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On Solvability of Nonlinear Coupled Wave Systems
Arising in DNA Dynamics
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In this thesis, we investigate the existence and uniqueness of weak solutions for

the system of finite difference schemes for the coupled sine-Gordon equations. The

novel first order of accuracy unconditionally stable difference scheme is considered.

The variational method, which is also known as the energy method is employed to

prove the unique weak solvability. We also present a novel unified approach for

the numerical solution of the system by combining the difference scheme with a

convenient adaptation of fixed point theory. Several test problems are considered

and results of the numerical experiments are provided with error analysis in order to

verify the accuracy of the proposed numerical method.

Keywords: Abstract evolution equations, existence-uniqueness, a priori estimates,

weak solutions, finite difference methods
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ÖZET

DNA Dinamiğinde Ortaya Çıkan Nonlineer Bağlı Dalga
Denklem Sistemlerinin Çözülebilirliği Üzerine

Meltem UZUN

Matematik Anabilim Dalı

Doktora Tezi

Danı̧sman: Assoc. Prof. Dr. Özgür YILDIRIM

Bu tezde, bağlı sinüs-Gordon denklem sistemi için sonlu farklar sisteminin zayıf

çözümünün varlığı ve tekliği ele alınmı̧stır. Bu sistemin tek türlü zayıf çözülebilirliğini

kanıtlamak için birinci mertebeden koşulsuz kararlı fark şemasına, enerji metodu

olarak da bilinen varyasyonel yöntem uygulanmı̧stır. Ayrıca yeni bir hibrit nümerik

metod geli̧stirilerek ikili sinüs-Gordon denklem sistemi için başlangıç sınır değer

probleminin yaklaşık çözümü elde edilmi̧stir. Teorik bulguları destekleyen çeşitli test

problemleri ele alınarak hata analizleriyle birlikte sunulmuştur.

Anahtar Kelimeler: Soyut oluşum denklemleri, varlık-teklik, önsel kestirimler, zayıf

çözümler, sonlu fark metodu
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1
INTRODUCTION

1.1 Literature Review

1.1.1 General Overview

Wave propagation problems are studied in several areas of engineering, physics, and

applied mathematics including relativistic quantum mechanics, acoustics, biomedical

engineering, and field theory problems (see, [1–12] and the references given therein).

There have been extensive theoretical and numerical studies on nonlinear wave

systems such as sine-Gordon, Klein-Gordon and coupled sine-Gordon equations in the

literature (see, [13–17] and the references given therein). Such type of problems

attracted much attention in the last decades due to the presence of soliton solutions.

Solitons are nonlinear waves which occur in proteins, signal conduction between

neurons and deoxyribonucleic acid (DNA) [18, 19].

Due to low regularity of coefficients and source functions, unique solvability in the

weak sense have drawn remarkable interest for many problems occurring in real

world phenomena, including coupled sine-Gordon equations. In the weak solvability,

solutions of complicated nonlinear systems, and also linear or semi-linear problems

which don’t have a corresponding mild formulation, can be obtained even under

less regularities of data. Solutions of these problems are obtained in the space of

distributions by the energy method, also known as the variational method, which

serves as a versatile equipment in theory of partial differential equations (PDE).

The weak solvability of nonlinear systems are widely investigated in the literature

(see, [9, 11, 20–33] and the references given therein). In [20], endemic equilibrium

for the PDE model of Zika virus, which leads to a major global public health

emergency, is studied. In [23], approximate solution of coupled sine-Gordon equation

with periodic boundary conditions is investigated. Also in [9], the global weak

solvability of coupled damped sine-Gordon equations in abstract form is proved and

the finite element method is used. The weak solutions for non-gradient coupled

sine-Gordon equations is studied in [11]. Regularity criteria of the weak solutions
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for the 3-dimensional incompressible viscous magnetohydrodynamics equations are

discussed in [30]. Several types of prey-predator models are investigated in [32].
Weak solvability of finite difference schemes for several coupled systems are studied

in [28, 34–40].

Finite difference method is a powerful instrument for obtaining numerical solutions

of PDE and it is applied in many types of problems occurring in real world phenomena

(see, [2, 4, 12, 15, 41–49] and the related references given herein).In recent years,

growing attention is paid on the study of unconditionally stable difference schemes

due to the fact that they don’t require any assumption with regard to grid steps on

space and time variables (see, [41–46] and the references given therein). In this

study, we use the unconditionally stable difference schemes since they provide good

convergence and stability results.

The early investigations about the convergence of difference scheme for the hyperbolic

PDEs are contributed by Courant, Friedrichs, Lewy, von Neumann, Lax, and

Richtmeyer et al. In studying these problems, a necessary condition for convergence

of a finite difference scheme is Courant-Friedrichs-Lewy condition, or in short, CFL

conditions. In the present study, the employed difference scheme provides good

convergence and stability results without the need of a CFL condition. In numerical

analysis, a unified approach which combines the difference schemes and fixed point

iteration with some error tolerances is used. Combining with fixed point iteration,

the numerical experiments for solutions of these difference schemes gives accurate

results.

1.1.2 DNA Modelling

DNA (deoxyribonucleic acid) is a biopolymer which plays a significant role in the

storage of genetic information in prokaryotic and eukaryotic organisms. Therefore,

an appropriate model must be created in the theoretical study of the dynamics of this

complex structure. Genetic information from genes transferring to certain proteins

and enzymes is based on local expansion (denaturation) of DNA chains [50]. This

local opening of DNA is mathematically defined as a traveling wave that moves along

the helix. Studies in this area mainly cover the presence of solitons and nonlinear

motion of DNA polynucleotide chains. A model that expresses the dynamical change

of DNA during the denaturation of the DNA double helices was proposed by M. Peyrard

et al. [50]. In addition, with the model developed by S. W. Englander et al., the

information that the DNA model was reduced to the sine-Gordon equation (SGE) was

brought into the literature [51]. Nonlinear dynamics of DNA with the hypothesis of

"solitons in DNA" attracted the attention of many researchers, especially theoretical
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physicists, and many models have been formulated [6, 52–59]. Other important

articles in this area are Yomosa S., (1983) and Zhang, C.T. (1987), under the same

title, published in the same journal [60, 61]. In the same period, Yakushevich et

al. (1987) described the weak homogeneities in the simple DNA parts consisting

of the given type and subsequently other types of uniform base sequences in terms

of perturbed SGE [62]. According to the standard Watson-Crick double helix B -

form DNA model, the two helix polynucleotide strands are held together by hydrogen

H-bonds. Yomosa discussed the Watson-Crick model in [60, 63]. In this model, the

zeroth level energies of DNA polynucleotides and the average of disrupted double

and triple hydrogen bonds between A-T (Adenine-Thymine), G-C (Guanine-Cytosine)

base pairs are discussed [64]. Yumosa stated that stacking energies, consisting of

H-bonding and electrostatic exchange, charge transfer and induction and distribution

interactions, are roughly proportional to the overlaps of molecular orbitals [63, 65,

66].

The open state of the DNA helix is expressed by the Hamiltonian equation below:

H =
∑

m

�

I
2

�

ω̇2
m + ω̇

′2
m

�

+ κ [2− cos (ωm+1 −ωm) (1.1)

− cos
�

ω′m+1 −ω
′
m

��

−η
�

1− cos
�

ωm −ω′m
��

+λ
�

2q2
0 − [sin (ωm+1 −ωm)− q0]

2

−
�

sin
�

ω′m+1 −ω
′
m

�

− q0

�2©�

Here,ωi andω′i represent the rotational angles of the base pair, I = 1/2A2 symbolizes

the moment of inertia around the axis of rotation at mth point, A and κ are the

uniaxial magnetocristal anisotropy along the axis and the exchange interaction of

ferromagnetic spin, respectively. Also, λ specifies the elasticity constant related with

twist deformation and η is a constant. In equation (1.1), the terms

∑

m

I
2

�

ω̇2
m + ω̇

′2
m

�

,
∑

m

κ
�

2− cos (ωm+1 −ωm)− cos
�

ω′m+1 −ω
′
m

��

(1.2)

and

∑

m

η
�

1− cos
�

ωm −ω′m
��

(1.3)

refer to the kinetic energy resulting from the rotation of the bases, energy of the

hydrogen bonds in complementary base pairs between chains, and the cluster energy

between adjacent bases in the helix, respectively. These terms determine stability of

the DNA double helix [64]. The movement of the DNA helix is identified by taking

derivative of equation (1.1) according to the variable t, and the following equations
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are obtained:

Iωmt t = [κ+ 2λ cos (ωm+1 −ωm)] sin (ωm+1 −ωm) (1.4)

− [κ+ 2λ cos (ωm −ωm−1)] sin (ωm −ωm−1) +η sin
�

ωm −ω′m
�

−2λq0 [cos (ωm+1 −ωm)− cos (ωm −ωm−1)] ,

Iω′mt t =
�

κ+ 2λ cos
�

ω′m+1 −ω
′
m

��

sin
�

ω′m+1 −ω
′
m

�

(1.5)

−
�

κ+ 2λ cos
�

ω′m −ω
′
m−1

��

sin
�

ω′m −ω
′
m−1

�

+η sin
�

ω′m −ωm

�

−2λq0

�

cos
�

ω′m+1 −ω
′
m

�

− cos
�

ω′m −ω
′
m−1

��

.

These equations determine the discrete dynamics of DNA double helices when the

helix nature of the molecule is represented as a twist-like deformation. Assuming that

the difference in angular rotation of the bases relative to the adjacent bases along the

two strips is too small, and after redefining time and parameter η, separate motion

equations are obtained in the following form

ωt t =
(κ+ 2λ)

I
ωzz +η sin

�

ω−ω′
�

, (1.6)

ω′t t =
(κ+ 2λ)

I
ω′zz +η sin

�

ω′ −ω
�

. (1.7)

Using the substitution Ψ =ω−ω′ and choosing 2η= −1, the sine-Gordon equation

Ψt t −Ψzz + sinΨ = 0 (1.8)

is obtained. Using t = x+y
2 , z = x−y

2 equation (1.8) is obtained in the form

Ψx y = sinΨ (1.9)

In addition, the dynamics of the DNA twist molecule are expressed with coupled

nonlinear equations, as follows:

Iωmt t = [κ+ 2λ cos (ωm+1 −ωm)] sin (ωm+1 −ωm)

− [κ+ 2λ cos (ωm −ωm−1)] sin (ωm −ωm−1) +η sin
�

ωm −ω′m
�

−2λq0 [cos (ωm+1 −ωm)− cos (ωm −ωm−1)] , (1.10)

Iω′mt t =
�

κ+ 2λ cos
�

ω′m+1 −ω
′
m

��

sin
�

ω′m+1 −ω
′
m

�

−
�

κ+ 2λ cos
�

ω′m −ω
′
m−1

��

sin
�

ω′m −ω
′
m−1

�

+η sin
�

ω′m −ωm

�

−2λq0

�

cos
�

ω′m+1 −ω
′
m

�

− cos
�

ω′m −ω
′
m−1

��

, (1.11)
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Iνmt t = [κ+ 2λ cos (νm+1 − νm)] sin (νm+1 − νm)

− [κ+ 2λ cos (νm − νm−1)] sin (νm − νm−1) +ηνm cos
�

ωm −ω′m
�

−2λq0 [cos (νm+1 − νm)− cos (νm − νm−1)] , (1.12)

Iν′mt t =
�

κ+ 2λ cos
�

ν′m+1 − ν
′
m

��

sin
�

ν′m+1 − ν
′
m

�

−
�

κ+ 2λ cos
�

ν′m − ν
′
m−1

��

sin
�

ν′m − ν
′
m−1

�

+ην′m cos
�

ω′m −ωm

�

−2λq0

�

cos
�

ν′m+1 − ν
′
m

�

− cos
�

ν′m − ν
′
m−1

��

. (1.13)

The equations (1.10)-(1.13) express the interaction of two pairs of DNA helices with

each other in discrete twist deformation. With small angles approach under the

continuity limit

ωi+1 − 2ωi +ωi−1→ωzz (1.14)

rescaling time and redefining parameter η yields

ωt t =
(κ+ 2λ)

I
ωzz +η sin

�

ω−ω′
�

, (1.15)

ω′t t =
(κ+ 2λ)

I
ω′zz +η sin

�

ω′ −ω
�

, (1.16)

νt t =
(κ+ 2λ)

I
νzz +η sin

�

ν− ν′
�

, (1.17)

ν′t t =
(κ+ 2λ)

I
ν′zz +η sin

�

ν′ − ν
�

. (1.18)

Applying of algebraic operations to equations (1.15)-(1.18) and rescaling parameter

z finally gives the coupled sine-Gordon equation

Φt t −Φzz + sinΦ = 0

Ψt t −Ψzz + sinΨ = 0. (1.19)

Here, Φ = ω −ω′, Ψ = ν − ν′ and η = −1. Because of its physical and biological

importance, many scientists focused on obtaining analytical and approximate solution

of (1.19) with the help of numerical and ansatz methods [8, 9, 13, 16–18, 48, 64, 67–

69].

1.1.3 Solitons

Soliton is a nonlinear wave, which is solitary traveling wave pulse solution for a

nonlinear PDE [70, 71]. The nonlinearity effect plays a major role in solitons. Solitary
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Figure 1.1 the solid structure of DNA double helices and its dynamical plane
base-rotator model:a.) molecular structure b.)linear map c.)plane base-rotator
model d.) outline graph of base-rotator: I.) side elevation, II.)plane figure [65]

.

waves scatter and lose energy due to the radiation, in dispersive evolution equations.

However, solitons retains their identities with same speed and shape after a nonlinear

interaction [72]. Therefore, it have substantial stability properties, which plays a

significant role in soliton physics. The beginning of soliton physics dates back to

the observation of John Scott Russell, called “great wave of translation”, on month

of August 1834 [73]. It is well known as a special form of a surface water wave, by

many scientists such as Stokes, Boussinesq, Korteweg, de Vries, and Rayleigh. In 1895,

Korteweg and de Vries obtained the equation describing the propagation of wave on

the surface of a channel.

