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ABSTRACT

On The Solution of Fractional Order Partial Differential
Equations with Wavelet Basis Functions

Jumana H.S. ALKHALISSI

Department of Mathematical Engineering

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Ibrahim EMİROĞLU

Co-supervisor: Prof. Dr. Mustafa BAYRAM

A vast application of partial differential equations in different physical and engineering

sciences, and the main role that be playing by fractional differential equations to the

best representation of various phenomena and real world problems therefore derived

and developed a new numerical techniques is necessity. The aim of this thesis, is

to introduce new wavelet technique based on the generalized Gegenbauer- Humbert

polynomials; we call this method generalized Gegenbauer- Humbert wavelet. Utilized

the proposed method to solve fractional differential equations (linear and non-linear)

with initial and boundary- initial conditions. According to this new technique allows

us to examine and select the best method to solve the problems under discussion; this

method unifies some known wavelet methods in one formula.

The proposed method established the efficiency and accuracy when used to solve

fractional differential equations (linear and non-linear) with ordinary, partial and

coupled systems of fractional partial differential equations. The performance of our

method is analyzed by comparing it with other different numerical methods; the

convergence analysis is inspected in addition.

Keywords: The generalized Gegenbauer- Humbert polynomial, operational matrix,

fractional partial differential equations, the systems of fractional partial differential

equations
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ÖZET

Kesirli Mertebeden Kısmi Diferansiyel Denklemlerin
Dalgacık Bazlı Fonksiyonlarla Çözümü

Jumana H.S. ALKHALISSI

Matematik Mühendisliği Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Ibrahim EMİROĞLU

Eş-Danı̧sman: Prof. Dr. Mustafa BAYRAM

Kısmi diferansiyel denklemlerin fizik ve mühendislik bilimlerinde geni̧s bir uygulaması

vardır ve bu tür denklemlerin sayısal çözümleri fizik ve mühendislik problemlerinin

çözümünde önemli rol almaktadır.

Bu tezin amacı, genelleştirilmi̧s Gegenbauer- Humbert polinomlarına dayanan yeni bir

yöntem geli̧stirmektir ve bu yönteme genelleştirilmi̧s Gegenbauer- Humbert dalgacığı

denir. Doğrusal ve doğrusal olmayan başlangıç ve sınır değer problemlerinin çözümü

için yeni bir metot önerisi yapılmı̧stır. Bu yöntem doğrusal ve doğrusal olmayan

başlangıç ve sınır değer problemlerinin çözülmesi için geli̧stirilmi̧s olup doğruluğu

diğer farklı sayısal yöntemlerle karşılaştırılmı̧stır. Ayrıca önerilen metodun yakınsama

analizi de tartı̧sılmı̧stır.

Anahtar Kelimeler: Genelleştirilmi̧s Gegenbauer-Humbert polinomu, i̧slem matrisi,

kesirli kısmi diferansiyel denklemler, kesirli kısmi diferansiyel denklem sistemleri

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

xv



1
INTRODUCTION

1.1 Literature Review

In spite of, history of the fractional calculus backs to 1695 when L’Hospital asked

Lebiniz what does it mean the derivative of order one half, it still attract frequently

of curiosity and interest among researchers [1]. The first researcher who gave the

fractional derivative particular definition was Laplace in 1812 [2]. Upwards 10 years

after 1923 when Abel solved a physical problem (tautochrone problem) by using

the fractional operations at the first time, Liouville derived a definition of fractional

integration that is called today Liouville formula of fractional integration. The formula

of which is under the name Riemann- Liouville fractional integral obtained by N. Ya.

Sonin in 1869 [3].

The fractional calculus has played a special role to simplify considerable

phenomena in different science and engineering, such as colored noise, control

theory, visco-elasticity, electrical networks, fluid mechanics, anomalous diffusion,

electromagnetism, etc. In additions, to simulate the behavior some of real- world

problems by differential equations with fractional order are more preferable than the

integer order for example, influenza A, fractional model of HIV, Dengue and Covid-19

recently. Caputo derivative founded to overtake the troubles that appeared when using

Riemann- Liiouville derivative to solve real- world problems.

Owing to the analytical solutions of the fractional differential equations (FDEs)

are not available often, the numerical methods to find an approximate solutions

are needed. The challenging of investigate and develop techniques to find the

solutions of FDEs attract a lot of scientists and researchers recently. some

of the recent methods and techniques are transform methods (Laplace [4]
and Fourier [5]), the Adomian decomposition method [6–8], homotopy analysis

method [9], collocation method [10], homotopy perturbation method [11, 12],
Sumudu transform method [13] and variational iteration method [14].

1



One of the most coming techniques that is used in different sciences and engineering is

the orthogonal functions [15, 16] and [17, 18]. Many sets of functions are frequently

used such as the Sine–cosine functions, block-pulse functions, Legendre, Laguerre

and Chebyshev orthonormal. In the field of sciences and engineering, the orthogonal

functions have shown many successes to solve the FDEs such as wavelets method.

Over the last years, methods based on wavelets have been acquiring vast interest

for solving differential equations in different sciences and engineering numerically

because of their features like orthogonality and capability of representing a various

functions with variate levels of resolution. Therefore, developed wavelet to solve

difficult problems with accurately numerical algorithms receiving attention of the

researchers in the last decades. Wavelet basis is transformed the underlying problem

to a system algebraic equations by evaluating the integrals using operational matrices

[19] and [20]. Haar wavelet was constructed by Haar in 1909 is the modest of the

orthogonal wavelets, Chen et al. [21] was the first who derived the operational

matrix of Haar wavelet of fractional integration and used to solve the differential

equations. The Legendre and Chebyshev wavelets gained more attractive from a lot

of researchers too [20, 22, 23] and CAS wavelet [24]. The generalize of Legendre,

Chebyshev and other polynomials is Gegenbauer (ultraspherical) polynomials [25]
which are orthogonal on the interval [-1,1]. To obtain the operational matrix for the

Gegenbauer wavelet method, Rehman and Saeed [26] did the main role to investigate

it. Also, Srivastava et al. [27] applied the Gegenbauer wavelet to find the solution of

the fractional Bagley-Torvik equation.

In this thesis, we developed a new algorithm of wavelets based on generalized

Gegenbauer- Humbert polynomials to solve fractional partial differential equations.

We organized this thesis as follows, we consider some basic mathematical definitions

and preliminaries about fractional calculus, orthogonal polynomials, generalized

Gegenbauer- Humbert polynomials and wavelets in Chapter 2. In Chapter 3, we

have constructed a generalized Gegenbauer- Humbert wavelet abbreviated (GHW)

and their operational matrix of fractional integration then are utilized to solve (linear

and non-linear) fractional differential equations. We derived the operational matrix

of fractional derivative of GHW and enforcement the proposed method for (linear and

non- linear) fractional differential equations are described in Chapter 4. The aim of

Chapter 5 is to evolve the GHW method for solving the partial fractional differential

equations with boundary and initial- boundary conditions. While in Chapter 6, we

extend the GHW method to solve systems of partial fractional differential equations.

The numerical results of some problems to test the accuracy and efficiency of the

proposed method are considered in each above chapters. The conclusion are covered

in Chapter 7.

2



1.2 Objective of the Thesis

The goal of this thesis is to construct a new technique of wavelets for solving partial

fractional differential equations based on the orthogonal functions of generalized

ultraspherical polynomials. The proposed method unify some of wavelet methods

as one formula, therefore allowed to examine which one best to use for solving the

problem under studying. This method effort advancing the study on various wavelets

in order to solve differential equations of arbitrary order of an effective way and more

accurate.

1.3 Hypothesis

This thesis discussed for the first time the following:

• A new modification in the Gegenbauer wavelet method by combinations with

other orthogonal polynomial.

• Investigate the operational matrices wither related to integration and derivation

of fractional order and utilized to solve fractional differential equations.

• The convergence and error-bound analysis provided in our study to show the

credibility of the suggested algorithm and support the mathematical formulation

of the algorithm.

• The proposed method compared with other wavelet method and observed that,

the proposed algorithm is an efficient tool to tackle the fractional order problems

of complex nature.
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2
MATHEMATICAL PRELIMINARY

2.1 Fractional Calculus

Fractional calculus history started from attempting to generalize the principle of

conventional calculus to arbitrary order. A significant number of authors have

shed-light on the fractional calculus, are more suitable to represent different real

phenomena including their properties. Numerous definitions of differentiations and

integrations of fractional order such as the Riemann–Liouville, the Liouville-Grünwald,

the Grünwald-Letnikov, the Hadamarod, the Weyl, the Marchaud, the Hadamard, the

Love-Young, the Erdélyi-Kober, the Riesz-Feller and the Caputo fractional derivatives

and integrals some of these definitions are equivalent but in general not. Some of these

definitions are ineffective owing to the insufficiency performance of representing the

initial and boundary conditions containing derivatives of fractional order. The formula

of Riemann -Liouville and Caputo definitions are famous and commonly used.

2.1.1 The Euler Gamma Function

Euler generalized the factorial function to non-integer numbers in 1729 which is called

the gamma function Γ (·) (see [28–30]).

Γ (x) =

∫ ∞

0

e−t t x−1 d t, Re(x)≥ −1. (2.1)

By integrating Eq.2.1 by parts, given the following formula:

Γ (x + 1) =

∫ ∞

0

e−t t x d t,

=
�

e−t t x
�∞

0
+ x

∫ ∞

0

e−t t x−1 d t,

= x Γ (x).

(2.2)
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Its obvious Γ (1) = 1, therefore repeating Eq.2.2 yield

Γ (n+ 1) = n!, n ∈ N. (2.3)

Also, we referred some of properties of the gamma function as the following

(see [31], [28] and [29])

• The reflection formula of Euler’s gamma function is

Γ (x) Γ (x − 1) =
π

sin(πx)
, x ∈ C, Γ

�

1
2

�

=
p
π. (2.4)

• The Legendre duplication formula is

Γ (2x) =
22x−1

p
π
Γ (x) Γ

�

x +
1
2

�

, x ∈ C. (2.5)

• The Stirling’s formula is

Γ (x) =
p

2π e−x x x−1/2 (1+O(1/x)), (|arg(x)|< π− ε, |x | →∞). (2.6)

• For n ∈ N ,

Γ

�

n+
1
2

�

=
(2n− 1)!!

2n

p
π, (2n− 1)!!= 1.3 . . . (2n− 1). (2.7)

• For x ∈ C

Γ (x + 1) =
ex (γ+ 1

n )

x
∏∞

n=1(1+
x
n )

, (2.8)

where γ is the Euler constant.

2.1.2 Beta Function

Euler investigated the definition of beta function in 1772 as (see [29])

B(a, b) =

∫ 1

0

ta−1 (1− t)b−1d t, (ℜ(a),ℜ(b)> 0). (2.9)

There is a relation between beta function and gamma function can be expressed as

B(α,β) =
Γ (α) Γ (β)
Γ (α+ β)

, α,β /∈ Z−0 . (2.10)
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The binomial coefficient
�

α

β

�

definition is

�

α

β

�

=
Γ (α+ 1)

Γ (β + 1)Γ (α− β + 1)
, (2.11)

where α,β ∈ C,α /∈ Z−.

2.1.3 Riemann-Liouville Fractional Integral

The generalized form of Cauchy’s integral is called Riemann-Liouville fractional

integral. The Cauchy’s iterated integral formula for m-fold integral where m ∈ N
is

In
a g(x) =

∫ x

a

In−1
a g(τ) dτ, n= 1, 2, ....

=
1

(n− 1)!

∫ x

a

(x −τ)n−1 g(τ) dτ,

(2.12)

and by mathematical induction can be prove it.

Generalized the formula Eq.2.12 by replaced n with an arbitrary number α and use

the Gamma function to replace (n− 1)! with Γ (α), we obtain the following definition

of Riemann-Liouville fractional integral

Definition 2.1. The Riemann- Liouville fractional integration operator of order α≥ 0

of a function g(x) is defined as [30]:

Iαa g(x) =

¨

1
Γ (α)

∫ x

a
(x −τ)α−1 g(τ)dτ, α > 0,

g(x), α= 0.
(2.13)

for x ∈ [a, b].

We consider some properties of the Riemann-Liouville fractional integral as :

• For γ > −1 the Riemann-Liouville fractional integral of the power function (x −
a)γ is

(Iαa(y − a)γ)(t) =
Γ (γ+ 1)
Γ (γ+α+ 1)

(t − a)γ+α. (2.14)

• For γ > 0 then

Iαa I
γ
a g(x) = Iγa I

α
a g(x) = Iα+γa g(x). (2.15)
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2.1.4 Riemann-Liouville Fractional Derivative

Definition 2.2. The definition of Riemann-Liouville fractional derivative of order α ∈
R is [32], [33]

Dαa g(x) = Dm
a I

m−α
a g(x) =

1
Γ (m−α)

dm

dxm

∫ x

a

(x −τ)m−α−1 g(τ)dτ, (2.16)

where m− 1< α < m, m ∈ N and m= ⌈α⌉.

