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ABSTRACT

On The Solution of Fractional Order Partial Differential
Equations with Wavelet Basis Functions

Jumana H.S. ALKHALISSI

Department of Mathematical Engineering

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Ibrahim EMIROGLU
Co-supervisor: Prof. Dr. Mustafa BAYRAM

Avast application of partial differential equations in different physical and engineering
sciences, and the main role that be playing by fractional differential equations to the
best representation of various phenomena and real world problems therefore derived
and developed a new numerical techniques is necessity. The aim of this thesis, is
to introduce new wavelet technique based on the generalized Gegenbauer- Humbert
polynomials; we call this method generalized Gegenbauer- Humbert wavelet. Utilized
the proposed method to solve fractional differential equations (linear and non-linear)
with initial and boundary- initial conditions. According to this new technique allows
us to examine and select the best method to solve the problems under discussion; this

method unifies some known wavelet methods in one formula.

The proposed method established the efficiency and accuracy when used to solve
fractional differential equations (linear and non-linear) with ordinary, partial and
coupled systems of fractional partial differential equations. The performance of our
method is analyzed by comparing it with other different numerical methods; the

convergence analysis is inspected in addition.

Keywords: The generalized Gegenbauer- Humbert polynomial, operational matrix,
fractional partial differential equations, the systems of fractional partial differential

equations
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OZET

Kesirli Mertebeden Kismi Diferansiyel Denklemlerin
Dalgacik Bazli Fonksiyonlarla Coziimii

Jumana H.S. ALKHALISSI

Matematik Miithendisligi Anabilim Dali

Doktora Tezi

Danisman: Prof. Dr. Ibrahim EMIROGLU
Es-Danisman: Prof. Dr. Mustafa BAYRAM

Kismi diferansiyel denklemlerin fizik ve miihendislik bilimlerinde genis bir uygulamasi
vardir ve bu tiir denklemlerin sayisal ¢oziimleri fizik ve miihendislik problemlerinin

¢oziimiinde 6nemli rol almaktadir.

Bu tezin amaci, genellestirilmis Gegenbauer- Humbert polinomlarina dayanan yeni bir
yontem gelistirmektir ve bu yonteme genellestirilmis Gegenbauer- Humbert dalgacigi
denir. Dogrusal ve dogrusal olmayan baslangic ve sinir deger problemlerinin ¢6ziimii
icin yeni bir metot Onerisi yapilmistir. Bu yontem dogrusal ve dogrusal olmayan
baslangic ve sinir deger problemlerinin ¢oziilmesi icin gelistirilmis olup dogrulugu
diger farkl sayisal yontemlerle karsilastirilmistir. Ayrica onerilen metodun yakinsama

analizi de tartisilmistir.

Anahtar Kelimeler: Genellestirilmis Gegenbauer-Humbert polinomu, islem matrisi,

kesirli kismi diferansiyel denklemler, kesirli kismi diferansiyel denklem sistemleri

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU
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1

INTRODUCTION

1.1 Literature Review

In spite of, history of the fractional calculus backs to 1695 when L'Hospital asked
Lebiniz what does it mean the derivative of order one half, it still attract frequently
of curiosity and interest among researchers [1]. The first researcher who gave the
fractional derivative particular definition was Laplace in 1812 [2]. Upwards 10 years
after 1923 when Abel solved a physical problem (tautochrone problem) by using
the fractional operations at the first time, Liouville derived a definition of fractional
integration that is called today Liouville formula of fractional integration. The formula
of which is under the name Riemann- Liouville fractional integral obtained by N. Ya.
Sonin in 1869 [3].

The fractional calculus has played a special role to simplify considerable
phenomena in different science and engineering, such as colored noise, control
theory, visco-elasticity, electrical networks, fluid mechanics, anomalous diffusion,
electromagnetism, etc. In additions, to simulate the behavior some of real- world
problems by differential equations with fractional order are more preferable than the
integer order for example, influenza A, fractional model of HIV, Dengue and Covid-19
recently. Caputo derivative founded to overtake the troubles that appeared when using

Riemann- Liiouville derivative to solve real- world problems.

Owing to the analytical solutions of the fractional differential equations (FDEs)
are not available often, the numerical methods to find an approximate solutions
are needed. The challenging of investigate and develop techniques to find the
solutions of FDEs attract a lot of scientists and researchers recently. — some
of the recent methods and techniques are transform methods (Laplace [4]
and Fourier [5]), the Adomian decomposition method [6-8], homotopy analysis
method [9], collocation method [10], homotopy perturbation method [11, 12],
Sumudu transform method [13] and variational iteration method [14].



One of the most coming techniques that is used in different sciences and engineering is
the orthogonal functions [15, 16] and [17, 18]. Many sets of functions are frequently
used such as the Sine—cosine functions, block-pulse functions, Legendre, Laguerre
and Chebyshev orthonormal. In the field of sciences and engineering, the orthogonal

functions have shown many successes to solve the FDEs such as wavelets method.

Over the last years, methods based on wavelets have been acquiring vast interest
for solving differential equations in different sciences and engineering numerically
because of their features like orthogonality and capability of representing a various
functions with variate levels of resolution. Therefore, developed wavelet to solve
difficult problems with accurately numerical algorithms receiving attention of the
researchers in the last decades. Wavelet basis is transformed the underlying problem
to a system algebraic equations by evaluating the integrals using operational matrices
[19] and [20]. Haar wavelet was constructed by Haar in 1909 is the modest of the
orthogonal wavelets, Chen et al. [21] was the first who derived the operational
matrix of Haar wavelet of fractional integration and used to solve the differential
equations. The Legendre and Chebyshev wavelets gained more attractive from a lot
of researchers too [20, 22, 23] and CAS wavelet [24]. The generalize of Legendre,
Chebyshev and other polynomials is Gegenbauer (ultraspherical) polynomials [25]
which are orthogonal on the interval [-1,1]. To obtain the operational matrix for the
Gegenbauer wavelet method, Rehman and Saeed [26] did the main role to investigate
it. Also, Srivastava et al. [27] applied the Gegenbauer wavelet to find the solution of

the fractional Bagley-Torvik equation.

In this thesis, we developed a new algorithm of wavelets based on generalized
Gegenbauer- Humbert polynomials to solve fractional partial differential equations.
We organized this thesis as follows, we consider some basic mathematical definitions
and preliminaries about fractional calculus, orthogonal polynomials, generalized
Gegenbauer- Humbert polynomials and wavelets in Chapter 2. In Chapter 3, we
have constructed a generalized Gegenbauer- Humbert wavelet abbreviated (GHW)
and their operational matrix of fractional integration then are utilized to solve (linear
and non-linear) fractional differential equations. We derived the operational matrix
of fractional derivative of GHW and enforcement the proposed method for (linear and
non- linear) fractional differential equations are described in Chapter 4. The aim of
Chapter 5 is to evolve the GHW method for solving the partial fractional differential
equations with boundary and initial- boundary conditions. While in Chapter 6, we
extend the GHW method to solve systems of partial fractional differential equations.
The numerical results of some problems to test the accuracy and efficiency of the
proposed method are considered in each above chapters. The conclusion are covered

in Chapter 7.



1.2 Objective of the Thesis

The goal of this thesis is to construct a new technique of wavelets for solving partial
fractional differential equations based on the orthogonal functions of generalized
ultraspherical polynomials. The proposed method unify some of wavelet methods
as one formula, therefore allowed to examine which one best to use for solving the
problem under studying. This method effort advancing the study on various wavelets
in order to solve differential equations of arbitrary order of an effective way and more

accurate.

1.3 Hypothesis

This thesis discussed for the first time the following:

A new modification in the Gegenbauer wavelet method by combinations with

other orthogonal polynomial.

* Investigate the operational matrices wither related to integration and derivation

of fractional order and utilized to solve fractional differential equations.

* The convergence and error-bound analysis provided in our study to show the
credibility of the suggested algorithm and support the mathematical formulation

of the algorithm.

* The proposed method compared with other wavelet method and observed that,
the proposed algorithm is an efficient tool to tackle the fractional order problems

of complex nature.



2

MATHEMATICAL PRELIMINARY

2.1 Fractional Calculus

Fractional calculus history started from attempting to generalize the principle of
conventional calculus to arbitrary order. A significant number of authors have
shed-light on the fractional calculus, are more suitable to represent different real
phenomena including their properties. Numerous definitions of differentiations and
integrations of fractional order such as the Riemann-Liouville, the Liouville-Griinwald,
the Griinwald-Letnikov, the Hadamarod, the Weyl, the Marchaud, the Hadamard, the
Love-Young, the Erdélyi-Kober, the Riesz-Feller and the Caputo fractional derivatives
and integrals some of these definitions are equivalent but in general not. Some of these
definitions are ineffective owing to the insufficiency performance of representing the
initial and boundary conditions containing derivatives of fractional order. The formula

of Riemann -Liouville and Caputo definitions are famous and commonly used.

2.1.1 The Euler Gamma Function

Euler generalized the factorial function to non-integer numbers in 1729 which is called
the gamma function I'(:) (see [28-30]).
I'(x)= J e 't 1dt, Re(x) > —1. 2.1)
0
By integrating Eq.2.1 by parts, given the following formula:

I'(x+1) :J et t¥dt,
0

0

=[et*]” +x J et t¥71dt, (2.2)
0



Its obvious I'(1) = 1, therefore repeating Eq.2.2 yield
'(n+1)=n!, neN. (2.3)

Also, we referred some of properties of the gamma function as the following
(see [31], [28] and [29])

The reflection formula of Euler’s gamma function is

T(x)T(x—1)= —~ ,xE(C,F(l):\/E. 2.4)
sin(7mtx) 2
* The Legendre duplication formula is
2x—1 1
r(2x) = N I'(x)T (x + 5), x eC. (2.5)

The Stirling’s formula is

I(x)=+v2me™ x* Y2 (140(1/x)), (Jarg(x)] < m—e,|x| = c0). (2.6)

ForneN,

F(n+ 1) _ @n-DH V7, 2n—1DN'=1.3...(2n—1). 2.7)

2 2n
* Forx e C
(x4 1)= —o 2.8)
Mx+1)= —g—, 2.8
X nnzl(l + H)
where 7 is the Euler constant.
2.1.2 Beta Function
Euler investigated the definition of beta function in 1772 as (see [29])
1
B(a,b) = f t97 (1 =) e, ((a), R(b) > 0). (2.9)
0

There is a relation between beta function and gamma function can be expressed as

T(a) T(B)

B B) =T gy

o, EZ,. (2.10)



The binomial coefficient (g) definition is

a) _ Ia+1)
(ﬁ)_ r(B+1Dr(a—p+1) (2.11)

where a,f € C,a ¢ Z".

2.1.3 Riemann-Liouville Fractional Integral

The generalized form of Cauchy’s integral is called Riemann-Liouville fractional
integral. The Cauchy’s iterated integral formula for m-fold integral where m € N
is .

I"g(x)= J I"'g(r)dr, n=1,2,...

. 1
 (n—1)!

(2.12)

J (x—7)"g(r)dr,
and by mathematical induction can be prove it.

Generalized the formula Eq.2.12 by replaced n with an arbitrary number a and use
the Gamma function to replace (n — 1)! with I'(a), we obtain the following definition

of Riemann-Liouville fractional integral

Definition 2.1. The Riemann- Liouville fractional integration operator of order a > 0
of a function g(x) is defined as [30]:

i [, k=0 g()dT,  a>0,

2.1
¢(), a=0. @13

Itg(x) = {
for x €[a, b].

We consider some properties of the Riemann-Liouville fractional integral as :

* For y > —1 the Riemann-Liouville fractional integral of the power function (x —

a)’ is
(150 — )6 = D gy (2.14)
a I(y+a+1)
* For y > 0 then
I Vg (x) = IV T%(x) = I%*g(x). (2.15)



2.1.4 Riemann-Liouville Fractional Derivative

Definition 2.2. The definition of Riemann-Liouville fractional derivative of order a €
Ris [32], [33]

1 dm
D(Z :DmIm—a —
LE) =D T g = s o

f (x—7)" % lg(r)dr, (2.16)

wherem—1l<a<mmeNand m=[al.

If « = O then the Riemann- Liouville fractional derivative represent the identity
operator. While the Riemann-Liouville fractional derivative of the function (x — a)”
fory > —1lisas

Oy~ a0 = - D ay. 2.17)

(y—a+1)

2.1.5 Caputo Fractional Derivative

In spite of the main role Riemann- Liouville fractional definitions played in the
growth, the theory of fractional calculus and their applications, it has a lack for
modelling the real-life phenomena. The procedure of Riemann- Liouville leads to
initial conditions having fractional order at lower limits, therefore necessitating an
approach to fractional derivatives for modelling real-life problems by utilizing initial
conditions with derivatives of integer order. M. Caputo investigated another formula
for fractional derivative definition and used it for realizing seismological phenomena
in 1967; then in viscoelasticity theory with E Mainardi in 1969.

Definition 2.3. The Caputo fractional derivative operator of order a > 0 of a function
g(x) is defined as [30]:

L8 a=meN

tm J

CD;g(X) — (2.18)
I (%) g(x), m—1<a<m,

where m =[a| and x > a.

The following are some properties of Caputo fractional derivatives [34]:

* Let { is a constant, then
‘D¢ =0. (2.19)



* For [a] denote the smallest integer greater than or equal to a and | a| denotes
the largest integer less than or equal to a.

eDa(xP) = 0, B eNJ{0} and B <[a]
a %xﬁ_‘ﬂ BeN|J{0} and B =Talor f ¢ Nand(/; EOL)OLJ.

e Form=[al,a>0
m—1 (X _ a)n
1¢] “Deg(x)] = g(x) —;g(’”(a)T. (2.21)

* If g is a continuous function, then CDC‘I" I2g(x) = g(x).
The operator CDc‘j‘ is represent a linear operator, since,
CD;‘()L gl)+uu(x)=A2 CD(‘l"g(x) + U CD(‘l"u(x), (2.22)

where A and y are constants.

2.2 The Orthogonal Polynomials

Legendre, who discovered the Legendre polynomials in 1784; since then the
orthogonal polynomials have appeared widely in the mathematical and scientific
research. The reason of gained a big attention of scientists, features of this technique

by reducing a various problems to a system of algebraic equations can be solve easily.

Definition 2.4. (The orthogonality) [35] Let f(x) and g(x) functions, then the inner

or scalar product of these functions can be defined by the following integral

b
f w(x) f(x) g(x)dx, (2.23)

where w(x) > 0,a < x < b. If the the above integral equal to zero, then we
called f(x), g(x) are orthogonal. For n th order polynomials Q,(x) and satisfies the
orthogonality relation

b
J w(x)Q,(x)Q,,(x)dx, n#m, (2.24)

where w(x) is a weight function and non-negative in the interval (a, b) and the integral

is well-defined for all finite order polynomials Q,(x), these polynomials form a set of
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orthogonal polynomials. It is obvious that

b
f w(x)[Q,(x)]*dx =h,>0. (2.25)

2.2.1 The Generalized Gegenbauer- Humbert Polynomials

The generalized Gegenbauer -Humbert polynomials Pn’}y “(x) ,m >0, which are
defined by the generation function as( [36], [37] and [38]):

B(t)=(c—2xt+y =D PPe(x)t™, (2.26)

m=>0

where A > 0, y and ¢ # 0 are real number. As a special cases of Eq.(2.26) we consider
PAY<(x) as follows:

« PLLI(x)=U,(x), Chebyshev polynomial of the second kind.
 PY/2L1(x)=1),(x), Legendre polynomial.

« P-L(5 +1) =B,,(x), Morgan- Voyc polynomial.

* PL21(3) = ¢,41(x), Fermat polynomial of the first kind.

* P12%%(x) =D, (x,a), Dickson polynomial and a > 0 where a is a real parameter.

* If y = ¢ =1, the corresponding polynomials are called Gegenbauer polynomials.

The class of the generalized Gegenbauer -Humbert polynomial sequences satisfy the
following recurrence relation [36]:

A+m—1 2A+m—2 A
PRYe(x) =2x — PR (x) — y S PR (x), Ym > 2, (2.27)

m m

with initial conditions: PJ"*(x) = (0) = ¢, P}*"°(x) = /(0) = 2Axc*"\. The
generalized Gegenbauer -Humbert polynomial sequence in Eq.(2.27) is an orthogonal
polynomial iff yc > 0.

The explicit formula of generalized Gegenbauer— Humbert polynomial is [39]:

[n/2] k .—A—n+k n—2k
(=y)c (A) i (2x)
PMYe(x) = n , (2.28)
kZ:o: k! (n—2k)!




where the falling fractional rotation x* (some times also denoted (x),) is defined by:
xE=x(x—1)=L (r>1),x%=1.

Moreover, the generalized Gegenbauer— Humbert polynomials satisfy the following

equalities :

DPM<(x) = 24P (x), (2.29)

Dk PAY(x) = 25 (M), P (x), (2.30)

. . . k
where D represents the standard differentiation operator and D* = %.

2.3 Wavelets

Alfred Haar was the first mathematician who introduced the Haar functions in his
thesis in 1909; then it is called today Haar wavelets. On the other hand, Haar
wavelets it still un-useful in some applications due to not giving a smooth curve of
representation. In 1982, the geologist Jean Morlet first derived a method dealing
with seismic signals that change when it pass different layers of earth by constructing
windows for each component of frequency using the dilation, compression or shifting
of an individual window. These windows functions called wavelets of constant shape
by Morlet. Because of unable Fourier representing varying frequency components
throughout the time without being sensitive to any small error, Fourier was replaced
with wavelet transforms in the physical and engineering problems. In 1984, Morlet
and Grossman published their paper that used wavelet in the first time. Based on the
principle that the information gained by different types of wavelets is independent of
each other (i.e., orthogonality), Meyer found a new form of wavelet which made the
deals with wavelets more easier. Stephane Mallat was a student of higher education
under Meyer’s supervision, wavelets are implied a multiresolution process at 1986.
Ingrid Daubechies played a great role in wavelet theory when he introduced a new
class of wavelets functions employing the multiresolution principle in 1988. The
suggested method by Daubechies overcomes the jumping that happens when using

Haar wavelet (see [40] for more history of wavelets).