Solitons may occur in many applications such as fibre optics, magnets and some

biological process [54, 74–77]. "Solitons in DNA" hypotheses reveals that solitons

are associated with the low-frequency collective motion in DNA and proteins [78]. A

model in neuroscience proposed that signals are transmitted by neurons in the form

of solitons [79, 80].
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1.2 Objective of the Thesis

In this study, the nonlinear system of coupled sine Gordon equations















































∂ 2u
∂ t2 +α11

∂ u
∂ t +α12

∂ v
∂ t − β1∆u+ γ1 sin (δ11u+δ12v)

+ρ11u+ρ12v = f in R,

∂ 2v
∂ t2 +α21

∂ u
∂ t +α22

∂ v
∂ t − β2∆v + γ2 sin (δ21u+δ22v)

+ρ21u+ρ22v = g in R

(1.20)

with the boundary conditions

u= 0 and v = 0 on S, (1.21)

and the initial conditions

u(0, x) = ξ1(x) in Ω and
∂ u
∂ t
(0, x) = η1(x) in Ω, (1.22)

v(0, x) = ξ2(x) in Ω and
∂ v
∂ t
(0, x) = η2(x) in Ω (1.23)

is considered. Here, Ω ⊂ Rn is a bounded open set with piecewise smooth boundary

Γ = ∂Ω and ∆ is the Laplacian. The spaces R and S are defined as R= (0, 1) × Ω and

S = (0, 1) × Γ , respectively. The given constants are

αi j,βi,γi,δi j,ρi j, which are bounded nonzero real numbers for i, j = 1,2. (1.24)

Let A= −∆ be defined as an unbounded self-adjoint and positive-definite operator in

a Hilbert space H with the domain

D(A) = {ϕ(x) ∈ V : Aϕ(x) ∈ H,ϕ(x) = 0 on Γ } . (1.25)
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Then problem (1.20)-(1.23) can be written as



















































































∂ 2u
∂ t2 +α11

∂ u
∂ t +α12

∂ v
∂ t + β1Au+ γ1sin (δ11u+δ12v)

+ρ11u+ρ12v = f , 0< t < 1,

∂ 2v
∂ t2 +α21

∂ u
∂ t +α22

∂ v
∂ t + β2Av + γ2 sin (δ21u+δ22v)

+ρ21u+ρ22v = g, 0< t < 1,

u(0) = u0 ∈ V, du
d t (0) = u′0 ∈ H,

v(0) = v0 ∈ V, dv
d t (0) = v′0 ∈ H.

(1.26)

Here, V is the Hilbert space satisfying the relation V ⊂ H. In the literature, a special

case of the system in the form











ut t − ux x = −δ2 sin(u− v),

vt t − vx x = sin(u− v)

(1.27)

which describes the open states of DNA double helices is studied by many researchers

(see, [18, 19] and the references given therein). Note that some applications and

numerical results of the present study, without proof, are presented in [48, 49].
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1.3 Hypothesis

Unique solvability of problem (1.26) is presented as the limit of first order of accuracy

unconditionally stable difference scheme



























































































































































τ−2(uk+1 − 2uk + uk−1) +α11(2τ)−1 (uk+1 − uk−1)

+α12(2τ)−1 (vk+1 − vk−1) + β1Auk+1

+γ1 sin (δ11uk +δ12vk) +ρ11uk+1 +ρ12vk+1 = fk,

fk = f (tk), tk = kτ, 1≤ k ≤ N − 1, Nτ= 1,

τ−2(vk+1 − 2vk + vk−1) +α21(2τ)−1 (uk+1 − uk−1)

+α22(2τ)−1 (vk+1 − vk−1) + β2Avk+1

+γ2 sin (δ21uk +δ22vk) +ρ21uk+1 +ρ22vk+1 = gk,

gk = g(tk), tk = kτ, 1≤ k ≤ N − 1, Nτ= 1,

u0 = ϕ1, u′0 =
u1−u0
τ =ψ1,

v0 = ϕ2, v′0 =
v1−v0
τ =ψ2,

(1.28)

with the modification for nonlinear damped system. The set of a family of grid points

Ωh = [0, 1]τ × [0,π]h = (tk, xn) : tk = kτ, 0≤ k ≤ N ,

Nτ= 1, xn = nh, 0≤ n≤ M , Mh= π} (1.29)

with small parameters τ, h is considered for approximate solutions of (1.26). Here,

fk, gk, ϕ1, ϕ2, ψ1, and ψ2 are given nonzero functions. Convergence and stability

issues for the linear and undamped form of difference scheme (1.28) are presented in

[2, 4].

In this thesis, the unique solvability of first order of accuracy unconditionally stable

difference schemes for coupled sine-Gordon system, in the weak sense, is proved.

Compared with other existing studies in the literature, the novelty of the present

work is two fold: one is the generality of nonlinearity and damping effects in
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weak solvability via finite difference method, and the other is the unified numerical

approach based on a first order of accuracy unconditionally stable finite difference

schemes and the fixed point theory. Moreover, we can express the originality of this

study as follows:

Obtaining a smooth and continuous solution of this nonlinear system under the

appropriate initial and limit values is not possible in most cases due to the fact that

the elements of the problem such as the coefficients and the source functions are

not always continuous [9, 11]. For this reason, we aim to obtain a weak solution

in the distribution space. Hilbert valued functions in the distribution space physically

correspond to the quantum field [81]. There is a close relationship between DNA

and quantum field. According to recent studies, DNA plays a distinctive role among

quantum states known as spin [82, 83]. Therefore, the unique solvability of problem

(1.26) in distribution space is important in the field of applied mathematics as well

as in quantum physics and genetics. Thus, the method we propose for the solution

of (1.26) has the potential to be used in more than one research area and to lead

interdisciplinary studies.

The novelty of the current study can be emphasized by the following issues: In this

study, the weak (generalized) solutions of the first order of accuracy unconditionally

stable finite difference schemes for the coupled sine-Gordon system under damping

effect will be obtained with the help of the energy method. With unconditionally

stable difference schemes, stability is achieved in the grid space and time components

without requiring conditions known as CFL conditions for step sizes. In this regard,

unconditionally stable finite difference schemes are known as an effective method of

obtaining approximate solution. Also, with the help of unconditionally stable finite

difference scheme and the fixed point theory for nonlinear term of the problem, a

unified approach will be developed for the solution of the problem we are dealing

with. In addition, the existence and uniqueness of the solution of nonlinear coupled

systems, which are the subject of active research in mathematics all around the world,

the help of unconditionally stable finite difference schemes will bring a new approach

to the literature in this field. We hope that, with the interpretation of our results

in the field of biomathematics and biophysics, important findings can be obtained to

examine DNA deformations and mutations, as well as to assist in the diagnosis and

treatment of genetic-based diseases (albino, DOWN syndrome, hemophilia, etc.). (For

the relationship between DNA mutations and the nonhomogenicity of the equation,

see [9]).
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2
THEORY OF NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS

In the present section we give some notations, definitions and preliminary results on

the literature, which are necessary in the sequel. The concepts in this chapter are

written on the basis of [6, 10, 11, 70, 81, 84–91].

2.1 Preliminaries

It is well known that the solution methods for linear equations can not be applied to

nonlinear equations in most cases. Because there is not a conventional technique

for determining the analytical solutions of nonlinear PDEs, it is often crucial to

use numerical methods for their solutions. Similar with linear equations, the

existence, uniqueness and stability issues for the solution of nonlinear PDEs are of

essential importance. Therefore, nonlinear equations are among the most diverse and

rewarding fields in modern mathematics.

Definition 2.1. [70, 92] A nonlinear PDE is stated in the following form

G(t, x , u, Dαu) = 0, (2.1)

for x = (x1, x2, ..., xn) ∈ Rn, u = (u1, u2, ..., um) ∈ Rm, G = (G1, G2, ..., Gs) ∈ Rs, α =
(α1,α2, ...,αn) is multi-index consisting of non-negative integers α1,α2, ...,αn, and the

differential operator Dα = Dα1
1 Dα2

2 ...Dαn
n with Di =

∂
∂ x i

, i = 1, 2, ..., n. If s > 1, then

(2.1) is said to be a system of non-linear PDEs.

Alternatively, equation (2.1) can be written in the operator form as

Lu(t, x) = g(t, x). (2.2)

Here, L denotes a partial differential operator and g(t, x) is the given function for

x = (x1, x2, ..., xn) ∈ Rn. Equation (2.2) is called nonlinear PDE if L is not a linear
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operator. For g(t, x) = 0, (2.2) is said to be a homogeneous equation and for g(t, x) 6=
0, (2.2) is called an nonhomogeneous equation.

Definition 2.2. [4, 70] A classical solution of (2.1) is a function u = u(t, x) on some

domain D which satisfies the following properties

i) u = u(t, x) is continuously differentiable over D in the sense that all of partial

derivatives in equation (2.1) exist,

ii) the function u= u(t, x) satisfies equation (2.1).

An extension of the classical solution can be obtained by relaxing the condition i.), i.e.

the solution do not have to be continuously differentiable. In this case the solution is

called a weak (or generalized) solution of (2.1).

In most cases, equation (2.1) is governed by initial and/or boundary conditions, which

arise from the physical interpretation of the problem.

The conditions which determine the physical state of u(t, x) at a specific time t = t0

or t = 0 are called the initial (Cauchy) conditions, and the problem of finding the

solution of (2.1) with prescribed Cauchy data is said to be the initial-value problem

(IVP) or Cauchy problem.

The conditions which determine the physical state of u(t, x) on boundary ∂ D of the

given domain D are called the boundary conditions, and problem (2.1) governed by

these kinds of data is said to be the boundary-value problem.

Definition 2.3. [70, 84] A boundary value problem is well posed if it satisfies the

conditions:

1. existence of solutions,

2. uniqueness of the solution,

3. stability, in other words, continuous dependence of the solution on the initial

data.

These conditions are also called Hadamard principle.

Definition 2.4. [70] The linear superposition principle is implemented to linear

PDEs under certain convergence conditions. The principle states that any linear

combination of solutions for a linear equation results in a new solution to the related

problem. However, the principle can not be applied to nonlinear PDEs to generate a

new solution.
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2.2 Semigroup Theory

[11, 86, 93]

The linear system consisting of ordinary differential equations































dv1
d t = c11v1 + ...+ c1nvn + g1(t)

dv2
d t = c21v1 + ...+ c2nvn + g2(t)

...
dvn
d t = cn1v1 + ...+ cnnvn + gn(t)

(2.3)

can be written in the matrix form

dv/d t = Av + g (2.4)

and can be solved using the formula

v(t) = eAt v(0) +

t
∫

0

eA(t−s)g(s)ds (2.5)

by Giuseppe Peano in 1887. Here,

eAt =
∞
∑

k=0

Ak

k!
tk. (2.6)

This method relies on transforming a complicated one dimensional problem to a

relatively simple higher dimensional problem, and then solving it by using the methods

on calculus of one-variable. This idea serves as a basis of the spectral theory for

self-adjoint normal operators on a Hilbert space, and mainly of the semigroup theory.

To work in much greater generality and for the application on nonlinear operators,

the semigroup theory only requires considering the exponential of an operator A. The

one-parameter semigroup theory, especially, have direct applications in the theory of

PDEs.

Let us consider the evolution of a physical system in time, by an IVP for (an ordinary
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or a partial) differential equation in the following form











du(t)
d t = A(u(t)) (t > 0),

u(0) = f .

(2.7)

The system is called an Abstract Cauchy Problem with a linear operator A on a Banach

space V . Here, the function u(t) describes the state of some physical system at time

t, and u(0) = f is given initial data. The time rate of change of u(t) is given by some

operator A of the state of the system u(t).

To investigate well-posedness of problem (2.7), a dynamical system which is a family

of operators T (t)t≥0 on V satisfying the properties











T (t +τ) = T (t)T (τ),

T (0) = I

(2.8)

is considered.

The first equation in (2.8) corresponds to the uniqueness of solution, and the second

equation refers to the initial condition.

Roughly speaking, T (t)t≥0 is the solution of Abstract Cauchy Problem defined by

system (2.7). Conversely, the question of under which conditions the given semigroup

corresponds to a differential equation is also reasonable.

2.2.1 C0 Semigroup

This subsection presents the notion of a one-parameter strongly continuous semigroup

of bounded linear operators on a Banach space V , which is called a (C0) semigroup.

Definition 2.5. A family T = {T (t) : 0 < t <∞} of linear operators from V to V is

called a (C0) semigroup if it fulfils the following properties:

(i) ‖T(t)‖<∞

(ii) T(t+ s)g= T(t)T(s)g , ∀g ∈ V , ∀t, s ≥ 0,

(iii) T(0)g= g, ∀g ∈ V ,

(iv) t→ T(t)g is continuous for t≥ 0 for each g ∈ V.
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Let T be a (C0) semigroup. Let us define its generator (or infinitesimal generator) A

by the equation

Ag = l imt→0
T (t)g − g

t
(2.9)

where g is in the domain of A if and only if this limit exists. Formally, the semigroup

property suggests that T (t) = eA where A = (d/d t)T (t) |t=0. This also suggests that

the solution of (2.7) is given by

u(t) = T (t)g, (2.10)

where T is the semigroup generated by A. The following result is well known.

Theorem 2.1. (Well-posedness theorem). The IVP (2.7) (with the linear operator A) is

"well-posed" if and only if A is the generator of a (Co) semigroup T. Then the unique

solution of system (2.7) is given by u(t) = T (t)g for g in the domain of A.

Theorem 2.2. (Hille-Yosida generation theorem). A linear operator A generates a (Co)
contraction semigroup if and only if the domain of A is dense in Y and for each λ > 0,

λI − A maps the domain of A onto Y (2.11)

and


(λI − A)−1 g


≤
1
λ
‖g‖ , ∀g ∈ Y (2.12)

holds.

A result of the Hille-Yosida generation theorem is Stone’s theorem:

Theorem 2.3. Let A be a densely defined operator on a complex Hilbert space. Then

A and −A both generate (Co) contraction semigroups if and only if A generates a (Co)
group of unitary operators if and only if iA is self-adjoint.

The important implications in Theorems 2.1, 2.2 and 2.3 are:

(i) a densely defined operator A satisfying (2.11), (2.12) generates a (Co) semigroup.

(ii) if A generates a (Co) semigroup T then the IVP (2.7) is well-posed and is governed

by T .
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2.3 Abstract Linear Spaces

Definition 2.6. Let V be a vector space on the scalar field R. A function L : V → R is

called linear functional (or linear form) on V if ∀λ,µ ∈ R and x , y ∈ V implies

L(λx +µy) = λL(x) +µL(y). (2.13)

Definition 2.7. Let V be a vector space defined over the scalar field R. A function

a : V × V → R is said to be a bilinear form on V , which is a linear map on each

argument. In other words, ∀λ,µ ∈ R and x , y, z ∈ V ,

a(λx +µy, z) = λa(x , z) +µa(y, z), (2.14)

a(x ,λy +µz) = λa(x , y) +µa(x , z). (2.15)

Definition 2.8. The bilinear form a(·,·) is said to be symmetric if

a(y, x) = a(x , y), for all x , y ∈ V, (2.16)

and positive-definite if

a(x , x)> 0, for all x ∈ V. (2.17)

Definition 2.9. A symmetric and positive-definite bilinear form constitutes an inner

product on a vector space V , and V with an inner product (·,·) is said to be an inner

product space. For all x ∈ V , the corresponding norm for the inner product is defined

as

‖x‖= (x , x)1/2. (2.18)

Definition 2.10. An infinite sequence {xm}∞m=1 in V converge to x ∈ V if

‖xm − x‖ → 0 as m→∞. (2.19)

Definition 2.11. A sequence {xm}∞m=1 in V is said to be a Cauchy sequence if

‖xm − xn‖ → 0 as m, n→∞. (2.20)

Definition 2.12. An inner product space V is said to be complete if every Cauchy

sequence converges in V .

Definition 2.13. A Hilbert space is an inner product space which is complete.

Definition 2.14. A norm is a function ‖.‖ : V → R which satisfies the following

properties
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1. ‖x‖> 0,∀x ∈ V, x 6= 0,

2. ‖λx‖= |λ| ‖x‖ ,∀λ ∈ R, x ∈ V,

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ , ∀x , y ∈ V.