If α = 0 then the Riemann- Liouville fractional derivative represent the identity

operator. While the Riemann-Liouville fractional derivative of the function (x − a)γ

for γ > −1 is as

(Dαa(y − a)γ)(t) =
Γ (γ+ 1)
Γ (γ−α+ 1)

(t − a)γ−α. (2.17)

2.1.5 Caputo Fractional Derivative

In spite of the main role Riemann- Liouville fractional definitions played in the

growth, the theory of fractional calculus and their applications, it has a lack for

modelling the real-life phenomena. The procedure of Riemann- Liouville leads to

initial conditions having fractional order at lower limits, therefore necessitating an

approach to fractional derivatives for modelling real-life problems by utilizing initial

conditions with derivatives of integer order. M. Caputo investigated another formula

for fractional derivative definition and used it for realizing seismological phenomena

in 1967; then in viscoelasticity theory with F. Mainardi in 1969.

Definition 2.3. The Caputo fractional derivative operator of order α≥ 0 of a function

g(x) is defined as [30]:

CDαa g(x) =







dm g(x)
d tm , α= m ∈ N

Im−α
a

�

d
d x

�m
g(x), m− 1< α < m,

(2.18)

where m= ⌈α⌉ and x > a.

The following are some properties of Caputo fractional derivatives [34]:

• Let ζ is a constant, then
CDαa ζ= 0. (2.19)
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• For ⌈α⌉ denote the smallest integer greater than or equal to α and ⌊α⌋ denotes

the largest integer less than or equal to α.

CDαa (x
β) =

¨

0, β ∈ N
⋃

{0} and β < ⌈α⌉
Γ (β+1)
Γ (β+1−α) xβ−α, β ∈ N

⋃

{0} and β ≥ ⌈α⌉ or β /∈ Nand β < ⌊α⌋ .
(2.20)

• For m= ⌈α⌉ ,α > 0

Iαa
�

CDαa g(x)
�

= g(x)−
m−1
∑

n=0

g(n)(a)
(x − a)n

n!
. (2.21)

• If g is a continuous function, then CDαa I
α
a g(x) = g(x).

The operator CDαa is represent a linear operator, since,

CDαa (λ g(x) +µ u(x)) = λ CDαa g(x) +µ CDαa u(x), (2.22)

where λ and µ are constants.

2.2 The Orthogonal Polynomials

Legendre, who discovered the Legendre polynomials in 1784; since then the

orthogonal polynomials have appeared widely in the mathematical and scientific

research. The reason of gained a big attention of scientists, features of this technique

by reducing a various problems to a system of algebraic equations can be solve easily.

Definition 2.4. (The orthogonality) [35] Let f (x) and g(x) functions, then the inner

or scalar product of these functions can be defined by the following integral

∫ b

a

w(x) f (x) g(x) d x , (2.23)

where w(x) ≥ 0, a ≤ x ≤ b. If the the above integral equal to zero, then we

called f (x), g(x) are orthogonal. For n th order polynomials Qn(x) and satisfies the

orthogonality relation

∫ b

a

w(x)Qn(x)Qm(x) d x , n ̸= m, (2.24)

where w(x) is a weight function and non-negative in the interval (a, b) and the integral

is well-defined for all finite order polynomials Qn(x), these polynomials form a set of
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orthogonal polynomials. It is obvious that

∫ b

a

w(x) [Qn(x)]
2 d x = hn ≥ 0. (2.25)

2.2.1 The Generalized Gegenbauer- Humbert Polynomials

The generalized Gegenbauer -Humbert polynomials Pλ,y,c
m (x) ,m≥ 0, which are

defined by the generation function as( [36], [37] and [38]):

Φ(t) = (c − 2x t + y t2)−λ =
∑

m≥0

Pλ,y,c
m (x) tm, (2.26)

where λ > 0, y and c ̸= 0 are real number. As a special cases of Eq.(2.26) we consider

Pλ,y,c
m (x) as follows:

• P1,1,1
m (x) = Um(x) , Chebyshev polynomial of the second kind.

• P1/2,1,1
m (x) =ψm(x), Legendre polynomial.

• P1,1,1
m ( x

2 + 1) = Bm(x), Morgan- Voyc polynomial.

• P1,2,1
m ( x

2 ) = φm+1(x), Fermat polynomial of the first kind.

• P1,2a,2
m (x) = Dm(x , a), Dickson polynomial and a > 0 where a is a real parameter.

• If y = c = 1, the corresponding polynomials are called Gegenbauer polynomials.

The class of the generalized Gegenbauer -Humbert polynomial sequences satisfy the

following recurrence relation [36]:

Pλ,y,c
m (x) = 2 x

λ+m− 1
cm

Pλ,y,c
m−1 (x)− y

2λ+m− 2
cm

Pλ,y,c
m−2 (x),∀m≥ 2, (2.27)

with initial conditions: Pλ,y,c
0 (x) = Φ(0) = c−λ, Pλ,y,c

1 (x) = Φ′(0) = 2λ x c−λ−1. The

generalized Gegenbauer -Humbert polynomial sequence in Eq.(2.27) is an orthogonal

polynomial iff y c > 0 .

The explicit formula of generalized Gegenbauer– Humbert polynomial is [39]:

Pλ,y,c
m (x) =

⌈n/2⌉
∑

k=0

(−y)k c−λ−n+k (λ)n−k (2x)n−2k

k! (n− 2k)!
, (2.28)
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where the falling fractional rotation xn (some times also denoted (x)r) is defined by:

x r = x(x − 1)r−1, (r ≥ 1), x0 = 1.

Moreover, the generalized Gegenbauer– Humbert polynomials satisfy the following

equalities :

D Pλ,y,c
n (x) = 2λ Pλ+1,y,c

n−1 (x), (2.29)

Dk Pλ,y,c
n (x) = 2k (λ)k Pλ+k,y,c

n−k (x), (2.30)

where D represents the standard differentiation operator and Dk ≡ dk

d tk .

2.3 Wavelets

Alfred Haar was the first mathematician who introduced the Haar functions in his

thesis in 1909; then it is called today Haar wavelets. On the other hand, Haar

wavelets it still un-useful in some applications due to not giving a smooth curve of

representation. In 1982, the geologist Jean Morlet first derived a method dealing

with seismic signals that change when it pass different layers of earth by constructing

windows for each component of frequency using the dilation, compression or shifting

of an individual window. These windows functions called wavelets of constant shape

by Morlet. Because of unable Fourier representing varying frequency components

throughout the time without being sensitive to any small error, Fourier was replaced

with wavelet transforms in the physical and engineering problems. In 1984, Morlet

and Grossman published their paper that used wavelet in the first time. Based on the

principle that the information gained by different types of wavelets is independent of

each other (i.e., orthogonality), Meyer found a new form of wavelet which made the

deals with wavelets more easier. Stephane Mallat was a student of higher education

under Meyer’s supervision, wavelets are implied a multiresolution process at 1986.

Ingrid Daubechies played a great role in wavelet theory when he introduced a new

class of wavelets functions employing the multiresolution principle in 1988. The

suggested method by Daubechies overcomes the jumping that happens when using

Haar wavelet (see [40] for more history of wavelets).

Wavelets method have a wide applications in a lot of sciences, and engineering

because of their affectively features to model various of problems, for instance, data

compression, computer graphics, image processing, wave propagation, differential

equations, biomedical technology, etc.
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Wavelets constitute a family of functions constructed from dilation and translation of

a function called the mother wavelet ψ(t). When the dilation parameter a and the

translation parameter b vary continuously we have the following family of continuous

wavelets:

ψa,b(t) = |a|
−1/2ψ(

t − b
a
), a, b ∈ ℜ, a ̸= 0. (2.31)

If we restrict the parameters a and b to discrete values as a = r−k
0 , b = ns0r−k

0 , r0 >

1, s0 > 0,where n, k are positive integers, the family of discrete wavelets are defined

as:

ψk,n(t) = rk/2
0 ψ(rk

0 t − ns0). (2.32)

2.3.1 Multiresolution Analysis (MRA)

The basic idea of MRA is to represent a function in L2(R) as successive approximations

at different levels of resolution.

Definition 2.5. [32, 41] A set of closed subspaces
�

V j

	

j∈Z is called a MRA of the

Hilbert space L2(R) if satisfied the following properties:

1. V j ⊂ V j+1,∀ j ∈ Z.

2.
⋃

j∈Z V j is dense in L2(R).

3.
⋂

j∈Z V j = 0.

4. The orthogonal complement subspace of W j of V j in V j+1 i.e. V j+1 = V j ⊕W j.

5. f (t) ∈ V j⇔ f (2t) ∈ V j+1, ∀ j ∈ Z.

6. There exists a scaling function ϕ(t) ∈ V0 such that {ϕ(t − n) | n ∈ Z} is a Riesz

basis of V0.

Properties (2)-(5) explain that
�

V j

	

j∈Z is a nested sequence of subspaces V j covers

L2(R).

2.3.2 The generalized Gegenbauer– Humbert wavelets

Here, we introduce generalized Gegenbauer– Humbert wavelets (GHW),

ψy,c
n,m(t) =ψ

y,c(k, n, m, t), (2.33)
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are defined on the interval [0,1], where k = 1,2, ... is the level of resolution, n =
1,2, ..., 2k−1 is the translation parameter, m= 0,1, ..., M −1 represent the order of the

generalized Gegenbauer– Humbert polynomial. It can be defined as follow as:

ψy,c
n,m(t) =

(

1p
hm

2k/2 Pλ,y,c
m (2k t − 2n+ 1), 2n−2

2k ≤ t ≤ 2n
2k

0, o.w.
(2.34)

where hm is the normalization factor defined as in Eq.2.37 and M > 0, y c > 0.

Corresponding to each λ, y and c we have a different family of wavelets.

hm =

∫

s

(Pλ,y,c
m (t))2 dµ(t),∀m≥ 1, (2.35)

=
� y

c

�m (λ+m− 1)m (2λ+m− 1)m

m! (λ+m)m
h0, (2.36)

where hm is the normalization factor defined as follows:

hm =
� y

c

�m
c−λ
p

c y
p
π2(2−2λ) Γ (2λ+m) Γ (λ+ 1)
m! (λ+m) (Γ (λ))2 Γ (λ+ 1

2)
, (2.37)

where the falling fractional rotation xn (some times also denoted (x)r).

The weight function of the generalized Gegenbauer- Humbert wavelets can be defined

as

ϑλn(t) = (c y − (2k t − 2n+ 1)2)λ−1/2. (2.38)

2.4 Function Approximations and the Generalized Gegenbauer –

Humbert Wavelets Matrix

Theorem 2.1. A function f (t) ∈ L2(R) can be expanded into truncated generalized

Gegenbauer -Humbert Wavelets series as:

f (t)≈
2k−1
∑

n=1

M−1
∑

m=0

cnm ψ
y,c
n,m(t) = C T Ψ y,c(t), (2.39)

where cnm =
∫ 1

−1
f (t)ψy,c

n,m(t)ϑ
λ
n(t) d t. In addition , C and Ψ y,c(t) are 2k−1M × 1 ma-

trices given by:
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C = [c10, c11, ..., c1M−1, c20, c21, ..., c2M−1, ..., c2k−10, c2k−11, ..., c2k−1M−1]
T ,

Ψ y,c(t) =
�

ψ
y,c
10 (t), ...,ψy,c

1M−1(t),ψ
y,c
20 (t), ...,ψy,c

2M−1(t), ...,ψy,c
2k−10
(t), ...,ψy,c

2k−1M−1
(t)
�T

.
(2.40)

To find a numerical approximate solution, we need to build a system of 2k−1M

algebraic equations by using a collocation points of the generalized Gegenbauer

-Humbert wavelets are taken as t i =
2i−1
2k M , where i = 1,2, ..., 2k−1M . The (GHW)

matrix is given by:

Ψ
y,c
2k−1M×2k−1M =

�

Ψ y,c
�

1
2kM

�

,Ψ y,c
�

3
2kM

�

, · · · ,Ψ y,c

�

2kM − 1
2kM

��

, (2.41)

or

Ψ
y,c
2k−1M×2k−1M =



















































Ψ
y,c
1,0

�

1
2k M

�

Ψ
y,c
1,0

�

3
2k M

�

· · · Ψ
y,c
1,0

�

2k M−1
2k M

�

Ψ
y,c
1,1

�

1
2k M

�

Ψ
y,c
1,1

�

3
2k M

�

· · · Ψ
y,c
1,1

�

2k M−1
2k M

�

...
... · · ·

...