Wavelets method have a wide applications in a lot of sciences, and engineering
because of their affectively features to model various of problems, for instance, data
compression, computer graphics, image processing, wave propagation, differential

equations, biomedical technology, etc.
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Wavelets constitute a family of functions constructed from dilation and translation of
a function called the mother wavelet 1(t). When the dilation parameter a and the
translation parameter b vary continuously we have the following family of continuous

wavelets:
t—>b
Yap(t) = a2 p(—=), a,beR,a#0. (2.31)
a

If we restrict the parameters a and b to discrete values as a = ry’ kb= nsery k1o >
1,5, > O,where n, k are positive integers, the family of discrete wavelets are defined

as:

Prn(t) =12 4p(rke —nsp). (2.32)

2.3.1 Multiresolution Analysis (MRA)

The basic idea of MRA is to represent a function in L?(fR) as successive approximations

at different levels of resolution.

Definition 2.5. [32, 41] A set of closed subspaces {Vj}jEZ is called a MRA of the
Hilbert space L2(fR) if satisfied the following properties:

1. V;CV;,VieZ.

2. UjeZ V; is dense in L*(R).

3. ez V; =0.

4. The orthogonal complement subspace of W; of V;in V., i.e. V,; =V, @ W,.

5. f(t)eV, < f(2t) eV, VjEL.

6. There exists a scaling function ¢(t) € V,, such that {¢(t —n) | n € Z} is a Riesz

basis of V.

Properties (2)-(5) explain that {Vj}jez is a nested sequence of subspaces V,; covers
L?(%R).

2.3.2 The generalized Gegenbauer— Humbert wavelets

Here, we introduce generalized Gegenbauer— Humbert wavelets (GHW),

Yo (0) =7 (k,n,m, t), (2.33)
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are defined on the interval [0,1], where k = 1,2,... is the level of resolution, n =
1,2,...,251 is the translation parameter, m = 0, 1,..., M — 1 represent the order of the

generalized Gegenbauer— Humbert polynomial. It can be defined as follow as:

—= 2K phre(2Ft —2n+1), TE<t<F

Pre(6) = { Vi (2.34)

b

where h,, is the normalization factor defined as in Eq.2.37 and M > 0, yc > O.

Corresponding to each A, y and ¢ we have a different family of wavelets.

h, = J(Pri’y,c (t)*du(t),Ym=>1, (2.35)
_ SX mA+m—1)"2A+m—1)2
B ( c ) m! (A +m)™ ho, (2.36)

where h,, is the normalization factor defined as follows:

h =

m

(2.37)

(y)m N s V2@ T2A+m)T(A+1)

c m! (A +m)(T(A)2T(A+1)

where the falling fractional rotation x* (some times also denoted (x),).

The weight function of the generalized Gegenbauer- Humbert wavelets can be defined

as

9A(t) = (cy — (2"t —2n+ 1))* /2, (2.38)

2.4 Function Approximations and the Generalized Gegenbauer -
Humbert Wavelets Matrix
Theorem 2.1. A function f(t) € L*(R) can be expanded into truncated generalized

Gegenbauer -Humbert Wavelets series as:

2k=1 pm—1

FUOYR DD 28 (1) = CTW7(0), (2.39)

n=1 m=0

where c,,, = f_llf(t)lpﬁl”fn(t)ﬁﬁ(t)dt. In addition , C and W*(t) are 2"'M x 1 ma-

trices given by:
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T
C= [C10’ Cll’ ceny ClM—l’CZO’ C21, ceey CZM—l’ eeey Czk—lo, Czkfll, ceey CzkflM_l] )

W) = [PY5 (), e T (O PS(), s p2 L (E), oens

T
;ll’:ilo(t)i”'ﬁ ;/IZC—IM_l(t)] .

(2.40)

To find a numerical approximate solution, we need to build a system of 2K-'M

algebraic equations by using a collocation points of the generalized Gegenbauer

2i—1

-Humbert wavelets are taken as t; = 557,

matrix is given by:

where i = 1,2,...,2K'M. The (GHW)

kag —
e e () g (B L e (EM =1 (2.41)
2k=1 7\ x 2k—1 [ sz > 2kM > > sz ’ .
or
i yef 1 ye( 3 v (2M—1Y) ]
\Ijl,o (sz) qjl,o (sz) ‘111,0 ( 2k )
yef 1 ycf 3 v [ 2kM—1

‘111,1 (ZkM) \Pl,l (sz) \Ijl,l ( 2km )
Y,c 1 Y,c 3 Y,c 2kpm—1

\Pl,M—l (ZkM) lI’1,M—1 (2kM) \Ill,M—l 2k )

yef 1 yef 3 ¥ [(2kM—1
\Ijz,o (sz q’z,o (2kM \112,0 ( 2kM )
Y,¢ — : 3 :
\IjzkflszkflM - : : (2.42)

¥,c 1 ¥,c 3 ¥,c 2kM—1

\IJZ,M—l (ZkM) qu,M—l (sz) qJZ,M—l ( 2kM )
¥sc 1 Y,c 3 ysc 2kM—1

quk—l,o (sz) \sz—l,o (sz) \pzk—l,o ( 2kM )

y,c 1 ¥,C 3 Y,c 2kpm—1

_\Dzk—l,M—1 (sz) \Ijzk—l M—1 (2’<M) \Ijzk—l,M—l ( 2kM )_

In particular, we fix k = 2,M = 3, we have n = 1,2 and
y =3,c=1, A =12 the GHW matrix is given as:

[ 1.074567 1.074567 1.074567 0.

—2.108965 0. 2.108965 0.

g3l | 2293272 —804134 2.293272 0.
6x6 0. 0. 0. 1.074567
0. 0. 0. —2.108965
o 0. 0. 2.293272

m = 0,1, 2, for fix value of

0. 0.

0. 0.

0. 0.
1.074567 1.074567

0. 2.108965
—.804134 2.293272 |

(2.43)

Similarly, we get different generalized Gegenbauer- Humbert wavelet matrices for
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different value of y, c and A.

In the same way, an arbitrary function u(x, t) € [0,1) x [0, 1) of two variables may be

expanded into GHW basis as:

u(x, £) & > 0> uap? (e (6) = BT ()UB(2), (2.44)

i=1 j=1

where U = [w;; ] xp, Tt =2"M.

2.5 GHW Operational matrix of fractional order integration

We write f(t) ~ CTW»“(t) , an arbitrary function f € L,[0,1) can be expanded into

block -pulse functions as:

m—1
F(O)~ > fib()=FTB(t), m=2""M, (2.45)
i=0

where f; is the coefficients of the block -pulse function.The generalized Gegenbauer-

Humbert wavelets can be expanded into m-set of block-pulse functions as :

Yre(t) =, 5 B(1). (2.46)

mxm

The fractional integral of block -pulse function vector can be written as:

(I*B)(t)=F:  B(t), (2.47)

where F7  is the block- pulse matrix of integration given in [19] as follows:

_1 51 52 gm—l-
, 0 1 51 gm_z
Frn=mtar [0 0 1 Eess (2.48)
o 1
£, =(i+1)*!—2i*"! 4 (i —1)*", with
Poem = Yinsem F* (@)™ (2.49)

where P2% is the (GHW) operational matrix of integration of fractional order a. In

mxm

14



particular,for k = 2, M = 3, for fix value of y = 3,c = 1,A = 5,a = 0.5 the GHW
matrix is given as:

[ 0.53680 0.15761 —0.31336 0.43691 —0.7547 0.26957 |
—0.21066 0.22434  0.16149  0.85907 —0.44957 0.24122
paios_ | 040907 —0.37608 0.16046 075705 —0.20247 0.10034

ox6 0. 0. 0. 0.53680 0.15761 —0.31336
0. 0. 0. —0.21066 0.22434  0.16149
o 0. 0. 0.40907 —0.37608 0.16046 |
(2.50)
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3

THE GENERALIZED GEGENBAUER- HUMBERTS
WAVELET FOR SOILVING FRACTIONAL DIFFERENTIAL
EQUATIONS

In this chapter, employ a new method of wavelets (GHW that we presented in Chapter
2), based on our paper [42] to solve linear and non-linear fractional differential
equation. The main purpose of this chapter is to introduce new technique of wavelets

and applied to convert the FDEs problem to a system of algebraic equations.

3.1 Description of the GHW Technique

Using the (GHW) operational matrix to solve non -linear Riccati fractional equation

of the form:
Du(t)=N(t)u>+Q(t)u+R(t), t>0, O0<a<l, (3.1)

with the initial condition u(0) = h. We suppose that the functions D*u(t), N(t), Q(t)
and R(t) are approximated using (GHW) as follows :

D*u(t) = U wr°(t), (3.2)
u(t) m UT PP e(t) + U Ue(t) = CTu<(e), (3.3)
N(t)=VIwre(t), Q(t)=wWTwre(t), R(t)=XT¥"(t). (3.4)

Now, substituting Egs.(3.2-3.4) in Eq.(3.1), we have
UTwre(6) = vIwre()[CT O ()PP +WTwre(e)CTwr<() + X" wre(t). (3.5)
Substituting Eq.2.48 into Eq.3.5, we have

CT \Ij.y’c

mxm

()=vI[cTwl (OP+wichers (0)+xT7, (3.6)

mxm mxm
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where V, W, X and ¥;”; (t) are known, Eq.3.6 represents a system of a non -linear

mxXm

equations with unknown vector C. This system of non -linear equations can be solved

approximately using some numerical methods like Newton iteration methods.
Algorithm:
input: M €N, k e N J{0}, u € N/{1}, 0 < a <1 and the functions N(t), Q(¢), R(t)
and h.
1. Define the basis function v by Eq.2.34 and the vector ¥ defined in Eq.2.40.
2. Compute the (GHW) matrix 1))’ = and by Eq.2.46.
3. Compute the (GHW) operational matrix P>*“* and PY“** using Eq.2.49.
4. Define the unknown matrix U = [u;; ];x, Where m = kM.

5. Compute the vectors V, W, X in Eq.3.3 and Eq.3.4.

6. Solve the non-linear system of algebraic equations in Eq.3.6 for the unknown
vector C.

Output: The approximate solution : u(t) ~ CT U¥<(t).

3.1.1 Convergence of the GHW

. 21 GM—-1 c .
Theorem. The series f(x) ~ Y. _ > " Cun Y2C (x) is converges to f(x), when
21 M — oo.

Proof. To prove this theorem, we will use the fact that is every Cauchy sequence is

convergent. Since the wavelet basis represent a family of orthonormal functions in
2 : Y,c

the space L*(R), take the inner product of f(x) and wn’m(x), where

Com = (£ 02 (1))

We assume that [ = 251, [ =291 d = M and d = N, where k, a the resolutions level,

and M, N the order of the generalized Gegenbauer -Humbert polynomials.

Let B;; represent a sequence of partial sums of c;; Y ’jc(x), we need to prove that
B; ; is a Cauchy sequence converges to f(x) when [,d - oo. Firstly, we prove that
B; 4 is a Cauchy sequence, suppose that B; ; be an arbitrary sums of ¢;; wiy’ ’J.C(x) with
[>1,d>d.
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, i a1 2 i a1 i a-1
Y,C _ Y,C 8
[Bia—=Buall” = 2 D e ¥l = D0 Doeu ¥l D) D e ¥IS(x)
i=l+1 j=d i=l+1 j=d s=l+1 r=d
i d-1 1 d=1
DI I (T CIRTEEIES) (3.7)
i=l+1 j=d s=I+1 r=d
[ d-1
2
= |Cij|
i=l+1 j=d

As [,d — oo, by the definition of the Bessel’s inequality, we have > Z].O:O |cij|2 is
convergent. This implies B 4 is a Cauchy sequence converges to, say y(x) € L[0,1).
Now, to show that y(x) = f(x),

()= F L)) = (¥l () — (£, 9 () (3.8)

= lim <Bi,&1¢i}c(x)> —Cij = ¢;j—¢; =0. (3.9

[,d—oo

This implies Zi:z Zf:_; ¢;j ¥ (x) converges to f(x) as [,d — oo.

3.2 Applications of the GHW

In this section, we implement the GHW method to solve several examples of linear

and non -linear fractional differential equations.

Example 3.1. Consider the equation [43]

r'(3)

— 412 0<a<l, 3.10
T(3—a) ¢ (3.10)

Dy (t)+y(t) =

subject to initial condition y(0) = 0. The exact solution of the above problem is given
by y(t) = t2. Now, take the fractional integration of order a of Eq.3.10 as:

I'(3)
t)=t2+ 2t —2 _ _1%/(¢t). 3.11
y(t) Mat3) y(t) (3.11)
Let
y(£) = CTw (1), (3.12)
then
I%(t) = CT I1*W¥°(t) = CT PLoo w¥(¢t). (3.13)
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Substituting Egs.(3.12) and (3.13) into Eq.(3.11), we get the following system of
algebraic equations:

r
(3) —CTproswre(t). (3.14)

CTwre(t) =t? 4 t¥* ——_ ”
(t) I'(a+3) mean

When a = 08, A =9,y = 3,c = 1 with k = 2, M = 3 the operational matrix of
integration is:

0.3478675 0.1133429 —0.007008237  0.5038849  —0.02498075  0.005500101
—0.2925878  0.05265004 0.09257616 0.04520844 —0.01490000  0.005573679

P3,1’0_8 _ 0.2267984  0.03117652 0.02638249 0.3789326  —0.02172524  0.005715148
6x6 - 0. 0. 0. 0.3478675 0.1133429 —0.007008237
0. 0. 0. —0.2925878  0.05265004 0.09257616
0. 0. 0. 0.2267984 0.03117652 0.02638249
(3.15)

To find the unknown vector C by solving the above system of linear equations, where
the coefficients vector C if k =2, M = 3 is as:

CTZ[O.O6573362 0.04470530 0.01152018 0.5298675 0.1349996 0.01147601]
(3.16)

and

B V2334 7]

3
(72 t—18)+/30 33/4
81
(2880 t2—1440 t+153)/418 33/*

Wre(t) = Josls (3.17)

3
(72 t—54)+/30 33/4
81
(2880 t2—4320 t+1593)+/418 33/4
5 1539 .

Table 3.1 consider the approximate solutions obtained by applying the presented
method fora = 0.8, A =9,y =3,c=1withk =2 M =3 and k =2, M = 5.
For a = 0.8 Fig.3.1 shown the results.

Example 3.2. The second example covers the inhomogeneous linear equation

2 1
Day(t) — t2—a 1

-ty () + 2 —t,0<a<1,t <0, (3.18
T(3—a) T(2—a) y(®) (3.18)

with initial condition y(0) = 0. To solve Eq.3.18, converting the above problem by

19



Table 3.1 Exact and Approximate solution for different values of k, M in Example

3.1.
GHW GHW
Exact Absolute Absolute
t Method Method
Solution Error Error
k=2, M=3 k=2, M=5
0 0. -0.20E-4 0.25335E-4 0.13745E-4 0.85887E-5
0.1 0.01 0.9403E-2 0.59943E-3 0.97656E-2 0.23730E-3
0.2 0.04 0.38921E-1 0.10793E-2 0.39597E-1 0.40507E-3
0.3 0.09 0.88533E-1 0.14648E-2 0.89465E-1 0.53493E-3
0.4 0.16 0.15824 0.17561E-2 0.15934 0.64695E-3
0.5 0.25 0.24799 0.20097E-2 0.24929 0.74516E-3
0.6 0.36 0.35778 0.22201E-2 0.35920 0.83500E-3
0.7 0.49 0.48758 0.24133E-2 0.48909 0.91970E-3
0.8 0.64 0.63740 0.25892E-2 0.63899 0.10010E-2
0.9 0.81 0.80724 0.27479E-2 0.80890 0.10801E-2

¥ 0.4

GHW Approximation

0.8 A

0.7 1

0.3

0.2 1

0.1 1

0

O 0.1 0.2

0.3 04 05 06

[

cxact

GHW|

0.7 0.8 09

a=08,A1=9,K=2and M =5.
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using the same procedure of GHW in Section 3.1 to the following system:

r(3 r(2 ca
_I® t(1+0‘)L — CTPYoe Y (t). (3.19)

CTwre(t) =t? + t*t
() I'(a+3) I'(a+2) mxm

Solving the last system for the unknown vector C, we approach to the exact solution
that is y(t) = t*> —t see Fig.3.2.

C" =[—0.1666447,—0.04131518,0.009681520,—0.5015621e —6,0.1863884E — 7,
—0.1674811,0.04101341,0.009677169,—0.3040405E — 6,0.1139629E — 7],

(3.20)
and
(1/3) v23%/4
(2/33)(88 t —22) 33/
((128/69) t2 — (64/69) t + 7/69) +/598 33/
((6656/621) t3 — (1664/207) t2 + (16/9) t — 68/621) /966 % 33/
y C( ) ((372736/3105) t* — (372736/3105) t3 + (8320/207) t2 — (15808/3105) t + 574/3105) +/345 % 33/4
i (t) =

(1/3) v2 3%/4
(2/33) (88 t —66) 33/4
((128/69) t2 —(64/23) t +71/69) +/598 33/4

((6656/621) t3 —(1664/69) t2 + (1232/69) t —100/23) 4966 33/4

((372736/3105) t* — (372736/1035) t3 + (138112/345) t2 — (22464/115) t + 4058/115) /345 % 33/
i (3.21)

For a different values of @ when k =2, M =5,y =3,c =1 and A = 11 Table 3.2
shows the absolute errors of the approximate solutions obtained by the GHW method.
Example 3.3. Let consider the following FDE

8
D*y()+y()+y2(t) = ——=1t"+t2+t*, 0<t <1 (3.22)
3V

with initial condition y(0) = 0 and exact solution when a = 1/2 is y(t) = t2. For
solving the above problem by GHW procedure as: Suppose that

y(£) = CTw>(¢). (3.23)
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Table 3.2 The absolute error of the approximate solution in Example 3.2. for a

different values of a.