Remark 2.1. A function is said to be a seminorm if the above conditions are satisfied

with the exception that property 1. is replaced by |x | ≥ 0, ∀x ∈ V.

Definition 2.15. The vector space V with a norm ‖.‖ is said to be a normed vector

space. It is easily seen that an inner product space is a normed vector space, but the

converse is not always true. A complete normed space is said to be a Banach space.

Definition 2.16. Let V and W be two Hilbert spaces. A linear operator L : V →W is

bounded provided there exists a constant K satisfying

‖Lx‖W ≤ K ‖x‖V ,∀x ∈ V. (2.21)

The norm is defined as

‖L‖= sup
x∈V\{0}

‖Lx‖W

‖x‖V
(2.22)

for a linear bounded operator L. Hence,

‖Lx‖W ≤ ‖L‖‖x‖V , (2.23)

where ‖L‖ is the smallest constant K such that (2.21) holds.

The set of all bounded linear operators from V into W is denoted by B(V, W ).

Definition 2.17. Let L : V → W be a linear bounded operator in a Hilbert space H.

Then the Hilbert adjoint operator of L is denoted by L∗, which satisfies

(Lx , y) = (x , L∗ y). (2.24)

Definition 2.18. L is self adjoint or Hamiltonian if L∗ = L or equivalently

(Lx , y) = (x , Ly). (2.25)

Remark 2.2. A bounded linear operator L : V →W is continuous. That is, x j → x in

V implies Lx j → Lx in V as j→∞ since



Lx j − Lx




W =


L(x j − x)




W ≤ ‖L‖


x j − x


→ 0, as j→∞. (2.26)

The converse is also true.
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In the case W = R, the operator becomes a linear functional.

Definition 2.19. The set which contains the bounded linear functionals defined on V

is referred to as the dual space of V . The dual space is denoted as V ′. The norm on V ′

is defined by

‖L‖V ′ = sup
x∈V\{0}

|L(x)|
‖x‖V

. (2.27)

Note that V ′ is already a vector space.

Remark 2.3. A bilinear form a(., .) defined on V is bounded if there is a constant C0

satisfying

|a(x , y)| ≤ C0 ‖x‖‖y‖ . (2.28)

Theorem 2.4. (Riesz representation theorem). Let L be a bounded linear functional

defined on a Hilbert space V . Then there exists unique x in V satisfying

L(y) = (y, x),∀x ∈ V. (2.29)

Moreover,

‖L‖V ′ = ‖x‖V . (2.30)

Using this result one can determine the linear functionals L in V ′ associated with

x ∈ V . Here, by means of Hilbert space, V ′ is equivalent to V .

Definition 2.20. A bilinear form a(., .) is called coercive if there exists a positive

constant α0 satisfying the inequality

a(x , x)≥ α0 ‖x‖
2
V . (2.31)

Remark 2.4. One may associate the bounded linear functional L defined in (2.29) to a

coercive, symmetric bilinear form a(., .) and solve the equation for x in a Hilbert space

V such that

a(x , y) = L(y),∀y ∈ V. (2.32)

Then the Riesz representation theorem implies existence of a unique solution x ∈ V

for each L ∈ V ′. Furthermore, setting y = x in (2.29) yields

α0 ‖x‖
2
V ≤ a(x , x) = L(x)≤ ‖L‖V ′ ‖x‖V . (2.33)

Cancelling one factor ‖x‖V gives

‖x‖V ≤ K ‖L‖V ′ (2.34)
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where K = 1/α0 is a constant. This procedure serves as an example of energy estimate.

For a symmetric bilinear form a(., .)which satisfies (2.28) and (2.31), the energy norm

‖y‖e is defined as

‖y‖e = a(y, y)1/2, for y ∈ V. (2.35)

It is convenient to express the solution of (2.32) by constructing a minimization prob-

lem.

Theorem 2.5. Let a(·,·) be positive definite, symmetric bilinearform, and L is a bounded

linear form defined on a Hilbert space V . Then x ∈ V implies (2.31) if and only if

E(x)≤ E(y), ∀y ∈ V, for E(y) =
1
2

a(y, y)− L(y). (2.36)

Here, x ∈ V satisfies (2.31) iff x minimizes energy functional E.

Definition 2.21. The method for considering the minimization problem, which is

achieved by modifying the argument of functional E about the given vector x is said

to be a variational method. Equation (2.32) is said to be the variational equation of E.

The subsequent theorem extends the results of Riesz representation theorem for

bilinear nonsymmetric forms.

Theorem 2.6. (Lax-Milgram Lemma). Let a(·,·) be a bounded, coercive bilinear form,

and L be a bounded linear form in a Hilbert space V .Then there is a unique vector x ∈ V

which satisfies (2.32). Moreover, the energy estimate (2.34) holds.

Note that there is no characterization by energy minimization for the solution in the

unsymmetric case.

2.4 Function Spaces

2.4.1 The Space of Continuous Functions

Let Ω ⊂ Rn. For k ∈ Z+, C k(Ω) the vector space which consists of all functions g having

all partial derivatives Dαg for |α| ≤ k, which of all are continuous on Ω. We denote

C0(Ω) = C(Ω) (2.37)

C∞(Ω) = ∩∞m=0Cm(Ω). (2.38)
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The norm for C(Ω) is denoted by

‖g‖C(Ω) = sup
x∈Ω
|g(x)| . (2.39)

The norm for C k(Ω) is denoted by

‖g‖Ck(Ω) =
k
∑

n=0

sup
x∈Ω

�

�g(n)(x)
�

� . (2.40)

Definition 2.22. (compact support) Let Ω ⊂ Rn be a nonempty domain. A function u

is said to have a compact support if it vanishes in the exterior of its domain Ω. That is

supp u= {x : u(x) 6= 0}. (2.41)

In some cases, a function vanishes near the boundary of its domain.

Then, with the aid of the above definition, we can define the function space C k
0 (Ω). It

represents the space of functions which has compact support in Ω.

Remark 2.5. The space of continuous functions does not constitute a Hilbert space

since the supremum-norm can not be associated with an inner product as in (2.18).

2.4.2 Integrability, the Lebesgue Spaces

In the previous subsection we have stated that C(Ω) is not a Hilbert space, then we

should study integrals of functions g = g(x) in Ω and these are more convenient than

functions in C(Ω). Let us introduce the Lebesgue integral

IΩ(g) =

∫

Ω

g(x)d x , (2.42)

for a nonnegative measurable function g. This integral could be finite or infinite, and

it coincides with the Riemann integral when g ∈ C(Ω).

Let us define the Lebesgue spaces

Lp(Ω) =

¨

g :

�∫

Ω

|g(x)|p d x

�1/p

<∞ and g is measurable

«

(2.43)

for 1≤ p <∞ and

L∞(Ω) =
§

g : sup
x∈Ω
|g(x)|<∞ and g is measurable

ª

. (2.44)
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The norm defined on Lp(Ω) is

‖g‖Lp(Ω) =

�∫

Ω

|g|p d x

�1/p

for 1≤ p <∞. (2.45)

Theorem 2.7. (Riesz-Fischer). The space Lp(Ω) is a Banach space for 1≤ p ≤∞.

The norm on L∞(Ω) is defined by

‖g‖L∞(Ω) = sup
x∈Ω
|g(x)| . (2.46)

Here, the function sup is the supremum, which disregards the values in null sets.

L2(Ω) is a Hilbert space equipped with the inner product

(g, h) =

∫

Ω

g(x)h(x)d x , (2.47)

and the corresponding norm

‖g‖L2(Ω) =

�∫

Ω

|g|2 d x

�1/2

,∀g, h ∈ L2(Ω). (2.48)

Definition 2.23. Let M ⊂ X . The set M is dense in X if for any x ∈ M there exists a

sequence {xn}∞n=1 in M satisfying

‖xn − x‖ → 0 as n→∞. (2.49)

Remark 2.6. C(Ω) is dense in Lp(Ω) for 1 < p <∞, which means any function in

Lp(Ω) can be approximated closely by using the elements of C(Ω).

2.4.3 The Weak Derivative, the Sobolev Spaces

Let us introduce certain Hilbert spaces which are commonly used in the theory of

PDEs. These spaces are composed of some functions which belong to L2(Ω), and also

their partial derivatives up to a certain order. To construct the spaces, let us introduce

the general notion of partial derivatives.

Let Ω ⊂ Rn and g ∈ C1(Ω). Let us consider an integral using integration by parts

∫

Ω

ϕ
∂ g
∂ x i

d x = −
∫

Ω

g
∂ ϕ

∂ x i
d x , ∀ϕ ∈ C1

0 (Ω). (2.50)
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Here, if we let g ∈ L2(Ω), the partial derivative ∂ g
∂ x i

does not necessarily mean to be

classical derivative. Let us consider the term ∂ g
∂ x i

as a linear functional

L(ϕ) =
∂ g
∂ x i
(ϕ) = −

∫

Ω

g
∂ ϕ

∂ x i
d x , ∀ϕ ∈ C1

0 (Ω). (2.51)

Here, the functional L(ϕ) is called weak (generalized) derivative of g. If this functional

is bounded, then by Riesz representation theorem the weak derivative is unique and

it belongs to L2(Ω). The weak derivative coincides with the classical derivative if

g ∈ C1(Ω).

In a similar manner with the classical partial derivative, let us introduce the weak

partial derivative of order a, Da g as a linear functional of the form

Da g(ϕ) = (−1)|a|
∫

Ω

gDaϕd x , ∀ϕ ∈ C |a|0 (Ω). (2.52)

If the functional is bounded in L2(Ω), then by Riesz representation theorem there is a

unique Da f ∈ L2(Ω) satisfying

(Da g,ϕ) = (−1)|a|(g, Daϕ), ∀ϕ ∈ C |a|0 (Ω). (2.53)

Now we can define the space Hk(Ω), k ≥ 0. The space is constructed by the functions

whose partial derivatives, in the weak sense, of order ≤ k belong to L2(Ω). That is,

Hk(Ω) =
�

u ∈ L2(Ω) : Dau ∈ L2(Ω), |a| ≤ k
	

. (2.54)

The space is equipped with the inner product and the norm

(u, v) =
∑

|a|≤k

∫

Ω

Dau(x)Dav(x)d x , (2.55)

‖u‖Hk(Ω) = (u, u)1/2 , ∀u, v ∈ Hk (Ω) . (2.56)

Derived from Hk (Ω), of prime importance is attributed to the spaces

H1(Ω) =
�

u ∈ L2(Ω) : D1u ∈ L2(Ω), 1≤ i ≤ n
	

, (2.57)

and

H1
0(Ω) = the closure of C∞0 (Ω) on H1(Ω) (2.58)

with its dual space H−1(Ω). These are Hilbert spaces equipped with the inner product
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((u, v)) =
n
∑

i=1

∫

Ω

Diu(x)Di v(x)d x , (2.59)

and the corresponding norm

‖u‖= ((u, u))1/2 , for all u, v ∈ H1
0 (Ω) . (2.60)

In a similar manner, let us define the Banach space W k
p (Ω) induced by the norm

‖u‖W k
p (Ω)
=

 

∑

|α|≤k

∫

Ω

|Dαu(x)|p d x

!1/p

, 1≤ p <∞. (2.61)

Note that W k
2 (Ω) = Hk(Ω) for p = 2, and ‖u‖W k

∞(Ω) = ‖u‖Ck(Ω) for any u ∈ C k(Ω).

Remark 2.7. The space Cm(Ω) is dense in Hk(Ω) for any m ≥ k and for sufficiently

smooth boundary ∂Ω. This consequence enables us to carry out the proofs for Hk(Ω)
in Cm(Ω) easily, and then extending the result to the functions in Hk(Ω) by density

property.

2.5 Variational Method

We have briefly mentioned the term "energy" in the first section. However, we will

consider this method in detail in this section, because of its importance.

The energy method or the variational approach, is an effective tool in theory of PDEs.

This method is useful in solving nonlinear problems with complicated structure and

for linear or semilinear problems which don’t have a corresponding mild formulation

due to low regularity of coefficients. It is a modern fundamental approach to boundary

value problems for PDEs. The method is originated from theory of linear PDEs, but

different approaches are also valid.

The term “variational” represents small changes in functions or functionals, and

this refer to the characterization of extremum (minimum, maximum, saddle point)

for physical systems. The functional stands as a physical quantity in the system,

and it appears as an integral in the given space. This kind of characterization is

called a “variational principle” which leads to the Euler-Lagrange equation. This

equation optimizes a functional, that is, a boundary value problem is considered as

an optimization problem. It is evident since the main issue in real world problems

is to optimize some physical quantities such as time, distance, energy, etc. The

mathematical branch which deals with these optimization problems is called the cal-

culus of variations.
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The variational method is applied by means of integral inequalities. It is originally

based on the variations of the classical energy and the kinetic energy of the fluid

motion. The new functionals are similar with the Lyapunov method in PDEs and it

is appeared in the literature as generalized energy methods. It is related to a-priori

estimates, and this term has a physical meaning as “bound of an energy”. This method

is based on compactness of bounded sets in Banach space in weak topologies, the weak

formulation and some results in Sobolev spaces.

2.5.1 Fundamental Tools of Energy Method

A-priori estimates

A priori estimate or a priori bound is an estimate which determines the size of solution

for a given problem. “A priori” is a Latin word that means “from before”, which refers to

the fact that the estimate for the solution is obtained before the knowledge of existence

of solution. That is, the estimate can be obtained by using the form of the equation,

without knowledge of the exact solution. Finding a priori estimates is an essential issue

encountered with nonlinear problems. A priori estimates are of great importance in

the proof for the existence of solution. In this thesis’ concept, a priori estimate means

an estimate which guarantees that all positive solutions of the related problem are

bounded, by some positive constant.

Gronwall’s inequality in differential form

Let u(t) be an absolutely continuous and nonnegative function defined on the interval

[0, T], satisfying the differential inequality almost everywhere (a.e.)

u′(t)≤ a(t)u(t) + b(t), (2.62)

for summable nonnegative functions a(t), b(t) on[0, T]. Then the following inequality

holds: [85]

u(t)≤ e
∫ t

0 a(s)ds

�

u(0) +

∫ t

0

b(s)ds

�

, ∀t ∈ [0, T]. (2.63)

Gronwall’s inequality in integral form.

Let u(t) be a summable, nonnegative function defined on the interval [0, T], satisfying

the integral inequality

u(t)≤ K1

∫ t

0

u(s)ds+ K2, (2.64)
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where K1, K2 are constants. Then the following inequality holds: [85]

u(t)≤ K2

�

1+ K1 teK1 t
�

, for a.e t ∈ [0, T]. (2.65)

Discrete Gronwall Lemma

Let us assume that the mesh functions {un} and { fn} satisfy the following statement

un − un−1

τ
≤ Aunun + Bun−1 + fn, for n=1,2,...,N, (2.66)

then we have

max
1≤n≤N

un ≤

�

u0 +τ
n
∑

k=1

fn

�

e2(A+B)T , (2.67)

for 0≤ t ≤ T , n= 1,2, ..., N and nonnegative constants A, B satisfying (A+B)τ≤ N−1
2N

[28], [94], [95].