Ψ
y,c
1,M−1

�

1
2k M

�

Ψ
y,c
1,M−1

�

3
2k M

�

· · · Ψ
y,c
1,M−1

�

2k M−1
2k M

�

Ψ
y,c
2,0

�

1
2k M

�

Ψ
y,c
2,0

�

3
2k M

�

· · · Ψ
y,c
2,0

�

2k M−1
2k M

�

...
... · · ·

...

Ψ
y,c
2,M−1

�

1
2k M

�

Ψ
y,c
2,M−1

�

3
2k M

�

· · · Ψ
y,c
2,M−1

�

2k M−1
2k M

�

...
... · · ·

...

Ψ
y,c
2k−1,0

�

1
2k M

�

Ψ
y,c
2k−1,0

�

3
2k M

�

· · · Ψ
y,c
2k−1,0

�

2k M−1
2k M

�

...
... · · ·

...

Ψ
y,c
2k−1,M−1

�

1
2k M

�

Ψ
y,c
2k−1,M−1

�

3
2k M

�

· · · Ψ y,c
2k−1,M−1

�

2k M−1
2k M

�



















































. (2.42)

In particular, we fix k = 2, M = 3, we have n = 1, 2 and m = 0,1, 2, for fix value of

y = 3, c = 1, λ= 12 the GHW matrix is given as:

Ψ3,1
6×6 =





















1.074567 1.074567 1.074567 0. 0. 0.

−2.108965 0. 2.108965 0. 0. 0.

2.293272 −.804134 2.293272 0. 0. 0.

0. 0. 0. 1.074567 1.074567 1.074567

0. 0. 0. −2.108965 0. 2.108965

0. 0. 0. 2.293272 −.804134 2.293272





















.

(2.43)

Similarly, we get different generalized Gegenbauer- Humbert wavelet matrices for
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different value of y, c and λ.

In the same way, an arbitrary function u(x , t) ∈ [0, 1)× [0,1) of two variables may be

expanded into GHW basis as:

u(x , t)≃
m̂
∑

i=1

m̂
∑

j=1

ui jψ
y,c
i (x)ψ

y,c
j (t) = Ψ

y,c T (x)UΨ y,c(t), (2.44)

where U = [ui j]m̂×m̂, m̂= 2k−1M .

2.5 GHW Operational matrix of fractional order integration

We write f (t) ≈ C TΨ y,c(t) , an arbitrary function f ∈ L2[0, 1) can be expanded into

block -pulse functions as:

f (t)≈
m−1
∑

i=0

fi bi(t) = f T B(t), m= 2k−1M , (2.45)

where fi is the coefficients of the block -pulse function.The generalized Gegenbauer-

Humbert wavelets can be expanded into m-set of block-pulse functions as :

ψy,c(t) = Ψ y,c
m×mB(t). (2.46)

The fractional integral of block -pulse function vector can be written as:

(Iα B)(t) = Fαm×m B(t), (2.47)

where Fαm×m is the block- pulse matrix of integration given in [19] as follows:

Fαm×m =
1

mα Γ (α+ 2)

















1 ξ1 ξ2 · · · ξm−1

0 1 ξ1 · · · ξm−2

0 0 1 · · · ξm−3
...

. . . . . . . . .
...

0 · · · · · · · · · 1

















, (2.48)

ξi = (i + 1)α+1 − 2iα+1 + (i − 1)α+1, with

P y,c,α
m×m = Ψ

y,c
m×m Fα (Ψ y,c

m×m)
−1, (2.49)

where P y,c,α
m×m is the (GHW) operational matrix of integration of fractional order α. In
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particular,for k = 2, M = 3, for fix value of y = 3, c = 1,λ = 5,α = 0.5 the GHW

matrix is given as:

P3,1,0.5
6×6 =





















0.53680 0.15761 −0.31336 0.43691 −0.7547 0.26957

−0.21066 0.22434 0.16149 0.85907 −0.44957 0.24122

0.40907 −0.37608 0.16046 0.75705 −0.20247 0.10034

0. 0. 0. 0.53680 0.15761 −0.31336

0. 0. 0. −0.21066 0.22434 0.16149

0. 0. 0. 0.40907 −0.37608 0.16046





















.

(2.50)
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3
THE GENERALIZED GEGENBAUER- HUMBERTS

WAVELET FOR SOLVING FRACTIONAL DIFFERENTIAL

EQUATIONS

In this chapter, employ a new method of wavelets (GHW that we presented in Chapter

2), based on our paper [42] to solve linear and non-linear fractional differential

equation. The main purpose of this chapter is to introduce new technique of wavelets

and applied to convert the FDEs problem to a system of algebraic equations.

3.1 Description of the GHW Technique

Using the (GHW) operational matrix to solve non -linear Riccati fractional equation

of the form:

Dαu(t) = N(t)u2 +Q(t)u+ R(t), t > 0, 0< α≤ 1, (3.1)

with the initial condition u(0) = h. We suppose that the functions Dαu(t), N(t), Q(t)
and R(t) are approximated using (GHW) as follows :

Dαu(t) = U T Ψ y,c(t), (3.2)

u(t)≈ U T P y,c,αΨ y,c(t) + U T
0 Ψ

y,c(t) = C T Ψ y,c(t), (3.3)

N(t) = V T Ψ y,c(t), Q(t) =W T Ψ y,c(t), R(t) = X T Ψ y,c(t). (3.4)

Now, substituting Eqs.(3.2–3.4) in Eq.(3.1), we have

U T Ψ y,c(t) = V T Ψ y,c(t)[C T Ψ y,c(t)]2 +W T Ψ y,c(t)C T Ψ y,c(t) + X T Ψ y,c(t). (3.5)

Substituting Eq.2.48 into Eq.3.5, we have

C T Ψ
y,c
m×m(t) = V T [C T Ψ

y,c
m×m(t)]

2 +W T C T Ψ
y,c
m×m(t) + X T , (3.6)

16



where V, W, X and Ψ y,c
m×m(t) are known, Eq.3.6 represents a system of a non -linear

equations with unknown vector C . This system of non -linear equations can be solved

approximately using some numerical methods like Newton iteration methods.

Algorithm:

input: M ∈ N, k ∈ N
⋃

{0}, µ ∈ N/ {1} , 0< α≤ 1 and the functions N(t), Q(t), R(t)
and h.

1. Define the basis functionψy,c
n m by Eq.2.34 and the vector Ψ y,c defined in Eq.2.40.

2. Compute the (GHW) matrix ψy,c
m×m and by Eq.2.46.

3. Compute the (GHW) operational matrix P y,c,α and P y,c,2α using Eq.2.49.

4. Define the unknown matrix U = [ui j]m×m where m= µkM .

5. Compute the vectors V, W, X in Eq.3.3 and Eq.3.4.

6. Solve the non-linear system of algebraic equations in Eq.3.6 for the unknown

vector C .

Output: The approximate solution : u(t)≈ C T Ψ y,c(t).

3.1.1 Convergence of the GHW

Theorem. The series f (x) ≈
∑2k−1

n=1

∑M−1
m=0 cnm ψ

y,c
n,m(x) is converges to f (x), when

2k−1, M →∞.

Proof. To prove this theorem, we will use the fact that is every Cauchy sequence is

convergent. Since the wavelet basis represent a family of orthonormal functions in

the space L2(R), take the inner product of f (x) and ψy,c
n,m(x), where

cnm =
¬

f (x),ψy,c
n,m(x)

¶

.

We assume that l̂ = 2k−1, l = 2a−1, d̂ = M and d = N , where k, a the resolutions level,

and M , N the order of the generalized Gegenbauer -Humbert polynomials.

Let Bl̂,d̂ represent a sequence of partial sums of ci j ψ
y,c
i, j (x), we need to prove that

Bl̂,d̂ is a Cauchy sequence converges to f (x) when l̂, d̂ →∞. Firstly, we prove that

Bl̂,d̂ is a Cauchy sequence, suppose that Bl,d be an arbitrary sums of ci j ψ
y,c
i, j (x) with

l̂ > l, d̂ > d.
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Bl̂,d̂ − Bl,d







2
=
















l̂
∑

i=l+1

d̂−1
∑

j=d

ci j ψ
y,c
i, j (x)
















2

=

*

l̂
∑

i=l+1

d̂−1
∑

j=d

ci j ψ
y,c
i, j (x),

l̂
∑

s=l+1

d̂−1
∑

r=d

csr ψ
y,c
s,r (x)

+

=
l̂
∑

i=l+1

d̂−1
∑

j=d

l̂
∑

s=l+1

d̂−1
∑

r=d

ci j c̄sr

¬

ψ
y,c
i, j (x),ψ

y,c
s,r (x)

¶

(3.7)

=
l̂
∑

i=l+1

d̂−1
∑

j=d

�

�ci j

�

�

2
.

As l̂, d̂ →∞, by the definition of the Bessel’s inequality, we have
∑∞

i=1

∑∞
j=0

�

�ci j

�

�

2
is

convergent. This implies Bl̂,d̂ is a Cauchy sequence converges to, say y(x) ∈ L2[0, 1).
Now, to show that y(x) = f (x),

¬

y(x)− f (x),ψy,c
i, j (x)

¶

=
¬

y(x),ψy,c
i, j (x)

¶

−
¬

f (x),ψy,c
i, j (x)

¶

(3.8)

= lim
l̂,d̂→∞

¬

Bl̂,d̂ ,ψy,c
i, j (x)

¶

− ci j = ci j − ci j = 0. (3.9)

This implies
∑l̂

i=l

∑d̂−1
j=0 ci j ψ

y,c
i, j (x) converges to f (x) as l̂, d̂ →∞.

3.2 Applications of the GHW

In this section, we implement the GHW method to solve several examples of linear

and non -linear fractional differential equations.

Example 3.1. Consider the equation [43]

Dα y(t) + y(t) =
Γ (3)
Γ (3−α)

t2−α + t2, 0< α < 1, (3.10)

subject to initial condition y(0) = 0. The exact solution of the above problem is given

by y(t) = t2. Now, take the fractional integration of order α of Eq.3.10 as:

y(t) = t2 + t2+α Γ (3)
Γ (α+ 3)

− Iα y(t). (3.11)

Let

y(t) = C TΨ y,c(t), (3.12)

then

Iα y(t) = C T IαΨ y,c(t) = C T P y,c,α
m×m Ψ

y,c(t). (3.13)
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Substituting Eqs.(3.12) and (3.13) into Eq.(3.11), we get the following system of

algebraic equations:

C TΨ y,c(t) = t2 + t2+α Γ (3)
Γ (α+ 3)

− C T P y,c,α
m×m Ψ

y,c(t). (3.14)

When α = 0.8, λ = 9, y = 3, c = 1 with k = 2, M = 3 the operational matrix of

integration is:

P3,1,0.8
6×6 =











0.3478675 0.1133429 −0.007008237 0.5038849 −0.02498075 0.005500101

−0.2925878 0.05265004 0.09257616 0.04520844 −0.01490000 0.005573679

0.2267984 0.03117652 0.02638249 0.3789326 −0.02172524 0.005715148

0. 0. 0. 0.3478675 0.1133429 −0.007008237

0. 0. 0. −0.2925878 0.05265004 0.09257616

0. 0. 0. 0.2267984 0.03117652 0.02638249











(3.15)

To find the unknown vector C by solving the above system of linear equations, where

the coefficients vector C if k = 2, M = 3 is as:

C T =
�

0.06573362 0.04470530 0.01152018 0.5298675 0.1349996 0.01147601
�

(3.16)

and

Ψ y,c(t) =





















p
2 33/4

3
(72 t−18)

p
30 33/4

81
(2880 t2−1440 t+153)

p
418 33/4

1539p
2 33/4

3
(72 t−54)

p
30 33/4

81
(2880 t2−4320 t+1593)

p
418 33/4

1539





















(3.17)

Table 3.1 consider the approximate solutions obtained by applying the presented

method for α = 0.8, λ = 9, y = 3, c = 1 with k = 2, M = 3 and k = 2, M = 5.

For α= 0.8 Fig.3.1 shown the results.