Exact Absolute Error | Absolute Error | Absolute Error
t

Solution a=0.3 a=0.7 a=1
0 0 0.55395E-2 0.32650E-2 0.12536E-2
0.1 0.01 0.10153E-2 0.12743E-2 0.97553E-3
0.2 0.04 0.21675E-4 0.53432E-3 0.72389E-3
0.3 0.09 0.12233E-3 0.19669E-3 0.49622E-3
0.4 0.16 0.36957E-3 0.79304E-4 0.29023E-3
0.5 0.25 0.40140E-3 0.24908E-3 0.10385E-3
0.6 0.36 0.47173E-3 0.39335E-3 0.64764E-4
0.7 0.49 0.52497E-3 0.51013E-3 0.21733E-3
0.8 0.64 0.56633E-3 0.60549E-3 0.35536E-3
0.9 0.81 0.59949E-3 0.68272E-3 0.48025E-3

GHW Approximation

—0.05 1

—0.101

-0.15

0.1 02 03 04 05 06 07 08 09

t

exact

GHW |

Figure 3.2 Exact and approximate solution of Example 3.2.when
a=1,A=11,K=2and M =5.
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By integrating Eq.3.22 of fractional order a, yield that

8
=I% — 32+ 2+ t*— y(t)— zt], 3.24
=1 55 YO =y*(0) (3.24)
then
8T (2 5 (3 (5
CT\Py’C(t) — (2) - s+a ( ) 2+a ( ) t4+a—Iay(t)—Iay2(t).
3vnT(a+3) I'(a+3) I'(a+5)
(3.25)
Note that, by integrating Eq.3.23 of order a, we have
I* y(t) = CTI* (Wr°(t)) + y(0) = CT PYo* wre(¢). (3.26)

See Fig.3.3 that explain the results obtained by GHW method approach to the exact
solutions for a = .5,c =1,y = 2,k = 2,M = 5 and A = 15. Table 3.3 shows the

GHW Approximation
0.8 4

0.7
0.6
0.5
0.4

0.3

0 01 02 03 04 05 06 07 08 09

t
I

exact GHW |

Figure 3.3 Exact and approximate solution of Example 3.3.when
a=0.5,A=15 K=2and M =5.

absolute errors for the GHW method for a different values of a with y =2,c =1,k =
2,M = 5,A =15, it is clear the less errors obtained when a = .5. While in Table 3.4
we find the absolute error of the present method (GHW) fora =.5,y =2,c =1,k =
2,M =5 and for a different values of A, and the result when A = 17 gives the best
absolute errors.

Example 3.4. Consider the following fractional order Riccati differential equation

Dy(t)=1—y*(t),0<a<1, (3.27)
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Table 3.3 The absolute error of the approximate solution in Example 3.3. for a
different values of a.

a=.25

a=.5

a=.75

a=1

0.1172514599E-2

0.297050939E-4

0.3633578440E-3

0.2469652125E-3

0.1

0.778174150E-2

0.343969155E-3

0.5310653779E-2

0.7883891932E-2

0.2

0.2121463137E-1

0.36323837E-3

0.1673747724E-1

0.2734067720E-1

0.3

0.360717884E-1

0.25044733E-3

0.3097430105E-1

0.5413349666E-1

0.4

0.504128450E-1

0.19887655E-2

0.454245600E-1

0.8461789039E-1

0.5

7.26624445

0.54497237E-2

0.578701233E-1

0.1155391731

0.6

3.064269124

0.108002565E-1

0.657509515E-1

0.1428928519

0.7

2.269968316

0.179650984E-1

0.675592881E-1

0.1635426545

0.8

3.470860037

0.261734180E-1

0.620599800E-1

0.1737822387

0.9

7.634607550

0.341873632E-1

0.493940572E-1

0.1707559887

Table 3.4 The absolute error of the approximate solution in Example 3.3. for a
different values of A.

t A=.5 A=1.5 A=5 A=17
0 0.2970540587E-4, | 0.2970522087E-4 | 0.2970538837E-4 | 0.297052474E-4
0.1 0.343969206E-3 0.343969189E-3 0.343969144E-3 0.343969175E-3
0.2 0.36323836E-3 0.36323835E-3 0.36323833E-3 0.36323838E-3
0.3 0.25044733E-3 0.25044734E-3 0.25044733E-3 0.25044730E-3
0.4 0.19887655E-2 0.19887655E-2 0.19887656E-2 0.19887654E-2
0.5 7.238114432 7.238103534 7.23811359 0.54497228E-2
0.6 1.045595543 1.045592768 1.045595016 0.108002562E-1
0.7 0.6029125468 0.6029127621 0.602911758 0.179650982E-1
0.8 1.060967997 1.060967582 1.060968178 0.261734178E-1
0.9 7.209375707 7.209383721 7.209375969 0.341873628E-1
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subject to initial condition
y(0)=0. (3.28)

The exact solution for the given problem when a =1 as

e?t —1
t)= . 3.29
YO ="3 (3.29)
The integral representation of Eq.3.27 and the initial condition are given by:
t(X
t) = y(0) + ———— —I%y?(¢t). 3.30
Y=+ o ~ ) (3:30)
Let
y(t) = CTw<(1), (3.31)
then
I%(t) = CTI*WY“(t) = CTPYoo WY (). (3.32)

By substituting Eqgs.3.31 and Eq.3.32 into Eq.3.30, we get the following system of
algebraic equations:

ta
CToUr(t)= ———|,2 .2 2 , 3.33
( ) F(a+1) |:T'1 ry = rzk—lM:| ( )
where
_ T ,C, A ,C
[rf 2o rzzklM]—C Priem Yoty (0)- (3.34)

Solving the non-linear system for an unknown vector C using the Newton iteration
method. When a = 1,A =7,y = 3,c = 1 with k = 2, M = 3 then the vector of
coefficients C is as:

C" =[0.6096543999,0.2601812904,—0.003785834691, 1.646279549,
0.1665864971,—0.02303331226],

(3.35)
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and ¥¢(t), P2 are as follow as

mxm

V14 33/4
21

(16 t—4)v/42 3%/4
63

(256 t2—128 t+13) +/210 33/4

315
wre(t) = s (3.36)
/14334
21
(16 t—12)+/42 33/4
63
(256 t2—384 t+141) +/210 334
315
0.03384441767  0.101549499 0.1692545804 0.203115244 0.203115244 0.2031152440
—0.05210688975 —0.1042387918 —0.05213190206 0. 0. 0.
311 0.03592531883  0.04565210929  0.05534907084  0.09129163453  0.09129163453  0.09129163453
Poe =
0. 0. 0. 0.03384441767  0.1015494990  0.1692545804
0. 0. 0. —0.05210688975 —0.1042387918 —0.05213190206
0. 0. 0. 0.03592531883  0.04565210929  0.05534907084
(3.37)

By applying the presented method fora =1,A =7,y =3,c=1withk=2, M =3

and k = 4, M = 10, we obtain the approximate solutions with the absolute error of a

different values of a as in the Table 3.5. For a = 1 Fig. 3.4 shown the results.

Example 3.5 Consider the fractional Riccati differential equation as follow as

D*y(t) =14+2y(t)—y?*(¢),

subject to the initial condition

y(0)=0.

O0<a<l,

When a = 1 the exact solution for above problem is

y()=1+ ﬁtanh(\/2_t+ %log(ﬁ_l)).
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GHW Approximation

0.64
0.5 1
0.4+

0.3

0 01 0z 03 04 05 06 07 08 09

GHW |

exact

Figure 3.4 Exact and approximate solution when Example 3.4. a=1,A=7,K =4
and M = 10.

By applying the same procedure of Example 3.4., we get the following system

ta
CTuwre(t) = ——— +2CTPYCA WY (t)—| 2 2 2 3.41
( ) I—.(a+1) mxXm ( ) rl r2 Y rzkflM b ( 4 )
where
[rf 2o rgk_lM] = CT Prion Wit pearet e (8- (3.42)

We can find the unknown vector C, by solving the above system of a non-linear

GHW Approximation
1.8 1

1.6
1.4 1
1.24

1
0.8 1
0.6 1
0.4 4
0.2 4

0
O o1 02 03 04 05 06 07 08 09

1
[

GHW |

exact

Figure 3.5 Exact and approximate solution when Example 3.5. a=1,A =17, K =4
and M =5.

equations. By applying the presented method fora =1, A =17, y =2 and ¢ = 1 with
k=2, M =5 and k =4, M =5, we obtain the approximate solutions as in the Table
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3.6. The vector of coefficients is:

¢’ =[0.1161583259,0.02895681359,0.5753193424E — 3,8.087912914E — 6,
—1.172128754E — 8,0.3946240035,0.03693153239,0.6967701480E — 3,
6.734888070E — 6,—1.440913833E — 7,0.7466168465, 0.4619259575E — 1,
0.7720826378E — 3,1.975007409E — 6,—3.709395724E —7,1.179515313,
0.05576436980,0.7328828945E — 3,—7.903104667E — 6,—6.713842260E — 7,
1.688358841,0.06367223048,0.4911147820E — 3,—0.2331505171E — 4,
—9.205477806E — 7,2.246846232,0.06689887366,—0.2223928272E — 4,
—0.4101372289E —4,—8.633566121E — 7,2.800691413,0.06205879703,
—0.7830232256E — 3,—0.5253842127E —4,—2.479331225E — 7,3.270835572,

0.04703560937,—0.1606302758E — 2,—0.4726610375E — 4,8.417351300E — 7]
(3.43)

Fig.3.5 shown the results when a =1, A =17,y =2,c =1, k=4 and M = 5. While
in Table 3.7 and Table 3.8 we obtained the absolute error of a different values of y and
c and these results obtained with k =4, M =5 and A = 17, we can see the change of

values of y and c for this example there is no a big different of error.
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Table 3.6 Exact and Approximate solution for the different values of k and M in

Example 3.5
GHW GHW
Exact Absolute Absolute
t Method Method
ESolution Error Error
k=2, M=5 k=4, M=5
0 0. 0.222006E-2 0.22200E-2 | 0.156191E-3 0.156192E-3
0.1 0.110295 0.114168 0.38735E-2 | 0.110886 0.591400E-3
0.2 0.241976 0.249936 0.79599E-2 | 0.245629 0.365301E-2
0.3 0.395104 0.413538 0.18433E-1 0.407985 0.128802E-1
0.4 | 0.567812 0.606961 0.39149E-1 0.600243 0.324313E-1
0.5 | 0.756014 0.830446 0.74431E-1 | 0.822016 0.660017E-1
0.6 | 0.953566 1.076700 0.123134 1.068512 0.114946
0.7 | 1.152948 1.336847 0.183898 1.328861 0.175912
0.8 1.346363 1.591813 0.245450 1.585271 0.238907
0.9 | 1.526911 1.818491 0.291579 1.814090 0.287179

30




Table 3.7 The absolute error of the approximate solution in Example 3.5. for a
different values of c.

Absolute Absolute Absolute
t Error Error Error

y=2,c=1 y=2,c=2 y=2,c=3
0 0.1561919E-3 | 0.1561919E-3 | 0.1561919E-3,
0.1 | 0.5914011E-3 | 0.5914011E-3 | 0.5914011E-3
0.2 | 0.3653015E-2 | 0.3653015E-2 | 0.3653015E-2
0.3 | 0.1288026E-1 | 0.1288026E-1 | 0.1288026E-1
0.4 | 0.3243133E-1 | 0.3243133E-1 | 0.3243133E-1
0.5 | 0.6600171E-1 | 0.6600171E-1 | 0.6600171E-1
0.6 | 0.1149466 0.1149466 0.1149466
0.7 | 0.1759123 0.1759123 0.1759123
0.8 | 0.2389076 0.2389076 0.2389076
0.9 | 0.2871790 0.2871790 0.2871790
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Table 3.8 The absolute error of the approximate solution in Example 3.5. for a
different values of y.

Absolute Absolute Absolute
t Error Error Error

y=1,c=2 y=2,c=2 y=3,c=2
0 0.1561919E-3 | 0.1561919E-3 | 0.1561919E-3,
0.1 | 0.5914011E-3 | 0.5914011E-3 | 0.5914011E-3
0.2 | 0.3653015E-2 | 0.3653015E-2 | 0.3653015E-2
0.3 | 0.1288026E-1 | 0.1288026E-1 | 0.1288026E-1
0.4 | 0.3243133E-1 | 0.3243133E-1 | 0.3243133E-1
0.5 | 0.6600171E-1 | 0.6600171E-1 | 0.6600171E-1
0.6 | 0.1149466 0.1149466 0.1149466
0.7 | 0.1759123 0.1759123 0.1759123
0.8 | 0.2389076 0.2389076 0.2389076
0.9 | 0.2871790 0.2871790 0.2871790
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4

A NEW OPERATIONAL MATRIX OF FRACTIONAL
DERIVATIVE BASED ON THE GENERALIZED
GEGENBAUER- HUMBERT POLYNOMIALS TO SOLVE
FRACTIONAL DIFFERENTIAL EQUATIONS

The intention of this chapter, develops a new operational matrix of fractional
derivative based on the generalized Gegenbauer— Humbert polynomials and employ
for solving linear and non-linear FDEs. The proposed method allows to examine some
types of wavelets by one formula and choose the best approach to the exact solutions

accurately.

The most common types of wavelets used to solve fractional differential equations
based on their polynomials are Legendre, Chebyshev, Leguare and Bernoulli. For
instance, the operational matrix of the fractional derivative of Chebyshev wavelets
was used to solve Bagley— Trovik equations in [44]. Secer and Altun [45] introduced
a new operational matrix for the fractional derivatives of Legendre wavelet to solve
systems of FDEs. Chang and Isah applied the Legendre wavelet operational matrix of
the fractional derivative to solve the Brusselator system of fractional order [34]. For
FDEs with variable order, Heydari employed Chebyshev wavelets to find the solution
[46]. Kumar et al. used the operational matrix of the Haar wavelet to solve the Lotka—

Volterra model having a fractional order [47].

Moreover, this study aims to derive and investigate operational matrix of fractional
derivative to be source gives chance for researcher utilize to solve different problems
in the future.

4.1 Operational Matrix of The Derivative

In this part, we derived and developed a new operational matrices for the derivatives

(integer or fractional) order.
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Theorem 4.1. Assume that the generalized Gegenbauer— Humbert polynomial Pnk;y “(t)
is defined on [-1,1 ], then these polynomials satisfied the relation below:

m—1

2 C
DIP(0]= D, ~(k+ 7P (0), “.1)
ik odd
where
L m>3
Ynk = ‘ , n=0,1,...m—3. (4.2)
1 ow.

Proof. Let consider a function h(t), that is approximated by generalized Gegenbauer—

Humbert polynomial as follows:
h(t) =) hy Pl (1), (4.3)
k=0

Derived both sides of Eq.4.3 with respect to t, given as the following form

oo

D.h(t) = > R PL(D), (4.4)
k=0
where fl(kl) is defined as:
. 2 s .
AV =2(k+21) > vaxh, (4.5)
¢ qg=m+1
q+kodd

Next, taking into account that h(t) = Pi’y’c(t) into Eq.4.3, we obtained h; = 0 for
| #mand h,, =1, then

2

- S(k+A)r, form+k odd, k<m-—1,

A = Yk (4.6)
0 o.w.

By the means of the above calculation of flg(l) in Eq.4.4, we get the resultin Eq.4.1. W

Theorem 4.2. Suppose the vector of generalized Gegenbauer— Humbert wavelets that be
defined as Eq.2.40. The derivative of W>(t) satisfy the relation as follows:

D, U (t) = DU’ (t), 4.7)
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where D represent an operational matrix of derivative with 271 M as the following form:

A0 O 0
0O A O 0

@Z O 0 A e 0 5 (4-8)
0O 00 --- A

here A is a matrix of order M x M and the (r,s)-th elements defined in Eq.4.9:

2K (s+A—1) ¢ 1y

r=2,3,..,M;s=1,2,....r—1and (r +s) odd

T(2A+r—1) (A+s—1)T(s) °

A= { VO Bl
0 o.w.
(4.9)
where vy, ; defined as in Eq.4.2.

Proof. Assume that the r-th element of the GHW vector ¥”°(t) is given as follows:

1 , -
Pre(t) =y (0) = T M2 PR (25 =)o ), forr=1,2,..,27'M,

(4.10)
here A =2n—1,r=M(n—1)+m+1and yi en, is the characteristic function
which is defined by:

2k 7 2k

i—1 n+1
1 el 5]

A—1 A+ = .11
Hap o) 0 ow. @1

The form in Eq.4.12 is the result after differentiate Eq.4.10 with respect to t.

2
Dye(t) = \/T
A—1 fA+1

Outside the interval [z—k,z—k] the characteristic function equal zero, therefore,

k/2
krpAy.c(oke _ 2V 0 . . .
28 [P (25t — )] XL ey (4.12)

the generalized Gegenbauer— Humbert wavelets extension includes the elements of
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WY¢(t), that are non zero in the interval [%, %1] which are

Y1) i=Mn—1)+1,M(n—1)+2,..,M(n—1) + M. (4.13)

Subsequently,the GHW expansions takes the form as follows:

Mn

DLy (0l= D, b0 (4.14)

i=M(n—1)+1

The matrix D in Eq.4.8 proceeds by the above expression.