Remark 2.8. Modifying the Discrete Gronwall’s Inequality given above, we can obtain

a similar statement for the central difference. By this inequality, we have

un − un−1

τ
≤ A0unun + B0un−1 + fn =⇒ max

1≤n≤N
un ≤

�

u0 +τ
n
∑

k=1

fn

�

e2(A+B)T , (2.68)

un+1 − un

τ
≤ A1un+1+ B1un+ fn+1 =⇒ max

1≤n≤N
un+1 ≤

�

u1 +τ
n+1
∑

k=1

fn+1

�

e2(A+B)T . (2.69)

Adding this two statement side by side, and dividing both sides by 2, we obtain

un+1 − un−1

2τ
≤

A1

2
un+1 +

(A0 + B1)
2

un +
B0

2
un−1 +

1
2
( fn + fn+1)

=⇒ max
1≤n≤N

(un + un+1)≤

�

u0 +τ
n
∑

k=1

fn

�

e(A0+B0)T +

�

u1 +τ
n+1
∑

k=1

fn+1

�

e(A1+B1)T

≤ eC1u0 + eC2u1 + 2τeC3

n
∑

k=1

fn +τeC4 fn+1

≤ K1u0 + K2u1 + 2τK3

n
∑

k=1

fn +τK4 fn+1. (2.70)

Thus,
un+1 − un−1

2τ
≤ k1un+1 + k2un + k3un−1 +

1
2
( fn + fn+1)
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=⇒ (un + un+1)≤ K1u0 + K2u1 +τK3

n
∑

k=1

fn +τK4 fn+1, (2.71)

where

k1 =
A1

2
, k2 =

(A0 + B1)
2

, k3 =
B0

2
. (2.72)

Sobolev-Poincaré’s Inequality

Let Ω ⊂ Rn be an open set, 2 ≤ q <∞ (n = 1,2) and 2 ≤ q ≤ 2n
n−2 (n ≥ 3). Then for

u ∈ H1
0(Ω) we have [88]

‖u‖q ≤ c(Ω, p)‖∇u‖2 . (2.73)

Poincaré’s Inequality

Let Ω ⊂ Rn be a bounded domain, then there exists constant K = K(Ω) satisfying the

inequality [84]
‖u‖ ≤ K(Ω)‖∇u‖ , for all u ∈ H1

0(Ω). (2.74)

Discrete Poincaré-Friedrichs Inequality

For any mesh function {uk : k = 1, ..., m} there exists a constant C satisfying the

inequality [96]
a(uk, uk)≥ ‖∇uk‖

2 ≥ C ‖uk‖
2 . (2.75)

Discrete Green’s Identity

For any two mesh functions {uk : k = 1, ..., m} and {vk : k = 1, ..., m}, the following

identity is satisfied: [94]

m
∑

i=1

uk(−∆vk)τ=
m
∑

i=1

∇uk∇vkτ+ u0∇v0 − v0∇u0. (2.76)

The ε-Young inequality

For any two mesh functions {uk : k = 1, ..., m} and {vk : k = 1, ..., m}, the following

inequality is satisfied: [85]

(uk+1, vk+1)≤
‖uk+1‖

2

2ε
+
ε

2
‖vk+1‖

2 ,∀ε > 0. (2.77)
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2.5.2 Density Theorems

Let Ω ⊂ Rn be an open set of class Cm for m≥ 1,1≤ p <∞, then

Cm(Ω̄) is dense in W m,p(Ω). (2.78)

The result is valid even under weaker regularity ofΩ, particularly the validation occurs

whenever there is a linear continuous prolongation operator

Π ∈ L (W m,p(Ω), W m,p(Rn)) , (Πux) = u(x) (2.79)

for almost all x in Ω. From that it follows

W m,p is dense in W m−1,p(Ω), (2.80)

Hm is dense in Hm−1(Ω), (2.81)

for sufficiently regular Ω [11].

2.5.3 Sobolev Embedding Theorem

Definition 2.24. [85] Let U , V be two normed spaces satisfying

i) U ⊂ V ,

ii) ∀x ∈ U there is a constant c independent of u such that

‖x‖V ≤ c ‖x‖U . (2.82)

Then U is said to be embedded in V , denoted by U ,→ V .

Theorem 2.8. [88] Let Ω ⊂ Rn bean open set of class Cm+1, p ≥ 1 be a real number, and

m≥ 1 be an integer. Then

i) if mp > n, then

W j+m,p(Ω) ,→ C j
b(Ω) (2.83)

ii) if mp = n, then

W j+m,p(Ω) ,→W j,q(Ω), for p ≤ q <∞, (2.84)

and if j = 0, then

W m,p(Ω) ,→ Lq(Ω), for p ≤ q <∞, (2.85)
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iii) if mp < n, then

W j+m,p(Ω) ,→W j,q(Ω), for p ≤ q < p0, (2.86)

and if j = 0, then

W m,p(Ω) ,→ Lq(Ω), for p ≤ q < p0, (2.87)

where

p0 =

¨

np
n−mp , n> mp

∞, n≤ mp.
(2.88)

Note that the above embeddings also holds for W m,p
0 (Ω) without any restriction on Ω.

2.5.4 Compactness Theorems

Definition 2.25. [85] Let the embedding U ,→ V be given. U is said to be compactly

embedded in V , denoted by

U ⊂⊂ V (2.89)

if for every bounded sequence in U there exists a convergent subsequence in V .

Theorem 2.9. [11] Let Ω be a bounded set of class C1. Then the embedding

W 1,p(Ω) ⊂ Lq1(Ω) (2.90)

is compact,

i)if p ≥ n, for any q1 ∈ (1,∞),

ii) if 1≤ p < n, for any q1 ∈ (1, q) satisfying 1
q =

1
p −

1
n .

If p > n, the embedding

W 1,p(Ω) ⊂ C0,α1(Ω) (2.91)

is compact for all α1 < α= 1− n
p .

The embeddings

W 1,p
0 (Ω) ⊂ Lq1(Ω), for p ≤ n, (2.92)

W 1,p
0 (Ω) ⊂ C0,α1(Ω), for p ≤ n, (2.93)

are also compact for any open bounded Ω, with the same values of q1,α1.

Theorem 2.10. [6, 85, 88] (Rellich-Kondrachov Compactness Theorem) Let Ω ⊂ Rn be

an open bounded set with boundary C1, and let 1 ≤ p < n. Then W 1,p(Ω) is compactly
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embedded into Lq(Ω), and is denoted by

W 1,p(Ω) ⊂⊂W 1,p(Ω) (2.94)

for each 1≤ q < p∗, where p∗ =
np

n−p .

The following theorem enables us to obtain strong convergence results for the abstract

evolution problems.

Theorem 2.11. [97, 98] (Aubin-Lions-Simon) Let U0 ⊂ U1 ⊂ U2 be Banach spaces. Let

us assume the embedding of U1 into U2 is continuous and the embedding of U0 into U1 is

compact. For 1≤ p, q ≤∞ and T > 0 we define the space

Ep,q = {u ∈ Lp(0, T ; U0),
du
d t
∈ Lq(0, T ; U2)} (2.95)

which have the compactness results:

i) the embedding of Ep,q into Lp(0, T ; U1) is compact for p <∞,

ii) the embedding of Ep,q into C0(0, T ; U1) is compact for p =∞, q > 1.
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3
MAIN RESULTS

3.1 Problem Settings

Let H = L2 (Ω) and V = H1
0(Ω) be two Hilbert spaces, which are equipped with the

following inner products and norms

(ξ,η) =

∫

Ω

ξ(x)η(x)d x , ‖ξ‖= (ξ,ξ)1/2 ,∀η,ξ ∈ L2 (Ω) , (3.1)

((ξ,η)) =
n
∑

i=1

∫

Ω

∂ ξ(x)
∂ x i

∂ η(x)
∂ x i

d x ,‖ξ‖V = ((ξ,ξ))1/2 , ∀η,ξ ∈ H1
0 (Ω) . (3.2)

Let us define the dual spaces of V and H as V ′ and H ′, respectively. Here, the pair (V, H)
of the Hilbert spaces forms a Gelfand triple, which is denoted by V ,→ H ≡ H ′ ,→ V ′

where V ′ = H−1 (Ω). The embeddings V ⊂ H, H ⊂ V ′ are continuous, dense, compact.

The unique solvability results are presented in the setting of the triple space. The

bilinear form

a(η,ϕ) =

∫

Ω

∇η.∇ϕd x = (∇η,∇ϕ) = ((η,ϕ)) ,∀η,ϕ ∈ V = H1
0(Ω), (3.3)

will be used in variational formulation. This form is bounded, symmetric on V × V =
H1

0(Ω)
2 and coercive, that is,

a(η,η)≥ ‖η‖2
V ,∀η ∈ V. (3.4)

The form is associated with the operator A= −∆ defined by

(Aη,ϕ) = a(η,ϕ) (3.5)

where A : V → V ′ is an isomorphism. It is an unbounded self-adjoint operator with

dense domain D(A) = {η ∈ V | Aη ∈ H} in V and in H. In the present study we
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investigate unique solvability of the following problem



















































































∂ 2u
∂ t2 +α11

∂ u
∂ t +α12

∂ v
∂ t + β1Au+ γ1sin (δ11u+δ12v)

+ρ11u+ρ12v = f , 0< t < 1,

∂ 2v
∂ t2 +α21

∂ u
∂ t +α22

∂ v
∂ t + β2Av + γ2 sin (δ21u+δ22v)

+ρ21u+ρ22v = g, 0< t < 1,

u(0) = u0 ∈ V, du
d t (0) = u′0 ∈ H,

v(0) = v0 ∈ V, dv
d t (0) = v′0 ∈ H.

(3.6)

We consider system (3.6) in the following vector form











w′′ +αw′ + βBw +γ sinδw+ρw= f, 0< t < T,

w(0) =w0,w′(0) =w′0,

(3.7)

with

w=

�

u

v

�

, w′=

�

du
d t
dv
d t

�

, w′′=

�

d2u
d t2

d2v
d t2

�

,

f=

�

f

g

�

, sinw=

�

sin u

sin v

�

, B=

�

A 0

0 A

�

,

α=

�

α11 α12

α21 α22

�

, β =

�

β11 β12

β21 β22

�

, δ =

�

δ11 δ12

δ21 δ22

�

,

γ=

�

γ1 0

0 γ2

�

, ρ =

�

ρ11 ρ12

ρ21 ρ22

�

,

w0 =

�

u0

v0

�

, w′0 =

�

u′0
v′0

�

.

The norm |δ| of a 2× 2 matrix is defined by

∑

i, j=1,2

�

�δi j

�

� . (3.8)
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Let us introduce the product spaces of functions by V=V×V andH=H×H, equipped

with the inner products

((η,ξ)) = ((η1,ξ1)) + ((η2,ξ2)) ,η= [η1,η2]
T ,ξ=[ξ1,ξ2]

T ∈ V , (3.9)

(η,ξ) = (η1,ξ1) + (η2,ξ2) ,η= [η1,η2]
T ,ξ=[ξ1,ξ2]

T ∈H , (3.10)

respectively. Here [., .]T is the transpose of [., .]. The dual pairing between V ′ and V
are

〈η,ξ〉= 〈η1,ξ1〉+ 〈η2,ξ2〉 ,η=[η1,η2]
T ∈ V ′,ξ=[ξ1,ξ2]

T ∈ V , (3.11)

where V ′=V ′ × V ′ is the dual space of V .

Let us assume that the operator A has a square root D satisfying D =
p
−∆. D is a self

adjoint, positive definite operator and it generates a C0 semigroup in problem (3.7).

Therefore, the operator matrix B in (3.7) which contains operator entries A is also

self-adjoint, positive definite with a dense domain D(B) = D(A) × D(A) in V and in

H . Thus, B generates a C0 semigroup [11, 86, 87].

By the embeddings V ,→ H ,→ V ′, the pair (V ,H ) is a Gelfand triple denoted by

V ,→ H ,→ V ′. Norms on V and H are denoted as ‖ξ‖ and |ξ|, respectively. The

weak solvability of (3.7) is stated in the following form.

Definition 3.1. [9] A function w is a weak (variational, or generalized) solution for

problem (3.7) if

w∈W(0, T ) =W (0, T )×W (0, T ) (3.12)

and w satisfies the variational (weak) formulation



























〈w′′ (.) ,ω〉+ (αw′ (.) ,ω) + ((βw (.) ,ω))

+(γ sinδw (.) ,ω) + (ρw (.) ,ω) = (f (.) ,ω) ,

w(0) =w0,w′(0) =w′0

(3.13)

for all ω ∈ V . Here, the solution space is

W (0, T ) =
�

ϕ|ϕ ∈ L2 (0, T ; V ) ,ϕ′ ∈ L2 (0, T ; H) ,ϕ
′′
∈ L2

�

0, T ; V ′
�	

. (3.14)

Here,ω is a test function, which belongs to a dense topological vector subspace ofH ,

so that the dual space of test functions enhances V to a larger topological vector space
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whose elements can be considered as generalized eigenvectors for the continuous

spectrum of unbounded operators.

The following theorem states the continuous dependence of weak solutions for (1.26),

which will be used in proof of uniqueness.

Theorem 3.1. [9] Suppose that assumption (1.24) holds. Let wA = [uA, vA]
t (resp.,

wB = [uB, vB]
t ) be the weak solution of (3.7) with initial values (wA0,wA1) ∈ V ×H

(resp., (wB0,wB1) ∈ V ×H ) and fA∈L2 (0, T ;H )
�

resp., fB∈L2 (0, T ;H )
�

. Then there

is a constant K > 0 which depends only on T and the constants α,β ,γ,δ such that, for

all t in [0, T] the inequality

‖wA(t)−wB (t)‖
2 +

�

�w′A(t)−w′B (t)
�

�

2

≤ K



‖wA0 −wB0‖
2 + |wA1 −wB1|

2 +

t
∫

0

|fA (σ)− fB (σ)|
2 dσ



 (3.15)

holds.

Let us consider system (3.7) in difference form. Using the family of grid points Ωh

defined in (1.29), the system can be written as



























τ−2(wk+1 − 2wk +wk−1) +α(2τ)−1(wk+1 −wk−1)

+βBwk +γ sinδwk +ρwk= fk, 0< t < T,

w0 = ϕ,τ−1(w1 −w0) = ξ

(3.16)

where

wk=

�

uk

vk

�

, sinwk=

�

sin uk

sin vk

�

, fk =

�

fk

gk

�

,

B=

�

A 0

0 A

�

, α=

�

α11 α12

α21 α22

�

,

β =

�

β11 β12

β21 β22

�

, γ=

�

γ1 0

0 γ2

�

,

δ =

�

δ11 δ12

δ21 δ22

�

,ρ =

�

ρ11 ρ12

ρ21 ρ22

�

,
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ϕ =

�

ϕ1

ϕ2

�

, ξ=

�

ξ1

ξ2

�

,

and

fk→ f and gk→ g in L2 (0, T ;V ) . (3.17)

Here, A is an unbounded self-adjoint positive definite operator with domain

D(A) =
�

uk : −∆uk ∈ L2(0, T ; H), u0 = uM = 0
	

. (3.18)

We will obtain unique solvability results for system of difference equation (3.16) in

the weak sense by constructing variational formulation of the equation. We use some

strong convergence properties of the sequences which are obtained by compactness

theorems. The unique weak solvability of (3.16) by means of difference scheme (1.28)

is presented in the next sections.
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3.2 Unique Solvability of First Order of Accuracy Difference

Scheme

In this section, theoretical statements on weak approximate solution to (3.16)

is established by the unconditionally stable difference scheme (1.28). Applying

variational formulation, it will be shown that difference problem (3.16) converges

to a unique weak solution.

