a linear operator acting in the factorization space
T:X(u)-Y(u)— Z such that B factors through 7. The operator 7T is regular, that is, it can
be written as a difference of two positive linear operators, say 71 — 715, since the space Z
is a Dedekind complete Banach lattice with a strong order unit [61, Theorem 4.1 ]. Thus,
the operator B can be written as B=To® = (T} —Th)o®=Tio®—To@. Since T
and 7T, are positive linear operators, it follows that 77 o ® and 75 o ® are positive product
preserving symmetric bilinear operators. Therefore, B is written as a difference of two

positive product preserving symmetric bilinear operators. [

4.1.2.2 Summability Properties Consider a symmetric Banach space-valued bilinear
operator B: X () x Y (i) — Z, where X (i), Y (1) are Banach function spaces over i such
that the set of simple functions is dense and the pointwise product ® : X (u) x Y (u) —

G(u) is an n.p. product. In this case, by the factorization given in Theorem 4.1 we obtain
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that for all f1, f>, ..., fp € X(1) and g1, g2, ---,gn €Y (1),

Y IB(fig)llz <k Nfi- il - (4.2)

i=1 i=1

If we ask Z to have some particular properties, we get a domination —even an integral
domination— for a symmetric bilinear map. The first case that we explain it is associated
to some cotype-related properties of the space Z. Recall that being of cotype 2 implies
the Orlicz property (see page 9 or [18, §8.9]). So, for a Banach space Z with the Orlicz

property, we get the following domination of the symmetric map B. There exists k > 0

SUCh that fOI’fl, fza 7fn EX(,U) and 81,82, ---,8n € Y(:u’)’

n

( Z; B(alz) < (NITI1G-wB) <k sup | Zl -

G(w)

1=

As a second example, let us provide some direct applications on summability of certain
bilinear operators. Suppose that E is a Banach function space over a measure y with
associate space E’ and let H be a Hilbert space. By Grothendieck’s Theorem, we know
that £(L'(u),H) = IT; (L' (u),H). As a consequence of Pietsch Domination Theorem
(see page 9), we directly obtain the next.

Corollary 4.14 Let the set of simple functions be dense in both E and E’ and assume that
E has the Fatou property. For any symmetric Hilbert space valued bilinear continuous
map B : E x E' — H, there is a positive constant ¢ such that the following equivalent

statements hold.

i) FOI'fl, f27 7fn € E and 81,82, ---,8n EEI’

N B(fingi)ly <c sup D800, 4.3)
i=1

EBLOO i=1

ii) For fe E and ge E',

IB(f,8) | < f (2. 0)ldv(g). (4.4)

(PEBLOC

where V is regular probability measure on the unit ball of L*(u).

In particular by the Dunford—Pettis property of L' (i) the bilinear map factors through a

completely continuous linear operator.

47



4.1.3 Lattice Geometric Inequalities for ©-Factorable Maps

We are going to apply some classical arguments on factorization of operators for giving a

particular integral representation for linear maps with good concavity properties.

Firstly, recall some concepts. We will utilise the vector measures that are a generalization
of the notion of measure which are (countably additive) set functions taking vector values
instead of nonnegative real numbers only, i.e. v : X — E is a vector measure if it is finitely
additive, where E is a Banach space and X is a o-algebra. It is called countably additive

vector measure if v is countably additive function; see [21, Chapter I].

Let v : ¥ — E be a vector measure. The variation of v is the extended nonnegative

function |v| which is defined by
n
VI(4) =sup } [v(A)|
i=1

for a set A € £. The supremum is taken over all partitions A = | J!_; A; of A into a finite
number of pairwise disjoint members of X. If |v|(Q) < oo, it is said that the variation
|v| is finite or the vector measure V is called measure of bounded variation ([21, Section

L.1]).

Let u be a nonnegative real-valued measure and Vv is a vector measure on the same o-
field £. The vector measure V is said to be p-continuous, if limy, gy, v(E) =0 for every

E € Q and this is signified by v « u; see [21, Section 1.2].

For a vector measure v : £ — E, a finite scalar measure u : £ — [0, 0) is called a control
measure if L and v are mutually continuous, that is, u(A) — 0 if and only if v(A) — 0.
By one of the theorems of Pettis, this equals to the identity A(u) = Ao(v) ([21, Section
L.2)).

For a x* € E*, {v,x*) is the scalar measure defined by (v,x*): A — (v(A),x*), where

A€ X. |[{v,x*)| denotes the variation of {v,x*).

We can obtain a class of control measures for a vector measure vV : ¥ — E by using the
Rybakov’s Theorem. This theorem states that there is a functional x* € E* such that the
|(v,x*)| = X — [0,0) is a control measure for v, i.e. [(v,x*)| has the same null sets as
v; see [21, Section IX.2]. The functional x* is called Rybakov functional. It is known

that for a Rybakov functional x*, L' (v) < L'(|{v,x*)|) and the natural inclusion map is
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continuous ([23, Chapter 3, Thm 3.7.(iv)]).

As usual, we write [ f], for the equivalence class of almost everywhere equal measurable
functions that are associated with f. Recall that, if X(u) and Z(n) are Banach function
spaces such that 1 « u and the identification [ f], — [f]y is well-defined, then it is au-
tomatically continuous, since it is a positive map between Banach lattices (see [19, p.
2]). Thus, we can use this assignation to define a (continuous) inclusion/quotient operator

X(u) — Z(n) (see [62, p. 90]).

An operator My, : X (1) — Y (u) between Banach function spaces is called a multiplication
operator if the value of the M\, at a function f is given by multiplication by a fixed function

v. Thatis, My (f) = - f forall e X(u), where ye LO(u).

Let T : X (i) — Y be a continuous linear operator. The optimal domain Z() of T is the
largest Banach function space satisfying X (1) < Z(ut) such that there exists a bounded
linear operator 7 : Z(1) — Y which is the maximal extension of the operator T'; see [23,

Chapter 1].

Recall that a Banach space X has the Radon-Nikodym property if for any finite measure
@ and any linear operator 7 : L'(Q, 1) — X there is a bounded p-measurable function
f:Q— X such that Tg = {, fgdu for all g e L'(Q, 1) ([18, §16.4]).

Theorem 4.3 Consider a compatible couple of Banach function spaces X () and Y (u)
having order continuous norms. Suppose that the product space X () -Y (u) is p-convex
for 1 < p < o0. Consider a bilinear (continuous) Banach-space-valued operator B : X (1) x

Y (1) — E. The following statements are equivalent.

(1) Forflw"afnex(u) andgl,...,gneY([.L),
1B alP) < (S 1F- 7)Y
(Blsaal) " <[ (1) ] ) 439

(ii) There are a multiplication operator My, : X (i) - Y () — LP(u) such that ||M,[ = 1
and a linear operator T : L”(u) — E such that B factors as B =T o M, 0 (®, that is,

it factors through the scheme

X(u) <Y (p) E.
X(u)-Y(w) - LP ()
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(iii) There is an E-valued vector measure Vv such that L”(u) < L'(v), and
B(f.8) = | F0)s0n0)dv(), 6
where h defines a multiplication operator M, : X (i) - Y () — LP(u).

Proof. (i) = (ii) Note that the inequality in (i) directly implies that B is O-product pre-
serving. This means by Theorem 4.1 that it factors through a linear continuous map

S:X(u)-Y(u) — E such that
& 1/p " 1/
(Xlst-el”) ™" < |(Sb-ai) ] 1

for f1,....,fn€X () and gy, ...,g, € Y (1) by the inequality in (i) again. Consequently, we
get that S is p-concave. By hypothesis, we have that the product space X (i) - Y () is p-
convex. A standard application of Maurey-Rosenthal argument ([63, Corollary 5]) states
that any r-concave (1 < r < o) linear operator from a r-convex order continuous B.f.s. to
a B.f.s is factored through L™ () via a multiplication operator and a linear operator. This
gives the existence of a norm one multiplication operator M), : X (i) - Y (u) — LP(u) such
that S = T o M, where T : LP(u) — E is a linear continuous map. Composing all the

elements, we get the desired diagram: B =T oM, o (®.

(ii) = (iii) Note that the space L” () is order continuous, so we get that the operator 7 :
LP(u) — E defines a (countably additive) vector measure V(A) := T (x4) called the vector
measure associated to T where A € ¥. Moreover, if we assume that T is p-determined,
that is .A45() = A5(v), we get that the optimal domain of T exists and it is L!(v), thus
LP(u) < L'(v) due to the optimality of the space L!(v). Besides, the optimal extension
of T is the integral operator I, (s) = {,,sdV, for s € L' (v) and the following commutative

diagram is valid:

X(p) x ¥ (1) —* E
X() - () M L () LY ().

The reader can find this result in [23, Theorem 4.14]. Note that by the proof given there,
the result is still true if this is not the case, that is, if T is not u-determined. It is well-

known that the space L!(v) is a Banach function space over a Rybakov measure 7 for
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v, and 11 € U because of the continuity of 7'; we can change then the inclusion by the
identification of classes [ f], — [ f]n, what is sometimes called an inclusion/quotient map,

and the factorization is still preserved. Summing up all these comments, we get that
B(f.6) = | rOsonavie

forall feX(u)and ge Y (u).

(iii)) = (1) A direct computation just using the formula gives this implication. Indeed, if

fl?"'?fn EX([J,) and 815--,8n € Y(.“)?

(Sstsls) " = (Rssilt) " < (Slsitll) "
Sl O R U ¥ T

An integral with respect to a vector measure is still a rather abstract representation for
the bilinear operator B. However, using the same result for p = 1 we can still improve
the representation for getting a kernel-type operator whenever the range space E has the
Radon-Nikodym property. Although we will show a special representation for the spe-
cific case of classical bilinear integral operators, we can improve the integral formula
given above for the case of O-product preserving bilinear operators factoring through a
I-concave linear map. As in Theorem 4.3, we suppose without loss of generality that
the constant appearing in the inequality in (i) equals to 1, that is, no specific constant
appears.

Corollary 4.15 Let u be a finite measure. Consider a compatible couple of Banach
function spaces X () and Y () with order continuous norms. Suppose that E is a Ba-
nach space with the Radon-Nikodym property. For a continuous bilinear operator B :

X(u) xY(u) — E, the following statements are equivalent.

(1) Forf17"'7fn GX(IJ’) andglv"'ugn EY(‘LL),

B8] < H Y lfi-gil (4.7)
i=1 i=1

X (W)Y (1)

(i) There is a (norm one) E-valued vector measure Bochner integrable function ® €

L*(u,E) such that
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B(f,g) = f F(0) g0 h(e) (1) (1), 48)

Q

where h € (X([,L) -Y(u))l.

Proof. (i) = (ii) Applying the assumption (i) and Theorem 4.3 we conclude that the
variation of the vector measure is finite. Indeed, it is seen from (i)=>(ii) and (ii)=-(iii)
in Theorem 4.3, we get that there is a vector measure v defined by v(A) = T (x4) for all

A€ L. Tt follows that |[v(A)| < |T|u(A) for all A € . Thus,
n n
VI(Q) = sup ) [ V()] < sup ) [Tw(A) = T|p(A)
i=1 i=1

for all partitions Q = | Ji_, A; of Q. Since  is finite, it implies |V|(Q) < oo. Then, this
result is obtained as an application of Theorem 4.3. By hypothesis the vector measure
v provided by this theorem defines an operator w — Sg wdv : L' (i) — E that closes a
factorization diagram as in the theorem. Using the Radon-Nikodym property of E we get
that there is an integrable vector-valued density & for the vector measure, in such a way

that dv = ®dp and so w(t) — §, ®(r)w(r)dp(r). This gives (ii).

(i1) = (i) Taking into account that X 5 A — S 4 PdV € E defines a vector measure, (iii) =

(1) in Theorem 4.3 for the case p = 1 gives (i). L]

4.1.4 Applications: Representation Formulas for Integral Bilinear Maps

Here, we apply the results given in the previous sections to some particular classes of
bilinear operators that are defined by integral formulas. In order to do that, we will have
to enlarge the notion of product preserving map by including some measurable transfor-
mations. We are interested in considering classical operators as the Hilbert transform, but
the class we will deal with is broader than this. Let us start with a simple example.

Application 4.1 For 1 < p, g < oo such that %7 + % = %, let us consider the bilinear operator

B:LP([0,1]) x L1([0,1]) — L*([0, 1]) defined by

n

1
B8 = X5 (| m0)F0)s0)dy) o) “9)

i=1

where r, denotes the n'" Rademacher function (see page 9), g, (x) = 2~ (**+1)/2 Xpp—n p(-nt1) (x)
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forxe [0,1] and n = 1,2,.... It is clear that this bilinear operator is zero product preserv-
ing since B(f,g)(x) = 0 if f(y)g(y) = 0 dy-a.e. for all y € [0,1]. Therefore, by The-

orem 4.1, it can be written as a linear integral operator such that T(f®g) = T(h) =
n 1
S7 (50r(y)h(3)dy ) u(x). where e L2([0.1]) = L2([0, 1)) @ L4([0. 1]).

Application 4.2 The Hilbert transform of a function f(x) is given by

H(f)(x)zip.v.JRf(x—t)? (4.10)

where p.v. denotes the Cauchy principal value. This transform can be considered as the
convolution of f(x) with the tempered distribution p.v.—-. The bilinear Hilbert transform
was introduced by Calderén as the following

Hey.o0(f+8) fo aut)g(x— Oczt)it @.11)

In [64], Grafakos and Li have obtained a uniform bound for the bilinear Hilbert transform

1
Pl

= 1, then it is obviously seen that H; 1(f,g)(x) = (f@g) «(pv.t) =H(fOg)(x). Since
H, 1(f,g)(x) =0if fOg =0, the operator H; ; is a zero product preserving map. Then it

1

Hy o : LP' x LP2 — LP for the real parameter & and 1 £y + 55 > % If we suppose

has a linear factorization that is the Hilbert transform defined on LP' & LP2 = L? into L”.