Example 3.2. The second example covers the inhomogeneous linear equation

Dα y(t) =
2

Γ (3−α)
t2−α −

1
Γ (2−α)

t1−α − y(t) + t2 − t, 0< α≤ 1, t < 0, (3.18)

with initial condition y(0) = 0. To solve Eq.3.18, converting the above problem by
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Table 3.1 Exact and Approximate solution for different values of k, M in Example
3.1.

t
Exact

Solution

GHW

Method

k=2, M=3

Absolute

Error

GHW

Method

k=2, M=5

Absolute

Error

0 0. -0.20E-4 0.25335E-4 0.13745E-4 0.85887E-5

0.1 0.01 0.9403E-2 0.59943E-3 0.97656E-2 0.23730E-3

0.2 0.04 0.38921E-1 0.10793E-2 0.39597E-1 0.40507E-3

0.3 0.09 0.88533E-1 0.14648E-2 0.89465E-1 0.53493E-3

0.4 0.16 0.15824 0.17561E-2 0.15934 0.64695E-3

0.5 0.25 0.24799 0.20097E-2 0.24929 0.74516E-3

0.6 0.36 0.35778 0.22201E-2 0.35920 0.83500E-3

0.7 0.49 0.48758 0.24133E-2 0.48909 0.91970E-3

0.8 0.64 0.63740 0.25892E-2 0.63899 0.10010E-2

0.9 0.81 0.80724 0.27479E-2 0.80890 0.10801E-2

Figure 3.1 Exact and approximate solution of Example 3.1.when
α= 0.8, λ= 9, K = 2 and M = 5.
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using the same procedure of GHW in Section 3.1 to the following system:

C TΨ y,c(t) = t2 + t2+α Γ (3)
Γ (α+ 3)

− t(1+α)
Γ (2)
Γ (α+ 2)

− C T P y,c,α
m×m Ψ

y,c(t). (3.19)

Solving the last system for the unknown vector C , we approach to the exact solution

that is y(t) = t2 − t see Fig.3.2.

C T = [− 0.1666447,−0.04131518,0.009681520,−0.5015621e− 6, 0.1863884E − 7,

− 0.1674811, 0.04101341,0.009677169,−0.3040405E − 6,0.1139629E − 7],

(3.20)

and

Ψ y,c(t) =























































(1/3)
p

2 33/4

(2/33) (88 t − 22) 33/4

((128/69) t2 − (64/69) t + 7/69)
p

598 33/4

((6656/621) t3 − (1664/207) t2 + (16/9) t − 68/621)
p

966 ∗ 33/4

((372736/3105) t4 − (372736/3105) t3 + (8320/207) t2 − (15808/3105) t + 574/3105)
p

345 ∗ 33/4

(1/3)
p

2 33/4

(2/33) (88 t − 66) 33/4

((128/69) t2 − (64/23) t + 71/69)
p

598 33/4

((6656/621) t3 − (1664/69) t2 + (1232/69) t − 100/23)
p

966 33/4

((372736/3105) t4 − (372736/1035) t3 + (138112/345) t2 − (22464/115) t + 4058/115)
p

345 ∗ 33/4























































(3.21)

For a different values of α when k = 2, M = 5, y = 3, c = 1 and λ = 11 Table 3.2

shows the absolute errors of the approximate solutions obtained by the GHW method.

Example 3.3. Let consider the following FDE

Dα y(t) + y(t) + y2(t) =
8

3
p
π

t3/2 + t2 + t4, 0< t < 1 (3.22)

with initial condition y(0) = 0 and exact solution when α = 1/2 is y(t) = t2. For

solving the above problem by GHW procedure as: Suppose that

y(t) = C TΨ y,c(t). (3.23)
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Table 3.2 The absolute error of the approximate solution in Example 3.2. for a
different values of α.

t
Exact

Solution

Absolute Error

α= 0.3

Absolute Error

α= 0.7

Absolute Error

α= 1

0 0. 0.55395E-2 0.32650E-2 0.12536E-2

0.1 0.01 0.10153E-2 0.12743E-2 0.97553E-3

0.2 0.04 0.21675E-4 0.53432E-3 0.72389E-3

0.3 0.09 0.12233E-3 0.19669E-3 0.49622E-3

0.4 0.16 0.36957E-3 0.79304E-4 0.29023E-3

0.5 0.25 0.40140E-3 0.24908E-3 0.10385E-3

0.6 0.36 0.47173E-3 0.39335E-3 0.64764E-4

0.7 0.49 0.52497E-3 0.51013E-3 0.21733E-3

0.8 0.64 0.56633E-3 0.60549E-3 0.35536E-3

0.9 0.81 0.59949E-3 0.68272E-3 0.48025E-3

Figure 3.2 Exact and approximate solution of Example 3.2.when
α= 1, λ= 11, K = 2 and M = 5.
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By integrating Eq.3.22 of fractional order α, yield that

y(t) = Iα
�

8
3
p
π

t3/2 + t2 + t4 − y(t)− y2(t)
�

, (3.24)

then

C TΨ y,c(t) =
8 Γ (5

2)

3
p
π Γ (α+ 5

2)
t

3
2+α +

Γ (3)
Γ (α+ 3)

t2+α +
Γ (5)
Γ (α+ 5)

t4+α − Iα y(t)− Iα y2(t).

(3.25)

Note that, by integrating Eq.3.23 of order α, we have

Iα y(t) = C TIα (Ψ y,c(t)) + y(0) = C T P y,c,α Ψ y,c(t). (3.26)

See Fig.3.3 that explain the results obtained by GHW method approach to the exact

solutions for α = .5, c = 1, y = 2, k = 2, M = 5 and λ = 15. Table 3.3 shows the

Figure 3.3 Exact and approximate solution of Example 3.3.when
α= 0.5, λ= 15, K = 2 and M = 5.

absolute errors for the GHW method for a different values of α with y = 2, c = 1, k =
2, M = 5,λ = 15, it is clear the less errors obtained when α = .5. While in Table 3.4

we find the absolute error of the present method (GHW) for α = .5, y = 2, c = 1, k =
2, M = 5 and for a different values of λ, and the result when λ = 17 gives the best

absolute errors.

Example 3.4. Consider the following fractional order Riccati differential equation

Dα y(t) = 1− y2(t), 0< α≤ 1, (3.27)
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Table 3.3 The absolute error of the approximate solution in Example 3.3. for a
different values of α.

t α= .25 α= .5 α= .75 α= 1

0 0.1172514599E-2 0.297050939E-4 0.3633578440E-3 0.2469652125E-3

0.1 0.778174150E-2 0.343969155E-3 0.5310653779E-2 0.7883891932E-2

0.2 0.2121463137E-1 0.36323837E-3 0.1673747724E-1 0.2734067720E-1

0.3 0.360717884E-1 0.25044733E-3 0.3097430105E-1 0.5413349666E-1

0.4 0.504128450E-1 0.19887655E-2 0.454245600E-1 0.8461789039E-1

0.5 7.26624445 0.54497237E-2 0.578701233E-1 0.1155391731

0.6 3.064269124 0.108002565E-1 0.657509515E-1 0.1428928519

0.7 2.269968316 0.179650984E-1 0.675592881E-1 0.1635426545

0.8 3.470860037 0.261734180E-1 0.620599800E-1 0.1737822387

0.9 7.634607550 0.341873632E-1 0.493940572E-1 0.1707559887

Table 3.4 The absolute error of the approximate solution in Example 3.3. for a
different values of λ.

t λ= .5 λ= 1.5 λ= 5 λ= 17

0 0.2970540587E-4, 0.2970522087E-4 0.2970538837E-4 0.297052474E-4

0.1 0.343969206E-3 0.343969189E-3 0.343969144E-3 0.343969175E-3

0.2 0.36323836E-3 0.36323835E-3 0.36323833E-3 0.36323838E-3

0.3 0.25044733E-3 0.25044734E-3 0.25044733E-3 0.25044730E-3

0.4 0.19887655E-2 0.19887655E-2 0.19887656E-2 0.19887654E-2

0.5 7.238114432 7.238103534 7.23811359 0.54497228E-2

0.6 1.045595543 1.045592768 1.045595016 0.108002562E-1

0.7 0.6029125468 0.6029127621 0.602911758 0.179650982E-1

0.8 1.060967997 1.060967582 1.060968178 0.261734178E-1

0.9 7.209375707 7.209383721 7.209375969 0.341873628E-1
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subject to initial condition

y(0) = 0. (3.28)

The exact solution for the given problem when α= 1 as

y(t) =
e2t − 1
e2t + 1

. (3.29)

The integral representation of Eq.3.27 and the initial condition are given by:

y(t) = y(0) +
tα

Γ (α+ 1)
− Iα y2(t). (3.30)

Let

y(t) = C TΨ y,c(t), (3.31)

then

Iα y(t) = C TIαΨ y,c(t) = C T P y,c,α
m×m Ψ

y,c(t). (3.32)

By substituting Eqs.3.31 and Eq.3.32 into Eq.3.30, we get the following system of

algebraic equations:

C TΨ y,c(t) =
tα

Γ (α+ 1)
−

�

r2
1 r2

2 · · · r2
2k−1 M

�

, (3.33)

where
�

r2
1 r2

2 · · · r2
2k−1 M

�

= C T P y,c,α
m×m Ψ

y,c
2k−1 M×2k−1 M(t). (3.34)

Solving the non-linear system for an unknown vector C using the Newton iteration

method. When α = 1, λ = 7, y = 3, c = 1 with k = 2, M = 3 then the vector of

coefficients C is as:

C T = [0.6096543999,0.2601812904,−0.003785834691, 1.646279549,

0.1665864971,−0.02303331226],
(3.35)
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and Ψ y,c(t), P y,c,α
m×m are as follow as

Ψ y,c(t) =

















































p
14 33/4

21

(16 t−4)
p

42 33/4

63

(256 t2−128 t+13)
p

210 33/4

315

p
14 33/4

21

(16 t−12)
p

42 33/4

63

(256 t2−384 t+141)
p

210 33/4

315

















































, (3.36)

P3,1,1
6×6 =





























0.03384441767 0.101549499 0.1692545804 0.203115244 0.203115244 0.2031152440

−0.05210688975 −0.1042387918 −0.05213190206 0. 0. 0.

0.03592531883 0.04565210929 0.05534907084 0.09129163453 0.09129163453 0.09129163453

0. 0. 0. 0.03384441767 0.1015494990 0.1692545804

0. 0. 0. −0.05210688975 −0.1042387918 −0.05213190206

0. 0. 0. 0.03592531883 0.04565210929 0.05534907084





























.

(3.37)

By applying the presented method for α = 1, λ = 7, y = 3, c = 1 with k = 2, M = 3

and k = 4, M = 10, we obtain the approximate solutions with the absolute error of a

different values of α as in the Table 3.5. For α= 1 Fig. 3.4 shown the results.

Example 3.5 Consider the fractional Riccati differential equation as follow as

Dα y(t) = 1+ 2y(t)− y2(t), 0< α≤ 1, (3.38)

subject to the initial condition

y(0) = 0. (3.39)

When α= 1 the exact solution for above problem is

y(t) = 1+
p

2 tanh

�

p
2t+

1
2

log

�p
2− 1
p

2+ 1

��

. (3.40)
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Figure 3.4 Exact and approximate solution when Example 3.4. α= 1, λ= 7, K = 4
and M = 10.