Let us consider the variational formulation of (1.28) in the following form























































































































(uk+1, ū) + (uk−1, ū)− 2 (uk, ū)

+α11
2 τ [(uk+1, ū)− (uk−1, ū)] + α12

2 τ [(uk+1, ū)− (uk−1, ū)]

+τ2β1 (Auk+1, ū) +τ2γ1 (sin (δ11uk +δ12vk) , ū)

+τ2ρ11 (uk, ū) +τ2ρ12 (vk, ū) = τ2 ( fk, ū) ,

(vk+1, v̄) + (vk−1, v̄)− 2 (vk, v̄)

+α21
2 τ [(uk+1, v̄)− (uk−1, v̄)] + α22

2 τ [(vk+1, v̄)− (vk−1, v̄)]

+β2τ
2 (Avk+1, v̄) + γ2τ

2 (sin (δ21uk +δ22vk) , v̄)

+ρ21τ
2 (uk, v̄) +ρ22τ

2 (vk, v̄) = τ2 (gk, v̄)

(3.19)

where ū and v̄ are test functions in V .

Definition 3.2. The set of mesh functions {uk} and {vk} are said to be the approximate

weak solutions of (1.28) if uk, vk ∈ V satisfy (3.19).

Theorem 3.2. Suppose that assumptions (1.24), (3.17) and

τ2

4
|γ| |δ|+

τ

8
|α| ≤

N − 1
2N

(3.20)

−
τ

4
|α|+

9
4
τ2 |γ| |δ|+τ2 (−|β | − |ρ|+ 2)≤

N − 1
2N

(3.21)

for k = 1,2, ..., N are satisfied, then there exists a positive constant K such that

max
1≤k≤N

�

‖wk−1‖
2 + ‖wk‖

2 + ‖wk+1‖
2
�

≤ K (3.22)

where K does not depend on the grid parameters τ and h, for all k ∈ N.
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Throughout this paper, K represents a generic constant, having possibly different

values at different occurrences.

Proof. Setting ū= uk+1 and v̄ = vk+1 in (3.19), we have

(uk+1, uk+1) + (uk−1, uk+1)− 2 (uk, uk+1)

+α11
2 τ [(uk+1, uk+1)− (uk−1, uk+1)]

+α12
2 τ [(uk+1, uk+1)− (uk−1, uk+1)]

+τ2β1 (Auk+1, uk+1) +τ2γ1 (sin (δ11uk +δ12vk) , uk+1)

+τ2ρ11 (uk, uk+1) +τ2ρ12 (vk, uk+1) = τ2 ( fk, uk+1) ,

(3.23)

(vk+1, vk+1) + (vk−1, vk+1)− 2 (vk, vk+1)

+α21
2 τ [(uk+1, vk+1)− (uk−1, vk+1)]

+α22
2 τ [(vk+1, vk+1)− (vk−1, vk+1)]

+β2τ
2 (Avk+1, vk+1) + γ2τ

2 (sin (δ21uk +δ22vk) , vk+1)

+ρ21τ
2 (uk, vk+1) +ρ22τ

2 (vk, vk+1) = τ2 (gk, vk+1) .

(3.24)

Substituting the operator A = −∆ into (3.23) - (3.24), applying Discrete Green’s

Identity, and using the boundary conditions in (3.18) yields

(uk+1, uk+1) + (uk−1, uk+1)− 2 (uk, uk+1)

+α11
2 τ [(uk+1, uk+1)− (uk−1, uk+1)]

+α12
2 τ [(uk+1, uk+1)− (uk−1, uk+1)]

+τ2β1 (∇uk+1,∇uk+1) +τ2γ1 (sin (δ11uk +δ12vk) , uk+1)

+τ2ρ11 (uk, uk+1) +τ2ρ12 (vk, uk+1) = τ2 ( fk, uk+1) ,

(3.25)
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(vk+1, vk+1) + (vk−1, vk+1)− 2 (vk, vk+1)

+α21
2 τ [(uk+1, vk+1)− (uk−1, vk+1)]

+α22
2 τ [(vk+1, vk+1)− (vk−1, vk+1)]

+β2τ
2 (∇vk+1,∇vk+1) + γ2τ

2 (sin (δ21uk +δ22vk) , vk+1)

+ρ21τ
2 (uk, vk+1) +ρ22τ

2 (vk, vk+1) = τ2 (gk, vk+1) .

(3.26)

For the terms β1τ
2 (∇uk+1,∇uk+1) and β2τ

2 (∇vk+1,∇vk+1)we assign the bilinear form

a(uk, vk). By coercivity property of a(uk, vk) and the embedding V ,→ H, the system is

written in the following form

(uk+1, uk+1) + (uk−1, uk+1)− 2 (uk, uk+1)

+α11
2 τ [(uk+1, uk+1)− (uk−1, uk+1)]

+α12
2 τ [(uk+1, uk+1)− (uk−1, uk+1)]

+τ2β1 (uk+1, uk+1) +τ2γ1 (sin (δ11uk +δ12vk) , uk+1)

+τ2ρ11 (uk, uk+1) +τ2ρ12 (vk, uk+1)≤ τ2 ( fk, uk+1) ,

(3.27)

(vk+1, vk+1) + (vk−1, vk+1)− 2 (vk, vk+1)

+α21
2 τ [(uk+1, vk+1)− (uk−1, vk+1)]

+α22
2 τ [(vk+1, vk+1)− (vk−1, vk+1)]

+β2τ
2 (vk+1, vk+1) + γ2τ

2 (sin (δ21uk +δ22vk) , vk+1)

+ρ21τ
2 (uk, vk+1) +ρ22τ

2 (vk, vk+1)≤ τ2 (gk, vk+1) .

(3.28)

The system of equation (3.27)-(3.28) can be rearranged as

�

1+τ2β1 +τ
2ρ11

�

(uk+1, uk+1)− 2 (uk, uk+1) + (uk−1, uk+1)

+
α11

2
τ (uk+1, uk+1)−

α11

2
τ (uk−1, uk+1)
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+
α12

2
τ (vk+1, uk+1)−

α12

2
τ (vk−1, uk+1)

+τ2ρ12 (vk+1, uk+1) +τ
2γ1 (sin (δ11uk +δ12vk) , uk+1)

≤ τ2 ( fk, uk+1) , (3.29)

�

1+τ2β2 +τ
2ρ22

�

(vk+1, vk+1)− 2 (vk, vk+1) + (vk−1, vk+1)

+
α21

2
τ (uk+1, vk+1)−

α11

2
τ (uk−1, vk+1)

+
α22

2
τ (vk+1, vk+1)−

α22

2
τ (vk−1, vk+1)

+τ2ρ21 (vk+1, uk+1) +τ
2γ2 (sin (δ21uk +δ22vk) , vk+1)

≤ τ2 (gk, vk+1) . (3.30)

Moreover, system (3.29)-(3.30) can be written as

c1 (uk+1, uk+1)− 2 (uk, uk+1) + (uk−1, uk+1) + c2 (vk+1, uk+1)

+c3 (sin (δ11uk +δ12vk) , uk+1) +
α11

2
τ (uk+1, uk+1)−

α11

2
τ (uk−1, uk+1)

+
α12

2
τ (vk+1, uk+1)−

α12

2
τ (vk−1, uk+1)≤ τ2 ( fk, uk+1) , (3.31)

d1 (vk+1, vk+1)− 2 (vk, vk+1) + (vk−1, vk+1) + d2 (uk+1, vk+1)

+d3 (sin (δ21uk +δ22vk) , vk+1) +
α21

2
τ (uk+1, vk+1)−

α21

2
τ (uk−1, vk+1)

+
α22

2
τ (vk+1, vk+1)−

α22

2
τ (vk−1, vk+1)≤ τ2 (gk, vk+1) , (3.32)

with

c1 = 1+τ2β1 +τ
2ρ11, c2 = τ

2ρ12, c3 = τ
2γ1,

d1 = 1+τ2β2 +τ
2ρ22, d2 = τ

2ρ21, d3 = τ
2γ2.

Taking sum of (3.31) and (3.32), we get

c1 (uk+1, uk+1) + d1 (vk+1, vk+1)− 2 (uk, uk+1)− 2 (vk, vk+1)
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+(uk−1, uk+1) + (vk−1, vk+1) + c2 (vk+1, uk+1) + d2 (uk+1, vk+1)

+c3 (sin (δ11uk +δ12vk) , uk+1) + d3 (sin (δ21uk +δ22vk) , vk+1)

+
α11

2
τ (uk+1, uk+1)−

α11

2
τ (uk−1, uk+1)

+
α12

2
τ (vk+1, uk+1)−

α12

2
τ (vk−1, uk+1)

+
α21

2
τ (uk+1, vk+1)−

α21

2
τ (uk−1, vk+1)

+
α22

2
τ (vk+1, vk+1)−

α22

2
τ (vk−1, vk+1)

≤ τ2 ( fk, uk+1) +τ
2 (gk, vk+1) . (3.33)

Using the product spaceH and the corresponding inner product (3.10), system (3.33)

can be written in the vector form

(A1wk+1,wk+1)− 2 (wk,wk+1) + (wk−1,wk+1)

+(A2wk+1,wk+1) + (A3sinδwk,wk+1)

+τ
�

A4wk+1,wk+1

�

−τ
�

A4wk−1,wk+1

�

+τ (A5wk+1,wk+1)−τ (A5wk−1,wk+1)

≤ τ2 (Fk,wk+1) (3.34)

where

wk =

�

uk

vk

�

, A1 =

�

c1 0

0 d1

�

, A2 =

�

c2 0

0 d2

�

,

A3 =

�

c3 0

0 d3

�

, A4 =

�

α11
2 0

0 α22
2

�

,

A5 =

�

0 α12
2

α21
2 0

�

, Fk =

�

fk 0

0 gk

�

.

Let us rewrite system (3.35) in the following form

(A1wk+1,wk+1) + (A2wk+1,wk+1) +τ
�

A4wk+1,wk+1

�

+τ (A5wk+1,wk+1)

≤ 2 (wk,wk+1)− (wk−1,wk+1)− (A3sinδwk,wk+1)

+τ
�

A4wk−1,wk+1

�

+τ (A5wk−1,wk+1) +τ
2 (Fk,wk+1) , (3.35)
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or equivalently,

(|A1|+ |A2|)‖wk+1‖
2 +τ

��

�A4

�

�+ |A5|
�

‖wk+1‖
2

≤ 2 (wk,wk+1)− (wk−1,wk+1)− (A3sinδwk,wk+1)

+τ
�

A4wk−1,wk+1

�

+τ (A5wk−1,wk+1) +τ
2 (Fk,wk+1) . (3.36)

Taking the absolute value of right-hand side of (3.37) and then using triangle

inequalities, the matrix norm defined in (3.8), we have

(|A1|+ |A2|)‖wk+1‖
2 +τ

��

�A4

�

�+ |A5|
�

‖wk+1‖
2

≤ 2 |(wk,wk+1)|+ |(wk−1,wk+1)|+ |(A3sinδwk,wk+1)|

+τ
�

�

�

A4wk−1,wk+1

��

�+τ |(A5wk−1,wk+1)|+τ2 |(Fk,wk+1)| . (3.37)

Using Cauchy-Schwarz and triangle inequalities, the ε-Young inequality (2.77) with

ε = 1, and the inequality

(sin (δ11uk +δ12vk) , uk+1)≤ ‖δ11uk +δ12vk‖‖uk+1‖ , (3.38)

the matrix norm defined in (3.8), the terms (3.37) are estimated as in the following

�

1
2
+τ2

�

|β |+ |ρ| −
|δ| |γ|

2
−

1
2

��

‖wk+1‖
2

−
�

1+
τ2

2
|δ| |γ|

�

‖wk‖
2 −

1
2
‖wk−1‖

2

≤
τ

4
|α|
�

‖wk+1‖
2 + ‖wk−1‖

2
�

+
τ2

2
‖Fk‖

2 , (3.39)

Then we have
1
2

�

‖wk+1‖
2 − ‖wk−1‖

2
�

−
τ

8
|α| ‖wk−1‖

2

≤
h

−
τ

4
|α|+τ2 (−|β | − |ρ|+ |δ| |γ|)

i

‖wk+1‖
2

�

1+
τ2

2
|δ| |γ|

�

‖wk‖
2 +
τ

8
|α| ‖wk−1‖

2 +
τ2

2
‖Fk‖

2 . (3.40)

Dividing both sides of (3.40) by τ, we obtain the inequality in difference form

‖wk+1‖
2 − ‖wk−1‖

2

2τ
−
|α|
8
‖wk−1‖

2
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≤ k1 ‖wk+1‖
2 + k2 ‖wk‖

2 + k3 ‖wk−1‖
2 +
τ

2
‖Fk‖

2 , (3.41)

where

k1 = −
|α|
4
+τ (−|β | − |ρ|+ |δ| |γ|) ,

k2 =
1
τ
+
τ

2
|δ| |γ| , k3 =

|α|
8

.

Then we can apply the discrete Gronwall Lemma obtained as the statement (2.71), in

Remark 2.8. In (2.71) we set

un+1 = ‖wk+1‖
2 , un−1 = ‖wk−1‖

2 , fn =
τ

2
‖Fk‖

2 ,

A0 = B1 =
τ

4
|δ| |γ| , A1 = k1, B0 = k3.

Then we have

max
1≤k≤N

�

‖wk+1‖
2 + ‖wk‖

2
�

≤ e2C1 ‖w1‖
2 + e2C2 ‖w0‖

2 + e2C3τ2
n
∑

k=1

‖Fk‖
2 + e2C1

τ2

2
‖Fk+1‖

2

(3.42)

where

C1 = A1 + B1, C2 = A2 + B2, C3 = max{C1, C2}.

Equation (3.42) can be written as

max
1≤k≤N

�

‖wk+1‖
2 + ‖wk‖

2
�

≤ K1 ‖w1‖
2 + K2 ‖w0‖

2 + K3τ
2

n
∑

k=1

‖Fk‖
2 + K4

τ2

2
‖Fk+1‖

2 .

(3.43)

Let

K0 =max{K1, K2, K3, K4},

then

‖wk+1‖
2 + ‖wk‖

2 ≤ K0

�

‖w1‖
2 + ‖w0‖

2 +τ2
n
∑

k=1

‖Fk‖
2 +
τ2

2
‖Fk+1‖

2

�

. (3.44)

Without loss of generality, let us assume that there exists a constant K̃ in terms of the

given values w1, w0, Fk and Fk+1, that is

K̃ = K0 (‖w0‖ ,‖w1‖ ,‖Fk‖ ,‖Fk+1‖) .