We can give a more general result for the bilinear Hilbert transform when it is consid-
ered as acting on products of Lorentz spaces. Villarroya defined the generalized bilinear
Hilbert transform by using an arbitrary distribution instead of the tempered distribution in

[65]. The generalized bilinear Hilbert transform is given by

Hy o(f,8) Jf —1)g(x— at)u(t)dt (4.12)

where u is a distribution, & € R and f, g are elements of the function space C;°(R) of the
smooth functions with compact support in R. A generalized bilinear Hilbert transform
H, ¢ is said to be (p;, gi)i=12,3 bounded if it is possible to extend it to a bounded operator
from LPL91 x [P292 to [P3 93, where 0 < p; < 00,0 < ¢; < oo for i = 1,2,3 and LP4
denotes the Lorentz function space that consists of measurable functions f endowed with

the norm

1
- {{gggoﬂ/ﬂ(inm >0:m({xeR:|f(x)] >A}))4#} /q, 0<p<0,0<g<oo0,

supt>0t1/1’(inf/l >0:m({xeR:|f(x)|>A})), 0<p<ow0,qg=wn,
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we refer to [66] for Lorentz spaces. Now, consider a (p;, g;)i—12,3 bounded generalized
Hilbert transform with the parameter o = 1. Then, it is seen that the transform H,, | is a
zero product preserving operator and H, 1(f,g)(x) = (f©g) = u. Since simple functions
are dense in a Lorentz space LP? for 0 < p,q < o0, by Corollary 4.5 we get a factorization
such that T : [(LP191)1/2(Lp2:42)1/2](1/2) s [P35 defined by H, | = T(fOg) = (fO
g) * u, where the Calderén space [(LP91)1/2(Lr2:42)1/2](1/2) s the product space of the

compatible couple LP1"91 and LP2:92,

Although the pointwise product of functions appears explicitly in many of the classical
examples of integral operators, most of them are not strictly O-product preserving. For
example, consider operators defined by the formula of the bilinear Hilbert transform given

above but with compact support,
dt )
H(fag) = Kf(x*t)g(x*at)Tv fagEL (ALL)7 (413)

where (K,X,dt) is Lebesgue space on a compact set of the real line K, are not product
preserving in general except that o = 1. In this section we show that it is also possible to
find a weak version of our representation theorem in this case. In order to do that, let us

recall and introduce some concepts and notations.

Let I be [0, 1] or [0,0) and m is the Lebesgue measure over I. A Banach function space is
called rearrangement invariant (r.i. shortly) or symmetric if f € X and g is equimeasurable
with £, thatis f and g have the same distribution functions dy = d,, where ds(a) = m({x e
I:|f(x)|>a}),a=>0,then ge X and | f|x = | g|x; see [66, Section 2.4].

Let (Q,X, 1) be a o-finite measure space and X (1) is a Banach function space over .
Let ¢ : Q — Q be a bimeasurable (measurable in both directions) bijection. We define

Xy (1) as the space of (classes of y-a.e. equal) functions

Xo(u):={feLl(u): foo 'eX(u)}

endowed with the norm

1 £xy ) 1= 1F@ N lxuys f &€ Xo ().

Note that such a ¢ defines an isometry, that is, the transformation

Ao : X (1) — Xy (1) given by h— Ay (h) = ho ¢ & Xo(),
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that is clearly defined for all 4 € X(u), is an isometric isomorphism. The functions ¢
we are thinking about are typically simple transformations as, for the case of Lebesgue
measure space ([0, 1],%B([0,1]),dx), ¢;5(x) = x+1/2 mod 1, x € [0,1]. If we take a
rearrangement invariant space, for example if X (u) = LP([0,1]) for 1 < p < oo, we have

that Lf;l/z([O, 1]) = L?(]0,1]) isometrically.

We will consider couples of parametric families {¢!}cq and {¢?}cq of such bimeasur-
able bijections satisfying the requirement that X (1) and Y42 (1) are compatible for each
x € Q. Our idea is to recover using these tools a similar definition that the one that gives
for example the bilinear Hilbert transform. Note that the simplest example of such a para-
metric family is when ¢! = ¢! and ¢2 = ¢ for fixed functions ¢' and ¢2; we use it just

below.

We are now ready to define a general class of integral-type bilinear operators. Let Z(1)
be a Banach function space over u. Let X(u) and Y (i) be compatible Banach function
spaces on . In this context, we will say in what follows that a bilinear operator B :

X(p) xY(u) — Z(u) is an integral bilinear operator if it is defined by a formula as
B(f,8)(x) := JQf(%l (0)8(97 () K (x,0)dr, xeQ, feX(p), ge¥(n), (414

where K : Q x Q — R is an integrable kernel such that the expression inside the inte-

gral is well-defined for each x,¢, f and g, and integrable, in such a way that B(f,g)(-) €
Z(u).

Independently of the case of pointwise type bounds depending on x that we will explain
later, we can get direct results when the functions ¢! and ¢ are fixed from the general
framework constructed along the paper. So, let us assume for the next result that ¢! and
¢?2 do not depend on x. As a consequence of Lemma 3.1 we obtain the following general
result. Note that it is not restricted to the case of integral bilinear operators, although
it can be applied to this concrete context by its definition. It can be easily checked that
the requirements in the following result are fulfilled in some simple —but meaningful—
cases. For example, using for ¢! and ¢? the transformation ¢, /2 explained above, we have
that clearly the formula f® g := fo ¢! - go ¢? defines an n.p. product.

Corollary 4.16 With the same notation and in the setting explained above, suppose that

Xp1 (1) and Yy () define a compatible couple. Assume also that the map given by X (1) x
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Y(u)>(f,g) — foo'-go@?, is an n.p. product. Then the following assertions are

equivalent.

(i) There is a constant k > 0 such that for every fi,...,f, € X(u) and g1,...,g, €Y (1),

HgB(ﬁ’gi) ) kugﬁow 'gio(szXq,l(u)-y(pz(u)' (4.15)

(i) Bis an integral bilinear map that factors through X, (i) - Yy2(14) as

B(f,g)=T(fo¢'-go9?), feX(u),ge¥(u), (4.16)

where T : X1 (1) - Yy2 (1) — Z(p) is a linear continuous operator.

Inspired in part by the example of the general Hilbert transform with compact support
explained above, we start now to give a more accurate analysis of the problem of repre-
senting integral bilinear operators.

Lemma 4.1 Let X(u) and Y (i) be order continuous Banach function spaces over the
measure space (Q,X, it). Consider an integral bilinear operator B: X (i) x Y (u) — Z(u).
Fix x € Q, and let ¢, and ¢ be two measurable bijections defining isometries X (i) —
Xp1 (1) and Y () — Y42 (1), respectively. Assume also that X, (i) and Yy () define a

compatible couple.

Then there is a factorization through the product space X, (i) - Y42 (tt) of the bilinear
functional B, : X () x Y (i) — R defined by

Bx(f,g)1=B(f,g)(x)=Lf(%l(f))g((l’f(f))K(xyf)df, feX(u),gey(u). (417

Moreover, the functional ¢x € (X1 (1) - Yy2(1t))* that closes the factorization diagram is

@c(h(t)) := §o h(1)K (x,1)dt € R, and so we have that
B(f,8)(x) = (f(6: () -8(82()), @u(-)),  feX(m), ge¥ (). (4.18)

Proof. 1t is worth noting that clearly order continuity of the spaces X () and Y (u) is
automatically transferred to the spaces X, (1) and Yy2(pt). So, the lemma is just a con-
sequence of the factorization theorem for zero product preserving operators and the con-
struction. Indeed, taking into account that A¢x1 and A¢3 are isometries, we can define a

bilinear map
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B. P Xp1 (1) x Yo (p) = R

by B, = Byo (A} 1 X AD). So, we have a factorization as

97

By

X(u) xY(u)

(ZJ)‘! ><A

R,
#, v By

X1 (1) x Y2 ()
where B, is a bilinear integral and symmetric operator. Therefore, by Theorem 4.1, and
taking into account that the spaces are order continuous —and so simple functions are

dense—, it can be also factored as

B, R

X

X1 (1) X Yy (1)

o]
v

Xpr (1) - Yoo (1)

Tx

Once the existence of the factorization through the product space X41 (1) - Y2 (1) has been

established, it is clear that 7, has to be the linear and continuous functional

—h+—>f K(x,t)dt e R,

that belongs to the dual space (X¢ 1 (1) -Y%;(u)) *. Thus, we get that the pointwise evalu-

ation of B(f, g) at x can be written as
B.(f.8) = B(f,8)(x) = (f(#:(-)) - &(9()), 9:()). O

Let (Q1,X1,u) and (Q,X,, V) be o-finite measure spaces and £ is an integrable function

on £ x £y, then the well known Fubini’s Theorem indicates that

Lzlxgzh(x’y)d(“ V)= LZ] (Lzh(x,y)dﬂ>dv = Lz <£21 h(x,y)dv>du.

This theorem gives directly the next result.
Lemma 4.2 Let Z(u) be order continuous. In the same setting and with the same notation
that in Lemma 4.1 and assuming also that K (x,) (and so ¢,) depends only on #, —that is

@, = @ for all x for a certain functional ¢—, we have that for every element y € Z(u)’,

(B(t.01w) = | (7201)0)- (502 (OWan(), 0(0)) (@.19)
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for every pair f € X(u) and ge Y (u).

The previous results suggest that our general class of integral bilinear operators can be
analyzed in the product factorization framework constructed in the present paper when-
ever some requirements on the pointwise domination are assumed. Thus, next theorem
gives a characterization of general bilinear operators by means of inequalities involving
bimeasurable bijections. As it is seen, the arguments used in the proof are adaptations
of the ones we have used in the rest of the study and belong to the same cycle of ideas.
We use the notation of Theorems 4.1 and 4.2. Note that, as we explained before, the
requirement on the equality of the products is natural if we are working with the class of
rearrangement invariant Banach function spaces.

Theorem 4.4 Let X (1) and Y (1) be a compatible couple of order continuous Banach
function spaces such that its product is also order continuous, and consider a bilinear
continuous operator B : X (u) x Y (u) — Z(u). Consider a couple of parametric families
{0]}cq and {92} ,cq of bimeasurable bijections satisfying that Xo1 (1) Yoo (1) =X ()

Y () isometrically for each x € Q. The following assertions are equivalent.
(i) There is a constant k > 0 such that for every f1,..., f, € X(1), g1,-.-,gn € Y (1) and

XlyeeesXp €

> BUingi) () <K| Y fio 081093 (4.20)
i=1 i=1

X(u)¥(w)

(i) There is a constant kK > 0 and a function Aq such that the bilinear continuous map B

is an integral map that can be written as
B(f.0)(x) = k| (7201)0): (s002)(0) ho(r) di(e). @21
where f € X(/.L), gEe Y(/.L), X € .Q., and hg € B(X(,u)~Y(,u))"

Proof. For (1) = (i1) we use a standard separation argument in a Maurey-Rosenthal fash-
ion, as in the previous section. Consider all the functions ® : B(x(,).y(u)y — R defined

as

n n
B(h) = Y B(firgi) (i) — k fgﬁwg-gioﬁhdu (422)
i=1 i=1
for given f;e X (1), gi€ Y (1) and x; € Q. Each of these functions is convex with respect to

h and continuous with respect to weak*-topology. Besides, the whole family is concave.
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For each fixed function, by the Hahn-Banach Theorem and the inequality in (1), there is an
element hgp € B(x (y).y(u))y such that @(he) < O (alternatively, such an element can found
by applying Ky Fan’s lemma for concave family of continuous functions; see [15, Section

9.10]). Then we get a function hg € B(x ).y (y)) such that

B(f,8)(x) <k Lfo Or g0 @ ho(t)dul(r) (4.23)

for all functions f, g and all x € Q. Since this must happen for all functions f and g we can
change the signus in the inequality above just by changing for example f by —f. Thus,

we obtain for all f, g and x that
B(f.g)(x) =k Lfo 0s g0 0F ho(t)dp(r). (4.24)

(i) = (i) is given by a direct calculation. [

4.2 (©Opxp-Factorable Bilinear Operators acting in Sequence Spaces

In this section, we will concern with the pointwise product acting on sequence spaces and
we will give a factorization theorem for zero product preserving bilinear maps defined
on a Cartesian product of Banach sequence spaces. Using the isomorphisms, we will
introduce a general notion for pointwise product.

Remark 4.8 The pointwise product © : ¢7 x 09 — 0", ((xz), (yk)) v~ Xg - ¥k is an n.p.
product, where 1/p+1/g=1/rand 1 <r < p,q < oo (see [51, Example 1] and references

therein). In particular, it is a norming product.

Proof. Indeed, for (x) € €7 and (yx) € €1 we get (xi-yx) € £ and | (xc-yie) [ < | (i) | p | ()l g
by the Holder-Rogers inequality (see page 13 or [24, Lemma 1]). To establish the con-
verse, let us assume that (z;) € ¢”. Define the (x;) and (y;) by setting x; := |z¢|"/Psgnzs
and yy := \zk\’/ 4 for all k € N, where sgnz; is the sign function of z;. We obtain that (z;) =
(x0) - (i) and (xi) € £7, (i) € €9 with the norms |(xe) | = | ([eel7Psgnzy)|, = | (z0)])”
and || (v)llg = | (e, = @)% So. @), = [ @[ @) = 1@l 0x)g-
Therefore, | (xi - yie) | = inf{]| ()| | () llg = () € €7, () € €9, (xe- i) = (%~ ¥i)}- The
inclusion is seen easily if we choose the |(z;)|, < 1. Consequently, ® is an n.p. product

ont, x {,. L]

1 1
Theorem 4.5 Let — + — = — for 1 <r < p,q < c. Consider the Banach space-valued
p q r
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bilinear operator B : ¢” x /1 — Y. The following assertions are equivalent.

(1) The operator B is O-factorable. That is, there is a linear and continuous operator

T:0" —Y suchthat B=ToQ.

(2) There is a positive real number K such that, for all ay, ..., a, € ¢’ and by,..., b, € ¥4,

the following inequality holds

H Z B(ai, b)) (4.25)
i=1

n
Y s KHZ;CI’@[% o
1=

(3) The operator B is zero product preserving, that is, B(x,y) = 0 whenever x(®Oy = 0.