Furthermore, [Pé’y’c(t)]/ = 0 then [¢*(t)]' =0 when r = 1,M +1,2M + 1,3M +
1,...,(25' —1)M + 1. Thus, the first row of matrix A is zero. By means of the relation

Eq.4.1 in Eq.4.10 we get the relation below:

2k/2 k+1 S 1 A
A I R ST P Al Gy (4.15)

\% hm q=0

q+lodd

D,y (1) =

After extending the expression Eq.4.15 using the GHWs basis ¥»°(t), we get the
required result:

r—1 -1
C " Yns
DY e(t) = 25! s+A—1 : Y t). (4.16
¥y () Z ( ) (L) T(2A+r—1) (A+s—1)I(s) M(n—1)+s( ). ( )
r s odd ) T D) 1)
Then consider A. . , such that

s 2

2K (s4A—1) ¢ 1y s

\/(X)H ———— r=23,.,M;s=12,.,r—1 and (r +s) odd
0

A

1 I(r)T(2A+s—1) (A4+r—1)

o.w.
(4.17)
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If k = 2,M = 3, then the matrix below is the result of ©:

0 0 0 0 0 0
44/2(1+2)
NG 0 0 0 0 0
84/2(1+2)(2+1)
D= < (4.18)
0 0 0 0 0 0
44/2(1+2)
0 0 0 NG 0 0
0 0 0 0 81/2(1+A)(2+}l)
| 4/ cy(2A+1)

Corollary 4.1. By using Eq.4.7, the operational matrix of the GHW vector ¥>“(t) for

the n-th order can be obtained as follows:

DI () = D" W (t), (4.19)

To investigate the operational matrix for the derivative of fractional order, we defining

the piecewise functions in [0,1] as in below:

n—1 A+l
t" te[%, 5]

Wpm = > (4.20)
0 o.w.

where n=1,2,...,25and m =0, 1,...,M — 1. The set of piecewise functions in the
above are not normalized and can be expressed 2K"'M-th set of these functions as
Eq.4.21

2(t) = {wy, wy, w5+, a1y} (4.21)

Here, w, = w,,, and the relation r = M(n—1) +m + 1 help us to get r-th index.

Theorem 4.3. Suppose that the Z(t) be a vector defined in Eq.4.21 and

=(t) = © Wr(¢), (4.22)
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where © represent a matrix with 2<71M x 2K71M order takes the following form:

-pl 0 0 0 |
0 p, O 0
©=10 0 p, 0 |-
0
0 0 0 par.
with
- ¢(0,0) ¢(0,1) ¢(0,2) ¢(0,M—1)
¢(1,0) ¢(1,1) ¢(1,2) ¢(1,M—1)
Pn= 1| ¢(2,0) ¢(2,1) ¢(2,2) ¢(2,M—1)

¢(M—1,0) ¢(M—1,1) ¢(M—1,2)
then prove the following relation:

oLy = 2T R TG+ p— k)

dp(M—1,M—1)

2(l+1)k\/h_p P k!(p—2k)!'T(X)
z

—\qg) 2 TA+5—k+21+1)
Proof. Let

2(t) =0 vr(t).

38
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Using the means of Theorem 2.1, we have the following relation:

1 lp/2] — _
2k/2 Yk ~—A+p+k P 2k T(A+p—k
qs(z,p):f o (YO0 (D) e = 2l (A+p—l)
. ’ i & ki (p—2K)I T(A)
%
x f (202t —A))P2k ¢! (1 — 2kt — )P V2 d¢.
%
(4.27)
Next, let us substitute 7 = 2% t — 7 implies that dt = 27%dt, then we have
%
(22" t =) ¢t (1= (2"t —A)y) 2 dt
%
2p—3k 1
~ oM f T (e +R) (1= d (4.28)
=il
1 Zl: (1)0&)1—1 Q- (PO T(E—k+3+3)T(A+3)
20k Zg) 2 TA+E—k+1+1) '
Using the relation Eq.4.28 in Eq.4.27, we achieve the required result Eq.4.25. |

As example of matrix ® when y,c = 1,k = 2 and M = 3, we consider the following

matrix:
e 0 0 0 0
(A+1) V2
2 i 0 0 0 0
1-21 72 2243 V2 _ (=22-1)V22+1
_ 2 A F(ZA) 3242 8v/At1 32(A+2) VA+1 0 0 0 (4 29)
2 A+1 ' '
TARV2ZAA+1) | o . T .
3(A+1) V2
0 0 0 #Z G/a 0
0 0 0 18A+19 3v2 (2212241
- 3242 8vVA+1 32(A+2) VA+T

Lemma 4.1. The differentiation of fractional order a of relation Eq.4.20 is defined as

below:

m! — _ A—=1 f+1
mtmu m—5,5+1,---,M—1,t€[2—k,2—k]

OD? wn,m(t) = ) (430)
0 o.w.

where (6 —1) < a < 6 is a positive function.

Proof. The proof is simple by using the expression Eq.2.20. [ |

39



Lemma 4.2. Assume that [Z(t)] is the vector which is defined by Eq.4.21, The fractional

differentiation of order a is:

D7 [E()] = P*[E(1)],

(4.31)

where (6 —1) < a < § is a positive function in [0,1]. P* is a matrix order 2¥"1 M as the

following definition :

p* =t

0

0 O
Q* 0
0o Q¢
0 O

Qa

where Q% is the matrix of M x M order defined as following:

Qa

0

0

5!

r(6—a+1)

(6+1)

r(6—a+2)

o

(M—=2)!

I'(M—a-1)

Proof. Using the means of Lemma 4.1 to prove this lemma.

(M—1)!
'(M—a)

(4.32)

(4.33)

Theorem 4.4. Let W”°(t) be the GHW vector defined in Eq.2.40 and (6 —1) < a <& is
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a positive function defined in [0,1]. Then the fractional differentiation of order a in the
Caputo sense of GHW can be as below:

oD? WYE(1) = % W (1) = (071 P*©) U (1), (4.34)

where © is defined in Eq.4.23 as the coefficients matrix, the operational matrix P* of
order a is defined in Eq.4.32 for piecewise functions and ®¢ is the operational matrix of
fractional order a for the GHW.

Proof. By consider the equation Eq.4.22 and Lemma 4.2, we get

() =01 E(t), (4.35)

and then
oDE U (£) =07 (DFE(t) =07 PE(t) = (07 P*©) ¥ (1), (4.36)
which is the required result. |

For A,y,c =1,k =2 and M = 3 the matrix ®“ is given as :

0 0 0 0 0 0
v o 0 0 0 0
% — STEn T RGD  WeH T IGH 6D 0 0 0 4.37)
0 0 0 0 0 0
0 0 0 T o=y 0
i 0 0 O  semtEew WD e O
4.2 Error Estimates
It is interesting to know that the error bound for the presented algorithm.
Theorem 4.5. Let us consider f(t) € CM[0,1] where t € [0,1]. Consider
o, =Span {1/)%, I T ey (4.38)

k7
wheren=1,---,25  and f(t) = Zi:; f,(t). If CT Y represent the better approxi-
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mation of f,(t) out of o, thus

. 52
|f()—cT e ||L2[0,1] < T T (4.39)

where C, "¢ as the matrices defined in Eq.2.40 and

& = max o1 |F (1) (4.40)

Proof. Let be consider Taylor series formula and applied for f,(t)

[ I =
(4.41)

And, we know that
\ (t— LM A—1 A+1
0= A0 < 0] (L) e

As a result of hypothesis that C* ¥”¢ is the best approximation of f,(t) € o, and
fn(t) € 0,. Therefore by the means of Eq.4.42 ,we obtain

i+l

I£.()=cTw @) < ()= £, = J AGESHOIE:

ok (t__l M2
o [ (0l S22V
F ' (4.43)

ok
i+1
ok

G |2 (-5
<|— t— dt
M! i1 2k

ok

~(571) g
M) 22MG-D(2M + 1)

Next, taking the square root for the last relation we get the required result when k, M
approaching oo. |

4.3 Proposed Methodology

In this section, devoted to explain the steps of the algorithm by utilizing the operational
matrix for fractional derivative to find the solutions of differential equations with

fractional order.
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4.3.1 Linear Fractional Differential Equation

Consider the linear differential equation with fractional order of the form:

k
Du(t) = Y aD%u(t) +agu(t) + g(t), te€(0,L), (4.44)

i=1

with initial conditions
wW(0)=b;, j=0,---,v—1, (4.45)

where a;,1 =0, -+, k are real constant coefficients,
v=1<n<v,0<;<a, <~ <a <, (4.46)

b; is the initial values of u(t) and g(t) is a given function. Now, to solve the fractional
differential problem with initial values, Eq.4.44 and Eq.4.45 first step is approximate
the unknown function u(t) and g(t) by the GHWs as:

2k=1 11

u(t) > D> o P2 (6) = CTWHA(e),
pr =0 (4.47)

21 M—1
g(t) 2 D> G 2 (1) = GT W (1),

n=1 m=0

where C is an unknown vector and G =[Gy, - , Gy-1)_1 ] is @ known vector.

Using theorems in Section 4.1 can be approximated integer and fractional order

derivatives as follows:

D"u(t) = CT " wr<(¢),
D%u(t) = CT &% Wre(t), (4.48)
D"u(t) = CT D" ().

From Egs. 4.47 and 4.48, then the residual R(t) for Eq.4.44 can be written as:

k
CT & W<(t)— > a,CT &% W"*(t) —ay CT¥*(£) — G W'(t) ZR(t) ~ 0, (4.49)
i=1

also, with the initial conditions
CTDw¢(0)=bj, j=0,---,v—1. (4.50)

Next, to find the approximate solution, we need to generate a system of 2X"1M
equations for the unknown vector C. Then, u(t) given in Eq.4.47 can be evaluated
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that give us the solution of the given problem.

4.3.2 Non-Linear Fractional differential Equation

Consider the non- linear FDE as the following form:

D"u(t) = F(t,u(t),D"u(t),- - ,D*u(t)), (4.51)
with initial conditionsu/(0) = b;, j =0,---,v—1, where

v=1<n<v,0<a;<a, <---<a<n1. (4.52)
To solve this problem, first we approximate u(t),D"u(T),D%u(t) fori=1,---,k as in

the previous section.
Next, we substitute these equations in Eq.4.51, we obtain

CTo®" W (t) ~ F(t,CTWre(t),CT &% wre(t), -, % UV(t)), (4.53)
where C is the unknown vector and for initial condition we approximating as Eq.4.50.

To find the solution we calculate Eq.4.53 at 25"'M — v collocation points. The system
Eq.4.53 and Eq.4.50 obtained together contains 25"*M non-linear equations that can
be find the solution of it using Newton’s iterative method. Thus, u(t) can be calculated
as in Eq.4.47.

4.4 Numerical Experimental

Here, we solve some problems to show the effectively and accuracy of our proposed
method.

Example 4.1 Let be consider the following fractional differential equation:
D2u(t) +D%2u(t) + u(t) = g(t), (4.54)
subject to
u(0) =0, u(5) =25, (4.55)
and g(t) = t*>+ 4 +/t/m + 2. The exact solution is given by t2.

By using the GHW operational matrices of derivatives as in Section 4.3. to solve this
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boundary value problem. We suppose that k = 1, M = 3 to find the solution of the
problem Eq.4.54
u(t) = CcTwre(t). (4.56)

After substitute the trial solution above in Eq.4.54 we obtain the following matrix

equation
CTD2 W< (t)+ CT &2 W' (t) 4+ CT wr(t)— GT wr<(t) ~0, (4.57)
and the boundary conditions
CT ¥’(0)=0, C"¥’°(5)=25, (4.58)

where 2, %2 as the following

0 00 000 ¢ 1
97 = o= 40 c=|. |, wo=
=lo 00" =—=100 0 CF|c| = 4t—2
32 00 5 41 cs 16t>—16¢+3

(4.59)
To find the unknown vector C we can solve the following system:

C1_2C2+3C3 :O,
c1+3lc3+32¢34/2/t—9/4—24/2/mt=0, (4.60)

Next, solving the above system we obtain C value as

0.3125000016
C =1 0.2500000007 |- (4.61)

0.06249999996
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Now, substituting C in Eq.4.56 to achieve the exact solution that is

u(t) =[0.3125000016,0.2500000007, 0.06249999996 ]

4t—2

16t2—16t+3

(4.62)

We construct Table 4.1 to show the absolute error for a different values of k and M
withA=1,y=1andc=1.

Table 4.1 The absolute error of the present method for a different values of k, M in

Example 4.1.
. Absolute Error | Absolute Error | Absolute Error Absolute Error Absolute Error
k=1,M=3 k=1,M=6 k=2,M=3 k=2,M=6 k=1,M=12

0 1.0E-10 5.99999870E-11 | 1.414213562E-11 | 4.242640686E-11 | 2.60006084E-10
0.1 | 4.4E-10 1.222810E-6 1.363E-9 2.491722E-6 0.781084139E-2
0.2 | 7.8E-10 2.43571E-6 2.69E-9 4.96368E-6 0.1555964888E-1
0.3 | 1.01E-9 3.63064E-6 4.01E-9 7.39906E-6 0.231935423E-1
0.4 | 1.3E-9 4.8002E-6 5.3E-9 9.7829E-6 0.306656303E-1
0.5 | 1.6E-9 5.9380E-6 7.20E-8 0.2944447E-3 0.379336652E-1
0.6 | 1.9E-9 7.0378E-6 7.54E-8 0.3334414E-3 0.449594269E-1
0.7 | 2.2E-9 8.0944E-6 7.82E-8 0.3704791E-3 0.517083829E-1
0.8 | 2.4E-9 9.1026E-6 8.07E-8 0.4054076E-3 0.581494804E-1
0.9 | 2.6E-9 0.100585E-4 8.27E-8 0.4380955E-3 0.642550043E-1

Example 4.2 Consider the following fractional differential equation:

subject to

D2u(t) +DY2u(t) + u(t) = g(t),

u(0)=0, u'(0)=0,
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and

8t1.5
t)=2+t>+——. 4.65
g(t) 3/ (4.65)

The exact solution is given by t2.

Applying the proposed method to solve the above problem with y,c,Aand k=1,M =

4 given us
CTD2 W< (t)+CT V2w (t) 4+ CT wr(t)—GT wr<(t) ~0, (4.66)
with conditions
cTwr¢(0)=0, CcTDW’*(0)=0. (4.67)

Here ©2, $'/2 as the following

I | [
0O 0 0O 0 0O 0 O
0O 0 0O 42| 1 1/2 0 0
Qz_ q>3/2
) 7_(: J
32 0 00 —2/3 2/3 2/3 0
0 9 0 0 6/5 1/5 4/5 4/5
g - - - (4.68)
C 1
Cz 4t_2
C= , W) =
Cs 16t2—16t+3
C4 64t>—96t2+40t—16t—4
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By solving the following systems, we obtain the unknown vector of coefficients C

283 1700 843 160 v/3 784 +/3 2
G _1700¢,  8v3c, 160V3¢c e, — 222 2400653340 =0,
9 27 3J7 27 /7 135 /7 3
283 1700c, 843 32 v/2 /3 16 V3¢ 2
< :,8V30 32V243¢ 4 e+ 222 3263393539 =0,
9 27 3V 27 Jm 135 J/m 3

C1_262+363_4C4:O,
4C2_1663+40C4:O.

(4.69)
Next, substituting C to get the approximate solution as:
— — T — —

0.3125000016 1

0.2500000007 4t—2
u(t) = = t2, (4.70)

0.06249999996 16t*—16¢+3

0 64t>—96t*+40t—16t—4

Absolute errors obtained when using the propsed method with different values of

GHW Approximation

0 0.2 0.4 0.6 0.8 1

t
*  gxact lambda=1 lambda=0.9
lambda=.5 lambda=.7

Figure 4.1 Exact and approximate solution of Example 4.2. with different values of
Aandk=1,M =4

k, M with y =1, ¢ =1 and lambda = 1 are considered in Table 4.2, where the best
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Table 4.2 The absolute error of the present method for a different values of k, M in

Example 4.2.
. Absolute Error | Absolute Error | Absolute Error | Absolute Error | Absolute Error
k=1, M=3 k=1, M=4 k=1, M=5 k=1, M=7 | k=1, M=11
0.1 0.70E-10 0 0.296E-9 0.104E-9 0.191E-8
0.2 0.10E-10 0 0.36E-9 0.690E-9 0.454E-8
0.3 0.10E-10 0 0.58E-9 0.114E-8 0.694E-8
0.4 0.10E-9 0 0.70E-9 0.150E-8 0.930E-8
0.5 0.10E-9 0 0.90E-9 0.180E-8 0.114E-7
0.6 0.10E-9 0 0.11E-8 0.210E-8 0.131E-7
0.7 0.20E-9 0 0.12E-8 0.230E-8 0.146E-7
0.8 0.20E-9 0 0.14E-8 0.230E-8 0.157E-7
0.9 0.30E-9 0 0.15E-8 0.240E-8 0.166E-7
1 0.40E-9 0 0.15E-8 0.270E-8 0.179E-7

error with k = 1, M = 4 with notation the results obtained for 15th digits number.
While Fig.4.1 shows the exact and approximate solution obtained by GHW method for
various A with k=1, M =4.