Then we have

max
1≤k≤N

�

‖wk+1‖
2 + ‖wk‖

2
�

≤ K̃ (3.45)

Since the right-hand side of (3.41) is bounded by the result of the discrete Gronwall
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inequality, we obtain

−
|α|
8
‖wk−1‖

2 ≤ M ,

and so

max
1≤k≤N

‖wk−1‖
2 ≤ M0, (3.46)

for any nonnegative constants M0, M . Thus,

max
1≤k≤N

�

‖wk+1‖
2 + ‖wk‖

2 + ‖wk+1‖
2
�

≤ K̃ +M0 = K (3.47)

Hence, Theorem 3.2 is proved. �

Theorem 3.3. Suppose that assumptions (1.24) and (3.17) hold. Then there is a positive

constant K, which does not depend on the grid parameters τ and h, such that for all k ∈ N

�






uk+1 − uk

τ







2

+






uk − uk−1

τ







2

+






uk+1 − uk−1

2τ







2

+






vk+1 − vk

τ







2

+






vk − vk−1

τ







2

+






vk+1 − vk−1

2τ







2�

≤ K . (3.48)

Proof. Applying the method of proving Theorem 3.2, we construct the weak

formulation for the derivative terms by modifying (1.28). Multiplying by τ and taking

the inner product for first equation of (1.28) by uk+1−uk
τ and uk−uk−1

τ , we obtain

�uk+1 − uk

τ
−

uk − uk−1

τ
,
uk+1 − uk

τ

�

+τα11

�uk+1 − uk−1

2τ
,
uk+1 − uk

τ

�

+τα12

� vk+1 − vk−1

2τ
,
uk+1 − uk

τ

�

+τβ1

�

Auk+1,
uk+1 − uk

τ

�

+τγ1

�

sin (δ11uk +δ12vk) ,
uk+1 − uk

τ

�

+τρ11

�

uk+1,
uk+1 − uk

τ

�

+τρ12

�

vk+1,
uk+1 − uk

τ

�

= τ
�

fk,
uk+1 − uk

τ

�

(3.49)

and
�uk+1 − uk

τ
−

uk − uk−1

τ
,
uk − uk−1

τ

�

+τα11

�uk+1 − uk−1

2τ
,
uk − uk−1

τ

�

+τα12

� vk+1 − vk−1

2τ
,
uk − uk−1

τ

�
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+τβ1

�

Auk+1,
uk − uk−1

τ

�

+τγ1

�

sin (δ11uk +δ12vk) ,
uk − uk−1

τ

�

+τρ11

�

uk+1,
uk − uk−1

τ

�

+τρ12

�

vk+1,
uk − uk−1

τ

�

= τ
�

fk,
uk − uk−1

τ

�

, (3.50)

respectively. Similar to the proof of Theorem 3.2, for the terms containing the operator

A we use the discrete Green formula and we assign the bilinear form a(uk, vk). By

coercivity property of a(uk, vk) and the embedding V ,→ H, the system can be written

in the following form

�uk+1 − uk

τ
−

uk − uk−1

τ
,
uk+1 − uk

τ

�

+τα11

�uk+1 − uk−1

2τ
,
uk+1 − uk

τ

�

+τα12

� vk+1 − vk−1

2τ
,
uk+1 − uk

τ

�

+τβ1

�

uk+1,
uk+1 − uk

τ

�

+τγ1

�

sin (δ11uk +δ12vk) ,
uk+1 − uk

τ

�

+τρ11

�

uk+1,
uk+1 − uk

τ

�

+τρ12

�

vk+1,
uk+1 − uk

τ

�

≤ τ
�

fk,
uk+1 − uk

τ

�

(3.51)

and
�uk+1 − uk

τ
−

uk − uk−1

τ
,
uk − uk−1

τ

�

+τα11

�uk+1 − uk−1

2τ
,
uk − uk−1

τ

�

+τα12

� vk+1 − vk−1

2τ
,
uk − uk−1

τ

�

+τβ1

�

uk+1,
uk − uk−1

τ

�

+τγ1

�

sin (δ11uk +δ12vk) ,
uk − uk−1

τ

�

+τρ11

�

uk+1,
uk − uk−1

τ

�

+τρ12

�

vk+1,
uk − uk−1

τ

�

≤ τ
�

fk,
uk − uk−1

τ

�

, (3.52)

Taking the sum of (3.51) and (3.52) yields

§






uk+1 − uk

τ







2

−






uk − uk−1

τ







2ª

+2τα11







uk+1 − uk−1

2τ







2

+τα12

� vk+1 − vk−1

2τ
,
uk+1 − uk−1

τ

�

+τβ1

�

Auk+1,
uk − uk−1

τ

�

+τγ1

�

sin (δ11uk +δ12vk) ,
uk − uk−1

τ

�
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+τρ11

�

uk+1,
uk − uk−1

τ

�

+τρ12

�

vk+1,
uk − uk−1

τ

�

≤ τ
�

fk,
uk+1 − uk

τ

�

. (3.53)

Similarly, modifying (1.28), multiplying by τ, and taking the inner product for the

second equation of (1.28) by vk+1−vk
τ and vk−vk−1

τ , we get

� vk+1 − vk

τ
−

vk − vk−1

τ
,

vk+1 − vk

τ

�

+τα21

�uk+1 − uk−1

2τ
,

vk+1 − vk

τ

�

+τα22

� vk+1 − vk−1

2τ
,

vk+1 − vk

τ

�

+τβ2

�

Avk+1,
vk+1 − vk

τ

�

+τγ2

�

sin (δ21uk +δ22vk) ,
vk+1 − vk

τ

�

+τρ21

�

uk+1,
vk+1 − vk

τ

�

+τρ22

�

vk+1,
vk+1 − vk

τ

�

= τ
�

gk,
vk+1 − vk

τ

�

(3.54)

and
� vk+1 − vk

τ
−

vk − vk−1

τ
,

vk − vk−1

τ

�

+τα21

�uk+1 − uk−1

2τ
,

vk − vk−1

τ

�

+τα22

� vk+1 − vk−1

2τ
,

vk − vk−1

τ

�

+τβ2

�

Avk+1,
vk − vk−1

τ

�

+τγ2

�

sin (δ21uk +δ22vk) ,
vk − vk−1

τ

�

+τρ21

�

uk+1,
vk − vk−1

τ

�

+τρ22

�

vk+1,
vk − vk−1

τ

�

= τ
�

gk,
vk − vk−1

τ

�

, (3.55)

respectively. For the terms containing the operator A we use the discrete Green formula

and we assign the bilinear form a(uk, vk). By coercivity property of a(uk, vk) and the

embedding V ,→ H, the system is written in the following form

� vk+1 − vk

τ
−

vk − vk−1

τ
,

vk+1 − vk

τ

�

+τα21

�uk+1 − uk−1

2τ
,

vk+1 − vk

τ

�

+τα22

� vk+1 − vk−1

2τ
,

vk+1 − vk

τ

�

+τβ2

�

vk+1,
vk+1 − vk

τ

�

+τγ2

�

sin (δ21uk +δ22vk) ,
vk+1 − vk

τ

�

+τρ21

�

uk+1,
vk+1 − vk

τ

�

+τρ22

�

vk+1,
vk+1 − vk

τ

�
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≤ τ
�

gk,
vk+1 − vk

τ

�

(3.56)

and
� vk+1 − vk

τ
−

vk − vk−1

τ
,

vk − vk−1

τ

�

+τα21

�uk+1 − uk−1

2τ
,

vk − vk−1

τ

�

+τα22

� vk+1 − vk−1

2τ
,

vk − vk−1

τ

�

+τβ2

�

vk+1,
vk − vk−1

τ

�

+τγ2

�

sin (δ21uk +δ22vk) ,
vk − vk−1

τ

�

+τρ21

�

uk+1,
vk − vk−1

τ

�

+τρ22

�

vk+1,
vk − vk−1

τ

�

≤ τ
�

gk,
vk − vk−1

τ

�

. (3.57)

Taking the sum of (3.56) and (3.57)

§






vk+1 − vk

τ







2

−






vk − vk−1

τ







2ª

+2τα22







vk+1 − vk−1

2τ







2

+τα21

�uk+1 − uk−1

2τ
,

vk+1 − vk−1

τ

�

+τβ2

�

Avk+1,
vk+1 − vk−1

τ

�

+τγ2

�

sin (δ21uk +δ22vk) ,
vk+1 − vk−1

τ

�

+τρ21

�

uk+1,
vk+1 − vk−1

τ

�

+τρ22

�

vk+1,
vk+1 − vk−1

τ

�

≤ τ
�

gk,
vk+1 − vk−1

τ

�

. (3.58)

is obtained. Multiplying (3.53) by α21 and (3.58) by α12, and subtracting these terms,

we get

∆1 = α21

§






uk+1 − uk

τ







2

−






uk − uk−1

τ







2ª

+2τα11α21







uk+1 − uk−1

2τ







2

−α12

§






vk+1 − vk

τ







2

−






vk − vk−1

τ







2ª

+2τα12α22







vk+1 − vk−1

2τ







2

+ s2 (uk+1, vk−1)

+2τ
�

‖uk+1‖
2 + ‖vk+1‖

2
�

+ s1 (uk+1, vk+1)

+s3 (uk+1, uk−1) + s4 (vk+1, vk−1) + s5 (vk+1, uk−1) (3.59)
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where

s1 = α21ρ12 −α12ρ21, s2 = α21β1 −α21ρ11,

s3 = α12β2 −α12ρ22, s4 = α12ρ21τ, s5 = −α21ρ12.

Then we obtain

∆1 ≤ α21 ( fk, uk+1)−α21 ( fk, uk−1)−α12 (gk, vk+1)

+α21 (gk, vk−1) + s6 (sin (δ11uk +δ12vk) , uk+1)

−s6 (sin (δ11uk +δ12vk) , uk−1)− s7 (sin (δ21uk +δ22vk) , vk+1)

+s7 (sin (δ11uk +δ12vk) , vk−1) , (3.60)

where

s6 = α21γ1, s7 = α12γ2.

Here, the coefficients si, i = 1, 2, ..., 7 in (3.59) and (3.60) are bounded constants by

(1.24). Using the inequalities

(sin (δ11uk +δ12vk) , uk+1)≤ ‖δ11uk +δ12vk‖‖uk+1‖ , (3.61)

(uk+1, vk+1)≤
1
2

�

‖uk+1‖
2 + ‖vk+1‖

2
�

, (3.62)

(3.59) and (3.60) can be rewritten as

α21

§






uk+1 − uk

τ







2

−






uk − uk−1

τ







2ª

+2τα11α21







uk+1 − uk−1

2τ







2

+α12

§






vk+1 − vk

τ







2

−






vk − vk−1

τ







2ª

+2τα12α22







vk+1 − vk−1

2τ







2

+a1 ‖uk+1‖
2 + a2 ‖uk‖

2 + a3 ‖uk−1‖
2 + a4 ‖ fk‖

2

+b1 ‖vk+1‖
2 + b2 ‖vk‖

2 + b3 ‖vk−1‖
2 + b4 ‖gk‖

2 (3.63)
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where

a1 = a3 =
τs6

2
(|δ11|+ |δ12|) , a2 = τ(s6 |δ11|+ s7 |δ12|), a4 = α21,

b1 = b3 =
τs7

2
(|δ21|+ |δ22|) , b2 = τ(s6 |δ12|+ s7 |δ22|), b4 = α12.

We denote

N = max {α21, 2τα11α21, 2τα12α22,α12, } , (3.64)

Then using Theorem 3.2, assumptions (1.24) and (3.17) the estimation for (3.63) can

be written as

N
§






uk+1 − uk

τ







2

−






uk − uk−1

τ







2

+






uk+1 − uk−1

2τ







2

+






vk+1 − vk−1

2τ







2

+






vk+1 − vk

τ







2

−






vk − vk−1

τ







2ª

≤ K0. (3.65)

Let K = K0
N , then we have

§






uk+1 − uk

τ







2

−






uk − uk−1

τ







2

+






uk+1 − uk−1

2τ







2

+






vk+1 − vk−1

2τ







2

+






vk+1 − vk

τ







2

−






vk − vk−1

τ







2ª

≤ K . (3.66)

Thus, Theorem 3.3 is proved. �

Corollary 3.1. Under the hypotheses of Theorem 3.2 and Theorem 3.3 there exist subse-

quences
�

ukm

	

⊂ {uk} and
�

vkm

	

⊂ {vk} (3.67)

which converge in V to bounded measurable functions u and v, respectively. Moreover,

the limit functions u and v are unique weak solutions satisfying (3.22) and (3.48).

Proof. Estimates (3.22), (3.48), and Discrete Gronwall’s Lemma [28] imply that

{uk} and {vk} are bounded in L∞(0, T ; V ). (3.68)

Then, by Rellich Theorem [6, 85, 88] there exists a subsequence wkm
=
�

ukm
, vkm

�T
of
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wk = [uk, vk]
T and w̃k∈L∞(0, T ;V ) such that

w̃k∈L∞(0, T ;V ) ⊂ L2(0, T ;V ) (3.69)

and

wkm
→ w̃k weak* in L∞(0, T ;V ) , weakly in L2(0, T ;V ). (3.70)

By the Aubin Compactness Theorem [97, 98], the above convergence results imply

wkm
→ w̃k strongly in L2(0, T ;H ) (3.71)

and by (3.71),

sinδwkm
→ sinδw̃k strongly in L2(0, T ;H ), (3.72)

which shows the existence of w̃k a.e. in H and w̃0 = w0. Uniqueness follows from

convergence of difference scheme (1.28), and by Theorem 3.1. Hence, the proof is

completed. �

Note that similar convergence and compactness results for weak solvability of systems

can be found in [6], [10], [11], and [81].
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4
NUMERICAL ANALYSIS

In the present section, we verify the theoretical results of our study by numerical

experiments. A unified numerical method that is based on finite difference method

equipped with fixed point iteration is employed. The fixed point iteration is applied

for nonlinear part of the problem. We propose a unified numerical method to obtain

more accurate results for the solution of an initial-boundary value problem (IBVP) for

the one dimensional coupled sine Gordon equations. We choose an exact solution

w(t, x) = {u(t, x), v(t, x)} (4.1)

with

u(t, x) = e−2t sinπx , v(t, x) = e−t sinπx (4.2)

and we formulate a boundary value problem that leads to this solution. Let us consider

the IBVP































































ut t − ux x + ut + u= − sin(u− v) + (π2 + 3)e−2t sinπx

+ sin(e−2t sinπx − e−t sinπx),
0< t < 1, 0< x < 1,

vt t − vx x + vt + v = sin(u− v) + (π2 + 1)e−t sinπx

− sin(e−2t sinπx − e−t sinπx),
0< t < 1, 0< x < 1,

u(0, x) = sinπx , ut(0, x) = −2sinπx , 0≤ x ≤ 1,

v(0, x) = sinπx , vt(0, x) = − sinπx , 0≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, v(t, 0) = v(t, 1) = 0, 0≤ t ≤ 1.

(4.3)

System (4.3) is used for modelling the wave propagation on an infinite chain of

elastically bound atoms lying on a fixed lower chain of the similar atoms. The

second order derivative terms describe the elastic interaction of energy between

the neighboring atoms, and their kinetic energy, respectively. The nonlinear terms
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containing sine stand for the potential energy by virtue of the fixed lower chain. The

remaining terms are damping terms and source functions.