Namely, the following diagram commutes whenever one of the above conditions holds.

o xp Loy

0 T

. g;‘
Proof. (1)<>(2)is proved in Lemma 3.1 for an arbitrary product and (2) = (3) is obvious.
It only remains to show that (3) implies (1). So let us show that there is a linear continuous
operator T such that B := T o(® whenever the operator B is a zero (O-preserving. Indeed,
define the map T, : (P O 7 — Y, Ty (z) := B(zO X{12,...n}» X{1,2,....n}) for all n € N, where
z€ PO L. Note that zO X1 2,...ay € £P, and X1, »y € 9, and so T, is well defined for
each n € N. The linearity of 7, is a consequence of the linearity of the bilinear operator

B in the first variable. To show the boundedness of the map 7,,, we give an equivalent

formula for this operator. Since x5, 3 = 2iiuy X{i}» We have

n

T,(a®b) =B(aObO X1 ,..ahs X{12,..0}) = ZB(a@bQX{l,2,...,n}7%{i})'
i=1

The pointwise product of a = (04);2.; € P and b = (By), 2, € {1 is aOb = (4 Pr)7—, =
Sy B X1 - By the continuity of B, the image of the couple (a,b) € P x ¢4 under the

bilinear operator B is

0 0
B(a,b) = B<k21 O X {k} > Zl ﬁm%{m})

o0 00]
= Z Ol Z BinB(X i1y Xmy)-
k=1 m=1

Since X1y © X(m) =0 (k # m) and by the zero O-preserving property of the operator B,
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we have B(a,b) = ZZOZI O‘kﬁkB(x{k},%{k})- Thus,

h

N
I
—_

Tu(a®b) = > B(a®bOX(12,  up» Xiit)

8

I
MS

B(Z 4B X ixy O X{1.2,...n} 75{}>

N
I
_

Z BB (X iy Xiiy)-
k=1

M:

N
I
—_

Using the zero (O-preserving property once again, we obtain

Ty(a®b) = Zazﬁz (21iy 241y)
:B(Zlaiﬁi%{i}vzlx{i})
b B<§ OC,‘X{,'},EBJC{:’})'

By the boundedness of the bilinear operator B, it follows that

sup [Tzlly =  sup HB<Z Qi {i}> Z Bixii }) ”

z€Uyr b)eUp xUypg
z=a(®b

n

< sup ) JeBillB(x 2y < .
(a’b),e,Ung Uig j=1

This shows that 7;, is (uniformly) bounded, n € N, and therefore (7,);°, is a bounded
sequence of linear operators acting on ¢, since ¢ = ¢ © (4. Indeed, note that since ©®

is an n.p. product, we have that it is surjective and preserves the norm, and so for every

x € ¢" we find adequate a € ¢ and b € ¢4 such that x = a©b.

The sequence (7,(a® b)), is a Cauchy sequence for every a € /7 and b € ¢4 and it is
convergent by completeness of the Banach space Y. Indeed, since a©b € ¢, then for

every € > 0, there is an NV € N such that

H )
i=n

Using again that B(x;y, x¢j;) = 0if i # j, we obtain

£
< — VYn> N).
e <57 (=N
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(@)~ Ta@b)ly = [B( S abay, D 1)),
1

i=n+1 i=n+

V4

” H i=;|-l Bixgiy

<& (Vm>n>N).

<18 Y oy
i=nt1

Let us define now the limit operator 7' : ¢, — Y of the operator sequence (7,);" , that is

T(a®b) =1lim,_,o T,(a®D). Itis easily seen that T is well defined and linear. This allows
us to define the operator 7, in all ¢”. Since (7,(a®b)) converges for every a®b € ¢’, then
it is bounded for every a ® b. By the Uniform Boundedness Theorem, it follows that 7 is

continuous. Therefore, we obtain
n
B(a,b) = lim Z; aiBiB(Xiy> X4iy)
l:
= lim 7,(a®b) = T(a®b).
n—o0

Besides, the image of an element is independent from its representation. Indeed, for the

element x = a; ©® by = ar © by, we obtain
T(a1Oby) = nli_)r&B(al Ob1OX(12,..}> X{12,...n})
= lim B(axOb2O X120 X{12,..m}) = T (@20b2).

Hence we obtain the factorization of the bilinear operator B through the pointwise product

as B = T o(@®. This finishes the proof. OJ

Now we will give a general version of the theorem above. Consider two Banach spaces
E and F that are isomorphic —as Banach spaces— to ¢” and ¢4, respectively, and the
isomorphisms are given by the operators P : E — (7 and Q : F — (4. We define the

product Opxg : E x F — (" by

Oprxo(x,y) =P(x)©Q(y), x€E, yeF.

Let us illustrate this definition by the following diagram;
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®P><Q

E>§F

PO
va O

0P x é‘fﬁ

fr.
7

In this situation, a bilinear map B : E x F' — Y will be called zero Opxg-preserving

if
Opxo(x,y) =0 implies B(x,y) =0

forallxe Eandye F.

Corollary 4.17 Let — + 1 = for 1 <r < p,q < oo. Let the Banach spaces E and F be
isomorphic to ¢” angl) 2 gy means of the isomorphisms P and Q, respectively. Consider
a Banach space valued bilinear operator B : E x F' — Y. The following assertions imply

each other.

(1) The operator B is ©px p-factorable. That is, there exists a linear continuous operator

T :{" —Y such that B =T o©px, and the following diagram commutes;

ExF Y.
A

PxQ’ T

(2) There is a positive real number K such that, for every finite set of elements {x;}_, €

E and {y;}!" | € F, the following inequality holds

n
HZB(Xi,yz')
i=1

S KH ;P(Xi)QQ(yz‘) (4.26)

o
(3) The operator B is zero Op g-preserving, that is, x Opx o y = 0 implies B(x,y) = 0.

Proof. Let us prove that (3) implies (1). Under the conditions of the theorem, consider
the bilinear map B = Bo (P~! x Q71) : #? x ¢4 — Y. We have that forall xe E and y € F,
xOpxoy = P(x) ®Q(y) = 0 implies that 0 = B(x,y) = B(P(x),Q(y)) = 0. That is, since
P and Q are isomorphisms, we have that for all a € /7 and b € /9, a© b = 0 implies that

B(a,b) = 0.

We are in situation of using Theorem 4.5 for B. So we have that there is a linear operator

T : /" — Y such that B = T o®. By the definition of B, we obtain B = Bo (P x Q) =
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T o®o (P x Q), the required factorization.

The equivalences among the three statements of the corollary follow directly using Lemma

3.1 and this factorization. O]

It is easily seen that any (O-factorable bilinear map B : (7 x {? — Y that factors through
¢" for 2r = p is symmetric in the sense that B(a,b) = B(b,a) for all a, b € {P, since
B((an),(bn) = T((an ®by)) = T((b, ®ay,)) = B((byn), (a,) holds for all (a,), (b,) € P
by the commutativity of the pointwise product.

Corollary 4.18 Let the Banach space X be isomorphic to ¢” for p > 2 by means of the
isomorphism P. Then any zero Opx p-preserving bilinear map B : X x X — Y satisfies the

symmetry condition, that is B(x,y) = B(y,x) for all x, y € X.

Proof. Since the map B is zero Opy p-preserving, it is ©p p-factorable. Then, for r = p/2
there is a linear continuous map 7 : ¢ — Y defined by B(x,y) =T oc®o (P x P)(x,y) =

T(P(x) ®P(y)). By the commutativity of the pointwise product we get the symmetry;

B(x,y) = T(P(x)OP(y)) = T(P(y) ©P(x)) = B(,x).

O
Remark 4.9 The extension of the result given in Theorem 4.5 from the case of © to the
case of Opx o products implicitly shows a fundamental fact about factorization through
the pointwise product. The requirement “a®b = 0 implies B(a,b) = 0” can be understood
as a lattice-type property: indeed, note that for sequences a and b in the corresponding
spaces, a®b = 0 if and only if a and b are disjoint, and so we can rewrite the requirement
of being zero O-preserving as “if |a| A |b| = 0, then B(a,b) = 0. Since P and Q are just
(Banach space) isomorphisms, we have shown that the property is primarily related to the
pointwise product, and not to the lattice properties. The result is particularly meaningful
if we consider P and Q to be the isomorphisms associated to changes of unconditional
basis of /7 and /7 whose elements are not in general disjoint.
Remark 4.10 Consider the bilinear map B : E x E* — Y, where E is isomorphic to ¢
and * denotes the topological dual of E. This bilinear map can only be Op p-factorable
through the sequence space ¢!. Indeed, let P denote the isomorphism between E and
¢P(p = 1). Since the duals of isomorphic spaces are isomorphic, it follows that E* is

# 1 1 . . . ..
isomorphic to (¢7)* = ¢P" for — + — = 1 by the isomorphism P* that is adjoint map of
p P
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P. Therefore B can only be Op, px-factorable and in this case it is factored through ¢!.

4.2.1 Compactness and Summability Properties

Corollary 4.17 provides a fundamental tool to obtain the main properties including the
compactness and summability properties of zero Opx-preserving bilinear maps. It is
already clear that (weak) compactness of the factorization map 7 is necessary and suf-
ficient condition for the (weak) compactness of the zero ©Opy g-preserving map B by the

definition of the norm preserving product. Indeed,

zpp map B is (weakly) compact <= B(Ux x Uy) is relatively (weakly) compact
— B(P"1(Up) x 071 (Uy)) is relatively (weakly) compact
<= B(Up x Uy) is relatively (weakly) compact
<= T oO(Up x Uy) is relatively (weakly) compact
<= T (Uyr) is relatively (weakly) compact

<= T is (weakly) compact.

Now, we will give more specific situations. Note that the norming property of the point-
wise product © can be expanded to closed unit ball as By < By O By by choosing
[(zx)|» <1 in Remark 4.8, where 1/p+1/¢g=1/rand 1 <r < p,q < .

1 1

Proposition 4.1 Let — + — = — for 1 <r < p,q < c0. Suppose that there are isomorphisms
p q T

P:E — (P and Q : F — (4 such that the bilinear operator B : E x F — Y is zero Opxo-

preserving. Then
(i) B(E x F) is a linear space.
(ii) If P and Q are isometries, then B(Bg x Br) is convex.

(iii) If r =1 and Y is reflexive, then B(BE,y) is a relatively compact set for every y € F

as well as B(x, Br) is relatively compact for every x € E.
(iv) If r > 1, then B(Bg x BF) is relatively weakly compact.

(v) fl <s<r<owandY = ¢, then B(Bg x Br) is relatively compact.

Proof. Consider the factorization for B givenby B =T o (P® Q).

(1) Since ® is a norming product and B factors through it by Theorem 4.5, we have that
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B(EXF)=T({P®¥1) =T({), that is, the range of a linear map. So it is a linear

space.

(ii) Clearly, A =PQ®Q(Bg x Br) = By ® By = Byr is a convex set, and so T'(A) is also

convex.

(iii) Note that there is a sequence b = Q(y) such that A = PO Q(Bg,y) is equivalent to
By ®b c ¢'. Recall that 1 < p,g < 0. Note also that T : ¢! — Y is weakly compact
by the reflexivity of the range space Y. Since the closed unit ball of a reflexive space
is weakly compact, this gives rise to weak compactness of the set A in ¢!. Thus, we

have that T'(A) is relatively compact by the Dunford—Pettis property of £!.

(iv) Since B(Bg x Br) = T(P(Bg) © Q(Br)), and P(Bg) ® Q(BF) is equivalent to the

unit ball of the reflexive space ¢, we get the result.

(v) Recall that by Pitt’s Theorem (see page 8), every bounded linear operator from ¢"
into ¢* is compact whenever 1 < s < r < c0. The factorization gives directly the

result. u

As in Section 4.1.2.2, our first summability property for zero preserving bilinear maps is
a direct consequence of Grothendieck’s Theorem. It also provides an integral domination
for B. The second corollary is obtained as a result of the Schur’s property of ¢! and it is
again an application of the compactness properties of the bounded subsets of ¢!

Corollary 4.19 Let H|,H, and Hs be separable Hilbert spaces. Let B : H; x H, — H3 be

a zero Opx p-preserving bilinear operator. Then

(i) for every xy,...,x, € Hy, y1,...,yn € Hy there is a constant K > 0 such that

n n
By <k sup Y [(Per)©0m).7 )| (427)
i=1 €Byo j—1
(i1) and there is a regular Borel measure 1) over By~ such that
|B(x, )] < KJ [(P(x)©Q(),2)ldn(), xeH, yeH,. (4.28)

Proof. Let us consider the Opx p-preserving bilinear map B : H; x Hy — H3. Since any
separable Hilbert space is isomorphic to the sequence space ¢2, we can define a bilinear
map B = B(P_1 xQ~1): 0% x > - Hj. The Opy o-preserving property of B implies the ©-

preserving property of the map B. Therefore, by Corollary 4.17 we have the factorization

66



B:=To0®, where T : ¢! — Hz. One of the result of Grothendieck’s Theorem states that
every linear operator from ¢! to a Hilbert space is 1-summing. It follows that, for every

X1,y Xn € Hy, ¥1,...,y4 € H there is a constant K > 0 such that

n

ZHB(xi,yi) KP xi) © Q(yi), >)
i=1

The second inequality of the corollary is clearly seen by Pietsch domination theorem (see

zzn:)F(P( i),0(yi) H<K sup
i=1

ZeByo i=1

page 9 or [15, Theorem 2.12]). This theorem states that every 1-summable operator has

such a regular Borel measure. Thus, we get a regular Borel measure 1) over By« satisfying

|B(x,y)| = |B(P(x),Q())| < KL [KP(x)©Q(y),z)ldn (), xeHi, yeH,.

]

The following corollary is obtained as a result of the Schur’s property of ¢! and it is again
an application of the compactness properties of the bounded subsets of ¢!:
Corollary 4.20 Let H,H, and H3 be separable Hilbert spaces. Let B : H x Hy — H3 be

a zero Opy p-preserving bilinear operator. Then:

(i) For every couple of sequences (x;)72, in H; and (y;)72; in H, such that (P(x;) ©®

O(y:i))2, is weakly convergent, we have that (B(x;,y;))2, converges in the norm.

(ii) ForS; < Hj and S> € H, such that P(S;)©Q(S) < ¢! is relatively weakly compact,
i.e. S| x Sy is Opx p-relatively weakly compact, we have that B(S) x S») is relatively

compact.