By applying the same procedure of Example 3.4., we get the following system

C TΨ y,c(t) =
tα

Γ (α+ 1)
+ 2 C T P y,c,α

m×m Ψ
y,c(t)−

�

r2
1 r2

2 · · · r2
2k−1 M

�

, (3.41)

where

�

r2
1 r2

2 · · · r2
2k−1 M

�

= C T P y,c,α
m×m Ψ

y,c
2k−1 M×2k−1 M(t). (3.42)

We can find the unknown vector C , by solving the above system of a non-linear

Figure 3.5 Exact and approximate solution when Example 3.5. α= 1, λ= 17, K = 4
and M = 5.

equations. By applying the presented method for α= 1, λ= 17, y = 2 and c = 1 with

k = 2, M = 5 and k = 4, M = 5, we obtain the approximate solutions as in the Table

27



3.6. The vector of coefficients is:

C T = [0.1161583259, 0.02895681359,0.5753193424E − 3, 8.087912914E − 6,

− 1.172128754E − 8,0.3946240035, 0.03693153239,0.6967701480E − 3,

6.734888070E − 6,−1.440913833E − 7,0.7466168465, 0.4619259575E − 1,

0.7720826378E − 3,1.975007409E − 6,−3.709395724E − 7, 1.179515313,

0.05576436980, 0.7328828945E − 3,−7.903104667E − 6,−6.713842260E − 7,

1.688358841, 0.06367223048,0.4911147820E − 3,−0.2331505171E − 4,

− 9.205477806E − 7,2.246846232, 0.06689887366,−0.2223928272E − 4,

− 0.4101372289E − 4,−8.633566121E − 7,2.800691413, 0.06205879703,

− 0.7830232256E − 3,−0.5253842127E − 4,−2.479331225E − 7, 3.270835572,

0.04703560937,−0.1606302758E − 2,−0.4726610375E − 4,8.417351300E − 7]

(3.43)

Fig.3.5 shown the results when α= 1, λ= 17, y = 2, c = 1, k = 4 and M = 5. While

in Table 3.7 and Table 3.8 we obtained the absolute error of a different values of y and

c and these results obtained with k = 4, M = 5 and λ= 17, we can see the change of

values of y and c for this example there is no a big different of error.
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Table 3.6 Exact and Approximate solution for the different values of k and M in
Example 3.5

t
Exact

ESolution

GHW

Method

k=2, M=5

Absolute

Error

GHW

Method

k=4, M=5

Absolute

Error

0 0. 0.222006E-2 0.22200E-2 0.156191E-3 0.156192E-3

0.1 0.110295 0.114168 0.38735E-2 0.110886 0.591400E-3

0.2 0.241976 0.249936 0.79599E-2 0.245629 0.365301E-2

0.3 0.395104 0.413538 0.18433E-1 0.407985 0.128802E-1

0.4 0.567812 0.606961 0.39149E-1 0.600243 0.324313E-1

0.5 0.756014 0.830446 0.74431E-1 0.822016 0.660017E-1

0.6 0.953566 1.076700 0.123134 1.068512 0.114946

0.7 1.152948 1.336847 0.183898 1.328861 0.175912

0.8 1.346363 1.591813 0.245450 1.585271 0.238907

0.9 1.526911 1.818491 0.291579 1.814090 0.287179
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Table 3.7 The absolute error of the approximate solution in Example 3.5. for a
different values of c.

t

Absolute

Error

y=2,c=1

Absolute

Error

y=2,c=2

Absolute

Error

y=2,c=3

0 0.1561919E-3 0.1561919E-3 0.1561919E-3,

0.1 0.5914011E-3 0.5914011E-3 0.5914011E-3

0.2 0.3653015E-2 0.3653015E-2 0.3653015E-2

0.3 0.1288026E-1 0.1288026E-1 0.1288026E-1

0.4 0.3243133E-1 0.3243133E-1 0.3243133E-1

0.5 0.6600171E-1 0.6600171E-1 0.6600171E-1

0.6 0.1149466 0.1149466 0.1149466

0.7 0.1759123 0.1759123 0.1759123

0.8 0.2389076 0.2389076 0.2389076

0.9 0.2871790 0.2871790 0.2871790
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Table 3.8 The absolute error of the approximate solution in Example 3.5. for a
different values of y .

t

Absolute

Error

y=1,c=2

Absolute

Error

y=2,c=2

Absolute

Error

y=3,c=2

0 0.1561919E-3 0.1561919E-3 0.1561919E-3,

0.1 0.5914011E-3 0.5914011E-3 0.5914011E-3

0.2 0.3653015E-2 0.3653015E-2 0.3653015E-2

0.3 0.1288026E-1 0.1288026E-1 0.1288026E-1

0.4 0.3243133E-1 0.3243133E-1 0.3243133E-1

0.5 0.6600171E-1 0.6600171E-1 0.6600171E-1

0.6 0.1149466 0.1149466 0.1149466

0.7 0.1759123 0.1759123 0.1759123

0.8 0.2389076 0.2389076 0.2389076

0.9 0.2871790 0.2871790 0.2871790
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4
A NEW OPERATIONAL MATRIX OF FRACTIONAL

DERIVATIVE BASED ON THE GENERALIZED

GEGENBAUER- HUMBERT POLYNOMIALS TO SOLVE

FRACTIONAL DIFFERENTIAL EQUATIONS

The intention of this chapter, develops a new operational matrix of fractional

derivative based on the generalized Gegenbauer– Humbert polynomials and employ

for solving linear and non-linear FDEs. The proposed method allows to examine some

types of wavelets by one formula and choose the best approach to the exact solutions

accurately.

The most common types of wavelets used to solve fractional differential equations

based on their polynomials are Legendre, Chebyshev, Leguare and Bernoulli. For

instance, the operational matrix of the fractional derivative of Chebyshev wavelets

was used to solve Bagley– Trovik equations in [44]. Secer and Altun [45] introduced

a new operational matrix for the fractional derivatives of Legendre wavelet to solve

systems of FDEs. Chang and Isah applied the Legendre wavelet operational matrix of

the fractional derivative to solve the Brusselator system of fractional order [34]. For

FDEs with variable order, Heydari employed Chebyshev wavelets to find the solution

[46]. Kumar et al. used the operational matrix of the Haar wavelet to solve the Lotka–

Volterra model having a fractional order [47].

Moreover, this study aims to derive and investigate operational matrix of fractional

derivative to be source gives chance for researcher utilize to solve different problems

in the future.

4.1 Operational Matrix of The Derivative

In this part, we derived and developed a new operational matrices for the derivatives

(integer or fractional) order.
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Theorem 4.1. Assume that the generalized Gegenbauer– Humbert polynomial Pλ,y,c
m (t)

is defined on [-1,1], then these polynomials satisfied the relation below:

Dt[P
λ,y,c
m (t)] =

m−1
∑

k=0
m+k odd

2
c
(k+λ)γn,k Pλ,y,c

k (t), (4.1)

where

γn,k =







y
c m≥ 3

1 o.w.
, n= 0,1, ..., m− 3 . (4.2)

Proof. Let consider a function h(t), that is approximated by generalized Gegenbauer–

Humbert polynomial as follows:

h(t) =
∞
∑

k=0

h̃k Pλ,y,c
k (t). (4.3)

Derived both sides of Eq.4.3 with respect to t, given as the following form

Dth(t) =
∞
∑

k=0

h̃(1)k Pλ,y,c
k (t), (4.4)

where h̃(1)k is defined as:

h̃(1)k =
2
c
(k+λ)

m−1
∑

q=m+1
q+k odd

γn,k h̃q. (4.5)

Next, taking into account that h(t) = Pλ,y,c
m (t) into Eq.4.3, we obtained h̃l = 0 for

l ̸= m and h̃m = 1, then

h̃(1)k =







2
c (k+λ)γn,k for m+ k odd, k ≤ m− 1,

0 o.w.
(4.6)

By the means of the above calculation of h̃(1)k in Eq.4.4, we get the result in Eq.4.1. ■

Theorem 4.2. Suppose the vector of generalized Gegenbauer– Humbert wavelets that be

defined as Eq.2.40. The derivative of Ψ y,c(t) satisfy the relation as follows:

DtΨ
y,c(t) =DΨ y,c(t), (4.7)
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where D represent an operational matrix of derivative with 2k−1M as the following form:

D=







































Λ 0 0 · · · 0

0 Λ 0 · · · 0

0 0 Λ · · · 0

...
...

... . . . ...

0 0 0 · · · Λ







































, (4.8)

here Λ is a matrix of order M ×M and the (r, s)-th elements defined in Eq.4.9:

Λr,s =







2k+1 (s+λ−1) c−1γm,s
r

( y
c )r−s Γ (2λ+r−1) (λ+s−1) Γ (s)

Γ (r) Γ (2λ+s−1) (λ+r−1)

, r = 2,3, ..., M ; s = 1,2, ..., r − 1 and (r + s) odd

0 o.w.
(4.9)

where γm,s defined as in Eq.4.2.

Proof. Assume that the r-th element of the GHW vector Ψ y,c(t) is given as follows:

ψy,c
r (t) =ψ

y,c
n,m(t) =

1
p

hm

2k/2 Pλ,y,c
m (2k t − n̂)χ[ n̂−1

2k , n̂+1
2k ]

, for r = 1, 2, ..., 2k−1M ,

(4.10)

here n̂ = 2n − 1, r = M(n − 1) + m + 1 and χ[ n̂−1
2k , n̂+1

2k ]
is the characteristic function

which is defined by:

χ[ n̂−1
2k , n̂+1

2k ]
=







1 t ∈ [ n̂−1
2k , n̂+1

2k ],

0 o.w.
(4.11)

The form in Eq.4.12 is the result after differentiate Eq.4.10 with respect to t.

Dtψ
y,c
r (t) =

2k/2

p

hm

2k [Pλ,y,c
m (2k t − n̂)]

′
χ[ n̂−1

2k , n̂+1
2k ]

. (4.12)

Outside the interval [ n̂−1
2k , n̂+1

2k ] the characteristic function equal zero, therefore,

the generalized Gegenbauer– Humbert wavelets extension includes the elements of
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Ψ y,c(t), that are non zero in the interval [ n̂−1
2k , n̂+1

2k ] which are

ψ
y,c
i (t); i = M(n− 1) + 1, M(n− 1) + 2, ..., M(n− 1) +M . (4.13)

Subsequently,the GHW expansions takes the form as follows:

Dt[ψ
y,c
r (t)] =

Mn
∑

i=M(n−1)+1

bi ψ
y,c
i (t). (4.14)

The matrix D in Eq.4.8 proceeds by the above expression.

Furthermore, [Pλ,y,c
0 (t)]

′
= 0 then [ψy,c

r (t)]
′ = 0 when r = 1, M + 1,2M + 1,3M +

1, ..., (2k−1−1)M +1. Thus, the first row of matrix Λ is zero. By means of the relation

Eq.4.1 in Eq.4.10 we get the relation below:

Dtψ
y,c
r (t) =

2k/2

p

hm

2k+1
l−1
∑

q=0
q+l odd

1
c
(q+λ)γn,q Pλ,y,c

q (t),χ[ n̂−1
2k , n̂+1

2k ]
. (4.15)

After extending the expression Eq.4.15 using the GHWs basis Ψ y,c(t), we get the

required result:

Dtψ
y,c
r (t) = 2k+1

r−1
∑

s=1
r+s odd

(s+λ− 1)
c−1 γn,s

Ç

( y
c )r−s Γ (2λ+r−1) (λ+s−1) Γ (s)

Γ (r) Γ (2λ+s−1) (λ+r−1)

ψ
y,c
M(n−1)+s(t). (4.16)

Then consider Λr,s , such that

Λr,s =







2k+1 (s+λ−1) c−1γm,s
r

( y
c )r−s Γ (2λ+r−1) (λ+s−1) Γ (s)

Γ (r) Γ (2λ+s−1) (λ+r−1)

r = 2, 3, ..., M ; s = 1, 2, ..., r − 1 and (r + s) odd

0 o.w.

(4.17)

■
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If k = 2, M = 3, then the matrix below is the result of D:

D=

















































0 0 0 0 0 0

4
p

2 (1+λ)
p

c y 0 0 0 0 0

0
8
p

2 (1+λ) (2+λ)p
c y (2λ+1)

0 0 0 0

0 0 0 0 0 0

0 0 0
4
p

2 (1+λ)
p

c y 0 0

0 0 0 0
8
p

2 (1+λ) (2+λ)p
c y (2λ+1)

0

















































. (4.18)

Corollary 4.1. By using Eq.4.7, the operational matrix of the GHW vector Ψ y,c(t) for

the n-th order can be obtained as follows:

Dn
tΨ

y,c(t) = DnΨ y,c(t). (4.19)

To investigate the operational matrix for the derivative of fractional order, we defining

the piecewise functions in [0,1] as in below:

ωn,m =







tm t ∈ [ n̂−1
2k , n̂+1

2k ]

0 o.w.
, (4.20)

where n = 1, 2, ..., 2k−1 and m = 0, 1, ..., M − 1. The set of piecewise functions in the

above are not normalized and can be expressed 2k−1M -th set of these functions as

Eq.4.21

Ξ(t) = {ω1,ω2,ω3 · · · ,ω2k−1 M} . (4.21)

Here, ωr =ωn,m and the relation r = M(n− 1) +m+ 1 help us to get r-th index.

Theorem 4.3. Suppose that the Ξ(t) be a vector defined in Eq.4.21 and

Ξ(t) = Θ Ψ y,c(t), (4.22)
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where Θ represent a matrix with 2k−1M × 2k−1M order takes the following form:

Θ =







































ρ1 0 0 · · · 0

0 ρ2 0 · · · 0

0 0 ρ3 · · · 0

...
...

... . . . 0

0 0 0 · · · ρ2k−1







































, (4.23)

with

ρn =







































φ(0, 0) φ(0, 1) φ(0,2) · · · φ(0, M − 1)

φ(1, 0) φ(1,1) φ(1,2) · · · φ(1, M − 1)

φ(2, 0) φ(2,1) φ(2,2) · · · φ(2, M − 1)

...
...

... . . . ...