For the approximate solution of problem (4.3), difference scheme (1.28) is considered.

The modified Gauss elimination method is utilised for the solution of system (4.3). The

set of a family of grid points

Ωh = [0,1]τ × [0,1]h = {(tk, xn) : tk = kτ, 0≤ k ≤ N ,

Nτ= 1, xn = nh, 0≤ n≤ M , Mh= 1} (4.4)

is considered.

4.1 First Order of Accuracy Difference Scheme

Using difference scheme (1.28), the system















































































































































































muk+1
n −2muk

n+muk−1
n

τ2 − muk+1
n+1−2muk+1

n +muk+1
n−1

h2 + muk+1
n −muk−1

n
2τ +m uk

n

= − sin(m−1uk
n −m−1 vk

n) + sin(e−2tk sinπxn − e−tk sinπxn)

+(π2 + 3)e−2tk sinπxn, xn = nh, 1≤ n≤ M − 1,

mvk+1
n −2mvk

n+mvk−1
n

τ2 − mvk+1
n+1−2mvk+1

n +mvk+1
n−1

h2 + mvk+1
n −mvk−1

n
2τ +m vk

n

= sin(m−1uk
n −m−1 vk

n)− sin(e−2tk sinπxn − e−tk sinπxn)

+(π2 + 1)e−tk sinπxn, xn = nh, 1≤ n≤ M − 1,

tk+1 = (k+ 1)τ, 0≤ k ≤ N , Nτ= 1,

xn = nh, 1≤ n≤ M − 1, Mh= 1,

mu0
n = sin xn,τ−1(mu1

n −m u0
n) = −2sin xn,

mv0
n = sin xn,τ−1(mv1

n −m v0
n) = − sin xn,

muk
0 =m uk

M = 0,m vk
0 =m vk

M = 0, 0≤ k ≤ N

(4.5)
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is obtained, where m is the index representing the number of fixed point iterations.

Rewriting problem (4.5) with matrix coefficients, an (N +1)× (N +1) sized system of

linear equations















































A mun+1 + B mun + C mun−1 = Dm−1ϕn, 1≤ n≤ M − 1,

A mvn+1 + B mvn + C mvn−1 = Em−1ϕ̃n, 1≤ n≤ M − 1,

mu0 = 0, muM = 0,

mv0 = 0, mvM = 0

(4.6)

is obtained. Here,

A=



























0 0 0 0 ... 0 0 0

0 0 a 0 ... 0 0 0

0 0 0
... ... 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 ...
. . . 0 0

0 0 0 0 ... 0 a 0

0 0 0 0 ... 0 0 0



























(N+1)×(N+1)

,

B =







































1 0 0 0 0 ... 0 0 0

b c d 0 0 ... 0 0 0

0 b c d 0 ... 0 0 0

0 0 b c . . . ... 0 0 0

... ... ...
. . . . . . . . .

...
...

...

0 0 0 0
... . . . . . . 0 0

0 0 0 0 ...
. . . . . . d 0

0 0 0 0 ... ... b c d

−1 1 0 0 ... ... 0 0 0







































(N+1)×(M+1)

,

C = A, D = E =











1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1











(N+1)×(N+1)

,

where

a = −
1
h2

, b =
1
τ2
−

1
2τ

, c = 1−
2
τ2

, d =
1
τ2
+

1
2τ
+

2
h2

,
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and

mϕ
k
n =



































sin(πxn)
− sin

�

m−1u1
n −m−1 v1

n

�

+ sin(e−2t1 sinπxn − e−t1 sinπxn)
+(π2 + 3)e−2t1 sinπxn

− sin
�

m−1u2
n −m−1 v2

n

�

+ sin(e−2t2 sinπxn − e−t2 sinπxn)
+(π2 + 3)e−2t2 sinπxn

...

− sin
�

m−1uN−1
n −m−1 vN−1

n

�

+ sin(e−2tN−1 sinπxn − e−tN−1 sinπxn)
+(π2 + 3)e−2tN−1 sinπxn

−2sin(πxn)



































(N+1)×1

,

0ϕ
k
n =



































sin(πxn)
− sin

�

0u1
n −0 v1

n

�

+ sin(e−2t1 sinπxn − e−t1 sinπxn)
+(π2 + 3)e−2t1 sinπxn

− sin
�

0u2
n −0 v2

n

�

+ sin(e−2t2 sinπxn − e−t2 sinπxn)
+(π2 + 3)e−2t2 sinπxn

...

− sin
�

0uN−1
n −0 vN−1

n

�

+ sin(e−2tN−1 sinπxn − e−tN−1 sinπxn)
+(π2 + 3)e−2tN−1 sinπxn

−2 sin(πxn)



































(N+1)×1

,

mϕ̃
k
n =



































sin(πxn)
sin
�

m−1u1
n −m−1 v1

n

�

− sin(e−2t1 sinπxn − e−t1 sinπxn)
+(π2 + 1)e−t1 sinπxn

sin
�

m−1u2
n −m−1 v2

n

�

− sin(e−2t2 sinπxn − e−t2 sinπxn)
+(π2 + 1)e−t2 sinπxn

...

sin
�

m−1uN−1
n −m−1 vN−1

n

�

− sin(e−2tN−1 sinπxn − e−tN−1 sinπxn)
+(π2 + 1)e−tN−1 sinπxn

− sin(xn)



































(N+1)×1

,
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0ϕ̃
k
n =



































sin(xn)
− sin

�

0u1
n −0 v1

n

�

+ sin(e−2t1 sinπxn − e−t1 sinπxn)
+(π2 + 1)e−t1 sinπxn

− sin
�

0u2
n −0 v2

n

�

+ sin(e−2t2 sinπxn − e−t2 sinπxn)
+(π2 + 1)e−t2 sinπxn

...

− sin
�

0uN−1
n −0 vN−1

n

�

+ sin(e−2tN−1 sinπxn − e−tN−1 sinπxn)
+(π2 + 1)e−tN−1 sinπxn

− sin(πxn)



































(N+1)×1

for 0≤ k ≤ N with

us =

















mu0
s

mu1
s

...

muN−1
s

muN
s

















(N+1)×(1)

, vs =

















mv0
s

mv1
s

...

mvN−1
s

mvN
s

















(N+1)×(1)

where s = n− 1, n, n+ 1.

The numerical algorithm is performed for m= 1,2, ..., p, where p depends on a certain

given error tolerance ε such that

�

�

pun −p−1 un

�

�< ε and
�

�

pvn −p−1 vn

�

�< ε. (4.7)

The modified Gauss elimination method is employed for the solution of system (4.6).

The solution is obtained by the following formulas

mun =m αn+1mun+1 +m βn+1, n= M − 1, ..., 2, 1, 0, (4.8)

mvn =m αn+1mvn+1 +m βn+1, n= M − 1, ..., 2, 1, 0, (4.9)

where mα j , mβ j, j = 1, ..., M − 1 are square matrices with size (N + 1)× (N + 1) and

α1, β1 are

mα1 =











0 0 ... 0

0 0 ... 0

... ... ... ...

0 0 ... 0











(N+1)×(N+1)

,mβ1 =











0

0
...

0











(N+1)×1

.
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4.2 Error Analysis

We consider problem (4.3). For the approximate solutions of the problem we use the

first order of accuracy difference scheme. The figures of exact and numerical solutions

are presented for N = M = 80 values.

Figure 4.1 exact solution u(t, x) = e−2t sinπx of problem (4.3)
.

Figure 4.2 difference scheme solution u(t, x) = e−2t sinπx of problem (4.3)
.

Errors, rate of convergence, number of iterations, and the related CPU times are shown

in tables for different N = M values.
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Figure 4.3 exact solution v(t, x) = e−t sinπx of problem (4.3)
.

Figure 4.4 difference scheme solution v(t, x) = e−t sinπx of problem (4.3)
.
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The errors in the approximation are computed by the following formulas

Eu = max
1≤k≤N−1
1≤n≤M−1

�

�u (tk, xn)− uk
n

�

� and Ev = max
1≤k≤N−1
1≤n≤M−1

�

�u (tk, xn)− uk
n

�

� , (4.10)

where u (tk, xn) , v (tk, xn) are the exact solutions, and uk
n, vk

n are the numerical

solutions for the approximate solution of problem (4.3) at (tk, xn). The rate of

convergence for the solutions u and v are computed by the following formulas

ru = log2

�

Eu(N)
Eu(2N)

�

and rv = log2

�

Ev(N)
Ev(2N)

�

. (4.11)

Here m is the index representing the number of fixed point iteration. The numerical

results are presented in the following table.

Table 1. Error analysis for the approximate solution of problem (4.3) by (4.5)

N=M Eu Ev ru rv m CPU times

10 0.3090 0.3090 0.98236 0.98236 7 2.715307

20 0.1564 0.1564 0.99447 0.99447 9 2.802261

40 0.0785 0.0785 0.99816 0.99816 10 3.263671

80 0.0393 0.0393 1.00367 1.00367 11 4.767175

160 0.0196 0.0196 − − 12 14.558062

Table 1 shows the error analysis for the approximate solution of (4.3), with ε = 10−20.

In the iteration, the initials are chosen as matrices of the form

0uk
n = I(N + 1,1), (4.12)

0vk
n = I(N + 1,1). (4.13)

Numerical solutions of problem (4.3) are obtained by first order of accuracy difference

scheme (4.5) jointly with fixed point iteration. The difference scheme converges for

different iteration numbers m, N = M values, initial vectors 0uk
n, 0vk

n , and termination

criteria ε. When the maximum difference at grid points of two successive results gets

less than ε, the iterative process is stopped.

As it is obvious from the table that if values of N and M are doubled, then the errors

decrease approximately by a factor of 1/2 for difference scheme (4.5). The errors

and the rate of convergence presented in the table indicates the convergence of the
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difference scheme and the accuracy of the results. It is observed that the difference

scheme has first order of convergence as it is expected.
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5
RESULTS AND DISCUSSION

In this work, the unique solvability for the system of finite difference schemes for the

coupled sine-Gordon equations based on the variational formulation is constructed.

The theoretical statements on the existence and uniqueness of the system are proved

by the energy method, known as the variational formulation. A novel combined

iterative method based on unconditionally stable finite difference schemes with the

fixed point iteration is constructed. In the iterations, a first order of accuracy stable

difference scheme is employed. Numerical implementations are carried out to confirm

the theoretical results and to demonstrate the efficiency of the method.

Our future work on coupled sine-Gordon equations and other nonlinear wave

systems will likely concentrate on employing high order of accuracy unconditionally

stable difference schemes for the weak formulation, as these schemes improves the

theoretical and numerical results both in accuracy and convergence. Other feasible

directions for the future study would depend upon modelling nonlinear wave systems

having nonlocal boundary conditions and establishing the weak solvability of these

systems.

58



REFERENCES

[1] A. Ashyralyev, P. E. Sobolevskii, Well Posedness of Parabolic Difference Equations.
Birkhäuser-Verlag, 1994.

[2] A. Ashyralyev, P. E. Sobolevskii, “A note on the difference schemes for hyperbolic
equations,” Abstract and Applied Analysis, vol. 6, no. 2, pp. 63–70, 2001.

[3] A. Ashyralyev, P. E. Sobolevskii, New Difference Schemes for Partial Differen-
tial Equations, Operator Theory: Advances and Applications. Birkhäuser-Verlag,
2004.

[4] A. Ashyralyev, O. Yildirim, “On multipoint nonlocal boundary value problems
for hyperbolic differential and difference equations,” Taiwanese Journal of
Mathematics, vol. 14, no. 1, pp. 165–194, 2010.

[5] A. Barone, F. Esposito, C. J. Magee, A. C. Scott, “Theory and applications of the
sine-Gordon equation,” La Rivista del Nuovo Cimento, vol. 1, no. 2, pp. 227–267,
1971.

[6] R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science
and Technology: Volume 2, Functional and Variational Methods. Springer-Verlag,
1992.

[7] A. Hocquet, M. Hofmanová, “An energy method for rough partial differential
equations,” Journal of Differential Equations, vol. 265, pp. 1407–1466, 2018.

[8] K. R. Khusnutdinova, D. E. Pelinovsky, “On the exchange of energy in coupled
Klein-Gordon equations,” Wave Motion, vol. 38, pp. 1–10, 2003.

[9] S. Nakagiri, J. Ha, “Coupled sine-Gordon equations as nonlinear second order
evolution equations,” Taiwanese Journal of Mathematics, vol. 5, no. 2, pp. 297–
315, 2001.

[10] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition. New
York: Springer-Verlag, 1994.

[11] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics:
Applied Mathematical Sciences 68. Springer-Verlag, 1997.

[12] O. Yildirim, M. Uzun, “On fourth-order stable difference scheme for hyperbolic
multipoint NBVP,” Numerical Functional Analysis and Optimization, vol. 38,
no. 10, pp. 1305–1324, 2017.

[13] G. Ben-Yu, P. J. Pascual, M. J. Rodriguez, L. Vazquez, “Numerical solution of the
sine-Gordon equation,” Applied Mathematics and Computation, vol. 18, pp. 1–
14, 1986.

[14] J. Ha, S. Nakagiri, “Existence and regularity of weak solutions for semilinear
second order evolution equations,” Funkcialaj Ekvacioj, vol. 41, pp. 1–24, 1998.

59



[15] J. Martín-Vaquero, A. H. Encinas, A. Queiruga-Dios, V. Gayoso-Martínez, Á. M.
del Rey, “Numerical schemes for general Klein–Gordon equations with Dirichlet
and nonlocal boundary conditions,” Nonlinear Analysis: Modelling and Control,
vol. 23, no. 1, pp. 50–62, 2018.

[16] S. S. Ray, “A numerical solution of the coupled sine-Gordon equation using
the modified decomposition method,” Applied Mathematics and Computation,
vol. 175, pp. 1046–1054, 2006.

[17] Q. F. Wang, “Numerical solution for series sine-Gordon equations using
variational method and finite element approximation,” Applied Mathematics
and Computation, vol. 168, pp. 567–599, 2005.

[18] L. Liu, C. Li, “Coupled sine-Gordon systems in DNA dynamics,” Advances in
Theoretical and Mathematical Physics, Article ID 4676281, 2018.

[19] S. Yomosa, “Soliton excitations in deoxyribonucleic acid (DNA) double helices,”
Physical Review A, vol. 27, pp. 2120–2125, 1983.

[20] Y. Cai, K. Wang, W. Wang, “Global transmission dynamics of a Zika virus model,”
Applied Mathematics Letters, vol. 92, pp. 190–195, 2019.

[21] C. Huang, Y. Qiao, L. Huang, R. P. Agarwal, “Dynamical behaviors of a
food-chain model with stage structure and time delays,” Advances in Difference
Equations, vol. 2018, p. 186, 2018.

[22] C. Huang, H. Zhang, J. Cao, H. Hu, “Stability and Hopf bifurcation of a delayed
prey–predator model with disease in the predator,” International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering, vol. 29, no. 07,
1950091, 23 pages, 2019.

[23] M. Levi, “Beating modes in the Josephson junction,” Chaos in Nonlinear Dynam-
ical Systems, 1984.