We can obtain some summability results if we consider the range space Y with some
cotype-related properties. It is known that a Banach space has the Orlicz property, if it is of
cotype 2 (see page 9 or [18, §8.9]). It follows that for any zero Op« o-preserving bilinear
map B : E x F — Y whose range space Y has the Orlicz property, we get a domination as
follows: there exists k > 0 such that for xy,...,x, € E and yy,...,y, € F,

(S 1Beyly) " <k sup HZ& ) @000,
i=1

ge{—1,1}

4.2.2 Applications of Zero ©Op, p-Preserving Bilinear Maps

Finally, let us give some applications for the zero ©p« g-preserving bilinear maps.
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Application 4.3 Consider a bilinear continuous operator B : £ x /> — ¢'. Tt is known
that the pointwise product ® from ¢ x ¢% to ¢' is a norming product. Let (a,b) =
I akx{k},Znole BinXmy) € (% x (%, Then the image of this element under pointwise

product is
0 [e¢] [e¢] 0 Q0

a®b= (3 otiny) © (X Butim) = X Z (et © 2imy) = 2, By
k=1 m=1 k=1 m=1 k=1

Thus, for the finite sets of sequences ay,...ay, by, ...,b, we have

n

n o0 0 n
Zaini = Z Z ik B Xk = Z (Z aikﬁik) X{ky-
i=1 -

i=lk=1 k=1 i=1

This is a sequence in absolutely summable sequence space £! such that its general term is

Zk = 2y o Bi for every k € N.

The ¢! norm of this sequence is |z¢] 1 = D | D ¢ Bik]- By Lemma 3.1, we obtain
that the bilinear operator B is factorable by the pointwise product if and only if there is a
constant K for all finite sequences (x;)"_;, (y;)7_; € £* such that

H Zn:B(Xi,)’i)
i-1

n

‘ Z ik Bt |-

<K
1

”MS

Let us consider now a more specific bilinear operator B : £> x ¢> — ¢!: a diagonal multi-
linear operator. Recall that a bilinear operator B € B(¢? x £2, 1) is called bilinear diagonal
if there is a bounded sequence & = (&) such that B(a,b) = >/~ &ouBix k- By Holder
inequality, it is easily seen that B € B(¢? x £2,¢") if and only if £ € £*°. For arbitrary finite

sequences (x;)"_;, (vi)'_, < 2, we obtain

H ZHJB(Xi,yi) = H z”: i 5kaikﬁikl{k}Hl
i=1 j

<l 3| o] - & 3| Db

k=1 i=1 k=1 i=1

Therefore, we obtain that every bilinear diagonal operator is factorable through ©. Re-
mark that a bilinear diagonal operator satisfies that B(x,y) = 0 whenever x®y = 0. Namely,
every diagonal operator is zero product preserving.

Application 4.4 Take into account the bilinear continuous operator B : £ x /> — ¢! given
by B(x,y) = a* (x®y) where a € £! and = is convolution defined on ¢! by the rule (a*b), =

3 @mbu—m for a,b e ¢! (it is known that ¢!(Z) is a unital Banach algebra under
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convolution and satisfies £!(Z) «£'(Z) = £(Z)). 1tis clear that if x®y = 0 then B(x,y) = 0.
Then by Theorem 4.5, we obtain a factorization operator T : ¢! — ¢! for B such that
T(z) = T(x®y) = B(x,y) defined by T(z) = a=z. It is known that an operator T on
¢Y(Z) is of the form a *z if and only if it is translation invariant, i.e. TA = AT, where
A(z)(n) :=z(n+ 1) ([67, pp. 63]). Thus, we conclude that a zero product preserving
bilinear operator B : £ x (> — ¢! factors through a translation invariant linear operator if
and only if there is an a € ¢! such that B(x,y) = a* (x®y) for all x,y € /2.

Application 4.5 Consider any bilinear map B : L?[0,27] x L?[0,27] — Y such that B(f,g) =
0 whenever f g = fO2 =0 for f, g L2 [0,27], where ™ denotes the Fourier transform.
Plancherel’s theorem states that the Banach space L?[0, 27 is isometrically isomorphic to
¢? by the Fourier transform (see page 16). Therefore, by Corollary 4.17 we get a factor-
ization for the ®O~,~-factorable bilinear map B such that B =T oc®o ("x") and the bilinear
map B is symmetric by Corollary 4.18. The class of these bilinear maps was investigated
by Erdogan et al in [68] and the results of this study will be given in the first section of

the next chapter.

Now, we will give a more specific example. .7# and H? stand for the holomorphic func-
tions on the unit disc D and the Hardy space of functions, respectively. The Hardy space
H?, that is a closed subspace of L2[0,27], consists of the functions whose all Fourier coef-
ficients with negative index are zero. It is possible to represent any holomorphic function
f € S as a Taylor polynomial f(z) = ZZO:O a,Z". Moreover, this representation is given
by the Fourier coefficients for the elements of H> and H? is isomorphically isomorphic to

the sequence space /> by means of Fourier transform.

Arregui and Blasco defined the u-convolution of the holomorphic functions f and g in 77
given by f(z) = Yo" ganz" and g(z) = D’ o bnz" as f,8(z) = Yt gut(an,bn)7", where
u: C x C — Cis abilinear continuous map (see [69, Definition 1.1.]). If we consider the
bilinear map u defined as u(ay,by) = an © by, then we get f,8(z) = Yoo (an O by)7".
Therefore, it is seen that u-convolution defined on H> x H? to H? is zero O~ ~preserving,
since fOrg = f(n) ®g(n) = 0 implies f *, g = 0 for all f, g € H*. By Corollary 4.17,
it follows that there is a linear map T : ¢! — H? such that f+, g = T(f(n) ©3(n)) =
3% %2, where (x,) is the sequence in £! obtained by the pointwise product f(n)og(n).

Also, by Corollary 4.18 it is obtained that u-convolution is a symmetric map.
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CHAPTER 5

CONVOLUTION FACTORABILITY OF BILINEAR OPERATORS

Throughout the chapter we will use the convolution operator defined on the Banach space

L'(G) by the formula

feglx) = Lf(y—'x>g<y>du<y>, 5.1)

where G is a compact Abelian group with Haar measure L.

In particular, we are interested in the compact Abelian group T that is the circle group —the
real line mod 27. It is known that the convolution operation = on L' (T) has commutativity
and associativity properties, that is, f+g =g=fand f=(g=h) = (f+g)«hforall f,g,he
L (T); see [26, Chapter 1].

The aim of this chapter is to obtain a class of bilinear maps acting on a product of Hilbert
spaces of integrable functions, respectively, a product of Banach algebras of integrable
functions that can be factored through the convolution operation. Moreover, we will see
that the class of these bilinear maps what will be called =-factorable is equivalent to zero
convolution product bilinear maps. We will investigate compactness and summability
conditions of #-factorable bilinear maps under the assumptions of some classical proper-
ties. Finally, we present some applications of =-factorable bilinear maps and a represen-

tation for Hilbert-Schmidt operators.

Note that the results of Section 5.1 and Section 5.2 are preseted in the published papers

[68] and [70], respectively.
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5.1 =«-Factorable Bilinear Maps on Hilbert Spaces of Integrable Functions

In Section 2.2, we give some preliminaries related with group algebras. Since we state that
we will be interested in compact Abelian group T, it is useful to recall these informations
for the circle group T. The complex space W(T) of functions defined on T spanned by
all continuous positive-definite functions on T coincides with the set of functions which
have absolutely convergent Fourier series. The space W(T) is a unital Banach algebra of
functions under pointwise operations known as Wiener algebra ([29, Theorem 32.10]). It
is isomorphic to the Banach algebra ¢! (Z) by the isomorphism given by Fourier transform
and it is endowed with the norm | f|yy = | f|; for f € W(T), where f denotes the Fourier

transform of f.

Now we will show that the convolution operation = is an n.p. product from L?(G) x L*(G)
to W(G) for an arbitrary compact Abelian group G, where W(G) is the unital Banach
algebra of the functions with absolutely convergent Fourier series.

Remark 5.1 Let G be a compact Abelian group. Convolution map acting in L?(G) x

L?*(G) to W(G) is an n.p. product. In particularly, it is a norming product.

Proof. Let us consider h € Uy (). By using Theorem 34.15 in [29] it is seen that there

exist the functions f,g € L?>(G) such that i = f + g and these functions can be chosen in

such way that 1 > ||h]w = |f]3 = |g|3, that is (f,g) € U2y % Upz(g)- Thus, we get

Uw S #(Up2(g) * Up2(g))-

Now, let us show |[f«g|w = inf{|f'|2g'|2: /', §' € L*(G), f'g' = f g} forevery f, g €
L?*(G). By Theorem 34.14 given in [29], we have that | f = g|w < | f]2]gll>. Since the
inequality is obtained for all couples (f”, g') satisfying f =g = f’ = ¢, it follows that || f =
glw <inf{| f'|2lg'll2 : /', & € L*(G), f'xg’ = f*g}. For the converse inequality, consider
arbitrary elements f, g € L>(G). Then, h = f * g € W(G) and satisfies ||f]3 = |g|3 =
|f=glw = |h|w (see [29, Theorem 34.14 and 34.15]). Therefore, |Allw = | f *gllw =

|£12lgl2 and | =gl = inf{|f"|2lg'|2: £, 8" € L*(G), f' =" = f =g} is obtained for
every f, g€ L*(G). O

Hereafter, we deal with the bilinear maps B : L?(T) x L?(T) — Y, so we will consider the
n.p product * defined on L?(T) x L?(T) to the Wiener algebra W(T).

Theorem 5.1 Let T be the real line mod 27 and let Y be an arbitrary Banach space. For a
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bilinear continuous operator B : L?>(T) x L?(T) — Y, the following statements are equal;
i) The bilinear map B is zero product preserving, that is, B(f,g) =0if f+g =0,

ii) There exists a linear and continuous map 7 : W(T) — Y such that B =T o+, i.e. the

operator B is #-factorable.

iii) There is a constant K such that for all fi, f>, ..., fu, &1, &2, .-, 8n € L*(T), we have
n n

| 2.8l < K| D xie vl (5.2)
i=1 i=1

In this case, the following triangular diagram commutes;

LX(T) x L*(T) —=—Y

W(T).

Proof. Assume first B is zero product preserving. By Plancherel’s theorem it is known
that the linear map ~: £?(Z) — L*(T) is an isometric isomorphism, then we can define the

bilinear operator

E((an), (bn)) = B((“ﬂ)va (bn)v)a (an),(bn) € €2<Z)7 (5.3)
which clearly provides B ( f ,&) = B(f,g) and the commutativity of the diagram

L*(T) x L*(T) -2~ v, (5.4)

- A4

((Z) x £*(Z)

Now, we prove that there is a bounded linear map T:0 (Z) — Y such that the following

diagram commutes

(7)) x 2(Z) L=, (5.5)
Gl ;
N(z)

where © is the pointwise product of sequences.

For each N € N we define the linear map Ty : ¢(Z) — Y by

~

Tv((an)) := B((an), X-nnnz),  (an) € L(Z). (5.6)
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We claim that, since B is zero product preserving, we have that E( X{iys X{ j}) = 0 when

i # j. Indeed, since

0= -2y = iy Zoy = iy * 20y
the zero product preserving property of B together with (5.4) gives B ( iy X{ j}) =B (m, Z{T} ) =
0. Using this remark it is easy to see that

Tv((an) = 5 aB(xy xe)- (5.7)

ljl<N

Therefore

[7v (@) ]y < 2, Haﬁ(%{f}’%{f})HY

|ljI<N

=2, HB ajxjys %wH

ljI<N

<IBl . laixiplpwlxlee
ljI<N

=Bl Y lajl < Bl (@)1

ljlsN
and so fN is continuous; in fact the family {fN : N € N} is uniformly bounded, since
|Ti|| < |B| for all N € N. Moreover, for each fixed (a,) € £'(Z), (TN((an))) is a Cauchy
sequence in the Banach space Y, and so it is convergent. Indeed, for a given € > 0, there

exists k € N such that 3,y laj| < g/||B| for all N > k. By using (5.7) we have that for
allM > N >k,

|7t (an)) = T () ly = | D5 @By 20) = 25 aiBeuy 2l

ljl<M ljI<N
< D, [Blaxgaly
N<ljl<M
<1B| Y lajl <
N

Therefore by using Banach-Steinhaus theorem —the Uniform Boundedness Principle—

the map T : ¢(Z) — Y given by

T ((an)) == lim Ty ((an)), (5.8)

N—0

is linear and bounded. Finally, by the continuity of B and again (5.7) we have
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o0

B((an),(bn)) = >, aibB(xjy, %)

j=—w

— ]\}E;%O 2 ajbjg()({j}7%{j})
ljI<N

= 1im Ty ((azbn)) = T oO((an), (bn)),

N—
and so the commutativity of (5.5) follows.

On the other hand, given a linear map T:0 (Z) — Y we can use that the Wiener algebra
W(T) is isometrically isomorphic to ¢! (Z) by the Fourier transform to define an operator

T:W(T) —Y by

T(f):=T(f), feW(T). (5.9)

This gives the factorization

z) L.y, (5.10)

el
vj -

W(T)

Finally, the classical identity f;g — - that works in general for f,g e L! (T) allows to

write * = o(®o (" x"). Hence, we obtain the commutativity of the diagram

L2(T) x L2(T) —~ ((Z) x (Z) —2~ 1/(Z) —= W(T), (5.11)

and (ii) holds.

The equivalery of the statements (ii) and (iii) have already been seen in Lemma 3.1. The
zero product preserving property of the B is obvious by both the statements (ii) and (iii).

The proof is completed. 0

Actually, putting together the commutativity of diagrams (5.4), (5.5), (5.10) and (5.11)
we have proved that:

Corollary 5.1 Let T be the real line mod 27 and let Y be an arbitrary Banach space. For
the bilinear continuous operator B : L?>(T) x L?(T) — Y to be zero product preserving,
it is a necessary and sufficient condition that there exist linear and bilinear continuous

operators such that the following diagram commutes
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where ~and ~ stand for the Fourier and the Inverse Fourier transforms, respectively, and ©®
is the pointwise product of sequences.