φ(M − 1,0) φ(M − 1,1) φ(M − 1,2) · · · φ(M − 1, M − 1)







































, (4.24)

then prove the following relation:

φ(l, p) =
2k/2

2(l+1)k
Æ

hp

⌊p/2⌋
∑

k=0

(−y)k c−λ+p+k 2p−2k Γ (λ+ p− k)
k! (p− 2k)! Γ (λ)

×
l
∑

q=0

�

l
q

�

(n̂)l−1

2

(1− (−1)p−2k+q) Γ ( p
2 − k+ q

2 +
1
2) Γ (λ+

1
2)

Γ (λ+ p
2 − k+ q

2 + 1)
.

(4.25)

Proof. Let

Ξ(t) = Θ Ψ y,c(t). (4.26)
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Using the means of Theorem 2.1, we have the following relation:

φ(l, p) =

∫ 1

−1

ωn,l(t)ψ
y,c
l,p (t)ϑ

λ
n(t) d t =

2k/2

Æ

hp

⌊p/2⌋
∑

k=0

(−y)k c−λ+p+k 2p−2k Γ (λ+ p− k)
k! (p− 2k)! Γ (λ)

×
∫

n̂+1
2k

n̂−1
2k

(2(2k t − n̂))p−2k t l (1− (2k t − n̂)2)λ−1/2 d t.

(4.27)

Next, let us substitute τ= 2k t − n̂ implies that d t = 2−kdτ, then we have

∫
n̂+1
2k

n̂−1
2k

(2(2k t − n̂))p−2k t l (1− (2k t − n̂)2)λ−1/2 d t

=
2p−3k

2k l

∫ 1

−1

τp−2k (τ+ n̂)l(1−τ2)λ−1/2 dτ

=
1

2(l+1)k

l
∑

q=0

�

l
q

�

(n̂)l−1

2

(1− (−1)p−2k+q) Γ ( p
2 − k+ q

2 +
1
2) Γ (λ+

1
2)

Γ (λ+ p
2 − k+ q

2 + 1)
.

(4.28)

Using the relation Eq.4.28 in Eq.4.27, we achieve the required result Eq.4.25. ■

As example of matrix Θ when y, c = 1, k = 2 and M = 3, we consider the following

matrix:

Θ =
π21−2λλ2 Γ (2λ)

Γ (λ)2
p

2λ (λ+ 1)





























(λ+1)
λ2 0 0 0 0 0

(λ+1)
4λ2

p
2

4
p
λ+1

0 0 0 0

2λ+3
32λ2

p
2

8
p
λ+1

− (−2λ−1)
p

2λ+1
32 (λ+2)

p
λ+1

0 0 0

0 0 0 (λ+1)
λ2 0 0

0 0 0 3(λ+1)
4λ2

p
2

4
p
λ+1

0

0 0 0 18λ+19
32λ2

3
p

2
8
p
λ+1

− (−2λ−1)
p

2λ+1
32 (λ+2)

p
λ+1





























. (4.29)

Lemma 4.1. The differentiation of fractional order α of relation Eq.4.20 is defined as

below:

0Dαt ωn,m(t) =







m!
Γ (m−α+1) tm−α m= δ,δ+ 1, · · · , M − 1, t ∈ [ n̂−1

2k , n̂+1
2k ]

0 o.w.
, (4.30)

where (δ− 1)< α < δ is a positive function.

Proof. The proof is simple by using the expression Eq.2.20. ■
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Lemma 4.2. Assume that [Ξ(t)] is the vector which is defined by Eq.4.21, The fractional

differentiation of order α is:

0Dαt [Ξ(t)] = Pα [Ξ(t)], (4.31)

where (δ−1)< α < δ is a positive function in [0,1]. Pα is a matrix order 2k−1 M as the

following definition :

Pα = t−α







































Ωα 0 0 · · · 0

0 Ωα 0 · · · 0

0 0 Ωα · · · 0

...
...

... . . . ...

0 0 0 · · · Ωα







































, (4.32)

where Ωα is the matrix of M ×M order defined as following:

Ωα =





































































0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0

0 · · · 0 δ!
Γ (δ−α+1) 0 0 · · · 0

0 · · · 0 0 (δ+1)!
Γ (δ−α+2) 0 · · · 0

...
...

...
... . . . ...

...
...

0 0 · · · 0 0 0 (M−2)!
Γ (M−α−1) 0

0 0 · · · 0 0 0 0 (M−1)!
Γ (M−α)





































































. (4.33)

Proof. Using the means of Lemma 4.1 to prove this lemma. ■

Theorem 4.4. Let Ψ y,c(t) be the GHW vector defined in Eq.2.40 and (δ−1)< α < δ is
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a positive function defined in [0,1]. Then the fractional differentiation of order α in the

Caputo sense of GHW can be as below:

0Dαt Ψ
y,c(t) = Φα Ψ y,c(t) = (Θ−1 PαΘ)Ψ y,c(t), (4.34)

where Θ is defined in Eq.4.23 as the coefficients matrix, the operational matrix Pα of

order α is defined in Eq.4.32 for piecewise functions and Φα is the operational matrix of

fractional order α for the GHW.

Proof. By consider the equation Eq.4.22 and Lemma 4.2, we get

Ψ y,c(t) = Θ−1Ξ(t), (4.35)

and then

0Dαt Ψ
y,c(t) = Θ−1

0Dαt Ξ(t) = Θ
−1 PαΞ(t) = (Θ−1 PαΘ)Ψ y,c(t), (4.36)

which is the required result. ■

For λ, y, c = 1, k = 2 and M = 3 the matrix Φα is given as :

Φα =





























0 0 0 0 0 0

−1
4 Γ (2−λ)

1
Γ (2−λ) 0 0 0 0

−1
8 Γ (2−λ) +

3
32 Γ (3−λ)

1
2 Γ (2−λ) −

1
Γ (3−λ)

2
Γ (3−λ) 0 0 0

0 0 0 0 0 0

0 0 0 −3
4 Γ (2−λ)

1
Γ (2−λ) 0

0 0 0 −9
8 Γ (2−λ) +

35
32 Γ (3−λ)

3
2 Γ (2−λ) −

3
Γ (3−λ)

2
Γ (3−λ)





























. (4.37)

4.2 Error Estimates

It is interesting to know that the error bound for the presented algorithm.

Theorem 4.5. Let us consider f (t) ∈ C M[0,1] where t ∈ [0,1]. Consider

σn = Span
�

ψ
y,c
n0 ,ψy,c

n1 , ...,ψy,c
nM−1

	

, (4.38)

where n = 1, · · · , 2k−1 and f (t) =
∑2k−1

n=1 fn(t). If C T Ψ y,c represent the better approxi-
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mation of fn(t) out of σn, thus





 f (t)− C T Ψ y,c






L2[0,1] ≤
δ
p

2

M ! 2M(k−1)
p

2M + 1
, (4.39)

where C ,Ψ y,c as the matrices defined in Eq.2.40 and

δ = max t∈[0,1]

�

� f (M)(t) (4.40)

Proof. Let be consider Taylor series formula and applied for fn(t)

f̂n(t) = fn

�

n̂− 1
2k

�

+ f ′n

�

n̂− 1
2k

� �

t −
n̂− 1

2k

�

+ · · ·+ f (M−1)
n

�

n̂− 1
2k

�

�

t − n̂−1
2k

�M−1

(M − 1)!
.

(4.41)

And, we know that

�

� fn(t)− f̂n(t)
�

�≤
�

� f (M)(t)
�

�

(t − n̂−1
2k )M

(M + 1)!
, ∃t ∈

�

n̂− 1
2k

,
n̂+ 1

2k

�

. (4.42)

As a result of hypothesis that C T Ψ y,c is the best approximation of fn(t) ∈ σn and

f̂n(t) ∈ σn. Therefore by the means of Eq.4.42 ,we obtain





 fn(t)− C TΨ y,c(t)




≤




 fn(t)− f̂n(t)






2

2 =

∫
n̂+1
2k

n̂−1
2k

( fn(t)− f̂n(t))
2d t

≤
∫

n̂+1
2k

n̂−1
2k

�

�

� f (M)(t)
�

�

(t − n̂−1
2k )M

M !

�2

d t

≤
�

δ

M !

�2
∫

n̂+1
2k

n̂−1
2k

�

t −
n̂− 1

2k

�2M

d t

=
�

δ

M !

�2 2
22M(k−1)(2M + 1)

.

(4.43)

Next, taking the square root for the last relation we get the required result when k, M

approaching∞. ■

4.3 Proposed Methodology

In this section, devoted to explain the steps of the algorithm by utilizing the operational

matrix for fractional derivative to find the solutions of differential equations with

fractional order.
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4.3.1 Linear Fractional Differential Equation

Consider the linear differential equation with fractional order of the form:

Dηu(t) =
k
∑

i=1

aiDαi u(t) + a0 u(t) + g(t), t ∈ (0, L), (4.44)

with initial conditions

u j(0) = b j, j = 0, · · · , v − 1, (4.45)

where ai, i = 0, · · · , k are real constant coefficients,

v − 1< η≤ v, 0< α1 < α2 < · · ·< αk < η, (4.46)

b j is the initial values of u(t) and g(t) is a given function. Now, to solve the fractional

differential problem with initial values, Eq.4.44 and Eq.4.45 first step is approximate

the unknown function u(t) and g(t) by the GHWs as:

u(t)≃
2k−1
∑

n=1

M−1
∑

m=0

cnm ψ
y,c
n,m(t) = C T Ψ y,c(t),

g(t)≃
2k−1
∑

n=1

M−1
∑

m=0

Gnm ψ
y,c
n,m(t) = GT Ψ y,c(t),

(4.47)

where C is an unknown vector and G = [G10, · · · , G2k−1M−1] is a known vector.

Using theorems in Section 4.1 can be approximated integer and fractional order

derivatives as follows:

Dηu(t) = C T Φη Ψ y,c(t),

Dαi u(t) = C T Φαi Ψ y,c(t),

Dnu(t) = C T Dn Ψ y,c(t).

(4.48)

From Eqs. 4.47 and 4.48, then the residual R(t) for Eq.4.44 can be written as:

C T Φη Ψ y,c(t)−
k
∑

i=1

aiC
T Φαi Ψ y,c(t)− a0 C T Ψ y,c(t)− GT Ψ y,c(t)∼= R(t)≃ 0, (4.49)

also, with the initial conditions

C T D j Ψ y,c(0) = b j, j = 0, · · · , v − 1. (4.50)

Next, to find the approximate solution, we need to generate a system of 2k−1M

equations for the unknown vector C . Then, u(t) given in Eq.4.47 can be evaluated
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that give us the solution of the given problem.

4.3.2 Non-Linear Fractional differential Equation

Consider the non- linear FDE as the following form:

Dηu(t) = F(t, u(t),Dα1u(t), · · · ,Dαku(t)), (4.51)

with initial conditionsu j(0) = b j, j = 0, · · · , v − 1, where

v − 1< η≤ v, 0< α1 < α2 < · · ·< αk < η. (4.52)

To solve this problem, first we approximate u(t),Dηu(T ),Dαi u(t) for i = 1, · · · , k as in

the previous section.

Next, we substitute these equations in Eq.4.51, we obtain

C T Φη Ψ y,c(t)≈ F(t, C T Ψ y,c(t), C T Φα1 Ψ y,c(t), · · · ,Φα1 Ψ y,c(t)), (4.53)

where C is the unknown vector and for initial condition we approximating as Eq.4.50.

To find the solution we calculate Eq.4.53 at 2k−1M − v collocation points. The system

Eq.4.53 and Eq.4.50 obtained together contains 2k−1M non-linear equations that can

be find the solution of it using Newton’s iterative method. Thus, u(t) can be calculated

as in Eq.4.47.

4.4 Numerical Experimental

Here, we solve some problems to show the effectively and accuracy of our proposed

method.

Example 4.1 Let be consider the following fractional differential equation:

D2 u(t) + D3/2 u(t) + u(t) = g(t), (4.54)

subject to

u(0) = 0, u(5) = 25, (4.55)

and g(t) = t2 + 4
p

t/π+ 2. The exact solution is given by t2.

By using the GHW operational matrices of derivatives as in Section 4.3. to solve this
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boundary value problem. We suppose that k = 1, M = 3 to find the solution of the

problem Eq.4.54

u(t) = C T Ψ y,c(t). (4.56)

After substitute the trial solution above in Eq.4.54 we obtain the following matrix

equation

C T D2 Ψ y,c(t) + C T Φ3/2 Ψ y,c(t) + C T Ψ y,c(t)− GT Ψ y,c(t)≃ 0, (4.57)

and the boundary conditions

C T Ψ y,c(0) = 0, C T Ψ y,c(5) = 25, (4.58)

where D2, Φ3/2 as the following

D2 =





















0 0 0

0 0 0

32 0 0





















, Φ3/2 =
4 t−3/2

p
π





















0 0 0

0 0 0

5 4 1





















, C =





















c1

c2

c3





















, Ψ y,c(t) =





















1

4 t − 2

16 t2 − 16 t + 3





















.