Example 4.3 Consider the following fractional differential problem

5 3 1 _
4(1+t)D2u(t) +4D2u(t) + mu(t)— Vt+ 4/, (4.71)
subject to
u(0) = v, u'(0) = v7/2, u(l) = v2r. (4.72)

The exact solution of this problem is u(t) = 4/ 7(t + 1). To obtain the solution of the
above problem by the presented method procedure as in the previous examples. We

examine the lest error obtained by a different values of k, M as shown in Table 4.3.
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Ifk=1, M=3

and the approximate solution

$5/2 —

J

0

0

u(t) =|2.168050908 0.1835436051 —0.00950328156

Whenk=1, M =4

(1)3/2 —

3

4¢73/2

-2 4 6

and the approximate solution

u(t) =

2.164530850

0.1823702535

—0.008329929

0.0005866761

@5/2

50

ol-

_ 1
4t—2
16t2—16t+3
0O 0O
12752 000
= ’
0O 0O
14 14 6 1
1
4t—2
16t*—16t+3
64t>—96t*+40t—16t—4

(4.73)

_(4. 74)

(4.75)

(4.76)



While k=1, M =5

4¢73/2
QS/ZZ—ﬁ 5 4 1 0 0 [
-2 4 6 2 0
77/5 68/5 57/5 48/5 16/5
- 3 ] (4.77)
0O 0 O 0 0
0O 0 O 0 0
12¢75/2
?P=="=10 0 0 0o 0|
14 14 6 1 0
0 16 24 13.33 2.67
and the approximate solution
_ - T -
2.163305365 1
0.1821291746 4¢t—2
u(t) = | _0.007837726 16t2—16¢ + 3 . (478)
0.0007072156 64t>—96t>+40t—16t—4
—0.000050225 256 t*—512t3+336t2—80t+5t—4

51



Ifk=1,M="7

- 0 0 0 0 0 0 0 -
0 0 0 0 0 0 0
5 4 1 0 0 0 0
®3/2 4t‘:2 L 4 6 2 0 0 0
77/5 68/5 57/5 48/5  16/5 0 0
—-88/7 16/7 104/7 120/7 96/7 32/7 0
250/7 568/21 130/7 464/21 496/21 128/7 128/21
- 0 0 0 0 0 0 0 -
0 0 0 0 0 0 0
0 0 0 0 0 0 0
$5/2 = 12 t=>/2
=== 14 14 6 1 0 0 I
0 16 24 13.33 2.67 0 0
88 104 8267 5734 2667 534 0
| —320/7 208/7 856/7 973.34/7 706.67/7 320/7 64/7)

(4.79)
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then, the approximate solution

2.163109543

0.1821827501

—0.007735020
u(t) = 0.0006685255
—0.0000718225
7.9349292107°
—6.15575858 1077
Ifk=1, M=9
0
0
5
—2
4¢73/2
$3/2 — 77
JTT 5
_ 88
7
250
7
_740
21
70

T_

4t—2

16t2—16t+3

6413 —96t2+40t—16t—4

256 t4—512t3 +336t2—80t+5t—4

1024 t> — 2560 t* 4+ 2304 t3 —896 t2 + 140 t — 6

4096 t° — 12288 t> + 14080 t* — 7680 t3 + 2016 t2 —224 t + 7

68 57 48 16
16 104 120 96 32
7 7 7 7 7 0 0 0

568 130 464 4% 128 128 5
21 7 21 21 7 21

40 1676 6384 6967 2368 256 256 0
7 77 231 231 77 11 33

520 830 4528 5264 16768 5504 4096 4096

11 33 143 143 429 143 143 429
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953.34

__746.67
3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
14 6 1 0 0 0 0 0
16 24 13.33 2.67 0 0 0 0 )
104 82.67 57.34 26.67 5.34 0 0 0
208 856 973.34 706.67 320 64 0 0
7 7 7 7 7 7
1070.67 284 7763.67 69:;.34 160 2133.34 42é67 0
746.67  9757.34  13949.34  13746.67  11626.67  7786.67  3413.34  682.67
33 33 33 33 33 33 33 33
(4.82)

and the approximate solution

u(t) =

2.163126846

0.1821953400

—0.00774146178

0.0006611518811

—0.000070764248

8.484778327 107°

—1.069153906 10~°®

1.2699131 1077

—1.027850507 1078

T

4t—2
16t2—16t+3
641t3—96t2+40t—16t—4
256 t*—512t%+336t2—80t+5t—4
1024 t5 — 2560 t* +2304 t3 — 896 t2 + 140t — 6
4096 t°—12288 t° + 14080 t* — 7680 t3 + 2016 t2 —224 t +7
16384 t7 — 57344 t° + 79872 t> — 56320 t* + 21120 t3 — 4032 % + 336 t — 8

65536 t8 — 262144 t7 + 430080 t® — 372736 t° + 183040 t* — 50688 t3 + 7392 t> — 480 ¢ + 9
(4.83)

Using the GHW method we got a different wavelets (second kind of Chebyshev

wavelet, Legendre wavelet, Morgan— Voyce wavelet, first kind of Fermat wavelet,

Dickson wavelet with a = 0.5 and Gegenbauer wavelet with A = 5 as shown in Fig.4.2.

As a result we can see the best choice from these wavelet types to achieve best error

is Chebyshev wavelet of the second kind.

54




i i GHW Approximation
GHW Approximation

2.4+
2.4
2.3 4 234
2.2 1 2.2 9

¥ 21 2.1
2.0+ 2.0 1
1.9 1 1.9
1.8 1 1.8 1
o o1 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09
1
7
I exact GHW l | exact GHW |

(a) Chebyshev wavelet with k =1,M =9

(b) Legendre wavelet with k =1,M =7

GHW Approximation GHW Approximation

7‘5 -

2.4 1
2.4 4

23
2.3 1

2.2
2.2 4

¥ 2.1 > l -

2.0 4 2.0

1.9 4 1.9 4

181 181 T T - T v T v v .

0 01 02 03 04 05 06 07 08 09 ¢ 81 82 63 05 03 06 07 08 03
T
L exact GHW | [ exact GHW]|

(¢) Morgan- Voyce wavelet with k =1,M =9

(d) Fermat wavelet with k =1,M =5

GHW Approximation GHW Approximation
2.4 2.4
23 2.3+
22 2.2+
¥y 21 ¥ 211
2.0 2.0 1
1.9 A 1.9 1
1.8 1 1.8 1
4] 0.1 02 03 04 05 06 07 08 09 o 01 02 03 04 05 06 07 08 09
t t
I exact GHWI I exact GHV&"

(e) Dickson wavelet with k =1, M = 3

(f) Gegenbauer wavelet with k =1,M =4

Figure 4.2 Different wavelets with different values of k, M that gave us a best error
of Example 4.3.
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Example 4.4 We consider the Riccati equation as the following
Du(t) = —u?(t) +1, (4.84)

subject to u(0) = 0. The exact solution of this problem is

e?t—1
t)= . 4.85
u(t) =3 (4.85)

Ify,c, A, k=1, M =5 and a = 0.5 used the same procedure in the Section 4.3.2
where

1 300 0
g2 =2 2 (4.86)
T /R |5 535 0 0f '

vl
(S 115
vl
vl
(@]

32 32
35 35

and by solving the following system, we obtain the unknown coefficient vector C:

(Cl—C2+C4—C5)2+2C2£—16C3£+36C4£—208C5i—1=0,
v 3Jm 5V 354/n
V2 V2 V2 V2
Ci—Cyt+C 2+4C__16C ——+8c,———16¢ —_1:0,
(1 3 5) Zﬁ 33ﬁ 45ﬁ 57,‘/E
3v4 3v4 3v4
N W 3577
8 32¢ 144 c 1184 ¢
C+2c+3cs+4c,+5¢5)2 +ep——+ —— + * o+ > —1=0.
(1 2 3 4 5) Zﬁ Bﬁ Sﬁ 35»\/E
(4.87)
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Then the approximate solution

- -T -

0.5298731336 1 _
0.1298845171 4t—2
u(t) =1 _0.0508413137 16t2—16¢t+3
0.02179819046 64t>—96t2+40t—16t—4
| —0.0060774793 | | 256 t*—512¢3+336t2—80 t + 5

While at the value a = 0.7 the operational matrix of fractional derivative as

0 0 0 0 0
2.228485018  1.114242509 0 0 0
(I)O.7 — t_0'7
- —0.342843857 2.399906937 1.714219243 0 0 >
2.16140687 1.30429723 3.13031340  2.235938144 0
—1.1721734 1.3754409 1.84973068 3.79431928  2.710228054

and the following system of algebraic equations are obtained

—3.862260552 ¢; —1 =0,

(c; —c3 +¢5)* +3.620184593 ¢, — 3.341708866 c; — 1.573993302 ¢,
—0.506319198 ¢c;—1 =0,

(c; + ¢y —cy— ) +4.088444376 ¢, + 2.515965754 ¢ + 1.504109942 c,
—7.707009290 cs — 1 =0,

(c1+2c,+3cy+4cs+5cs)” ++4.456970036 ¢, +9.599627746 c,
+23.10469411 c, + 35.85631783 c; —1 =0,

C1_2C2+3C3_4C4+565:O.
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After solving the above system to find C then substitute to get the following solution

- -T -

0.5005327487 1 |
0.1597777827 4t—2
u(t) = | _9.0430508723 16¢>—16¢+3 - 49D
0.01059647361 64t>—96t2+40t—16t—4
| —0.0018877344 | | 256 ¢*=5121° +3361*~80 ¢ +5

Now, we test when the fractional order a = 0.9, ®°° as

] 0 0 0 0 0 _
2.102274011 1.051137006 0 0 0
(1)0.9 = t_o ? 1.146694919  3.440084753 1.911158193 0 0 > (492)
1.91115817 2.86673731 4.91440678  2.730225991 0
i 0.8014533 2.8271049 4.20102510 6.34117003 3.522872244_

the following system are obtained

(c;—Cy + ¢4 — €5)? + 3.660271647 ¢, — 7.986047250 ¢, + 6.179679262 c,
+2.76015433 ¢c; —1 =0,
(c; —c3 +¢5)* +3.922982019 ¢, — 1.426538911 ¢, — 5.604260070 c,
+0.230086764 c; —1 =0,
(cy + ¢y — 4 — cs)* + 4.085314010 c, + 5.942274938 ¢, + 2.652801301 ¢,
—8.078208108 ¢c; —1 =0,
((cg+2cy+3cy3+4c,+5 65)2 +4.204548023 ¢, + 13.76033900 c5 + 33.30875709 c,
+62.03777974 cs—1 =0,
ci—2¢cy+3c3—4c4,+5¢;=0.

(4.93)
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Figure 4.3 Exact and approximate solution of Example 4.4 for a different values of a
when K =1and M =5.

The approximate solution yield as

0.4634103472

0.1845998108

u(t) =1 _y.029441844

0.0016525389

0.00014499241

T

4t—2

16t>—16t+3

64t3—96t>+40t—16t—4

256 t*—512t3+336t>2—80t+5

(4.94)

Fig.4.3 shows the nearest approximate solution to the exact solution is when a = 1 by

using the presented method where the figure present the result for a different values
of a =0.5,0.7,0.9,1 and A, y,c = 1 with k = 1, M = 5. Moreover, Table 4.4 consider
the comparison between the results obtained by the presented method with Ref. [48]
whenk=1,M =12,A,a,y and c = 1.
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Table 4.4 The comparison of the approximate solution using the presented method
of Example 4.4

The exact
t Ref. [48] Our method The error

solution
0.1 | 0.0996679945 | 0.0996679271 | 0.0996679954 | 6.748E-8
0.2 | 0.1973753204 | 0.197375256 0.197375321 6.43E-8
0.3 | 0.2913126124 | 0.291312551 0.291312612 6.12E-8
0.4 | 0.3799489620 | 0.379948905 0.379948963 5.71E-8
0.5 | 0.4621171576 | 0.462117105 0.462117157 5.26E-8
0.6 | 0.5370495668 | 0.537049520 0.537049567 4.75E-8
0.7 | 0.6043677770 | 0.604367735 0.604367777 4.25E-8
0.8 | 0.6640367705 | 0.664036733 0.664036770 3.74E-8
0.9 | 0.7162978700 | 0.716297838 0.716297870 3.23E-8
1 0.7615941559 | 0.761594126 0.761594156 2.96E-8

Example 4.5 Consider the following problem

Du(t) =2 u(t)—u?(t)+1,

subject to u(0) = 0. The exact solution of this problem is

u(t):1+\/§tanh(1/§t+%log(ﬁ_1)).

V2+1

(4.95)

(4.96)

To solve the above nonlinear fractional differential problem, using the presented

method in Section 4.3.2. The approximate solution u(t) as following

u(t) = CT wre(t), Du(t) = C’ & r<(t).

(4.97)

Then solving the algebraic system to find the unknown vector C. Table 4.5 consider
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the comparison of absolute error obtained by the presented method with different
values of k, M and y, ¢, A, a = 1. As a result, it is obvious the lest error gained when
increased the value of k, M. Moreover, Fig.4.4 shows the approach of approximated
solutions to the exact when a close to 1 with y, ¢, A, k =1 and M =5, and the figure
shows even though a = 1 the approximate solution still far from the exact solution. At
the same figure with k = 1, M = 16 the result is the same exact solution approximately

when a = 1.

Table 4.5 The absolute error of Example 4.5 for a different values of k, M

Absolute Error | Absolute Error | Absolute Error | Absolute Error
t
k=1, M=3 k=1, M=7 k=1, M=12 | k=1, M =16
0.1 1.51586284 0.27851520E-2 0.143693E-4 1.815E-7
0.2 2.55068972 0.35034327E-2 0.166762E-4 2.129E-7
0.3 3.10442060 0.38990898E-2 0.191502E-4 2.434E-7
0.4 3.17892267 0.43358099E-2 0.212427E-4 2.694E-7
0.5 2.77828027 0.46675199E-2 0.227348E-4 2.871E-7
0.6 1.90863873 0.478006161E-2 | 0.2340729E-4 2.9399E-7
0.7 | 0.577516707 0.47185631E-2 0.231569E-4 2.889E-7
0.8 1.20728680 0.45264342E-2 0.220318E-4 2.778E-7
0.9 3.43887283 0.41141296E-2 0.201644E-4 2.644E-7
1 6.11214783 0.35199095E-2 0.179715E-4 2.605E-7

Example 4.6 Let be consider another fractional differential equation that be solved in

before using Genocchi operational method in Ref. [49]

D2u(t) + T (g) e$D%u(e) + 1—91r (2)
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Figure 4.4 Approximate solution by GHW method with different values of a of
Example 4.5.
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with condition
u(0)=1, u(l) =2, (4.99)
and the exact solution is given as
u(t) =1+t (4.100)
Applying the presented method to solve the above problem when A,y,c,k = 1 and

M = 3,4,5,7 and 11. For k = 1, M = 7 the operational matrices of fractional order
6/5 and 1/6 as following

0 0 0 0 0 0 0
0 0 0 0 0 0 0
10.73671 8.58937 2.147343 0 0 0 0
& _6
Ps =t —14.31562 —1.431562  8.58937 3.578904 0 0 0 s
39.36795 2495008 11.35024  12.27053 5.112720 0 0
—56.83192 —21.34426 12.35664  15.82252  16.145433  6.727264 0
102.16023  57.29476  13.65096 17.221795  20.51815 20.181791 8.4090795
(4.101)
0 0 0 0 0 0 0
2.1261761 1.0630881 0 0 0 0 0
—2.706042  0.38657748 1.159732 0 0 0 0
1 1
b6 =t 6
3.6611161 —0.01136993 0.4093173 1.227952 0 0 0
—4.46591 0.1295183 0.0088982 0.4271137 1.281341 0 0
5.38493 —0.0162708 0.1382801 0.022092 0.4418418  1.3255254 0
—6.2302 0.0767866 —0.003419014 0.1451766 0.03156013 0.45447 1.3633975

(4.102)
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Then we compared the L2, L°° errors of the results obtained with that obtained using
Genocchi operational method [49] as shown in Table 4.6 with notation the results
obtained for 15th digits number. As a result we can observe that the presented method
got best error from the method in Ref. [49] when M = 3,7 with zero error, when
M =11 we got a simple error that unaffected. While when M = 4,5 the performance
of our method less than in Ref. [49]. From Table 4.6 we can see our method got an
accurate results better than in Ref. [49]. Fig.4.5 shows that the affect of changing A
on the result when y,c,k =1 and M = 7, therefore the best value of A for the given

problem is equal to 1 .

Table 4.6 Comparison of the L?, L°° error obtained by the our method and the
operational method of Ref. [49] for Example 4.6

Genocchi operational
Errors k=1 Presented method
method Ref. [49]
L2 M=3 1.323E-4 0.
L*® M=3 1.8119E-4 0.
L2, M =4 3.377E-5 0.5639985335
L*®°,M=4 5.5528E-5 0.944754483
L>,M =5 1.698E-5 1.294231362
L, M=5 1.8466E-5 1.875259588
LM =7 9.262E-6 0
L, M=7 1.4556E-5 0
L2 M =11 not examined 1.140175425E-9
L°,M =11 | not examined 2.0E-9

Example 4.7 Let consider another fractional differential equation as follows

2
D0'25u(t) + uz(t) = m th75 4 t4, (4.103)
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Figure 4.5 Different wavelets with different values of A for Example 4.6

with condition

u(0) =0. (4.104)
The exact solution of the above equation is

u(t) = t2. (4.105)
Applied the proposed method to solve Eq.4.103, we get the approximate solution when

k=2,M=3,A=1,y =1and c =1 as in the Fig.4.6. Where the operational matrix

of order 0.25 as the following matrix

0 0 0 0 0 0
2.176130505 1.088065252 0 0 0 0
—2.487006292 0.6217515729  1.243503146 0 0 0
0.25 _ ,—0.25
& =t
0 0 0 0 0 0
0 0 0 6.528391515  1.088065252 0
0 0 0 —32.33108179 1.865254719 1.243503146
(4.106)

By solving the following system of equations we obtain the unknown coefficients
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vector C

(c;vV2—2 czg —21 cgﬁ(%)z +1.740904404 ¢, 5'/4v/2
—3.780249564 c; 5/4v/2 —0.07597883649 = 0,

o vV2+6 czg +11 cgﬁ(%)z +3.481808807 c, 21/4 51/4
—1.193763020 ¢, 24 514 — 2757795878 = 0,

2 1)?
(caV2—6c5 v2 +11¢V2( = | +1.740904404 c5 3%/4 54 v/2
4 5 25

(4.107)
—11.34074869 ¢, 3°/* 514 /2 —0.6382412480 = 0,

‘/z 1 2 3/4 =1/4
(c41/§+2c5?—21 ceV2 o5 ) +1.740904404 ¢; 47 5 V2
—8.157380637 ¢ 4°/* 51/4 /2 —1.251100475 = 0,

(csV2+2 s V2 + 3 ¢ V2)? +8.704522019 c5 V2 —24.87006291

cs V2 —2.243503145 = 0,

C11/§—2 621/54-3 C3'\/§: 0.