Remark 5.2 Seeing the proof of our result we can give an explicit formula for the operator
T in terms of the classical Dirichlet kernel. We claim that the map 7' of the theorem is
given by

T(f) = lim B(f,Dy),

where Dy stands for the Dirichlet kernel which is given by the formula

Dy(x)= > &/,

ljl<N
Indeed just observe that

(X[—N7N]mZ)v = Z X[—MN]mZ(j)eijx = Dy (x),

|jl<oo
and use (5.9), (5.8), (5.6) and (5.3) to obtain
T(f) = T(f) = lim I(f) = lim B(F.x-wnjz)

dim B(f. (x-nnnz) ) = Jim B(f.Dy).

Corollary 5.2 A zero product preserving bilinear map B : L?(T) x L?(T) — Y is symmet-
ric, that is B(f,g) = B(g, f) for all f, g € L*(T).

Proof. Since the map B is zero product preserving, then there is a linear continuous map

T : W(T) — Y defined by B(f,g) = T o=(f,g). By the commutativity of the convolution
product we get B(f,g) = T(f +g) = T(g+ f) = B(g, f) 0
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5.1.1 Properties of =-Factorable Maps on Hilbert Spaces

Some direct consequences on the properties of zero product preserving bilinear maps
defined on Hilbert spaces of integrable functions can be fixed by using some classical
properties. We will analyze separately the main two cases that are reasonable to consider
in our context: when Y is a reflexive space, and when Y is a Banach space with the Schur
property. In the first one, —that regards topological properties— we will provide some
information in the case that B is weakly compact. In the second one it will be shown that
zero product preserving operators have good summability properties in case ¥ has some
suitable geometric properties. We will finish the section by showing an application of our

results to what is called generalized convolution.

5.1.1.1 Compactness Properties As in the pointwise product case, it is easily seen
that a zero product preserving map B is (weakly) compact if and only if the linear operator
T appearing in its factorization is (weakly) compact, due to the definition of product.

Indeed,

the zpp map B is (weakly) compact < B(U,» T * U, LZ(T)) is relatively (weakly) compact
<= T ox(Up ) x Upz(r)) is relatively (weakly) compact
<= T (Uyyr)) is relatively (weakly) compact

<= T is (weakly) compact.

Now, we assume that the bilinear map B : L?(T) x L?(T) — Y is weakly compact and we
will get some particular results. The following result shows that zero product preserving
operators satisfy a certain kind of Dunford—Pettis property.

Corollary 5.3 Let B: L>(T) x L?>(T) — Y be a zero product preserving weakly compact
bilinear map, and let A be an =-relatively weakly compact set (see Definition 3.6). Then

B(A) is relatively compact.

Moreover, if there is a =-relatively weakly compact bilinear operator B for Y, then Y is

finite dimensional.

Proof. This is just a consequence of the fact that ¢! has the Dunford—Pettis property.
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Since we have the factorization though ¢ I of B, and such factorization satisfies that

*(Upzr) x Upz(r)) = Uwqr),

we have that "(«(Upa(y x Upa(my)) = Up. Therefore, T o™ ¢' — Y is weakly compact.
Take an =-relatively weakly compact set A. We have that "(+A) is then a relatively weakly
compact of ¢'. The Dunford—Pettis property of ¢! gives then that T 0™ 0 o x(A) = T o

#(A) = B(A) is relatively compact. The last statement is then clear. O

This theorem can be improved for the case that Y has the Schur property. We will prove
that zero product preserving bilinear maps give a characterization for the space ¢' under
a bit more restrictive requirements on B.

Corollary 5.4 Let B: L>(T) x L?>(T) — Y be a zero product preserving weakly compact
bilinear map. Let Y be a Banach lattice with the Schur property. Then B (U 2y XU, Lz(T))

is a relatively compact set in Y.

Consequently, if B is norming product for Y, then Y is finite dimensional.

Proof. We use Theorem 2 in [71], that establishes that a Banach space Y has the Schur
property if and only if every weakly compact operator from ¢! to Y is compact. As we
shown in the proof of Corollary 5.3 we have that "(+(Upa(y x Upa(my)) = Upi. Therefore,
T o~ : ¢! - Y is weakly compact, and so the Schur property for Y gives that it is also

compact. Then obviously norming property of B implies that Y has finite dimension. [

Corollary 5.5 A Banach space Y is isomorphic to ¢! if and only if it admits an equiva-
lently zero product preserving bilinear map B : L>(T) x L?>(T) — Y such that B is a norm
preserving product from L?(T) x L?>(T) to ¥ (see the Definition 3.7 for equivalently zero

product preserving bilinear map).

Proof. The direct implication is obvious: if R : /! — Y is an isomorphism, just take B =
R oo =. For the converse implication, suppose that B satisfies the requirements. Now take
into account that we have a factorization of B as B =T o = as a consequence of Theorem
5.1. Since we also have that B(f,g) = 0 implies f g = 0, we have that T (and so the
operator T defined in the proof of Theorem 5.1) is injective. But B is a norm preserving

product, and so we have that

T(Up) < kUy S kB(Upa(py x Upzr)) = kT (Up).
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This gives the result. ]

5.1.1.2 Summability Properties For a zero product preserving bilinear map B : L*(T) x
Lz(T) — Y, the factorization given by Theorem 5.1 implies that for all f1,..., f,, g1,.--,8n €
L*(T),

ZHB fiugilly <k ZHfz Ea=k 2Dl

i=1j=1

where (aj-) and (blj) are the sequences of Fourier coefficients of f; and g;, respectively.

If we assign some conditions to the range space Y, we obtain improved summability
results. Firstly, we will consider Hilbert valued bilinear maps and this assumption will
give us an integral domination.

Theorem 5.2 If H is a Hilbert space and B : L>(T) x L>(T) — H is zero product preserv-

ing, then there is a constant k > 0 such that the following equivalent assertions hold.

(1) Forf17"'afn7 81,--,8n GLZ(T>’

2, [B(fsi)ln <k sup SGrgood =k sp X Ddibe

Byo i1 <PJ€zmi1]1

(5.12)

where (a;) and (b’j) are the sequences of Fourier coefficients of f; and g;, respec-

tively.

(ii) For f,ge L*(T),
. o0
|B(f.8)llu <kf [(f-& @)ldn(e) =kL | Y lajbio;ldn(e), (5.13)
o0 0 =1
where 7 is a regular probability measure on the unit ball of /% given by the Pietsch
Domination Theorem, and (a;) and (b;) are the sequences of Fourier coefficients

of f and g, respectively.

Proof. Since B is a zero product preserving map, by Corollary 5.1 it factors through the
linear operators 7 and 7 as B=T o+ and B=T 00" x . The linear operator T : /' — H is
a summing operator as a consequence of Grothendieck’s Theorem £ (¢!, H) = IT; (¢!, H).
The summability of the operator 7 implies the summability of the operator T, by the
isometry between the spaces £! and W(T). The first assertion is seen directly by being 1-

summing of the operator 7 and the definition of the summable operator. Second statement
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is a result of Pietsch’s Domination Theorem. ]

Secondly we will consider the space Y with a cotype-related property and as an ¢”-space,
respectively. If we assume Y is of cotype 2, then this implies Y to have Orlicz property
(see page 9 or [18, §8.9]). Thus, we get a domination for any zero product preserving
bilinear map with a range space that has Orlicz property as follows: there exists k > 0

such that for fi,..., f,81,...,gn € L*(T),

(S 80re0) " <k sup Hze,ﬁ &l
i=1

ge{—1,1
Corollary 5.6 Let 1 < p < oo, and take r satisfying 1/r =1 —[1/p—1/2|. For a zero
product preserving bilinear map B : L?(T) x L*(T) — ¢P, there exists a constant k > 0
such that for f1,..., f,81,...,gn € L*(T),

(N18ts0lin) " <k_sup. HZe,f, A=k s DD,
i=1

eic{— i=1 (@j)eByo j=1 j=1

where (aj-) and (b’j) are the sequences of Fourier coefficients of f; and g;, respectively.

Proof. 1t is easily seen by the factorization of the zero product preserving operator B

through the space ¢' and the following result that can be found found in [18, §34.11]

L1, 0P) =T1,1(¢',¢P) for 1 < p < oo and rsuch that 1/r=1—[1/p—1/2|.

This corollary provides the same result given in Theorem 5.2 for the case p = 2.

Finally, we will give a result that is a consequence of the classical Littlewood inequality,
that can be written as £(¢',¢473) = H4/371(£1,€4/3) (see [18, §34.12]): for a £*/3-valued

zero product preserving map B, we obtain that

(ZHB rali) " < sup > [G 0]

€Byo i1
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5.1.2 Applications of «-Factorable Maps Acting in Hilbert Spaces

We show some examples of zero product preserving bilinear operators concerning recent
developments in bilinear Fourier analysis.

Application 5.1 The first example is constructed by using translation invariant linear op-
erators, —sometimes called convolution operators or multipliers—: they are the opera-
tors that commute with translations. The bibliography on this topic is deep and wide, we
mention here only the classical paper by Cowling and Fournier [72]. Thus, consider an
operator T : L?(T) — L*(T) that satisfies that T f g = T(f + g). For example, we can
take a convolution operator T} : L?(T) — L?(T) with convolution kernel k € L?(T), that
is Tof := k+ f. Consider now the bilinear map By, : L>(T) x L*(T) — L*(T) defined by

convolution of By(-,-) := Ti(-) = (). Then we have

Bi(f,8) =Th(f)+g=(k«f)xg=k=(f+g) = Ti(f*g),

for f,g € L*(T). It is easily seen that the bilinear map By, is zero prouct preserving since
Bi(f,g) = 0if f=g=0. Therefore it has a linear factorization by Theorem 5.1, besides

the factorization map is 7.

Although we note that for the convolution map defined in products of spaces of continuous
functions, these arguments for translation invariant bilinear maps can already be found in
the paper by Edwards [73]; see the proof of Proposition 1 in this paper. If P(D) is a linear
partial differential operator, bilinear maps as P(D)(f = g) are also usual in applications of
the harmonic analysis.

Application 5.2 Consider a Banach space Z and a Bochner 2-integrable function & :
[0,27] — Z and the vector-valued-kernel bilinear operator B : L>(T) x L*(T) — Z defined
by

2T 2T
B(f.g) :=f0 fo () £(x — y)g(y)dyds. (5.14)

This bilinear map can be written as (f,g) — Sg” ®(x)(f = g)(x)dx, and then it is O-valued
when f g = 0. Therefore, by the factorization theorem of bilinear maps on Hilbert spaces
of integrable functions (Theorem 5.1), we get that B factors through a linear map T :
W(T) — Z such that B(f,g) = T(f *g) = T(h) = {o" ®(x)h(x) dx, where h = f +g.

Application 5.3 Let us explain some relations of our class with a genuine bilinear version
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of convolution, that is given by the so-called translation invariant bilinear operators. A
considerable effort has been made recently for understanding this class of maps in the
setting of the multilinear harmonic analysis; we refer to [74] and the references therein
for information on the topic. They are given —in the case we consider R as measurable
space and the operator is defined by a non-negative regular Borel measure yu— by the

formula

By (f,g) = JR fRf(x—y)g(x—Z)du(y,Z), f.g€ L*(R), (5.15)

(see [74] and the references therein). We consider the “compact group version” of this
definition with a slight modification. Take u = k(z)dydz for k € L*[0,27] and consider

the map

2T P21
Bi(f,g) :=JO X Sy —x)g(x—2)k(z) dydz
27
-, fy—x)(k=g)(x)dy, f,geL?[0,2x].

Using this, and if ¥ is a Z-valued Bochner 2-integrable function —Z is a Banach space—,

we can define the Z-valued kernel bilinear map by

27 27

By (f.8) = ) P(y)( ) fy—x)(k=g)(x)dx)dy, f,geL*[0,2x].

Clearly,
21

Byi(f.8) = . P(y) (k= (f+g))(v)dy,

and this is 0 if f'* g = 0. Thus, by the factorization theorem, By ; can be written as By ; =

Ty o+, where Ty 4 is a linear continuous map defined by Ty x(h) = Sén‘l’(y) (k=h)(y)dy

for all h e W([0,2x]).

Application 5.4 Let 1 < p < oo and consider the continuous bilinear map u : £7 x [y}

given by the pointwise product u((a;), (b;)) := (a;)®(b;) = (a;b;) € ¢*. We will use for this

example the u-convolution for spaces of Bochner integrable functions defined by Blasco

in [75] (see also [76, 77]). Following [75] and the notation in this paper, the u-convolution

can be defined as a bilinear map =, : L' (T, ¢?) x L}(T,¢¢") — L'(T,¢") by the formula
2 . . ds

0+ w(0) = | ul0e) ()T L (T (5.16)

for ¢ € L'(T,¢), w € L'(T,¢7"). Consider now to sequences of integrable functions
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(k;) and (v;) and assume that the linear maps Ty : L>(T) — L!(T,¢?) and T5 : L*(T) —
LY(T,¢r") given by

00] 0 ,
Ti(f)(w) = Y (ki = f)(w)e € £7, Ty(g)(w) := . (vi*g)(w)ei € 17,

i=1 i=

—_

are well-defined for all f,g € L?(T) and continuous. We consider the bilinear map B :=
+,0(Ty,T5) : L*(T) x L*>(T) — LY(T,Z). Let us show that it is zero product preserving.

Indeed, for a fixed couple of functions f,g € L?(T), we have

2, O S
B(f, g) (t) = f() (Z(ki *f) (eis) (v,' *g) (ei(t—s)) ei> ;l—ﬂ

i=1
-] " e ) ) €)Y e o1,

Thus, B(f,g) = >0y (ki=vi) = (f = g)e;, and so it is zero product preserving. As the
result of Theorem 5.1, B can be factor through the convolution and the linear map 7'(h) =
21 ((kixvi)=h)e.