(4.59)

To find the unknown vector C we can solve the following system:

c1 − 2 c2 + 3 c3 = 0,

c1 + 31 c3 + 32 c3

Æ

2/π− 9/4− 2
Æ

2/π= 0,

c1 + 2 c2 + 35 c3 + 64 c3/
p
π− 3− 4/

p
π= 0.

(4.60)

Next, solving the above system we obtain C value as

C =





















0.3125000016

0.2500000007

0.06249999996





















, (4.61)
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Now, substituting C in Eq.4.56 to achieve the exact solution that is

u(t) = [0.3125000016, 0.2500000007,0.06249999996]





















1

4 t − 2

16 t2 − 16 t + 3





















= t2.

(4.62)

We construct Table 4.1 to show the absolute error for a different values of k and M

with λ= 1, y = 1 and c = 1.

Table 4.1 The absolute error of the present method for a different values of k, M in
Example 4.1.

t
Absolute Error

k=1,M=3

Absolute Error

k=1,M=6

Absolute Error

k=2,M=3

Absolute Error

k=2,M=6

Absolute Error

k=1,M=12

0 1.0E-10 5.99999870E-11 1.414213562E-11 4.242640686E-11 2.60006084E-10

0.1 4.4E-10 1.222810E-6 1.363E-9 2.491722E-6 0.781084139E-2

0.2 7.8E-10 2.43571E-6 2.69E-9 4.96368E-6 0.1555964888E-1

0.3 1.01E-9 3.63064E-6 4.01E-9 7.39906E-6 0.231935423E-1

0.4 1.3E-9 4.8002E-6 5.3E-9 9.7829E-6 0.306656303E-1

0.5 1.6E-9 5.9380E-6 7.20E-8 0.2944447E-3 0.379336652E-1

0.6 1.9E-9 7.0378E-6 7.54E-8 0.3334414E-3 0.449594269E-1

0.7 2.2E-9 8.0944E-6 7.82E-8 0.3704791E-3 0.517083829E-1

0.8 2.4E-9 9.1026E-6 8.07E-8 0.4054076E-3 0.581494804E-1

0.9 2.6E-9 0.100585E-4 8.27E-8 0.4380955E-3 0.642550043E-1

Example 4.2 Consider the following fractional differential equation:

D2 u(t) + D1/2 u(t) + u(t) = g(t), (4.63)

subject to

u(0) = 0, u′(0) = 0, (4.64)
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and

g(t) = 2+ t2 +
8 t1.5

3
p
π

. (4.65)

The exact solution is given by t2.

Applying the proposed method to solve the above problem with y, c,λ and k = 1, M =
4 given us

C T D2 Ψ y,c(t) + C T Φ1/2 Ψ y,c(t) + C T Ψ y,c(t)− GT Ψ y,c(t)≃ 0, (4.66)

with conditions

C T Ψ y,c(0) = 0, C T DΨ y,c(0) = 0. (4.67)

Here D2, Φ1/2 as the following

D2 =































0 0 0 0

0 0 0 0

32 0 0 0

0 96 0 0































, Φ3/2 =
4 t−1/2

p
π































0 0 0 0

1 1/2 0 0

−2/3 2/3 2/3 0

6/5 1/5 4/5 4/5































,

C =































c1

c2

c3

c4































, Ψ y,c(t) =































1

4 t − 2

16 t2 − 16 t + 3

64 t3 − 96 t2 + 40 t − 16 t − 4































.

(4.68)
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By solving the following systems, we obtain the unknown vector of coefficients C

283 c3

9
−

1700 c4

27
+

8
p

3 c2

3
p
π
−

160
p

3 c3

27
p
π
+

784
p

3 c4

135
p
π
+ c1 −

2 c2

3
− 2.400653340= 0,

283 c3

9
+

1700 c4

27
+

8
p

3 c2

3
p
π
−

32
p

2
p

3 c3

27
p
π

+
16
p

3 c4

135
p
π
+ c1 +

2 c2

3
− 3.263393539= 0,

c1 − 2 c2 + 3 c3 − 4 c4 = 0,

4 c2 − 16 c3 + 40 c4 = 0.

(4.69)

Next, substituting C to get the approximate solution as:

u(t) =































0.3125000016

0.2500000007

0.06249999996

0































T 





























1

4 t − 2

16 t2 − 16 t + 3

64 t3 − 96 t2 + 40 t − 16 t − 4































= t2. (4.70)

Absolute errors obtained when using the propsed method with different values of

Figure 4.1 Exact and approximate solution of Example 4.2. with different values of
λ and k = 1, M = 4

k, M with y = 1, c = 1 and lambda = 1 are considered in Table 4.2, where the best
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Table 4.2 The absolute error of the present method for a different values of k, M in
Example 4.2.

t
Absolute Error

k = 1, M = 3

Absolute Error

k = 1, M = 4

Absolute Error

k = 1, M = 5

Absolute Error

k = 1, M = 7

Absolute Error

k = 1, M = 11

0.1 0.70E-10 0 0.296E-9 0.104E-9 0.191E-8

0.2 0.10E-10 0 0.36E-9 0.690E-9 0.454E-8

0.3 0.10E-10 0 0.58E-9 0.114E-8 0.694E-8

0.4 0.10E-9 0 0.70E-9 0.150E-8 0.930E-8

0.5 0.10E-9 0 0.90E-9 0.180E-8 0.114E-7

0.6 0.10E-9 0 0.11E-8 0.210E-8 0.131E-7

0.7 0.20E-9 0 0.12E-8 0.230E-8 0.146E-7

0.8 0.20E-9 0 0.14E-8 0.230E-8 0.157E-7

0.9 0.30E-9 0 0.15E-8 0.240E-8 0.166E-7

1 0.40E-9 0 0.15E-8 0.270E-8 0.179E-7

error with k = 1, M = 4 with notation the results obtained for 15th digits number.

While Fig.4.1 shows the exact and approximate solution obtained by GHW method for

various λ with k = 1, M = 4.

Example 4.3 Consider the following fractional differential problem

4(1+ t)D
5
2 u(t) + 4D

3
2 u(t) +

1
p

t + 1
u(t) =

p
t +
p
π, (4.71)

subject to

u(0) =
p
π, u′(0) =

p
π/2, u(1) =

p
2π. (4.72)

The exact solution of this problem is u(t) =
p

π(t + 1). To obtain the solution of the

above problem by the presented method procedure as in the previous examples. We

examine the lest error obtained by a different values of k, M as shown in Table 4.3.
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If k = 1, M = 3

Φ3/2 =
4 t−3/2

p
π





















0 0 0

0 0 0

5 4 1





















, Φ5/2 =





















0 0 0

0 0 0

0 0 0





















, (4.73)

and the approximate solution

u(t) =

�

2.168050908 0.1835436051 −0.00950328156

�





















1

4 t − 2

16 t2 − 16 t + 3





















.

(4.74)

When k = 1, M = 4

Φ3/2 =
4 t−3/2

p
π































0 0 0 0

0 0 0 0

5 4 1 0

−2 4 6 2































, Φ5/2 =
12 t−5/2

p
π































0 0 0 0

0 0 0 0

0 0 0 0

14 14 6 1































, (4.75)

and the approximate solution

u(t) =































2.164530850

0.1823702535

−0.008329929

0.0005866761































T 





























1

4 t − 2

16 t2 − 16 t + 3

64 t3 − 96 t2 + 40 t − 16 t − 4































. (4.76)
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While k = 1, M = 5

Φ3/2 =
4 t−3/2

p
π







































0 0 0 0 0

0 0 0 0 0

5 4 1 0 0

−2 4 6 2 0

77/5 68/5 57/5 48/5 16/5







































,

Φ5/2 =
12 t−5/2

p
π







































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

14 14 6 1 0

0 16 24 13.33 2.67







































,

(4.77)

and the approximate solution

u(t) =







































2.163305365

0.1821291746

−0.007837726

0.0007072156

−0.000050225







































T 





































1

4 t − 2

16 t2 − 16 t + 3

64 t3 − 96 t2 + 40 t − 16 t − 4

256 t4 − 512 t3 + 336 t2 − 80 t + 5 t − 4







































. (4.78)
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If k = 1, M = 7

Φ3/2 =
4 t−3/2

p
π



























































0 0 0 0 0 0 0

0 0 0 0 0 0 0

5 4 1 0 0 0 0

−2 4 6 2 0 0 0

77/5 68/5 57/5 48/5 16/5 0 0

−88/7 16/7 104/7 120/7 96/7 32/7 0

250/7 568/21 130/7 464/21 496/21 128/7 128/21



























































Φ5/2 =
12 t−5/2

p
π



























































0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

14 14 6 1 0 0 0

0 16 24 13.33 2.67 0 0

88 104 82.67 57.34 26.67 5.34 0

−320/7 208/7 856/7 973.34/7 706.67/7 320/7 64/7



























































,

(4.79)
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then, the approximate solution

u(t) =





































2.163109543

0.1821827501

−0.007735020

0.0006685255

−0.0000718225

7.9349292 10−6

−6.15575858 10−7





































T 



































1

4 t − 2

16 t2 − 16 t + 3

64 t3 − 96 t2 + 40 t − 16 t − 4

256 t4 − 512 t3 + 336 t2 − 80 t + 5 t − 4

1024 t5 − 2560 t4 + 2304 t3 − 896 t2 + 140 t − 6

4096 t6 − 12288 t5 + 14080 t4 − 7680 t3 + 2016 t2 − 224 t + 7





































. (4.80)

If k = 1, M = 9

Φ3/2 =
4 t−3/2

p
π















































































0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

5 4 1 0 0 0 0 0 0

−2 4 6 2 0 0 0 0 0

77
5

68
5

57
5

48
5

16
5 0 0 0 0

−88
7

16
7

104
7

120
7

96
7

32
7 0 0 0

250
7

568
21

130
7

464
21

496
21

128
7

128
21 0 0

−740
21 −

40
7

1676
77

6384
231

6967
231

2368
77

256
11

256
33 0

70 520
11

830
33

4528
143

5264
143

16768
429

5504
143

4096
143

4096
429















































































, (4.81)
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Φ5/2 =
12 t−5/2

p
π

















































0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

14 14 6 1 0 0 0 0 0

0 16 24 13.33 2.67 0 0 0 0

88 104 82.67 57.34 26.67 5.34 0 0 0

− 320
7
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7
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7

973.34
7

706.67
7

320
7
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7 0 0
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3

1070.67
3 284 776.67

3
693.34

3 160 213.34
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3 0
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
















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,

(4.82)

and the approximate solution

u(t) =






















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
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



2.163126846

0.1821953400

−0.00774146178

0.0006611518811

−0.000070764248
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−1.069153906 10−6
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−1.027850507 10−8
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64 t3 − 96 t2 + 40 t − 16 t − 4

256 t4 − 512 t3 + 336 t2 − 80 t + 5 t − 4

1024 t5 − 2560 t4 + 2304 t3 − 896 t2 + 140 t − 6

4096 t6 − 12288 t5 + 14080 t4 − 7680 t3 + 2016 t2 − 224 t + 7

16384 t7 − 57344 t6 + 79872 t5 − 56320 t4 + 21120 t3 − 4032 t2 + 336 t − 8

65536 t8 − 262144 t7 + 430080 t6 − 372736 t5 + 183040 t4 − 50688 t3 + 7392 t2 − 480 t + 9


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
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


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
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



















.

(4.83)

Using the GHW method we got a different wavelets (second kind of Chebyshev

wavelet, Legendre wavelet, Morgan– Voyce wavelet, first kind of Fermat wavelet,

Dickson wavelet with a = 0.5 and Gegenbauer wavelet with λ= 5 as shown in Fig.4.2.