[24] J. Li, F. Liu, L. Feng, I. Turner, “A novel finite volume method for the Riesz
space distributed-order advection–diffusion equation,” Applied Mathematical
Modelling, vol. 46, pp. 536–553, 2017.

[25] J. Li, J. Ying, D. Xie, “On the analysis and application of an ion size-modified
Poisson–Boltzmann equation,” Nonlinear Analysis Real World Applications,
vol. 47, pp. 188–203, 2019.

[26] S. Liu, Y. Chen, Y. Huang, J. Zhou, “An efficient two grid method for miscible
displacement problem approximated by mixed finite element methods,” Com-
puters Mathematics with Applications, vol. 77, no. 3, pp. 752–764, 2019.

[27] X. Long, S. Gong, “New results on stability of Nicholson’s blowflies equation
with multiple pairs of time-varying delays,” Applied Mathematics Letters,
vol. 100, p. 106 027, 2020.

[28] D. Pham, R. Temam, “Weak solutions of the Shigesada-Kawasaki-Teramoto
equations and their attractors,” Nonlinear Analysis, vol. 159, pp. 339–364,
2017.

[29] Y. Tan, C. Huang, B. Sun, T. Wang, “Dynamics of a class of delayed
reaction-diffusion systems with Neumann boundary condition,” Journal of
Mathematical Analysis and Applications, vol. 458, no. 2, pp. 1115–1130, 2018.

60



[30] D. Tong, W. Wang, “Conditional regularity for the 3D MHD equations in the
critical Besov space,” Applied Mathematics Letters, vol. 102, p. 106 119, 2020.

[31] J. Wang, C. Huang, L. Huang, “Discontinuity-induced limit cycles in a general
planar piecewise linear system of saddle–focus type,” Nonlinear Analysis: Hybrid
Systems, vol. 33, pp. 162–178, 2019.

[32] H. Zhang, Y. Cai, S. Fu, W. Wang, “Impact of the fear effect in a prey-predator
model incorporating a prey refuge,” Applied Mathematics and Computation,
vol. 356, pp. 328–337, 2019.

[33] K. X. Zhu, Y. Q. Xie, F. Zhou, “Pullback attractors for a damped semilinear wave
equation with delays,” Acta Mathematica Sinica, English Series, vol. 34, no. 7,
pp. 1131–1150, 2018.

[34] A. S. Ackleh, M. L. Delcambre, K. L. Sutton, “A structured model for the spread
of mycobacterium marinum: Foundations for a numerical approximation
scheme,” Mathematical Biosciences and Engineering, vol. 11, no. 4, 2014.

[35] A. S. Ackleh, B. Ma, T. Tang, “A high resolution finite difference method
for a model of structured susceptible-infected populations coupled with the
environment,” Numerical Methods for Partial Differential Equations, vol. 33,
no. 5, pp. 1420–1458, 2017.

[36] R. R. Ferdinand, “A nonlinear coupled phytoplankton dynamics model,” Numer-
ical Functional Analysis and Optimization, vol. 23, no. 5-6, pp. 515–528, 2002.

[37] Y. Poorun, M. Z. Dauhoo, M. Bessafi, M. K. Elahee, A. Gopaul, A. Khoodaruth,
“The physical and qualitative analysis of fluctuations in air and vapour
concentrations in a porous medium,” Royal Society Open Science, vol. 5, no. 5,
32 pages, 2018.

[38] A. Ackleh, B. Ma, R. Miller, “A general nonlinear model for the interaction
of a size-structured population and its environment: Well-posedness and
approximation,” Quarterly of Applied Mathematics, vol. 74, no. 4, pp. 671–704,
2016.

[39] Y. Achdou, A. Porretta, “Convergence of a finite difference scheme to weak
solutions of the system of partial differential equations arising in mean field
games,” SIAM Journal on Numerical Analysis, vol. 54, no. 1, pp. 161–186, 2016.

[40] Y. Liu, W. Chen, C. Wang, S. M. Wise, “Error analysis of a mixed finite
element method for a cahn–hilliard–hele–shaw system,” Numerische Mathe-
matik, vol. 135, pp. 679–709, 2017.

[41] A. Ashyralyev, B. Hicdurmaz, “Multidimensional problems for nonlinear
fractional schrödinger differential and difference equations,” Mathematical
Methods in the Applied Sciences, vol. 2019, pp. 1–21, 2019.

[42] ——, “A note on the fractional schrödinger differential equations,” Kybernetes,
vol. 40, no. 5-6, pp. 736–750, 2011.

[43] A. Ashyralyev, D. Agirseven, B. Ceylan, “Bounded solutions of delay nonlinear
evolutionary equations,” Journal of Computational and Applied Mathematics,
vol. 318, pp. 69–78, 2017.

61



[44] A. Ashyralyev, D. Agirseven, “Bounded solutions of nonlinear hyperbolic
equations with time delay,” Electronic Journal of Differential Equations,
vol. 2018, no. 21, pp. 1–15, 2018.

[45] O. Yildirim, M. Uzun, “On the numerical solutions of high order stable difference
schemes for the hyperbolic multipoint nonlocal boundary value problems,” Ap-
plied Mathematics and Computation, vol. 254, pp. 210–218, 2015.

[46] ——, “On third order stable difference scheme for hyperbolic multipoint
nonlocal boundary value problem,” Discrete Dynamics in Nature and Society,
vol. 2015, 16 pages, 2015.

[47] ——, “High order of accuracy stable difference schemes for the approximate
solution of the multipoint nbvp for the hyperbolic equation,” AIP Conference
Proceedings, vol. 1611, pp. 305–309, 2014.

[48] O. Yildirim, M. Uzun, O. Altun, “On the numerical solution of nonlinear system
of coupled sine-Gordon equations,” in Proceedings of Fourth International Con-
ference on Analysis and Applied Mathematics (ICAAM 2018), Mersin, Turkey, 6–9
September 2018, AIP Conference Proceedings 1997, 020062, 2018, New York:
AIP Conference Proceedings 1997, 2018, p. 020 062.

[49] O. Yildirim, M. Uzun, “A note on the numerical solution of coupled
Klein-Gordon equations,” in Proceedings of 3rd International Conference of Math-
ematical Sciences (ICMS 2019), Istanbul, Turkey, 4–8 September 2019, AIP Con-
ference Proceedings 2183, 070030, 2019, New York: AIP Conference Proceedings
2183, 2019, p. 070 030.

[50] M. Peyrard, A. R. Bishop, “Statistical mechanics of a nonlinear model for DNA
denaturation,” Physical Review Letters, vol. 62, p. 2755, 1989.

[51] S. Englander, N. Kallenbach, A. Heeger, J. Krumhansl, S. Litwin, “Nature of
the open state in long polynucleotide double helices: Possibility of soliton
excitations,” Proceedings of the National Academy of Sciences, vol. 77, pp. 7222–
7226, 1980.

[52] O. Braun, Y. Kivshar, The Frenkel-Kontorova Model. Springer, 2004.

[53] A. Davydov, Biology and Quantum Mechanics. Pergamon, 1982.

[54] A. Davydov, Solitons in Molecular Systems. Kluwer, Dordrecht, 1982.

[55] Y. Frenkel, T. Kontorova, “On theory of plastic deformation and twinning,”
Physikalische Zeitschrift der Sowjetunion, vol. 13, pp. 1–7, 1938.

[56] A. Newell, Solitons in Mathematics and Physics. SIAM, 1985.

[57] M. Salerno, “Dynamical properties of DNA promoters,” Physics Letters A,
vol. 167, no. 1, pp. 49–53, 1992.

[58] M. Salerno, Y. Kivshar, “DNA promoters and nonlinear dynamics,” Physics Let-
ters A, vol. 193, pp. 263–266, 1994.

[59] S. Takeno, M. Peyrard, “Nonlinear modes in coupled rotator models,” Physica
D, vol. 92, pp. 140–163, 1994.

[60] S. Yomosa, “Soliton excitations in deoxyribonucleic acid (DNA) double helices,”
Physical Review A, vol. 27, pp. 2120–2125, 1983.

62



[61] C. T. Zhang, “Soliton excitations in deoxyribonucleic acid (DNA) double
helices,” Physical Review A, vol. 35, pp. 886–891, 1987.

[62] L. V. Yakushevich, “The effects of damping, external fields and inhomogeneity on
the nonlinear dynamics of biopolymers,” Studia Biophysica, vol. 121, pp. 201–
207, 1987.

[63] S. Yomosa, “Solitary excitations in deoxyribonucleic acid (DNA) double
helices,” Physical Review A, vol. 30, pp. 474–480, 1984.

[64] V. Ivancevic, T. Ivancevic, “Sine-gordon solitons, kinks and breathers as physical
models of nonlinear excitations in living cellular structures,” Journal of Geom-
etry and Symmetry in Physics, vol. 31, pp. 1–56, 2013.

[65] W. Hai, “Kink couples in deoxyribonucleic acid (DNA) double helices,” Physics
Letters A, vol. 186, no. 4, pp. 309–316, 1994.

[66] M. Salerno, “Discrete model for DNA-promoter dynamics,” Physical Review A,
vol. 44, pp. 5292–5297, 1991.

[67] M. Ablowitz, D. Kaup, A. Newell, H. Segur, “Method for solving the sine-gordon
equation,” Physical Review Letters, vol. 30, pp. 1262–1264, 1973.

[68] A. Salas, “Exact solutions of coupled sine-gordon equations,” Nonlinear Analy-
sis: Real World Applications, vol. 11, pp. 3930–3935, 2010.

[69] A. Polyanin, V. Zaitsev, Handbook of Nonlinear Partial Differential Equations.
Chapman Hall/CRC Press, 2004.

[70] L. Debnath, Nonlinear Partial Differential Equations for Scientist and Engineers.
Birkhauser, 2012.

[71] R. H. Enns, It’s a Nonlinear World. Springer, 2010.

[72] M. A. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and In-
verse Scattering. Cambridge University Press, 1991.

[73] J. S. Russell, Report on waves. Fourteenth meeting of the British Association for
the Advancement of Science, 1844.

[74] T. Heimburg, A. D. Jackson, “On soliton propagation in biomembranes and
nerves,” Proceedings of the National Academy of Sciences, vol. 102, no. 2,
pp. 9790–9795, 2005.

[75] ——, “On the action potential as a propagating density pulse and the role of
anesthetics,” Biophysical Reviews and Letters, vol. 2, pp. 57–78, 2007.

[76] A. M. Kosevich, V. V. Gann, A. I. Zhukov, V. P. Voronov, “Magnetic soliton
motion in a nonuniform magnetic field,” Journal of Experimental and Theoretical
Physics, vol. 87, no. 2, pp. 401–407, 1998.

[77] G. W. Gibbons, “Born-infeld particles and dirichlet p-branes,” Nuclear Physics B,
vol. 514, no. 3, pp. 603–639, 1998.

[78] L. V. Yakushevich, Nonlinear physics of DNA, 2nd revised ed. Wiley-VCH, 2004.

[79] Z. Sinkala, “Soliton/exciton transport in proteins,” Journal of Theoretical Biol-
ogy, vol. 241, no. 4, pp. 919–927, 2006.

[80] S. S. L. Andersen, A. Jackson, T. Heimburg, “Towards a thermodynamic theory
of nerve pulse propagation,” Progress in Neurobiology, vol. 88, no. 2, pp. 104–
113, 2009.

63



[81] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/A: Linear Mono-
tone Operators. Springer- Verlag, 1986.

[82] B. Gohler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z.
Vager, R. Naaman, H. Zacharias, “Spin selectivity in electron transmission
through self-assembled monolayers of double-stranded DNA,” Science, vol. 331,
no. 6019, p. 894, 2011.

[83] Weizmann institute of science. [Online]. Available: www.sciencedaily.com/
releases/2011/03/110331104014.htm (visited on 06/09/2020).

[84] S. Larsson, V. Thomée, Partial Differential Equations with Numerical Methods.
Springer-Verlag Berlin Heidelberg, 2009.

[85] L. C. Evans, Partial Differential Equations. American Mathematical Society,
1997.

[86] J. A. Goldstein, Semigroups of Linear Operators and Applications. Oxford
University Press, New York, 1985.

[87] M. Reed, Lecture Notes in Mathematics: Abstract Non Linear Wave Equations.
Springer-Verlag, 1976.

[88] R. A. Adams, J. J. F. Fournier, Sobolev Spaces. Elsevier B. V., 2005.

[89] B. Straughan, The Energy Method, Stability, and Nonlinear Convection.
Springer-Verlag, 1992.

[90] A. A. Samarskii, The Theory of Difference Schemes. Marcel Dekker, Inc., New
York, Basel, 2001.

[91] B. S. Jovanovic, E. Süli, Analysis of Finite Difference Schemes For Linear Par-
tial Differential Equations with Generalized Solutions. Springer-Verlag, London,
2014.

[92] Non-linear partial differential equation, encyclopedia of mathematics. [Online].
Available: https : / / encyclopediaofmath . org / wiki / Non - linear _
partial_differential_equation (visited on 07/05/2021).

[93] K. J. Engel, R. Nagel, A Short Course on Operator Semigroups. Springer, 2006.

[94] T. Wang, J. Chen, L. Zhang, “Conservative difference methods for the
klein–gordon–zakharov equations,” Journal of Computational and Applied
Mathematics, vol. 205, pp. 430–452, 2007.

[95] F. Tone, D. Wirosoetisno, “On the long-time stability of the implicit euler scheme
for the two-dimensional navier-stokes equations,” SIAM Journal on Numerical
Analysis, vol. 44, no. 1, pp. 29–40, 2006.

[96] A. H. Le, P. Omnes, “Discrete poincaré inequalities for arbitrary meshes in the
discrete duality finite volume context,” Electronic Transactions on Numerical
Analysis, vol. 40, pp. 94–119, 2013.

[97] J. P. Aubin, “Un théoremé de compacité,” Comptes rendus de l’Académie des Sci-
ences, vol. 256, pp. 5042–5044, 1963.

[98] F. Boyer, P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-
Stokes Equations and Related Models. Springer, 2013.

64

www.sciencedaily.com/releases/2011/03/110331104014.htm
www.sciencedaily.com/releases/2011/03/110331104014.htm
https://encyclopediaofmath.org/wiki/Non-linear_partial_differential_equation
https://encyclopediaofmath.org/wiki/Non-linear_partial_differential_equation


PUBLICATIONS FROM THE THESIS

Papers
1. O. Yildirim and M. Uzun, "Weak solvability of the unconditionally stable

difference scheme for the coupled sine-Gordon system", Nonlinear Analysis:
Modelling and Control, vol. 25, no. 6, p. 997–1014, 2020.

Conference Papers
1. O. Yildirim and M. Uzun, "A composite numerical method on the solution of

coupled sine-Gordon equations based on the fixed point theory", "Banach Spaces
and Their Applications", 26-29 June 2019, Lviv, Ukraine.

2. O. Yildirim and M. Uzun, "On the numerical solution of nonlinear system
of coupled sine-Gordon equations", "The Fourth International Conference on
Analysis and Applied Mathematics (ICAAM 2018)", 6-9 September 2018, Near
East University, Lefkosa, Mersin, Turkey.

Projects
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