Application 5.5 Generalized Convolution Let us finish the section by showing a remark
on a new construction that has shown to be useful for applications. It concerns to what
is called generalized convolution; the reader can find information about in [78, Definition
2.3] (see also the references in this paper for the original definitions). Let Uy, U, and U3 be
linear spaces (may be different) on the same field of scalars and let V be a commutative
algebra. Suppose that K; € L(U,,V), Ky € L(U,,V) and K3 € L(U3,V) are the linear
operators from Uj,U, and Us to V respectively.

Definition 5.1 (Definition 2.3 in [78]) A bilinear map = : U} x Uy — Us is called the
convolution with weight-element 6 —an element of the algebra V— for K3,K;,K> (in

that order) if the following identity holds:

K3(«(f,8)) = 6Ki1(f)K2(8), (5.17)

for any f € U; and g € U,. The equality above is called the factorization identity of the

convolution.

Fix U; = U, = L*(T), U3 =V = W(T) and K3 = id and consider = as the usual convolution
bilinear map. Let us write now a characterization of when a bilinear map defined as a
product in the algebra of two linear operators define a generalized convolution associated

to +. Indeed, as a consequence of Theorem 5.1 we directly obtain the following
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Corollary 5.7 Consider two operators S1,S : L?(T) — W(T) and § € W(T), and consider
the bilinear map B : L>(T) x L*(T) — W(T) given by B(-,-) = §S1(-)S2(-). Then the

following assertions are equivalent.
(i) B is zero product preserving.

(ii) There is an operator T : W(T) — W(T) such that = is a convolution with weight &
for T, S 15 Sz.

In this case, the factorization identity is T o= = B = 0 51 5.

5.2 Factorization for Bilinear Maps Defined on Banach Modules

In Section 2.2 we stated that the subalgebras LP(T) (1 < p < o), C(T), W(T) of the
algebra L'(T) are left Banach L!(T)-modules with respect to convolution for the circle
group T such that the space of trigonometric polynomials J(T) is a dense subspace in
these algebras. Thus implies that L' (T) « M(T) = M(T), where M(T) e {LP(T) (1<
p < 0),C (T),W(T)}. Moreover, a left bounded approximate identity of L!(T) is also
a left bounded approximate identity for them, i.e. limg |hg * g — g|| = 0, where (hgy) is
a left bounded approximate identity of L!(T). Therefore we obtain the following re-
mark.

Remark 5.3 As a consequence, we conclude that *(U;. (T) % UM(T)) = Upy(t), Where
M(T) e {LP(’I[‘) (I<p< oo),C(’]I‘),W(’]I‘)}, that is, convolution is a norming product
on L'(T) x M(T).

Now we will give a factorization theorem through the convolution product for the zero
product preserving bilinear maps acting on a Cartesian product of the above subalgebras.
Since we consider the nets called approximate identities that appear as substitute for the
unit element of a Banach algebra, we will need the generalization of Banach-Steinhaus
Theorem to nets.

Theorem 5.3 [79, pp. 141] Banach-Steinhaus Theorem for Nets Let E be a barrelled
space and F is locally convex. Let (Ay)qer be anetin £(E, F) such that for every x € E the
net (Agx)qer is bounded in F and converges to an element Agx € F. Then Ag € L(E,F).
Theorem 5.4 For the bilinear operator B : L' (T) x M(T) — ¥, where M(T) e {Lp (T)(1<

p <0),C(T), W(T) } the following statements are equivalent.
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i) B(f,g) =0 whenever f*g =0, i.e. B is zero product preserving.

ii) There is a linear continuous operator 7 : M(T) — Y such that B := T o+, that is, B

is =—factorable.

iii) There is a constant K such that for all fi, f,..., f, € L'(T) and g1, g2, ..., g, € M(T),

we have
n
i=1

As a consequence of this theorem, we have a factorization for B which satisfies the fol-

< K)ifi*gi . (5.18)
i—1

lowing scheme whenever any of the statements above holds;

LY(T) x M(T) —Z~v.

| A

M(T)

Proof. Lemma 3.1 shows that the factorization gives the inequality written in (ii1), and it is
obvious that (iii) implies (i). Then, we will only prove that every zero product preserving
bilinear operator has a factorization. Assume that the continuous bilinear operator B maps
zero the couples of functions whose convolution is equal to zero. Since T is a compact
topological group, the set of trigonometric polynomials J(T) is dense in both L!(T) and
M(T). A trigonometric polynomial on T is an expression of the form Zilv:_ v ane™, where
(a,) is a finite sequence of scalars. It is known that L'(T) has a bounded 1 approximate
identity such that its elements are positive definite trigonometric polynomials and it is
also an approximate identity for the subalgebra M(T). Let us denote it by (h¢y)ges. Since
hg is a trigonometric polynomial for each «, it can be written by the expression iy =

Z]]YZ_ N, (@) €', where h(a); is the jth Fourier coefficiant of /.

Assume that f and g are trigonometric polynomials. So, they can be written with the
N ; N, ; . o
forms f = ZkL N fie™ and g = dus_ N, g€, Tt is seen by the definition of the convo-

lution operation that e* s el — 0 if k # 1. Indeed,

. . 2” . .
o ezlx _ J ¢ ik(x—t) zltdt

27
f lktdt
0

27t
J cos(l — k)t +isin(l —k)tdt] =0

el
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It follows that

Ny

havf= > h(o)fie™ and hg+g =332y h(at)igee™
k=—N,

where Ny = min{Ny,Ny} and No = min{Ng, Ny}, respectively.

For a fixed «, let us define the bilinear operator By : L'(T) x M(T) — Y, By(f,g) =
B(hg = f,hg = g). Tt is easily seen that (By)qes is a net of well-defined, continuous bi-
linear operators. Using the zero product preserving property of the operator B, for the

trigonometric polynomials f and g, we get that

B(X(f7g) :B(ha*f»ha*g)
Ny Ny

=B( Z h(a)nfnei”t, Z h(a)kgkeikt)
n=—N k=—N,
N

= Z (h(a)n)zfngnB(eimaeim) (N = min{Ni,N})
n=—N
N

N
=B( 3, k@)™, 3 h(@fugne™)
n=—N

n=—N

:B(haaha*f*g)~

Now, we show the same equality for elements that are not trigonometric polynomials.
Due to density, for each element f € L' (T) and g € M(T), there are sequences (s,)°, and
(rn)ff:l of trigonometric polynomials such that f = lim,_,« s, and g = lim,_,+ r,. Then

we obtain that

Ba(fm?) = B(X<nli_)nolosn7 lim rn) = lim Ba(snarn)

n—ao0 n—aoo

= lim B(ha *Sn,ha*rn)

n—ao0

= llm B(l’la,ha *Sn*l’n).
n—oo

It is known that, continuous multilinear operators are separately continuous. By using
the separately continuity of the bilinear operators B and * defined on L' (T) x M(T), and

commutativity of the convolution we obtain
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Ba(fvé’) = nh_)rng(h(X;ha *Sn*rn)
:B(ha, llm ha*sn*rn)
n—oo0
:B(ha, llm Sn*rn*ha)
n—o0
— B(hg, lim s, + lim ry % g))
n—00 n—o0

= B(ho, f+8*ha) = B(ho,ha * f+g).
Therefore, the values of the bilinear operator B, defined above can be written as By (f,g) =
B(hg,hq + f+g) forevery f e L'(T) and g e M(T).

Now, define the map Ty : M(T) — Y as Ty (v) = Ta(f *g) = Ba(f,g) for each o € I. The

map Ty, is well-defined, linear, continuous operator. Indeed, for f*g; = f2 * g2,
To(f1+81) = Ba(f1,81) = B(ha,ha * f1 #81) = B(ha,ho * 2+ 82) = Ta(f2* 82)-

Linearity of the map 7 is seen by the bilinearity of the operator B and the convolution

product. Last we will show the continuity of 7. Using the continuity of the operator B,

the following holds
sup | Ta(f &)y = sup |Ba(f,8)ly < 0.
fxgelyr) (f:8)€UL1 (1) % Un(r)

Consequently, we obtain a net of continuous linear operators (T )qes- Besides,
|Ta (/= &)y = [B(has ha = [+ @)lly < |Bl|hellpr (v ha = S+ &laar)-

Let us say |hg = [+ g|y(T) = ca, then it is seen that (To(f * g))aer is @ bounded net for
each f x g such that |Ty(f = g)|ly < cq. Define the pointwise limit operator T'(f = g) :=
limg To (f = g). Itis clearly well-defined and linear. Also, for f«ge M(T),

T(f+g) =limTo(f+g) = limBy(f,8)
o
= B(limhq « f,limho + g) = B(f,8).
It follows that, the net (Ty(f * g))aer converges to T(f = g) = B(f,g) € Y. Since normed

spaces are locally convex and Banach spaces are barreled, the requirements of the Banach-
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Steinhaus Theorem for nets are satisfied Thus, it is obtained that the limit operator 7 is
continuous. Therefore, a factorization for the bilinear operator B is found as B(f,g) =

Tox(f,g) =T(f*g). This completes the proof. O

Remark 5.4 Since there is not a unit element in L'(T), the concept of approximate
identity comes into prominence. There are some well-known important examples of
approximate identities in L'(T) such as Fejér Kernel and Poisson Kernel defined by
Fa(x) = Xjj1<n (1 — |,]1—|> ¢ and P(r,x) = Y.rlilel’*, respectively. These are also posi-
tive summability kernels (see [26, Def. 2.2.]) that give rise to an approximate identity.
F + f and p = f give Cesaro and Abel means of Fourier series of a function f and they are
related with some important partial differential equations. One of these important kernels
can be used in our factorization theorem. A more detailed account on summability kernels
may be found in [26].

Corollary 5.8 Any zero product preserving bilinear map B : L' (T) x L' (T) — Y satisfies
the symmetry condition, that is B(f,g) = B(g, f) for all f, ge L'(T).

Proof. Since the map B is zero product preserving, then there is a linear continuous map
T : L'(T) — Y defined by B(f,g) = T o =(f,g). By the commutativity of the convolution
product we get the symmetry; B(f,g) =T (f=g) =T(g*f) = B(g, f). O

5.2.1 Properties of =-Factorable Operators on Banach Modules

In this section, we investigate some compactness and summability properties for the
x—factorable operators using some classical properties and results, such as Grothendieck’s

theorem or cotype-related properties.

5.2.1.1 Summability Properties Now we analyze some direct summability properties
of *—factorable bilinear operators in two particular cases: when Y is a Hilbert space and
when Y has some cotype-related properties.

Corollary 5.9 Let Y be a Hilbert space H and let B: L' (T) x W(T) — Y be a zero product
preserving operator, where W(T) denotes the Wiener algebra. Then the operator B factors
through an absolutely summing operator T as B = T o”o *, where " denotes the Fourier
transform. As a consequence, in this case there is a constant ¢ > 0 such that the following

statements hold.
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(i) For fi,.... fu € L'(T), g1,...,ga € W(T),

ZHB gl <c sup SKFEl—c s YIS da

€Byo ;1 (@j)eByo j=1 j=1

(5.19)

where (aj.) is the sequence of Fourier coefficients of the convolution product f; * g;

fori=1,2,...,n.
(ii) For f e L'(T) and g e W(T),
o [e¢]
ol <c | Kieolanio)—c [ Y aoldne), (5.20)
where 7 is a regular probability measure on the unit ball of /* given by the Pietsch’s

Domination Theorem, and (a;) is the sequence of Fourier coefficients of the con-

volution product f = g.

Proof. Assume that B is zero product preserving. By Theorem 5.4 we know that B has
a factorization B = T o =. Using the fact that W(T) is isometrically isomorphic to the
sequence space ¢! (Z) by the Fourier transform, we can define the linear continuous oper-

ator

~ —

T((an)) == T((an)), (an) € £'(Z),

which satisfies T(f/;g) =Tof+g)=T(f+g) = B(f,g) and the commutativity of the
diagram

T) x W(T

/
/

W(T)
N(z)
One of the well-known instances of Grothendieck’s Theorem states that

£(£1(Z>7H) = H1(£1<Z)7H)'

Using this, we obtain that Tis a summing operator. The statements (i) and (ii) can be
easily seen as a consequence of the definition of summing operator and the Pietsch’s

Domination Theorem. O]

Corollary 5.10 Let M(T) be L'(T) or C(T), and let Y be a Hilbert space H. Consider
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the zero product preserving bilinear continuous map B : L!(T) x M(T) — H. Then the
operator B factors through an absolutely 2-summing operator. As a consequence, there is

a constant ¢ > 0 such that the following statements hold.

(1) Forflw";fn el (T)’ 815---:8n EM(T)’

n 12 n 1/2
(Mletgii) “<c s (Xlofieal’) (5.21)
i=1 by (my* =1
(ii) For fe L'(T) and g e M(T),
) 1/2
Broln<c(|  [Kresolane) ", (5.22)
M(T)*

where 1) is a regular probability measure on the unit ball of M(T)* given by Pietsch’s

Domination Theorem.

Proof. By applying Grothendieck’s Theorem it can be easily seen that £(L'(T),H) =
II,(LY(T),H) and £ (C(T),H) = I,(C(T),H). Therefore, we get the desired result from

definition of summable operator and Pietsch’s Domination Theorem. 0

Finally, consider a Banach space Y which is of cotype 2. Thus, it has the Orlicz property
(see page 9 or [18, §8.9]). It follows that for any —factorable bilinear map B : L!(T) x

M(T) — Y, a domination is obtained by the assumption Y is of cotype 2:

(S1ia) " <e sup [Saties)
=1 g=+17=]

M(T)

for fi,...,fne LY(T), g1,...,gn € M(T).

Corollary 5.11 Let us assume that B : L!(T) x C(T) — Y is zero product preserving and
the range space Y is of cotype 2. Then for some 1 < p < oo there exists a probability
measure i € C(T)* with the property that for a given € > 0 we can find an N(€) > 0 such
that for all (f,g) € L'(T) x C(T)

1/
sl <N@)( | 1r-sran) " + el glee,

Proof. By Theorem 5.4, the operator B has a factorization B := T o . It is known that
any linear map from C(K) —K is compact Hausdorff space— to a Banach space being of
cotype 2 is 2-summing; see [15, Theorem 11.14]. Since the Banach space Y is of cotype 2

and T is compact, the linear operator 7 : C(T) — Y is 2-summing. Therefore, it is weakly
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compact. Theorem 15.2 in [15] gives a characterization of weakly compact operators and
states that a linear operator 7' : C(T) — Y is weakly compact if and only if there exists
a probability measure p € C(T)* with the property that for a given € > 0 we can find an
N(€) > 0 such that for all h e C(T)

1/p
ety <) ( | rdu) " + elblec
Since h = f« g for (f,g) € L'(T) x C(T), we get

1/
IBr 9l < @) ( | 1r+sran) " + el gle, s

In the next corollary we use the definition of equivalently zero product preserving map,
see Definition 3.7 in page 30.