Next, the approximate solution is
i - T ~ -
0.05524271727 V2
0.04419417380 (8t —2)v/2
0.01104854344 (64 t2—32t+3)v/2
u(t) = : (4.108)

0.4087961132 V2
0.1325825206 (8t —6)v/2

0.01104854345 (64 t2—96t +35)v2

Table 4.7 shows the proposed method approach to the exact solution with k =2, M =
3,A=1,y =1and c =1 and its far from it with other values of k, M for example
k=1,M=7.
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Figure 4.6 Approximate solution using the GHW method for Example 4.7

Table 4.7 Absolute error for Example 4.7

The proposed method | The proposed method
t Exact solution

k=1,M=7 k=2,M=3
0.1 0.01 0.169306097 1x1071
0.2 0.04 0.0611645753 1 x107H1
0.3 0.09 0.0866363132 3 x1071
0.4 0.16 0.191276130 2 x1071°
0.5 0.25 0.267164826 0.250000010
0.6 0.36 0.338061520 8.9 x107°
0.7 0.49 0.517676305 8 x107°
0.8 0.64 0.741063194 6.8 x107°
0.9 0.81 0.269133388 5.8 x107?
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5}

SOLVING FRACTIONAL PARTIAL DIFFERENTIAL
EQUATIONS BY USING GENERALIZED GEGENBAUER-
HUMBERT WAVELETS

Fractional partial differential equations (FPDEs) attracted a lot of scientists, owing
to effectively represent of the real world problems. A considerable techniques were
evolved to find approximate solutions of FPDEs. However, these techniques can not
be useful in general because of the features of each method. Wavelets beat the lacks
of the methods (numerical or analytical)by utilizing a family of orthogonal functions
to reduce the given problem to some of algebraic equations (linear or non- linear) as

a system.

Recently wavelet techniques have a wide applications in disciplines of physics
and engineering; especially signal analysis, optimal control, numerical analysis,
time—frequency analysis and fast algorithms [50]. Some researchers investigated and
employed a new algorithm of wavelets called scale-3 Haar wavelets to solve initial and
boundary value problems and other PDEs problems [51], [52] and [53]. Massive
interest have been dedicated to solve the FPDEs using operational matrices, orthogonal
polynomials such as: Chebyshev polynomials, Legendre polynomials and Gegenbauer
polynomials, Fourier approximation and wavelet methods. The authors used Haar
wavelets and their operational matrix to solve FPDEs in [54]. R. Jiwari used the
quasilinearization and uniform Haar wavelets to solve Burgers’ equation [55] and
[56]. In 2015 Rahimkhani and others to find the solution of pantograph fractional
differential equation employed generalized form of Bernoulli wavelet with fractional
order [57], while in 2018 he and Ordokhani solved the FPDEs with Dirichlet boundary
conditions by using Bernoulli wavelets collocation and the fractional integral operator
together [58]. In the other hand Heydari and others used Legendre wavelets with
their operational matrices to solve the same type of FPDEs [59]. [60] Chohan and
Shah solved FPDEs by using the operational matrices based on Jacobi polynomials.
The researchers dedicated the collection method of Chebyshev wavelets (3rd kind) to
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solve FPDE with variable coefficients [61]. Firoozjaee and Yousefi used polynomial
basis functions after transformed FPDEs into optimization problem, employed Ritz

approximation to find the solution of FPDEs as a result in [62].

This chapter introduce an approximate method based on GHW method to reach the
solution of the FPDEs subject to the two types of conditions (initial- boundary and
boundary).

5.1 Convergence of The GHW Method

In this part, we investigate the convergence of the presented method.

Theorem 5.1. If a continuous function u(x,t) € L*(R x R), and bounded on [0,1) x
[0,1), namely |u(x, t)| < &, then the GHW expansion of the function converges uniformly
to u(x, t).

Proof. Suppose that u(x, t) be a function defined over [0,1) %[0, 1) and bounded such
that:

lu(x,t)] <6, (5.1)

where 6 is a positive constant. Coefficients of the GHW for the continuous function

u(x, t) can be defined as:

1 1
Ujj = J J u(x,t) '(/«’flc(x) wilc(t) dx dt
e (5.2)

1
1 c
:2k1/2T f f u(x’ t) Pnk;ly,c (2k1X_2n1 -|—1) 'L/)?” (l’) dx dt,
Vitm Jo JL

_ [2n—-1 2my
where Il—[ o ,271).

Now, by change of variable 251 x —2n, + 1 = v, we get

ky /2 _
;= 22k1 J qpyc(t_) (J (1)—'_22—,;11, t) Prﬁ’ly’c(v)dv) dt. (5.3)

By the mean value theorem of integral calculus, we will obtain

1
v T)+2n1—1 Ay
w= 5 \/_ w ()u z—kf)U P (v)dv) dt, (5.4
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where n € (—1,1).

1 Ay,c’
+2n,—1 Cpm +1 (V)
.. yc t T)—l t) —d dt

since P2<'(v) = Z(m, + 1) P ().

n+2n1—1 P () 1
Uij = 73 1,/)yc(f) ” ,t) dt
2ky/ \/71 2K1 27&(m1 + 1) .
¢ 1 (PPAW- P“C( 1)
T A2ki/2 /R, 2(m, +1)

1
¥, ’)’)+2n1—1
XJO ’L/)j (I)U(T,t) dt
¢ 1 (PPAW-PYSD
© A2k/2 /R, 2(m, +1)

+2n,—1 1
xJ u(”—l, t)2k2/2 ——phre(2ket —2n, + 1) dt
I

2k Nk

_ [ 2n,—1 2n,
where I, —[ oz ,272).

By changing the variable 2k2t —2n, + 1 = w, we get

A AY,
cokl2 P =P (1)
u;: =

U ) 2ki/2 9k, /hm1 hmz 2(m;+1)

1

+2n,—1 w+2n,—1

X u(n ! , 2 )Pl’y’c(w)dw.
. 2k, 2k, my

(5.5)

(5.6)

(5.7)

Again using the mean value theorem of integral calculus, the following equation that
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we have

c 1 P (1) =P (=1)
u.. =
A 20ktks)/2 o, P, 2(my +1)

1
+2n,—1 &+2n,—1
x u(n e ) J P}“(w) dw,whereg € (—1,1)

207 2k »
I 1 (,ﬁﬁi(l) P (— 1))
- ky+k
A20arkd2 [ 2(m, +1)

/
. (n+2n1—1 5+2n2—1) lcP,ﬁ;y’C(w)d
u —Q——— - aw
1 2A(m, + 1)

2k 7 2k
5.8
e 1 :iﬁ;(n PRV (—1) (>-8)
A220ark/2 g 2(m; +1)

1
§ (7)+2n1—1 5+2n2—1)(P,ﬁ;y’c(w))
u ,

2k 2k 2(my+1) ),
2\ )

e 1 (RS =PRED)
A2 200tk fp 2(m; +1)

?L ,C A ,C
u °
2k 7 2k 2(m2+1)

Therefore

| = = 1 (PR =P D)
Ujj T2 20k +ky)/2 m 2(m1+1)
(7)+2n1—1 §+2n2—1)‘ ( PR (1) =P (— 1))

X (u ,
2ki 2k, 2(m, + 1)
. . (5.9
e 1 (PR =P
= 22 20k +ky)/2 \/ﬁ 2(m; +1)
PSP
2(m,+1) ’
since u(x, t) is bounded. Hence Zf:o Z;:O u;; is absolutely convergent.
|
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5.2 Implementation of the proposed method

In this section, we will apply the GHW method to find the solution for the following

problems:

5.2.1 Typel

The partial differential equations with fractional order:

d'u 9% dPu
dxr’ ot?’ oth

2%
dxo

=F(x,t,u(x,t), ), y>0,<1,1<a,Bf <2 (5.10)

with the Dirichlet boundary conditions:

u(x,0) = folx), u(0,t) = go(t),
u(x,1) = fi(x), u(l,t) =g (1),

(5.11)

where the functions f;(x) and g;(t) are twice continuously differentiable functions on

L?[0,1]. To solve the above problem we approximate

aa+ﬁu

Tl T () UWr<(t), (5.12)

where U = [u;; ]« Tepresent an unknown matrix which should be identified and
wY¢(.) is defined as in Eq.2.40. When applied the integration of fractional order 3 of

e
Jdt \ Ox¢

Putting t = 1 in Eq.5.13 and considering Eq.5.11, we have

(5
Jdt \ Ox¢

By substituting Eq.5.14 into Eq.5.13, we yield

Eq.5.12 with respect to t, we have

2%u

Jdxa

2%u

Jdxo

Q\Py’CT(x)U pYob TYe(t) + (5.13)

t=0 t=0

~Oh 9o

T (0 )U preP wre(1). (5.14)
Jdxe  OJx©

t=0

aa
3 = o T (U PYOP W) — £ BT (U PYOP 9 (1)
X

%o . 9°f
+t .
dxa dxa

(5.15)

+(1—1t)

73



On the other hand, by performing the integration of fractional order a of Eq.5.12 with
respect to x, we obtain

dFu dFu o (dFfu
— (P (X)) U () + —| +x=—| = 5.16
o = C) O+ 3| xax(atﬁ » (>-10)
We putting x =1 in Eq.5.16 and considering Eq.5.11, we have
aﬁu c,a c T c c,a c T c
FI ~ (PO Wr(x)) UWr(t)—x (Pro*wre(1)) U W (t)
t (5.17)
+(1 )aﬁgo " "¢,
—Xx x .
oth ath

Next, by fractional integrating of order a of Eq.5.15 with respect to x, and considering
Eq.5.11, we get

u(x, t) & (PYo* r<(x))' U PYP () —t (P74 ¥<(x))"
U PYoP 97e(1) —x (Po* ¥7°(1))" U P¥P wr<(¢) (5.18)
+x t (PP (1)) U PP 97¢(1) +R(x, t),

where

R(x, t) =go(t) + (1 — 6)(fo(x) — fo(0) —x f3(0)) + t (f1(x)
— f1(0) —x f](0)) + x (g,() — go(t)) —x (1 —1t) (5.19)
(fo(1) = £6(0) — £5(0)) — x t(f,(1) — £,(0) — £,(0)).

Now, by fractional differentiation of order y of Eq.5.18 with respect to x, we yield

d'u
e ~ (py,c,a—y \I,y,C(x))T UPYSP @re(t) —¢ (py,c,a—y q,y,C(X))T
x
1—r

r2-ry)
(Pror (1) UPYSP wre(1) +

UPYeP wr(1)— (Pree @ (1) UP*P 9 (6)  (5.20)

N xr ¢t
Ir'(2—r7)

J"R(x,t)
dxr

By using fractional derivative of order 6 of Eq.5.18 with respect to t, we get

2% £1-0
S0 S (PYt W) UPY 0 () — r(2—0)
(pre \Ily’c(x))T UPYSP pre(1)—x (P¥o° \Py’c(l))T
[ py-cb—o Wre(t) + x t1-f (pres \ij,C(l))T pe (5.21)
r2—=0)
9R(x, t
Wre(1) + #)
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By substituting Eq.5.15, 5.17-5.21 into Eq.5.10, and replacing ~ by =, and taking
collocation points x;, t; = (2i —1)/2m;i = 1,2,--- ,m, into the generated equation,

we get the non-linear system of algebraic equation as follows:

J2%u
Jxa

=0, i,j=1,--,7h. (5.22)

oxr’ ot?’ otk
(x;,t7)

d'u 9% JPu
- F XJ t’ u(XJ t))

To solve the above system and finding U, any iterative method such as Newton’s
iterative method can be used. We get the approximate solution by substituting U
into Eq.5.18.

5.2.2 Type 2

Consider the partial fractional differential equations with the following form

o _p xtu(xt)%a—ﬁu >0,<1,1<a<?2 (5.23)
axa_ P b} ’aXY’atﬁ ;Y ) — ) —_ .
with initial condition
U(x, O) :fo(X), (5-24)
and boundary conditions:
u(0,t) = go(t), u(l,t) =g (1), (5.25)

where the functions f,(x) and g;(t) are given functions in L?[0,1]. For solving this

problem we approximate

aa+ﬁu

W A \I/y’CT(X)U\IJy’C(t), (526)

where U = [u;; ], is an unknown matrix which should be found. By the integral of
fractional order f of Eq. 5.26 with respect to t, we yield

5 8¢
= o g T (U PP () + o
dx dx —o (5.27)
2%fo

~ T (x)U PYP §(t) + .
dx«

Furthermore, by applying the fractional integration of order a of Eq.5.26 with respect
to x, we obtain Eq.5.16. Putting x = 1 in Eq.5.16 and considering Eq.5.25, we get
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Eq.5.17. Now, by the integration with fractional order a of Eq.5.27, we have

u(x, t) ~ (P wr<(x))" U PP wr(t)
) ou (5.28)
— fo(x) — fo(0) — x f,(0) + go(t) + x Ix
X x=0
By putting x = 1 in Eq.5.28 and concluding Eq’s.5.24, 5.25, we can rewrite Eq.5.28
as
u(x, t) ~ (PYo* We(x)' U PYoP wre(t) — x (PYo* w¥(1))"

(5.29)
U PYP &7¢(t) + H(x, t)

where

H(x, t) = go(t) + fo(x) — fo(0) — x £;(0) + x (g1(t) — o (1))

(5.30)
—x (fo(1) = £o(0) — £,(0)).

By drive Eq.5.29 with fractional order y with respect to x, we obtain

Y 1=y
MU (pres—r we(x))| UPYSP whe(r)—
r2=7) (5.31)
O7H(x, t)

(Prea (1)) UPYSP &7 (¢) +
dxr

Now, by substituting Eq.5.27,5.17,5.29 and 5.31 in Eq.5.23 with replacing ~ by = and
taking the collocation points as in the Type 1, we obtained the following nonlinear

system of equations

=0, i,j=1,---,m, (5.32)

which can be solved for the unknown matrix U.

5.3 Numerical Illustration

To illustrate the accuracy of the presented method, the results are examined by using

L., L, maximum absolute error and root mean square error respectively as:

Loo :MaX|U(Xi, ti)_ﬂ(xb ti)l) (533)
1<i<m
1< i )
Ly =\ = > luCx, t) —ii(x;, £ (5.34)
m <
i=1
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Example 5.1 Let consider the following fractional partial differential equation:

2%%u(x,t) 3% *u(x,t)  3*3u(x,t)

EETD EETR o +u(x,t) = f(x,t), (5.35)
with
flx,t)=x*+t+ 4&/_5 + 16‘/551;(3/4), (5.36)
and the boundary conditions:
u(x,0) = x2, u(o,t) =t,
(5.37)

u(x,)=x>+1, u(l,t)=1+t.
Where the exact solution of the above problem is u(x, t) = x2 + t.

The approximate solution obtained by the method presented in Section 5.2.1 as follow
as: Suppose
dit3y
dx20t5
By the fractional integration of order 4/3 of the Eq.5.38 with respect to t, then putting

~ U () UWY (). (5.38)

t =1 we obtain

83/2 4
B wreT (U Pre3 Oe(t) — t wheT (x)U PYo3 ore(1) + —ﬁ. (5.39)

0 x3/2 vr

While integrate Eq.5.38 of order 3/2 with respect to x, then putting x = 1 we have

943y
at4/3

~ (Pred2 gre(x)) U we(t) —x (P2 9¢(1)) Uw5(t).  (5.40)
Now, integrate Eq.5.39 of order 3/2 with respect to x, yields Eq.5.18 where

R(x,t) =t +w. (5.41)

Next, to get 2u g Eq.5.20 by fractional integration of order 3/4 of Eq.5.18 with

dx3/4

respect to x and

9%*R(x,t) 16 x°/* /2T(3/4)
ox34 571 )

(5.42)

By substituting Eq’s.5.39,5.40, 5.18 and 5.20 in Eq.5.35. Then substituting the
collocation points into the obtained equation, solving the system of algebraic equations

to find the unknown matrix U. The errors in some nodes (x,t) € [0,1] for A, y,c =
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Figure 5.1 The approximate solution of Example 5.1.

1,k =3 and M = 3 as in Table 5.1. Fig.5.1 represents the approximate solution by
the GHW method for m = 12. The results in Table 5.2 are compared the proposed
method with the method that used by M.H. Hayderi et al [59].

Table 5.1 The errors for a different values of t of Example 5.1

t 0.1 0.3 0.5 0.7 0.9
L, | 3.242 x1072 | 2.309 x107'! | 6.992 x107%° | 8.834 x1071° | 4.887 x107~?
Loo | 7.449 x10712 | 4,146 x1071! | 1.573 x107° | 2.245 x10™° | 1.603 x1078

Example 5.2 Consider the fractional partial differential equation:

with

aMu(x,t)  9%2u(x,t)
dx15 otl2 =f(x,0),
4/x  5t43
flx,t)=

78

JT * 2T(4/5)°

(5.43)

(5.44)




and the boundary conditions:

u(x,0) = x2, u(o,t) =t?,
(5.45)
ulx,1)=x2+1, u(l,t)=1+t2

Where the exact solution of the above problem is u(x, t) = x2 + t2.

Using the same procedure in Section 5.2.1 as: Let

31.5+1.2u

~ T ,C

By the fractional integration of order 1.2 of the Eq.5.46 with respect to t, then putting
t =1 we obtain

al,Su
Oxl5

~ Wl () U Prol2 wre(t) — t Wl (x)U PYo12 wr€(1) + 2.256758334 /x.
(5.47)
While integrate Eq.5.46 of order 1.5 with respect to x, then putting x = 1 we have

al.Zu
otl2

~ (Prels we(x)) U ()—x (PPo15 w¢(1)) U W (1)+2.147342548 t*/°,
(5.48)

By substituting Eq’s.5.47, 5.48 in Eq.5.43. Then solving the system of algebraic
equations that be obtained after substitute the collocation points in the generated
equation to find the unknown matrix U. Numerical results obtained by the proposed
method for y, ¢, A = 1 and for the different values of k, M consider Table 5.4 and
Fig.5.2.
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The absolute error of Example 5.2 for k =1, M = 3.