Corollary 5.12 A Banach space Y is isomorphic to the Banach space M(T), where M(T) €
{Lp (T)(1<p<w),C(T), W(']I‘)} if and only if there exists an equivalently zero product
preserving norming bilinear map B : L' (T) x M(T) — Y.

Proof. Tf Y is isomorphic to the Banach space M(T) by the isomorphism S : M(T) — Y,
then we obtain an equivalently zero product preserving norming bilinear map by B = So =.
For the converse, let us consider the equivalently zero product preserving norming bilinear
map B. By Theorem 5.4, we have a factorization such that the linear operator T is injective

since f *g = 0 whenever B(f,g) = 0. Using the norming property of B, we get

T(UM('JI‘)) c kUy < kB(ULl('H‘) X UM(T)) = kT(UM(T)). ]

5.2.1.2 Compactness Properties Similarly to the pointwise product case, it is easily
seen that a zero product preserving map B is (weakly) compact if and only if the linear
operator T appearing in its factorization is (weakly) compact, due to the definition of

product. Indeed,

the zpp map B is (weakly) compact <= B(U,. ) * U, M(T)) is relatively (weakly) compact
== T o*(Upz () x Up(r)) is relatively (weakly) compact
— T(UM(T)) is relatively (weakly) compact

<= T is (weakly) compact.

Theorem 5.5 A zero product preserving bilinear operator B : L' (T) x M(T) — Y satisfy
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the following statements.
(i) The range set B(L!(T) x M(T)) is a linear space.
(i) B(Up(ry x Up(T)) 1s a convex set.

(iii) B(Up. Ty *X U, Lz(T)) is relatively weakly compact, that is, B is weakly compact oper-

ator.

(iv) LetY = &, where 1 <s <2, B(Upi(my x Upz(r)) is relatively compact.

Proof. Since the given bilinear operator is zero product preserving, by Theorem 5.4, it is

«—factorable by the linear operator 7 : M(T) — Y.

(i) By the «—factorability of B and norming property of the convolution product, B(L!' (T) x
M(T)) = T(L'(T) « M(T)) = T(M(T)). That shows that the range of B is a range of a

linear map, therefore it is a linear space.

(i1) Since Up 1 () *Upy() = Upg(r) and Uy ry is a convex set, the image B(Up: (T) X UM(T)) =

T (Up(T)) is also convex.

(iii) Since L*(T) is a reflexive space, the linear operator T : L?>(T) — Y is weakly compact.
By the factorization, it follows that B(Upi(y x Upz(ry) = T (Upir) * Uz (1)) = T (Up2(my)

is relatively weakly compact.

(iv) By Plancherel’s Theorem it is well-known that the Fourier transform ~ is a linear
isometry of L?(T) onto /?(7Z), and so the inverse Fourier transform ~ is a linear isometry
of /2(Z) onto L*(T). Since we have a factorization of B through L?(T) by the convolution
product, we get that T o™: /> — /* is a linear continuous operator. Thus this linear operator
is compact by Pitt’s Theorem (see page 8). Therefore, T o 0o o x(Uj, (T) % ULz(T)) =

T o o Upa(qpy =T o oUp ) = B(Upi(qy x Upz (1)) is relatively compact. O

Corollary 5.13 Let M(T) be either the whole algebra L' (T) or the subalgebra C(T) and B
is a zero product preserving bilinear operator. Let the set A = L!(T) x M(T) be *- weakly

compact (see Definition 3.6), then B(A) is norm compact.

Proof. We obtain this as a consequence of the Dunford—Pettis property of the spaces
L'(T) and C(T). The zero product preserving bilinear operator B is +—factorable. Since
«(A) is weakly compact, B(A) = T o=(A) is weakly compact. Using Dunford—Pettis prop-

erty, we get compactness of the set B(A). O
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5.2.2 Integral Representation for «-Factorable Maps

Since there is an identification between functions on the circle group T and 27-periodic
functions on R, the measure on T is defined due to this identification. The interval [0,27)
is considered as a model of T and the Lebesgue measure on T is the restriction of the
Lebesgue measure on R to [0,27) (see [26, Chapter 1]). Moreover, the circle group T is
Hausdorft.

From this point of view, we can establish integral representations for *-factorable bilinear
maps defined on Banach modules. We will need some notions and results related with
vector measures, so we refer to the reader Section 4.1.3.

Theorem 5.6 Consider a Banach space-valued bilinear continuous map B : L' (T) x L”(T) —

E, where 1 < p < o. Then the following statements imply each other.

(i) For any finite subsets (f;)7_, = L'(T) and (g;)7_, = LP(T),
- 1/p £
(B lBthell”) " <)X !ﬁ*giV’)l/”HU(T). (5.23)
i=1 i=1

(ii) There exist a norm one multiplication operator M), : LP(T) — LP(T) and a linear

operator S : LP(T) — E such that B factors as B = So M), o =, that is,

L}(T) x LP(T) —= E.

J s

LPzT) M (T

(iii) There is an E-valued vector measure v such that L?(T) < L!(v), and

B(f,g) = ﬁr(f(f) e g(0) h(6)dV (1), (5.24)

where h defines a multiplication operator M, : L”(T) — L”(T).

Proof. Firstly, let us show (i) = (ii). The inequality given in (i) implies the =-factorability
of B. Thus, by Theorem 5.4, B factors through the linear map 7 : LP(T) — E. This linear
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map satisfies the following by the hypothesis for (f;)7_, L'(T) and (gi)_, < LP(T);
(2l e (lseei)],

This gives the p-concavity of the linear map 7. The Corollary 5 given in [63] states, as
an application of Maurey-Rosenthal theorem, that for a p-concave linear operator with a
p-convex order continuous domain there is a norm one multiplication operator M), such
that the linear operator factors through this multiplication operator. Since LP(T) is p-
convex order continuous and 7' is p-concave, then there is a multiplication operator M}, :
LY(T) «LP(T)(= LP(T)) — LP(T) and a linear continuous map S : L”(T) — E such that

T := SoMj,. Consequently, we get the factorization B = So M, o *.

(ii)=(iii) Since L?(T) is order continuous, the linear map S : L?(T) — E defines a count-
ably additive vector measure V(A) = S(xa), where A € B(T). We have that L (T) —
L'(v) by the optimality of the space L'(v). Since the optimal extension of S is the inte-

gral operator

1y(s) = | sav.

for s € L'(v), the following commutative diagram is obtained:

LY(T) x LP(T) —2 E
va(qr) ............... M s LPE(T);) L'(v).

This result can be found in [23, Th.4.14]. It is well-known that the space L!(v) is a Banach
function space over a Rybakov measure 1 for v, and ) « dt because of the continuity of
T; we can change then the inclusion by the identification of classes [ f]4 — [f]y, what
is sometimes called an inclusion/quotient map, and the factorization is still preserved.

Composing all these, we obtain

B(f,g) = j (F(1) » (1) A1) dV (2),

T

for all (f,g) e L'(T) x LP(T).
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(iii) = (i) by a direct computation, we get for all (f;)"_, = L'(T) and (g;)"_, = L*(T),

(Rlstaalz) " < (Slieebliy) " < (Sl
i=1 i i=1

ST T
i=1

N

LP(T)

As a result, it is easily seen that any #-factorable bilinear map B : L'(T) x L'(T) — E
has an integral representation B(f,g) = §r(f = g)hdt, where h € L*(dt,E), if E has the
Radon-Nikodym property. Such a representation can be given for a =-factorable bilinear
map acting in L' (T) x L!(T) with an arbitrary range space under the assumption of weak
compactness.

Theorem 5.7 Any weakly compact *-factorable bilinear continuous map B : L'(T) x
LY(T) — E has an integral representation B(f,g) = §;(f *g)hdt where h € L(dt,E)
for all f,ge L'(T).

Proof. Since B is -factorable, it has linear continuous factorization operator T : L' (T) —
E defined as B(f,g) = T(f =g). T is weakly compact since B is weakly compact. By the
strong version of Dunford—Pettis Theorem, the weakly compact linear operator 7" has an
integral representation such that 7'(f ST f*g)hdt ([18, Appendix C]). This gives

the desired representation. [

We will finish the section by providing an integral representation for weakly compact
operators acting in L' (T) x C(T).

Theorem 5.8 A Banach space-valued =-factorable bilinear operator B : L! (T) xC(T)—E
is weakly compact if and only if B has the integral representation B(f,g ST f=g)dv
for f € L'(T) and g € C(T), where v is a countably additive E-valued vector measure on

the Borel sets in T.

Proof. By the =-factorability of the map B, it has a linear factorization through the space
C(T). By the norming property of *, B is weakly compact if and only if 7 is so. Since
the Banach-valued bounded linear operator 7T is weakly compact if and only if there can
be found a countably additive E-valued vector measure v on the Borel sets in T such that

B(f,g) = = {(f+g)dv forall f+g=heC(T) (see [21, Section VI.2]). O
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5.2.3 Applications of «-Factorable Operators

We finish the section by giving some applications for integral transforms and Hilbert-
Schmidt integral operators.

Application 5.6 «—Factorable Integral Operator Our first application is related to the
integral transformations that have an important role in many fields such as optics and sig-
nal processing, due to their usefulness to solve problems in linear differential equations.
Fourier, Mellin and Laplace transforms are some of these well known integral transfor-
mations. Let us give a general definition for them. Consider function spaces X (i) and
Y(v) —where u and v are o-finite measure spaces—, and let I denote an integral trans-
formation. The integral transform of a function f(r) with respect to the kernel K (x, o) is

given by the equation

I(f) = fgf(x)K(x, o)dx (5.25)

(for more information see [80, Section 1]). All integral transforms satisfy the convolu-
tion property, that states that the integral transform of convolution of two functions are
equal to the product of their transforms. Namely, integral transforms satisfy the following

equality;

I(f+g) =1()1(g)
for all functions f, g in the corresponding domain.

Consider an integral transformation / : L' (T) — ¥ and let B: L'(T) x M(T) — Y given
by B(f,g) = I(f)I(g), where M(T) {LP(’]I‘) (1< p <), C(T), W(T) } Then, the map
B is a zero product preserving operator if and only if B satisfies a factorization through a
linear operator 7 : M(T) — Y such that T(f »g) = I(f = g) for all f, g in the corresponding
domains. That is, B factors through an integral transform.

Application 5.7 Representations For Hilbert-Schmidt Operators By Factorable Maps
Let us show now some applications of the representations for Hilbert-Schmidt operators.

Let T € L(H). Recall that T is called a Hilbert-Schmidt operator if for some complete or-
thonormal system (e;);e; = H the sum ;|| Te;|? is convergent. The space of all Hilbert-

Schmidt operators defined on H is denoted by HS(H ); see [81, Definition 1.b.14].
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Theorem 5.9 [81, Proposition 1.b.15] Let (Q, 1) be a finite measure space and H =
L*(Q,u), and consider a linear operator T : H — H. Then T € HS(H) if and only if
there is a kernel k € L2(Q?, u?) such that

Tf(x)= fgk(x,y)f(y)d,u(y), feH, x u—ae. (5.26)

Theorem 5.10 (Mercer theorem) [81, Theorem 3.a.1] Let (, ) be a finite measure
space and k € L*(Q?, u?) be a kernel such that Ty : L>(Q, u) — L*(Q, i) is positive, that
is, {Tx(f), f)2 = O for all f. Then the eigenvalues (A, (7)) of Ty are absolutely summable.
Besides the eigenfunctions f, € L?(Q, i) of T}, associated with those n such that A,,(7}) #

0, and normalized by | f, |2 = 1, actually belong to L*(Q, i) with supy,| f,|w < o

x3) = 3 AT ) ()

neN

holds u?-a.e., where the series converges absolutely and uniformly u>-a.e.

By Remark 5.3, we know that every function f € L?>(T) can be written as a convolution
product of the functions % and g such that 7 € L'(T) and g € L>(T). By using this, we
obtain the following.
Corollary 5.14 Let T : L>(T) — L*(T). T € HS(L*(T)) if and only if there is a kernel
k € L?(T?) such that

T(h+g)(x ” (e 3)h(y — 2)g(2)di ()duy)
. ka<x,y><h*g><y>du<y>

forall he L'(T) and g € L*>(T).

Corollary 5.15 Consider the elements appearing in Mercer Theorem and assume that its
requirements are satisfied. Let (f,).., be the sequence of the eigenvectors of 7, and
suppose that each of them can be written as the convolution product f,, = h,, = g,, n € N.
Then the series expansion of the kernel can be written by using the convolution product

as follow.

= 3 2T 8) ) i+ 0) ()

neN

Recall that a bounded linear map T : H — H; between Hilbert spaces is called nonnega-
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tive if (Tf, f), =0 forall feHj[82, pp. 24]. It is well-known that nonnegative operators
are self adjoint, i.e. 7* = T for a nonnegtive 7.

Corollary 5.16 Consider a compact zero product preserving bilinear operator B : L' (T) x
L?(T) — L*(T) such that (B(f,g),f*g)» = 0forall fe L'(T), g€ L*(T). Then B has a

uniformly convergent series representation.

Proof. By applying Theorem 5.4 we obtain a factorization operator 7' for B such that
T(f=+g):=B(f,g). Due to the norming property of the convolution it is seen that T is
compact if and only if the operator B is compact. Since the condition (B(f,g),f*g)» =0
is given, it follows that (T'(f = g), f = g)» = 0. This shows that T is a nonnegative self-
adjoint operator. By the Spectral Theorem (see [82, pp. 24]), it follows that a linear,
self-adjoint, compact operator admits a uniformly convergent representation such that
T =3 enn(T){., 0n)Pn, where A,’s and ¢,’s are eigenvalues and eigenvectors of T,
respectively. By using L' (T) « L?(T) = L?(T), it is seen that every eigenvector ¢, allows
a factorization such that ¢, = a,, = b,, where a, € L' (T), b, € L>(T). Then we obtain that

B(f.8) = Ynen An(T){f *8,an *bu)(an *by) for all (f,g) € L'(T) x L*(T). H

It is clear that every linear operator T : L?(T) — L?(T) gives rise to a continuous bilinear
operator B : L' (T) x L>(T) — L?*(T) defined by T(f) = B(h,g), where f = h+g. More-

over, if this linear operator is a Hilbert-Schmidt operator, then B is an integral operator.
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CHAPTER 6

RESULTS AND DISCUSSION

We obtained that several developments in functional analysis follow the same idea: a
factorization through a canonical product. We find this with the convolution product, the

pointwise product for function spaces, the Banach algebra product.

The characterizations in all these cases are similar. We have an algebraic condition as
being a zero preserving map, that is equivalent to an summability inequality, and this can

be written as a factorization theorem through the product and a linear map.

The summability characterization allows to relate bilinear maps with p-summing opera-
tors, what give a lot of information about the bilinear maps. We show some applications

in this direction.

Factorization allows to obtain a lot of topological information by means of the results
that we know for the linear factor. Compactness and weak compactness are easily ob-

tained.

Summing up all what we got, we found a complete description of the class of prod-
uct factorable equations. Applications to integral and kernel bilinear operators are also

given.
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APPENDIX-A

BASIC DEFINITIONS

A-1 Weak Topology

The weak topology or the topology o (X,X*) of a normed space X is the induced topology
by the topological dual space X* of X. That is the smallest topology for the space provided

that every functional in the dual space is continuous [14].

A base for the weak topology of the space X is the collection of the all sets of the form
{veX:|filu—v)| <eg, fieX* i=1,2,..,n}, where u € X and n is a positive finite
integer.

If a topological property is satisfied with respect to the weak topology, it is said to be
a weak property or to hold weakly. For example, we say a sequence (x;)72, is weakly

convergent to x € X —denoted by x; —" x— if it converges with respect to the topology

o (X,X*) and a set A in X is weakly compact if it is compact in the &(X,X*).

A-2 Vector Lattices

Let (A,<) be an ordered set. A is called lattice if a least upper bound denoted by x v y =
sup(x,y) and a greatest lower bound denoted by x A y = inf(x,y) exist for any x,y € A [83,

Section 1.1].

An ordered set A is called order bounded if it is bounded both above and below [83,

Section 1.1].

A real vector space A equipped with an order < is called ordered vector space if it satisfies

translation invariance and positive homogeneity [83, Section 1.1].
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In addition, if (E,<) is an ordered vector lattice that order structure is lattice, then E is

called Riesz space [83, Section 1.1].
The positive cone E™ of a Riesz space E is the set {x€ E : x > 0} [19, Section 1.a].

The elements x, y € E are said to be disjoint, written x 1y, if |x| A [y| = 0, where |x|

denotes the absolute value of x € E defined by |x| = x v (—x) [83, Section 1.1].

A Riesz space is said to be Archimedean if x < 0 holds whenever the set {nx : n € N} is
bounded from above [83, Definition 1.1.7(i)]. Function spaces are important examples of

Archimedean vector lattices.

A Riesz space is called Dedekind complete if every non-empty order bounded set has a
supremum and an infimum [83, Definition 1.1.7(ii)].

0]

Let E be a Riesz space. A sequence (x,),",

e E converges u-uniformly to an element x
in E if for given € > 0 there is an N € N such that |x, — x| < €u for all n > N. It is said
that the sequence (x,),~, € E converges relatively uniformly to x if (x,),”, converges

u-uniformly to x for some u € E™ [84, Theorem 16.2].

A subset A of the Riesz space E is called (relatively) uniformly closed if for every rela-
tively uniformly convergent sequence in A, all relatively uniform limits of the sequence
are in A. The empty set and E itself are uniformly closed, and finite unions and arbitrary
intersections of uniformly closed sets are uniformly closed. Thus, the uniformly closed
sets are exactly the closed sets of a certain topology in E, the relatively uniform topology

[84, p.84].

For an e in E™, the sequence (x,);° , in E is called an e-uniform Cauchy sequence when-
ever, for any € > 0, |x,, — x,| < €e for every m,n = N. The Riesz space E is called uni-
formly complete if, for every e in E*, every e-uniform Cauchy sequence has an e-uniform

limit [84, p.248].

Let E be a Riesz space with with the norm ||.||. E is called a Banach lattice if the norm |. |
is a lattice norm, that is |x| < |y| implies ||x| < |y|, and E is complete with respect to this

norm [83, Definition 1.1.5].

For a set (x;);ea in the Banach lattice E, \/;_, x; or Lu.b. (x;);ca denote the unique element

x € E provided

o x> x;foreveryie A
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e foraye E,y > xwhenevery > x; forallie A

A Banach lattice is said to be order complete (0-order complete) whenever every order
bounded set (sequence) has a least upper bound [19, Definition 1.a.3.]. A Banach lattice
E is order continuous (G-order continuous) if downward directed sets (sequences) con-
verging to 0 converge also in the norm [19, Definition 1.a.6]. For a Banach lattice E, the

following implications hold (This result can be found in [19, Proposition 1.a.8.]);
E is o-complete and 6-0.c. & FEiso.c. < E iscomplete and o.c.
Any Kothe function space is a Banach lattice with the order defined by f > 0 if f(x) >0

a.e. and this lattice is order complete [19, Section 1.b]. Thus, it is seen that a B.f.s. is o.c.

if and only if it is 0-o.c.

Let E and F be Riesz spaces. A linear continuous map 7 : E — F is called lattice homo-
morphism if

Txvy) =TxvTyandT(xAy) =Tx ATy

for all x,y € E [83, Definition 1.3.10].

A linear operator T : X — Y between Archimedean Riesz spaces is called positive if x > 0
implies Tx > 0 and is called regular if it can be written as a difference of two positive

linear maps [83, Definition 1.3.1]. The operator T is called increasing if x > y implies

Tx > Ty, so T preserves the order.

A linear map defined on a vector lattice to a vector lattice is called order bounded if it

maps order bounded set to an order bounded set.

Let X,Y,Z be Riesz spaces. A bilinear map B : X x Y — Z is called Riesz bimorphism
(respectively, bipositive) if the maps

foranyye Y™, x+— B(x,y)(x€X)

foranyxe X, y~—— B(x,y)(yeY)

are homomorphism (respectively, positive) [7]. Note that the term bipositive was used by
Fremlin in the paper [3] and it is known that a bilinear map is bipositive if and only if it
is positive in the sense that B(x,y) > 0 for all x€ X* and y € YT [7]. Analogously, the
bilinear map B : X x Y — Z is called regular if it can be written as a difference of two

positive bilinear maps [7]. Finally, recall that a bilinear map B: X x Y — Z is said to be
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orthoregular if it is difference of two positive orthosymmetric bilinear map [5].

A commutator [, |5 of a bilinear map B : X x X — Z is defined by [x,y]|p = B(x,y) — B(y,x)
for all x,y e X.

A-3 Banach Algebras

A linear space A over the field K is called algebra with an associative multiplication
x,y — xy of A x A to A, called product, such that it is distibutive and satisfies for all

x,yeAand a e K

o (xy) = x(ay) = (ax)y.

Moreover, if the algebra A is a Banach space endowed with the norm |.|, then A is said
to Banach algebra whenever it holds |xy| = |x||y| for all x,y € A. For definitions, see

Chapter 1 in [85].

Let A be a normed algebra with norm |.| and L be a normed linear space with norm ||.]|
over the same field K. L is said to be a normed left A-module with the bilinear map

A x L — L defined by (a,l) — al provided the followings
i) ai(azl) = (a1a2)l (a1,ax€A,l€L);
ii) there exists a positive constant K such that ||al||| < K||a|||l||| (a€A,l€L).

The normed right A-module is defined similarly, and the space L is called A-bimodule if
it is both right and left A-module. A normed left (right) A-module is called a Banach
left (right) A-module if it is complete as a normed linear space. These definitions can be

found in [85, §9].

A Banach algebra A is said to be unital, if there is a (unique) element e € A, called unit
(or identity) element, such that a = ae = ea for every a € A [85, Definition 1]. Some
of the non-unital Banach algebras have a net called approximate identity that deals as a
substitute for a unit element. Namely, a net (e)),c; in a non-unital Banach algebra A
is called left (right) approximate identity if (e)x);c;((xe))er) converges to x for every
x € A. The left (right) approximate identity (e, )7 is said to be bounded —by bound k- if

there is a positive constant k such that |e; | < k [85, §11].

A linear map T : E — F between Banach algebras is called algebra homomorphism if
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T (xy) = T (x)T (y) holds for every x,y € E [85, Chapter 1].

Finally, note that a C*-algebra is a closed algebra of bounded linear operators defined on
a Hilbert space H such that the operation of taking adjoints of operators is closed [85,

§12].
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APPENDIX-B

TENSOR PRODUCT AND LINEARIZATION

In this appendix, we will explain tensor products and how they act as a "’linearizing space”

for bilinear maps.

B-1 Tensor Product of Banach Spaces

The tensor product X ®Y of the Banach spaces X and Y is a space of linear functionals
on B(X x Y,K) that is constructed as the following way; for the elements x€ X and ye Y

let us define the map
x®y:B(X xY,K) > K
by

(x@y)y =y, x®y) = y(x,y)

for each bilinear functional y on X x Y. The form x®y given by the evaluation at the

point (x,y) is called an elementary tensor [86, Chapter 1].

The subspace of the dual B(X x Y,K)* spanned by the elementary tensors {x®y : x €
X,y e Y} is called the tensor product of X, Y and is denoted by X ® Y. The elements of
the space X ®Y is called tensors and a typical tensor u € X ® Y has the form
n
= A ®yi,
i=1

where ne N, (4)7_, € K, (x;)’_, € X, (vi)"_, €Y [86, Chapter 1]. Using the properties of

i= i=1
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elementary tensors, representation of a tensor u can be rewritten in the form
n
u= Z Xi QYy;.
i=1

For the detailed theory of tensor product we refer to [13] and [86].
A Linearization Tool for Bilinear Maps

Since it is sometimes difficult to deal with bilinear maps the answer of whether we can
linearize the bilinear maps comes into prominence. This is possible by the tensor product
space X ®Y of the X, Y. The philosophy of tensor products is that: to exchange bilinear

maps on a given space with simpler linear maps on a more complicated space.

For the Banach spaces X, Y we consider the special bilinear map
(x,y) eX xY > xRy X®Y

behaves like a universal bilinear map, that is, every other bilinear map on X x Y can be

factored through this space via a linear mapping [86, Chapter 1].

The Proposition 1.4 in [86] states that for every bilinear mapping B: X xY — Z there is a

unique linear map By, : X ® Y — Z defined by
n n
BL(ZXI'@)’i) = > B(xi,yi).
i=1 i=1

The correspondence B «<— B, identifies an isomorphism between the vector spaces B(X x
Y,Z) and L(X ®Y,Z) and the linear map B is called the linearization of the bilinear map
B.

The situation is illustrated by the following diagram;

Xxy—2 .7
S
X®Y.

B-2 The Projective Tensor Norm

It is important to investigate a norm on the tensor product X ® Y in order to obtain a

linearization for bounded bilinear operators.
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The natural norm, known as projective norm on X ®Y is defined as

w(u) = inf{ Y [l u = Y xi @i},
i=1 i=1

where the infimum is taken over all possible representations of the tensor u [86, Chapter

2].
This norm satisfies the equality T(x®y) = |x|||y| for all elementary tensors x®y.

The tensor product X ® Y endowed with the projective norm 7 is denoted by X ®, Y
and the completion of X @Y by X ®zY. An element u € X®,Y has the representation

u=>:x®y;suchthat 32, |x:||[y:| < oo, therefore the projective norm of u is

0 o0
7(u) = inf{ 2 lilllyill s = le@y"}
i=1 i=l

where the infimum is taken over all possible representations of the tensor u as above [86,

Chapter 2].
Linearization of Continuous Bilinear Operators

For every continuous bilinear operator B : X x Y — Z there exists a unique continuous

linear map By, : X®7Y — Z defined by

BL(x®y) = B(x,y),

for every x€ X, ye Y. The correspondence B «<— By is an isometric isomorphism between

the vector spaces B(X x Y,Z) and £L(X®,Y,Z) [86].

B-3 Injective Tensor Norm

The injective tensor norm on X ®Y is defined by

e(u) = sup {| Y0y

i=1

: d)EBx*, IIIEBy*},

where !, x;®y; is any representation of u in tensor product X ®Y [86, Section 3.1].

The tensor product X ® Y with the injective norm € is denoted by X ®¢ Y and the com-
pletion of X ®, Y, called the injective tensor product of X,Y, by X®.Y [86, Chapter
3].

Similar to the projective tensor norm, the injective tensor norm satisfies the equality €(x®
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y) = |x||ly|| for all elementary tensors x®y and these norms hold the inequality €(u) <

mt(u) for every tensor u [86, Proposition 3.1.].

B-4 Reasonable Crossnorm

A. Grothendieck gave the general study of tensor norms and he provided the properties

that a tensor norm has to possess.
A norm o on X ®Y is called reasonable crossnorm if the following properties hold.
l. a(x®y) < |x||y| forevery xe X and ye Y,

2. For every ¢ € X* and y € Y*, the linear functional ¢ ® y on X ® Y, defined by
0@ () = I, ¢ (x)y(yi) for u = Y 5@y, is continuous and ¢ ® | <
|91l w] (see [86, §6.1] or [18, §12.17).

The projective and the injective tensor norms satisfy these conditions and they are the

greatest and the least reasonable crossnorms, respectively.

Proposition 6.1 in [86] shows that a norm & on X ® Y is a reasonable crossnorm if and
only if the inequalities €(u) < a(u) < m(u) hold for all u € X ®Y and moreover, for any

reasonable crossnorm ¢ the equality a(x®y) = ||x[|||y[| holds for every xe X,y €Y.
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