Figure 5.2 Absolute errors with different values of k, M for Example 5.2.
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Table 5.4 The comparison of errors for different values of k, M in different values of
t of Example 5.2.

t

0.1

0.3

0.5

0.7

0.9

Lo fork=1, M=3

8.065770E-12

1.798584E-11

4.476419E-12

4.859402E-11

1.412257E-10

Lyfork=1, M=3

8.947909E-12

1.524394E-11

3.348171E-12

4.550491E-11

1.299698E-10

Lo fork=2 M=3

1.720468E-11

4.185996E-11

3.104470E-10

2.117184E-10

1.216400E-10

Lyfork=2 M=3

1.468218E-11

3.080179E-11

1.777416E-10

1.268601E-10

8.001475E-11

Lo fork=3, M=3

2.058742E-11

1.019086E-10

1.370306E-9

5.407648E-10

1.711939E-9

Lyfork=3, M=3

9.660581E-12

4.845856E-11

4.134269E-10

2.124966E-10

5.419098E-10

Example 5.3 Consider the following fractional partial differential equation:

a1/8 RV ¢ 8 x7/8 34203
”(58 ) ”S; Vi ~0<x,t<1, (549
ox ot 7T(3) 2r(3)
with initial -boundary conditions as:
u(x,0)=x, u(0,t)=2t,
(5.50)

u(x,)=x+2 u(1,t)=1+2t.
The exact solution of this problem u(x, t) = x + 2t.

When we applied the GHW method to solve the above problem using the same
procedure in the previous examples, Table 5.3 shows variation of the error values
between the Ref. [63] method and the proposed method. In addition, GHW method
given better results with less k, M and y,c, A = 1. Fig.5.3 has been shown the absolute
error when k =2,M = 4,y,c and A = 1. While 5.5 explained the absolute errors for
a different values of k, M and y,c,A =1.

Example 5.4 Consider the following Burger’s fractional differential equation:

o%u(x,t) P t el t
ux,) oulbet) U g g1 1<a<2  (5.51)
dx« oth
subject to the conditions:
u(x,0)=2x,
2 (5.52)
u(0,t)=0, u(l,t)= .
©,0) (1,0 142t
The exact solution of this problem u(x, t) = fé .
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Figure 5.3 Absolute error of the approximate solution obtained by GHW method of
Example 5.3

Table 5.5 The absolute errors of the proposed method for y,c,A =1 and different
values of k, M for Example 5.3.

(x,1)

k=2,M=4

k=3,M=3

k=3,M=4

(0.1,.01)

1.6056 x10~!

5.2862 x10713

1.2600 x10713

(0.2,0.2)

9.8585 x10712

3.5051 x107!!

1.2991 x1071!

(0.3,0.3)

4.0419 x1071

5.3720 x10712

1.4337 x10712

(0.4,0.4)

2.0966 x10712

1.3186 x10~!

1.2011 x10~ 1

(0.5,0.5)

4.9595 x10712

2.2372 x1071°

1.1894 x1071!

(0.6,0.6)

1.4464 x10712

9.9521 x107 11

6.7577 x10712

(0.7,0.7)

4.9868 x10713

3.7911 x1071!

5.6182 x10713

(0.8,0.8)

5.6008 x107*3

2.3421 x107*2

3.0564 x107!!

(0.9,0.9)

3.5169 x107'3

2.3494 x1071!

1.1616 x1071°

To solve the above problem by the method in Section 5.2.2, we integrate Eg.5.26 of

fractional order 3 with respect to t, we have

2%u

Jdxo

83

~ Ut (x)U PP wre(t).

(5.53)



Figure 5.4 Absolute error of the approximate solution obtained by GHW method of
Example 5.4.

Next by integrating Eg.5.26 of fractional order a with respect to x and putting x =1,

we yield
O (P W () U W ()= x (P W) U ()~ — X (5.54)
ath (1+2t)2

By the integration with fractional order a of Eq.5.53, and putting x = 1 we obtain
Eq.5.29 where

2x
H(x,t)= . 5.55
(x,0) 1+2t ( )
By substituting y = 1 in Eq.5.31 we obtain g—z where
JH(x,t) 2
= . 5.56
dx 1+2t ( )

Now, substitute Eq’s 5.53,5.54, 5.29 and 5.31 in Eq.5.51 and solving the non-linear
obtained system to find the unknown matrix U.

Fig.5.4 has been shown the absolute error when k =1,M =3,y,c,A=1and a = 1.5.
The results in Table 5.6 consider the absolute errors for a different values of a with
notation the results obtained for 15th digits number.
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Table 5.6 The absolute errors of the proposed method for y,c,A=1, k=1, M =3
and different values of a for Example 5.4.

(%,t) Absolute Error a = 1.2 | Absolute Error a = 1.5 | Absolute Error o = 1.75
(0.1,0.1) 0.5361633e-1 0.2336636E-1 0
(0.2,0.2) 0.1254141 0.5675636E-2 0
(0.3,0.3) 0.1765109 0.8496859E-2 0
(0.4,0.4) 0.2235409 0.3020368E-2 0
(0.5,0.5) 0.2789657 4.889778E-13 0
(0.6,0.6) 0.3510744 0.3020368E-2 0
(0.7,0.7) 0.4439836 0.8496859E-2 0
(0.8,0.8) 0.5576372 0.5675636E-2 0
(0.9,0.9) 0.6878067 0.2336636E-1 0

Example 5.5 Consider the following time- fractional diffusion equation:

dPu(x,t) _ %u(x, t)

where

Py B2 =f(x,t),0<x<1,0<t<1,0<pB <1, (5.57)
X
2% P
(x,t) = ——<—2 (5.58)
0= 1625

and the initial-boundary conditions:

u(x,0)=x2 u(0,t) =t u(l,t)=1+t% (5.59)

The exact solution of this problem is u(x, t) = x% + t2.

We reach the exact solution with error equal to zero when k =2,M =2,3, f =0.5,1

and y,c, A = 1. Absolute error of this problem when k =2, M = 3, # = 0.9 shown in
Fig.5.5 and Table 5.7 with different k, M, f3, all the results obtained with y,c, A = 1.

Moreover, Table 5.8 shows the performance of GHW method when its error compared

with method used in Ref [64] the results obtained when y,c, A = 1 with notation the

results obtained for 15th digits number.
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Figure 5.5 Absolute error of Example 5.5.

Table 5.7 The absolute errors for y,c, A =1 and different values of k, M, f3 for

Example 5.5.
(x,t) k=2,M=3,8=05 | k=3,M=3,8=05 | k=2,M=3,8=09 | k=3,M=3,3=0.9
(0.2,0.2) | 0 1.2606 x10712 6.8115 x10712 1.2865 x10713
(0.4,0.4) | 0 1.6297 x10712 2.4000 x10712 8.9881 x10712
(0.6,0.6) | 5.8127 x10712 3.4912 x1071! 1.6885 x1071! 5.0683 x107!!
(0.8,0.8) | 1.2010 x1071° 2.2643 x1071! 9.2382 x1071 4.0967 x1071
Table 5.8 Comparison the absolute errors for Example 5.5.
The method in Ref. [64] The proposed method
(x,t) J=1m=2|J=1m=3 |J=2m=2 | k=2,M=3,$=05 | k=3,M=3, =05
(0.2,0.25) | 3.3 x1072 4.4 x107° 8.8 x1072 0 7.6392 x10713
(0.4,0.25) | 1.9 x1072 5.1 x1072 9.8 x1072 0 2.7958 x10713
(0.6,0.25) | 1.6 x1072 7.1 x1072 3.4x107! 0 4.4831 x10712
(0.8,0.25) | 1.2 x107! 2.8 x1072 4.3 x107! 0 1.6001 x10~1
Example 5.6
2%u(x,t) dPu(x,t) du(x,t)
’ : ~~ =f(x,t), 0<x,t<1,0<pB <1 (5.60)
Jx2 oth ox
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Figure 5.6 Approximate solution of Example 5.6 with k=2, M =3, 8 =0.5
With
flx,t)=2tP +2x%+2, (5.61)
and the initial- boundary conditions as:

u(x,0) = x2,

_2T(B+1) g L L2T(BH1D) (5.62)
HO0=Tap ) U M= e

The exact solution of the above problem is

2T(B+1) (26

u(x,t) =x*+ Tf+ 1)

(5.63)
We applied the GHW method to solve this problem for y,c, A =1and k =2, M =
3,8 = 0.5 as in Fig’s 5.6 and 5.7. E Zhou and X. Xu Ref. [61] established the
preference of their method by a comparison between the 3rd kind of Chebyshev
wavelets collection to solve this problem with some other methods. As a result, to
prove the efficiency and accuracy of the GHW method, Table 5.9 and Table 5.10
comparing the results of the proposed method with Ref. [61] results with notation
the results obtained for 17th digits number.
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Figure 5.7 Absolute error of Example 5.6 with k =2,M =3,  =0.5

Table 5.10 Comparison of the absolute error of Example 5.6 with
k=2,M=3,=0.5and t =0.5.

X Exact solution Method of Ref. [61] | The present method
(0.1,0.1) | 0.896226925452758 1.110 x1071° 0
(0.2,0.2) | 0.926226925452758 1.110 x107'6 0
(0.3,0.3) | 0.976226925452758 2.220 x10716 0
(0.4,0.4) | 1.04622692545276 2.220 x10716 0
(0.5,0.5) | 1.13622692545276 0 0
(0.6,0.6) | 1.24622692545276 0 0
(0.7,0.7) | 1.37622692545276 2.220 x1071° 0
(0.8,0.8) | 1.52622692545276 0 0
(0.9,0.9) | 1.69622692545276 0 0
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6

SOLVING A COUPLED TIME- FRACTIONAL PARTIAL
DIFFERENTIAL BY USING GENERALIZED
GEGENBAUER- HUMBERT WAVELETS

Although, widespread of using partial differential equations to model different
physical and mathematical problems, majority of the PDE applications arise when
modeling these problems by using coupled systems of partial differential equations.
For instance chemical and engineering [65], [66], modeling heart electrical activity

(bio-mechanics) [67], [68] and modeling gravitational problems [69].

Fractional derivation and integration have attracted the attention of the researchers
recently. Comparing with differential equations with integer order fractional-order
differential equations have proven its efficiency and accuracy of describe the real
problems. Therefore, many authors modeled most of physical and engineering
problems by using systems of fractional differential equations for instance [70-75]
and [76]. As a result, several methods investigated to solve fractional partial
differential equations (FPDEs) analytically and numerically such as Kudryashov and
Bernstein methods [77, 78], homotopy analysis method [79, 80], transform method
like Sumudu and reduced differential [81, 82], and Adomain decomposition method
[83]. Wavelet is one of the numerical techniques based on orthogonal polynomials
used to find the approximate solution of FPDEs [84-87] and [50].

In fluid dynamics, the coupled systems of Whitham-Broer-Kaup (WBK) equations are
described shallow water waves propagation [88] with the form:

u +uu, +w, +ou,, =0, 6.1)
w,+Uw), +Ni,,, —0 w,, =0,

where the horizontal velocity denotes by u(x,t), w(x,t) represent the height that
deviates from the equilibrium postion of liquid and &, 1 are constants to represent the

different diffusion powers. In the last years, many techniques are developed to obtain
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the solutions of the (WBK) equations exactly and numerically like Xie et al. investigate
some solutions of new solitary wave by using the hyperbolic function method [89],
while Sayed and Kaya obtained the aapproximate solutions by applying Adomain
decomposition method [90] and by homotopy perturbation method Mohyud-Din et

al. [91] find the exact and approximate traveling wave solution of the (WBK) systems.
The time fractional form of (WBK) equations:

Dfu+uu, + w, +ou,, =0,
(6.2)
Dfw+ (Uw), + Nty —0 Wy, =0,

where 0 < u < 1. Whenn =1and 6 = 0, system Eq.6.2 becomes modified Boussinesq
equations (MB) with fractional order and if n = 0, 6 = 1/2 being approximate long
wave equations(ALW). In [92] Wang and Chen used residual power series method
to find the approximate travelling solutions of time fractional (WBK) equations. Ali
et al. [93] employed Laplace transform with Adomian decomposition method to
find the numerical solution of the fractional coupled nonlinear (WBK) systems. To
construct approximate solutions for a nonlinear coupled WBK and Jaulent-Miodek

system Al-Smadi et al.[94] implement the conformable residual power series.

In 19th century, Korteweg-de Vries equation (KdV) grew up the in the shallow water
by Hirota and Satsuma and it takes a wide applications for instance wave of ion
acoustic in plasma, in one dimensional long waves in shallow water waves and in

the density-stratified of ocean. The form of time fractional KdV can be as:

Dfu=Cluu, +yww,+cu,, +f(x,t),
‘ ’ f (6.3)
wa =0 Wiy —YUW, +g(.X', t):

where 0 < u, B < 1and{, y, ¢ are known constants. Bulut et al. [95] solved coupled
systems of the KdV equations by Haar wavelets and in 2018 Albuohimad et al. solved
these systems by using spectral collection method [96]. The authors in [97] and [98]
studied the solutions of KdV equations of 5th order and generalized KdV equation.
Ghany and Bab have investigated the Wick-type stochastic coupled KdV equation with
fractional order and the exact solution of it are presented [99]. Based on Legendre
polynomials Bhrawy and his friends solved the time fractional coupled Kdv equations
[100].

In this chapter, we choose another orthogonal polynomials called generalized
Gegnbauer -Humbert polynomials to construct generalized wavelets method for
solving coupled systems of FPDEs. The presented method are new to solve two types

of shallow waters as a coupled systems in addition to the known methods.
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6.1 characterization of the proposed method

In this section, we applied the GHW with their operational matrices of integration to

solve the following problems:

6.1.1 WBK equation

The partial differential equations with fractional order:

Dfu+uu, + w, +6u,, =0,

(6.4)
Dff'w+ (uw), + Ny —0 Wy, =0,
with the intial conditions:
u(x,0) = f(x), w(x,0)=g(x). (6.5)
The procedure of the proposed method summarized as:
To solve this system, we suppose that
au+3u T . 6.6
= Pre Uwre(t), .
e = T UR() (6.6)
and it
w
=T )W (t), 6.7
A = P OW (o) 6.7)

where U = [u;; ]« and W = [w;; |4« are unknown matrices which should be found
and ¥»°(.) is the vector that is defined in Eq. 2.40. By fractional integration of order
u of Eq. 6.6 with respect to t and substituting the initial condition, we obtain

3

Now, integrating Eq.6.6 three times with respect to x we have

otu T atu d (d"u
— = (PP e U (t)+—-—| +x— ( )
atH ( (X)) © otk ‘x:O i

dx \ Jt#
x? 92 (a“u)
+__ -
2 0x2\ Jt+
Bu(0,)

Putting x = 1 in Eq.6.9 and let u(0, t) = uy(t), u(1,t) =u,(t) and — = = u;(t) and

x=0 (6.9)

x=
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can be obtained from the exact solutions, we get

oM
= (Pt ) U e —x® (Pt e ) U

(6.10)
o*u o*u o*u
¥ 22 7 —x) 0 — ) 1=
W)+ x Ep +(1—x%) Ep +(x—x*) FITR
By integrating of fractional order u of Eq.6.10 with respect to t, we get
u(x, t) = (P ¢(x))" U PYo# wr<(t) 611)
a1
— (% +x) (P2 w¢(1))" U PYoH (1) + H,
where H defined as the following equation
H = f(x) 4+ x? (uy(t) —u;(0)) + (1 — x?) (uo(£) —1,(0)) 6.12)

+ (x —x?) (us(t) — u3(0)).

Derive Eq.6.11 two times with respect to x we obtain the following equations

0
a = (pre? q,y,C(x))T U PYSH w¥<(t)
o% (6.13)
T JoH )
—(2x+1) (P72 (1)) UP»H W' (¢) + -
x
32u 1 c T c c
— =(PY1 ¥ (x)) U P¥“* w¥<(t)
0x2
325 (6.14)
—2 (P72 wre(1)) U PYH OV (1) + S
( (1) (0+35
The same procedure applied of the next systems, we get
830) cT c c 111
T WYt ()W PYoR () + g (x). (6.15)
x
Let w(0,t) = wy(t), w(1,t) = w,(t) and %ﬁ’t) = w4(t) and can be obtained from
the exact solutions
a,uw c,3 c T c 2 c,3 c T
Frmie (P72 o7 (x)) W w<(t)—x? (PY2 (1)) W
(6.16)
*w M w Hw
W)+ x* —F 4+ (1—x%) — + (x — x> :
(t)+x Ep ( )atu (x x)atu
w(x, t) = (P73 w74 (x))" W PYoH (1)
(6.17)

— (% +x) (Pr? w¢(1))" W PYoH W5(£) +R,

93



and R defined as

R=g(x) +x? (w1(t) — @1(0)) + (1 —x?) (wo(t) — wo(0))

(6.18)
+ (x —x?) (ws(t) — w3(0)).
ow 5 T
— =(PY2 W (x)) W PYSHwre(t)
ox (6.19)
T OR '
—(2x+1) (P73 wre(1)) W PYoH B<(¢) + EPe
X
2
aa D = (Pt wre(x) W PYSR U(r)
X 2R (6.20)

—2 (PYo3 wre(1)) W PYOR BYe(t) + o=
X

Finally, substituting Eq.6.8,(6.10-6.20) in Eq.6.4 then take the collocation points for
t, x we obtain an algebraic nonlinear systems to find the matrices of coefficients U, W.

6.1.2 Kdv equation

Consider the time fractional coupled equation with the following form

Difu="Cuu, +yww, + ¢, +f(x,t),

(6.21)
wa =0 Wyxx —YUWy +g(x, t);
with initial condition
u(x,0) = fo(x), w(x,0)=go(x) (6.22)
and boundary conditions:
u(0,t) =v,(t), u(l,t)=v,y(t), u,(0,t)=v3(t)
! 2 (6.23)

w(0,t)=r(t), w(l,t)=ry(t), w,(0,t)=r3(t)

where {,y,¢ are known constants. Now, to solve the above coupled systems we

approximate the highest order using GHW wavelets as:

33u y,cT ¥,c
_8x3 ~ U () UPY(t), (6.24)
23w T Ve
Fe ~ PV ()WY (t), (6.25)

where U = [u;; ], and W = [w;; ], are unknown coefficients matrices which
should be found and ¥”(.) is the vector defined in Eq.2.24. By integrating Eq.6.24
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three times with respect to x then substitute the boundary conditions, we obtain

2%u T 2%u
i Py,c,l \Dy,c \Dy,c - -
== () U+ 2 B
0 02 )
ot _ (pre? \Iﬂ’c(x))T Uwre(t)+x —| +22
dx 0x2 o dx 0

u(x,t)= (Py’c’3 \W’C(x))T U prob WYe(t) + vy (t)
2 0x2 Jx

xX= x=0

Putting x = 1 in last equation, we get

9%u V.3 T
FP =2v,(t) —2v,(t) — 2 v5(t) —2 (P¥* ¥'¢(1))

x=0
U PYoP w<(t)

Next, substituting Eq.6.29 in Eqs.6.26,6.27 and 6.28 we have

S—j; = (Py,c,l q;y,C(X))T U wr<(t) — 2 (py,c,g \I!y’c(l))T U
WY (t) =2 (vo(t) —vi(t) — v5(t)).
% :( ¥,6,2 q;y,C(X))T U () —2 x (py,c,g qjy,c(l))T

U PY<B wre(¢) +2 x (v,(t) = vy(£) — v5(£)) + vs(t).
u(x, t) = (P72 ©7¢(x))" U PYP @< (£) — x2 (P73 (1))
U PY<B wr<(¢) + vy (£) + (x — x2) v5(¢)
+x? (vy(£) = v4 (1))

We applied the same steps of Eq.6.25 as

aZw ¥,6,1 \1,Y,C T ¥y,c Y563 \T,Y,C T

o =(Pret wre(x)) W w»<(t)—2 (Pr? $7<(1))
W B5(1) = 2 (ry(t) — r, () — r3(0)).

dw c,2 c T c c,3 c T

E:(P%’ W(x)) WBE(t)—2x (P2 (1))

U PYeP wre(t) + 2 x (ry(t) — ry(t) — r3(t)) + r5(2).
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(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)



w(x,t)= (Py’c’3 \Ily’c(x))T W PYeP gre(t) — x?
(P73 wre(1))" W PP ¢ (£) + ry(£) + (x — x2) (6.35)
ra(t) +x* (ry(t) — 1y (£)).
We substitute Eqs.6.24,6.25 and 6.30-6.35 in Egs.6.21 to get an algebraic nonlinear

systems after taking the collocation points for t,x, The solution of the algebraic

systems are the coefficient matrices U, W.

6.2 Numerical Exterminates

In order to evaluate the difference between analytic and numerical solutions, we

concern the root mean square error L, and maximum absolute error L, as:

Loo :MaX|U(Xi, ti)_ﬂ(xiz ti)l) (636)
1<i<m
1< ) ,
Ly =\ = > luCx, t) —ii(ax;, £ (6.37)
m i=1

Example 6.1 Let be consider the following fractional WBK equations:

Dfu+uu, + w, +ou,, =0,

. (6.38)
D! w+Uw), +Niy, —0w,, =0,
with the initial conditions:
u(x,0)=9—2B¢& coth(& (x + 7)),
(6.39)

w(x,0)=—2B (B+68) &% csch®(& (x + 1)),

where B = 4/n+ 62 and ¥, &, 7 are arbitrary constants. The exact solutions of this

problem are
u(x,t)=9—2B¢& coth(& (x +7—171t)),

w(x,t)=—2B(B+8) &% csch?(E (x + 7 —1T t)).
Assume that, we take % = 0.005, £ = 0.1, n = 6 = 1.5 and v = 10. Figures 6.1

and 6.2 shows the solutions of the above systems using the GHW method comparison

(6.40)

with the exact solutions each of u(x,t) and w(x,t) respectively. Tables 5.1 and
5.2 present the absolute errors between the numerical solutions by The Adomian’s
decomposition method (ADM), the variational iteration method (VIM), the optimal
homotopy asymptotic method (OHAM), the proposed method (GHW) for u, y,c,k =
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1, M =3 A = 0.75 and the exact solution of Example 6.1. As the results shown in

Table 6.1 and Table 6.2 the approximate solutions using GHW method are converge

to the exact solutions more than the other methods used in Ref.[101].

Table 6.1 The absolute errors of u(x, t) obtained by GHW method for u, y,c and
k=1, M =3 A =0.75 and other different methods for Example 6.1.

(x,0) [Uexace = Uapm| | [Uexace —Uviml | |[Uexace —Uonam| | [Uexace —Ugnwl
(0.1, 0.1) 1.04892E-4 1.23033E-4 1.07078E-4 5.8025294E-9
(0.1, 0.3) 9.64474E-5 3.69597E-4 3.04565E-4 5.44560154E-8
(0.1, 0.5) 8.88312E-5 6.16873E-4 4.81303E-4 1.82970833E-8
(0.2, 0.1) 4.25408E-4 1.19869E-4 1.04388E-4 8.42524053E-8
(0.2, 0.3) 3.91098E-4 3.60098E-4 2.97260E-4 3.200613516E-7
(0.2, 0.5) 3.60161E-4 6.01006E-4 4.70138E-4 4.207822714E-7
(0.3, 0.1) 9.71922E-4 1.16789E-4 1.01776E-4 1.413342633E-7
(0.3, 0.3) 8.93309E-4 3.50866E-4 2.90150E-4 5.209119286E-7
(0.3, 0.5) 8.22452E-4 5.85610E-4 4.59590E-4 7.11230198E-7
(0.4, 0.1) 1.75596E-3 1.13829E-4 9.92418E-5 1.829480986E-7
(0.4, 0.3) 1.61430E-3 3.41948E-4 2.83229E-4 6.768077318E-7
(0.4, 0.5) 1.48578E-3 5.70710E-4 4.49118E-4 9.22440849E-7
(0.5, 0.1) 2.79519E-3 1.10936E-4 9.67808E-4 2.15394022E-7
(0.5, 0.3) 2.56714E-3 3.33274E-4 2.76492E-4 8.05449061E-7
(0.5, 0.5) 2.36184E-3 5.56235E-4 4.38895E-4 1.083714796E-6

Example 6.2 Consider the time modified Boussinesq equation that is represent a

special case of WBK equation whenn =1,6 =0 as:
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Dfu+uu, + w, =0,

Dfw + (uw), + Uy =0,

(6.41)




Exact solution of u(x,t)

— 0485

—0.420

—0.495—

—0.500~

0.50
0.25 a7s 0.50 0.2

)

GHW approximate solution of u(x.t)

-0 4504

— 0455

—-0.4%0-

—-0.4954

- 0,500+

Figure 6.1 Exact and GHW approximate solution of u(x, t) Example 6.1 for
u,k,y,c=1, A=0.75, M =3.
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Exact solution of o(x,t)

1
g25 O

U'?%j%.zﬁ
s

0.50
g 075

¥

GHW approximate solution of m(x,t)

- 0.080-
—-0.085+
—0.090+

—-0.095H

1
D.?gj%.zﬁ

0.50
o 075
f

X

Figure 6.2 Exact and GHW approximate solution of w(x, t) Example 6.1 for
u,k,y,c=1, A=0.75, M = 3.
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Table 6.2 The absolute errors of w(x, t) obtained by GHW method for u, y,c and
k=1, M =3 A =0.75 and other different methods for Example 6.1.

(%,t) |Wexace = @apm| | [@exace = @viml | |@exace — @onam! | 1@exace — @gnwl
(0.1, 0.1) 6.41419E-3 1.10430E-4 5.86860E-5 2.87481624E-7
(0.1, 0.3) 5.99783E-3 3.31865E-4 3.04565E-4 7.87636054E-7
(0.1, 0.5) 5.61507E-3 5.54071E-4 3.08812E-4 1.74257851E-6
(0.2, 0.1) 1.33181E-2 1.07016E-4 5.56884E-5 3.8768900E-10
(0.2, 0.3) 1.24441E-2 3.21601E-4 2.97260E-4 1.1092180E-8
(0.2, 0.5) 1.16416E-2 5.36927E-4 2.92626E-4 1.4388176E-7
(0.3, 0.1) 2.07641E-2 1.03737E-4 5.28609E-5 1.85719630E-7
(0.3, 0.3) 1.93852E-2 3.11737E-4 2.90150E-4 5.23858578E-7
(0.3, 0.5) 1.81209E-2 5.20447E-4 2.77382E-4 8.70705450E-7
(0.4, 0.1) 2.88100E-2 1.00579E-4 5.01929E-5 2.77264136E-7
(0.4, 0.3) 2.68724E-2 3.02245E-4 2.83229E-4 7.77062976E-7
(0.4, 0.5) 2.50985E-2 5.04593E-4 2.63019E-4 1.34517282E-7
(0.5, 0.1) 3.75193E-2 9.75385E-5 4.76741E-5 2.83022620E-7
(0.5, 0.3) 3.49617E-2 2.93107E-4 2.76492E-4 7.94669230E-7
(0.5, 0.5) 3.26239E-2 4.89335E-4 2.49480E-4 1.31951855E-6

with the intial conditions:

u(x,0)=9—2¢& coth(& (x + 1)),
w(x,0) =—2 &% csch?(&E (x + 1)),

(6.42)

where 4, £, 1 are arbitrary constants. The exact solutions of this problem are

u(x,t)=9—2& coth(& (x +1—171t)),
w(x,t)=—2&%csch*(E (x + T —171t)).

100

(6.43)




Figure 6.3 shows the coupled surface of the exact and GHW approximate solution
for u(x,t) and w(x,t) at u,y,c and k = 1, M = 3 A = 0.75, respectively. Table
6.3 and Table 6.4 show the absolute errors of the exact solutions and the approximate
solutions by methods in Ref.[ 101] and GHW method for u(x, t) and w(x, t) Ref.[101],
respectively. The results show that the approximate solutions by GHW method are

converge to the exact solutions more than the other methods.

Table 6.3 The absolute errors of u(x, t) obtained by GHW method for u, y,c and
k=1, M =3 A =0.75 and other different methods for Example 6.2.

(x,0) texace = Uapm| | [Uexace —Uvim! | [Uexace = Uonam! | IUexace — Uawl
(0.1, 0.1) 8.16297E-7 6.35269E-5 6.35267E-5 1.19382200E-9
(0.1, 0.3) 7.64245E-7 1.90854E-4 1.90854E-4 2.30988830E-8
(0.1, 0.5) 7.16083E-7 3.18549E-4 3.18548E-4 4.40134333E-8
(0.2, 0.1) 3.26243E-6 6.18930E-5 6.18931E-5 1.00805065E-8
(0.2, 0.3) 3.05458E-6 1.85945E-4 1.85945E-4 7.25761641E-8
(0.2, 0.5) 2.86226E-6 3.10352E-4 3.10352E-4 1.424631520E-7
(0.3, 0.1) 7.33445E-6 6.03095E-5 6.03098E-5 1.276219628E-8
(0.3, 0.3) 6.86758E-6 1.81187E-4 1.81187E-4 1.323644038E-7
(0.3, 0.5) 6.43557E-6 3.02408E-4 3.02408e-4 2.568112803E-7
(0.4, 0.1) 1.30286E-5 5.87746E-5 5.87749E-5 1.243889115E-8
(0.4, 0.3) 1.22000E-5 1.76574E-4 1.76574E-4 1.926636025E-7
(0.4, 0.5) 1.14333E-5 2.94707E-4 2.94708E-4 3.700578182E-7
(0.5, 0.1) 2.03415E-5 5.72867E-5 5.72865E-5 1.221059764E-8
(0.5, 0.3) 1.90489E-5 1.72102E-4 1.72102E-4 2.440737588E-7
(0.5, 0.5) 1.78528E-5 2.87241E-4 2.87240E-4 4.667027683E-7
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0.50
5 075 100 a0

Exact u(x,t) is green, GHW approximate of u(x,t) is orange

-0.25

—0.50=

— 125_ >
035 - 100
0.50
075 a0
; 100
Exact m(x,t) 1s green, GHW approximate of o(x,1) is

orange

Figure 6.3 Exact and GHW approximate solution of u(x, t), w(x, t) of Example 6.2
fork,y,c=1, A=0.75, M =3 and u,3 = 0.9.
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Table 6.4 The absolute errors of w(x, t) obtained by GHW method for u, y,c and
k=1, M =3 A =0.75 and other different methods for Example 6.2.

(%,t) |Wexace = @apm| | [@exace = @viml | |@exace — @onam! | 1@exace — @gnwl
(0.1, 0.1) 5.88676E-5 1.65942E-5 1.65942E-5 1.58982921E-8
(0.1, 0.3) 5.56914E-5 4.98691E-5 4.98691E-5 2.09296183E-7
(0.1, 0.5) 5.27169E-5 8.32598E-5 8.26491E-4 4.71065550E-7
(0.2, 0.1) 1.18213E-4 1.60813E-5 1.60812E-5 2.57052552E-8
(0.2, 0.3) 1.11833E-4 4.83269E-5 4.83269E-5 2.41109060E-8
(0.2, 0.5) 1.05858E-4 8.06837E-5 7.94290E-4 1.30548110E-8
(0.3, 0.1) 1.78041E-4 1.55880E-5 1.55880E-5 9.78459069E-8
(0.3, 0.3) 1.68429E-4 4.68440E-5 4.68439E-5 1.62540137E-7
(0.3, 0.5) 1.59428E-4 7.82068E-5 7.63646E-4 1.57921304E-7
(0.4, 0.1) 2.38356E-4 1.51135E-5 1.51135E-5 1.410219206E-7
(0.4, 0.3) 2.25483E-4 4.54174E-5 4.54174E-5 2.383027180E-7
(0.4, 0.5) 2.13430E-4 7.58243E-5 7.34471E-4 2.31763850E-7
(0.5, 0.1) 2.99162E-4 1.46569E-5 1.46569E-5 1.564239375E-7
(0.5, 0.3) 2.83001E-4 4.40448E-5 4.40448E-5 2.549799550E-7
(0.5, 0.5) 2.67868E-4 7.35317E-5 7.06678E-4 2.406138800E-7

Example 6.3 Consider the coupled KdV time- fractional equation as:

Diu=Cuu, +yww, + i, + f(x,t),

wa = O Wy TYUW, +g(x, t):

where { =—6, ¢ =—1 and y = 3 with the initial conditions

u(x,0)=0,
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w(x,0)=0,

(6.44)

(6.45)




and boundary conditions

u(0,t)=0, u,(0,t)=u(l,t)=t>

(6.46)
w(0,t)=0, w,(0,t)=0w(1,t)=1t%

where

2x t*¥H 2x t* P

— 4 _ 4
f(x,t)=3xt +—F(3_“), g(x,t) =3xt +—1“(3—ﬁ)'

The exact solution of this problem is u(x, t) = w(x, t) = xt2.

In Fig. 6.4 shows that the absolute error of u(x,t), w(x,t) of this problem when
applied the proposed method for k,y,c =1, A =0.5, M =5 and u,3 = 1. In the
other hand, Table 6.5 proved that when applied GHW method at u = 8 = 1 is closer

to the exact solution more than y = f3 = 0.5
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Absolute Error of uix.t)

0,020

0,015

0.010

0,005

0,025

0,020

0.015

0,010

0.005=

Figure 6.4 Absolute Errors of u(x,t), w(x,t) of Example 6.3 for
k,y,c=1, A=05, M=5anduy=p£=1.
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Example 6.4 We consider the coupled KdV time- fractional equation of Example 6.3
with the initial conditions

u(x,0)=0, w(x,0)=0, (6.47)
and boundary conditions

u(0,6)=0, u(0,t)=u(l,t)=Vt5,

(6.48)
w(0,6)=0, ,.(0,t)=w(l,t)=t5
where
f(x,t)=3xt"+ 7—(2)t5/2_“, g(x,t) =3xt>+ #t”z‘ﬁ. (6.49)
I'(z—w I'(;—p)

The exact solution of this problem is u(x, t) = ew(x, t) = x+/t5.

Table 6.6 compared the results by using the absolute errors of each of method in
Ref. [102] and the proposed method for a different values of u, 8. As a result, the
numerical solution using the GHW method more accuracy and closed to the exact

solution.
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7

RESULTS AND DISCUSSION

In order to widespread applications of partial differential equations and the feature
of fractional order to represent most of the phenomena problem by the best way,
deriving of new numerical methods for solving these types of problems are necessary.
The main idea of this thesis is to build a new wavelet method and utilize it to solve
fractional partial differential equations. Three published papers has been provided for
this purpose in Chapters 3 to 6 as follows:

In Chapter 1, we look at the background, and literature related to the research
topic that is studied in this thesis, and the purpose of the chosen topic. Some
basic definitions of fractional calculus, wavelet, the generalized Gegenbauer- Humbert
wavelets and their operational matrix of fractional order integration are provided and
derived in Chapter 2.

In Chapter 3, a numerical technique of the generalized Gegenbauer- Humbert wavelet
method is constructed by using their operational matrix of fractional integration, and
employed to solve linear and non-linear fractional differential problems. The obtained
results show the effect of various parameters and the fractional order a, of the accuracy

of the approximate solutions.

On the other hand, the operational matrices of integer and fractional order of the
GHW method are derived in Chapter 4. The proposed method demonstrated the
efficiency and accuracy when applied to solve fractional differential problems (linear
and non-linear) as compared with other methods, and comparison between different
special cases of the proposed method it self in some examples.

In Chapter 5, developed the GHW technique to solve fractional partial differential
equations with (initial-boundary and boundary ) conditions. Convergence analysis
of GHW method are established for two variables. The obtained results are good
compared with different methods, for instance Legender, and 3rd kind of Chebyshev
wavelet methods.
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Extending of GHW technique to apply to coupled systems of two types of shallow
waters (WBK and KdV) equstions in Chapter 6. The observed results are sufficient
and accurate comparing with the Adomian’s decomposition method, the variational

iteration method, the optimal homotopy asymptotic method, and other.

All the numerical results and graphs are yielded by algorithms created in Maple, and
the consequences are shown that the proposed method is successful in solving different

problems and systems of equations with high accuracy.

The GHW method can be developed to solve other real -life and physical phenomena

like modeling of diseases and engineering problems.
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