As a result we can see the best choice from these wavelet types to achieve best error

is Chebyshev wavelet of the second kind.
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(a) Chebyshev wavelet with k = 1, M = 9 (b) Legendre wavelet with k = 1, M = 7

(c) Morgan- Voyce wavelet with k = 1, M = 9 (d) Fermat wavelet with k = 1, M = 5

(e) Dickson wavelet with k = 1, M = 3 (f) Gegenbauer wavelet with k = 1, M = 4

Figure 4.2 Different wavelets with different values of k, M that gave us a best error
of Example 4.3.
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Example 4.4 We consider the Riccati equation as the following

Dαu(t) = −u2(t) + 1, (4.84)

subject to u(0) = 0. The exact solution of this problem is

u(t) =
e2t − 1
e2t + 1

. (4.85)

If y, c, λ, k = 1, M = 5 and α = 0.5 used the same procedure in the Section 4.3.2

where

Φ1/2 =
4 t

−1
2

p
π



















































0 0 0 0 0

1 1
2 0 0 0

−2
3

2
3

2
3 0 0

6
5

1
5

4
5

4
5 0

−6
5

2
7

2
7

32
35

32
35



















































, (4.86)

and by solving the following system, we obtain the unknown coefficient vector C:

(c1 − c2 + c4 − c5)
2 + 2 c2

p
4
p
π
− 16 c3

p
4

3
p
π
+ 36 c4

p
4

5
p
π
− 208 c5

p
4

35
p
π
− 1= 0,

(c1 − c3 + c5)
2 + 4 c2

p
2
p
π
− 16 c3

p
2

3
p
π
+ 8 c4

p
2

5
p
π
− 16 c5

p
2

7
p
π
− 1= 0,

(c1 + c2 − c4 − c5)
2 + 2 c2

p
3
p

4
p
π
+ 4 c4

p
3
p

4
5
p
π
− 128 c5

p
3
p

4
35
p
π
− 1= 0,

(c1 + 2 c2 + 3 c3 + 4 c4 + 5 c5)
2 + c2

8
p
π
+

32 c3

3
p
π
+

144 c4

5
p
π
+

1184 c5

35
p
π
− 1= 0.

c1 − 2 c2 + 3 c3 − 4 c4 + 5 c5 = 0.

(4.87)

57



Then the approximate solution

u(t) =



















































0.5298731336

0.1298845171

−0.0508413137

0.02179819046

−0.0060774793



















































T 

















































1

4 t − 2

16 t2 − 16 t + 3

64 t3 − 96 t2 + 40 t − 16 t − 4

256 t4 − 512 t3 + 336 t2 − 80 t + 5



















































. (4.88)

While at the value α= 0.7 the operational matrix of fractional derivative as

Φ0.7 = t−0.7































0 0 0 0 0

2.228485018 1.114242509 0 0 0

−0.342843857 2.399906937 1.714219243 0 0

2.16140687 1.30429723 3.13031340 2.235938144 0

−1.1721734 1.3754409 1.84973068 3.79431928 2.710228054































, (4.89)

and the following system of algebraic equations are obtained

(c1 − c2 + c4 − c5)
2 + 2.94050361 c2 − 7.238162741 c3 + 8.162602040 c4

− 3.862260552 c5 − 1= 0,

(c1 − c3 + c5)
2 + 3.620184593 c2 − 3.341708866 c3 − 1.573993302 c4

− 0.506319198 c5 − 1= 0,

(c1 + c2 − c4 − c5)
2 + 4.088444376 c2 + 2.515965754 c3 + 1.504109942 c4

− 7.707009290 c5 − 1= 0,

(c1 + 2 c2 + 3 c3 + 4 c4 + 5 c5)
2 ++4.456970036 c2 + 9.599627746 c3

+ 23.10469411 c4 + 35.85631783 c5 − 1= 0,

c1 − 2 c2 + 3 c3 − 4 c4 + 5 c5 = 0.

(4.90)
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After solving the above system to find C then substitute to get the following solution

u(t) =


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




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
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
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











0.5005327487
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. (4.91)

Now, we test when the fractional order α= 0.9, Φ0.9 as

Φ0.9 = t−0.9































0 0 0 0 0

2.102274011 1.051137006 0 0 0

1.146694919 3.440084753 1.911158193 0 0

1.91115817 2.86673731 4.91440678 2.730225991 0

0.8014533 2.8271049 4.20102510 6.34117003 3.522872244
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









, (4.92)

the following system are obtained

(c1 − c2 + c4 − c5)
2 + 3.660271647 c2 − 7.986047250 c3 + 6.179679262 c4

+ 2.76015433 c5 − 1= 0,

(c1 − c3 + c5)
2 + 3.922982019 c2 − 1.426538911 c3 − 5.604260070 c4

+ 0.230086764 c5 − 1= 0,

(c1 + c2 − c4 − c5)
2 + 4.085314010 c2 + 5.942274938 c3 + 2.652801301 c4

− 8.078208108 c5 − 1= 0,

((c1 + 2 c2 + 3 c3 + 4 c4 + 5 c5)
2 + 4.204548023 c2 + 13.76033900 c3 + 33.30875709 c4

+ 62.03777974 c5 − 1= 0,

c1 − 2 c2 + 3 c3 − 4 c4 + 5 c5 = 0.

(4.93)
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Figure 4.3 Exact and approximate solution of Example 4.4 for a different values of α
when K = 1 and M = 5.

The approximate solution yield as

u(t) =


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




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
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64 t3 − 96 t2 + 40 t − 16 t − 4

256 t4 − 512 t3 + 336 t2 − 80 t + 5
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. (4.94)

Fig.4.3 shows the nearest approximate solution to the exact solution is when α= 1 by

using the presented method where the figure present the result for a different values

of α = 0.5,0.7, 0.9,1 and λ, y, c = 1 with k = 1, M = 5. Moreover, Table 4.4 consider

the comparison between the results obtained by the presented method with Ref. [48]
when k = 1, M = 12,λ,α, y and c = 1.
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Table 4.4 The comparison of the approximate solution using the presented method
of Example 4.4

t Ref. [48] Our method
The exact

solution

The error

0.1 0.0996679945 0.0996679271 0.0996679954 6.748E-8

0.2 0.1973753204 0.197375256 0.197375321 6.43E-8

0.3 0.2913126124 0.291312551 0.291312612 6.12E-8

0.4 0.3799489620 0.379948905 0.379948963 5.71E-8

0.5 0.4621171576 0.462117105 0.462117157 5.26E-8

0.6 0.5370495668 0.537049520 0.537049567 4.75E-8

0.7 0.6043677770 0.604367735 0.604367777 4.25E-8

0.8 0.6640367705 0.664036733 0.664036770 3.74E-8

0.9 0.7162978700 0.716297838 0.716297870 3.23E-8

1 0.7615941559 0.761594126 0.761594156 2.96E-8

Example 4.5 Consider the following problem

Dαu(t) = 2 u(t)− u2(t) + 1, (4.95)

subject to u(0) = 0. The exact solution of this problem is

u(t) = 1+
p

2 tanh

�

p
2 t +

1
2

log

�p
2− 1
p

2+ 1

��

. (4.96)

To solve the above nonlinear fractional differential problem, using the presented

method in Section 4.3.2. The approximate solution u(t) as following

u(t)∼= C T Ψ y,c(t), Dαu(t)∼= C T Φα Ψ y,c(t). (4.97)

Then solving the algebraic system to find the unknown vector C . Table 4.5 consider
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the comparison of absolute error obtained by the presented method with different

values of k, M and y, c, λ, α= 1. As a result, it is obvious the lest error gained when

increased the value of k, M . Moreover, Fig.4.4 shows the approach of approximated

solutions to the exact when α close to 1 with y, c, λ, k = 1 and M = 5, and the figure

shows even though α= 1 the approximate solution still far from the exact solution. At

the same figure with k = 1, M = 16 the result is the same exact solution approximately

when α= 1.

Table 4.5 The absolute error of Example 4.5 for a different values of k, M

t
Absolute Error

k = 1, M = 3

Absolute Error

k = 1, M = 7

Absolute Error

k = 1, M = 12

Absolute Error

k = 1, M = 16

0.1 1.51586284 0.27851520E-2 0.143693E-4 1.815E-7

0.2 2.55068972 0.35034327E-2 0.166762E-4 2.129E-7

0.3 3.10442060 0.38990898E-2 0.191502E-4 2.434E-7

0.4 3.17892267 0.43358099E-2 0.212427E-4 2.694E-7

0.5 2.77828027 0.46675199E-2 0.227348E-4 2.871E-7

0.6 1.90863873 0.478006161E-2 0.2340729E-4 2.9399E-7

0.7 0.577516707 0.47185631E-2 0.231569E-4 2.889E-7

0.8 1.20728680 0.45264342E-2 0.220318E-4 2.778E-7

0.9 3.43887283 0.41141296E-2 0.201644E-4 2.644E-7

1 6.11214783 0.35199095E-2 0.179715E-4 2.605E-7

Example 4.6 Let be consider another fractional differential equation that be solved in

before using Genocchi operational method in Ref. [49]

D2u(t) + Γ
�

4
5

�

t
6
5D

6
5 u(t) +

11
9
Γ

�

5
6

�

t
1
6D

1
6 u(t)− (u′(t))2 = 2+

1
10

t2, (4.98)
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(a) Approximate solution with k = 1, M = 5
and α= 0.5

(b) Approximate solution with k = 1, M = 5
and α= 0.7

(c) Approximate solution with k = 1, M = 5
and α= 0.9

(d) Approximate solution with k = 1, M = 5
and α= 1

(e) Approximate solution with
k = 1, M = 12 and α= 1

Figure 4.4 Approximate solution by GHW method with different values of α of
Example 4.5.

63



with condition

u(0) = 1, u(1) = 2, (4.99)

and the exact solution is given as

u(t) = 1+ t2. (4.100)

Applying the presented method to solve the above problem when λ, y, c, k = 1 and

M = 3, 4,5, 7 and 11. For k = 1, M = 7 the operational matrices of fractional order

6/5 and 1/6 as following

Φ
6
5 = t−

6
5
















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

0 0 0 0 0 0 0

0 0 0 0 0 0 0

10.73671 8.58937 2.147343 0 0 0 0

−14.31562 −1.431562 8.58937 3.578904 0 0 0

39.36795 24.95008 11.35024 12.27053 5.112720 0 0

−56.83192 −21.34426 12.35664 15.82252 16.145433 6.727264 0

102.16023 57.29476 13.65096 17.221795 20.51815 20.181791 8.4090795


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


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















,

(4.101)

Φ
1
6 = t−

1
6
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

0 0 0 0 0 0 0

2.1261761 1.0630881 0 0 0 0 0

−2.706042 0.38657748 1.159732 0 0 0 0

3.6611161 −0.01136993 0.4093173 1.227952 0 0 0

−4.46591 0.1295183 0.0088982 0.4271137 1.281341 0 0

5.38493 −0.0162708 0.1382801 0.022092 0.4418418 1.3255254 0

−6.2302 0.0767866 −0.003419014 0.1451766 0.03156013 0.45447 1.3633975















































.

(4.102)
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Then we compared the L2, L∞ errors of the results obtained with that obtained using

Genocchi operational method [49] as shown in Table 4.6 with notation the results

obtained for 15th digits number. As a result we can observe that the presented method

got best error from the method in Ref. [49] when M = 3,7 with zero error, when

M = 11 we got a simple error that unaffected. While when M = 4, 5 the performance

of our method less than in Ref. [49]. From Table 4.6 we can see our method got an

accurate results better than in Ref. [49]. Fig.4.5 shows that the affect of changing λ

on the result when y, c, k = 1 and M = 7, therefore the best value of λ for the given

problem is equal to 1 .

Table 4.6 Comparison of the L2, L∞ error obtained by the our method and the
operational method of Ref. [49] for Example 4.6

Errors k = 1
Genocchi operational

method Ref. [49]

Presented method

L2, M = 3 1.323E-4 0.

L∞, M = 3 1.8119E-4 0.

L2, M = 4 3.377E-5 0.5639985335

L∞, M = 4 5.5528E-5 0.944754483

L2, M = 5 1.698E-5 1.294231362

L∞, M = 5 1.8466E-5 1.875259588

L2, M = 7 9.262E-6 0

L∞, M = 7 1.4556E-5 0

L2, M = 11 not examined 1.140175425E-9

L∞, M = 11 not examined 2.0E-9

Example 4.7 Let consider another fractional differential equation as follows

D0.25u(t) + u2(t) =
2

Γ (2.75)
t1.75 + t4, (4.103)
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(a) GHW with λ= 1 (b) GHW with λ= 1.5

Figure 4.5 Different wavelets with different values of λ for Example 4.6

with condition

u(0) = 0. (4.104)

The exact solution of the above equation is

u(t) = t2. (4.105)

Applied the proposed method to solve Eq.4.103, we get the approximate solution when

k = 2, M = 3,λ = 1, y = 1 and c = 1 as in the Fig.4.6. Where the operational matrix

of order 0.25 as the following matrix

Φ0.25 = t−0.25












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
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




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
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



0 0 0 0 0 0

2.176130505 1.088065252 0 0 0 0

−2.487006292 0.6217515729 1.243503146 0 0 0

0 0 0 0 0 0

0 0 0 6.528391515 1.088065252 0

0 0 0 −32.33108179 1.865254719 1.243503146







































.

(4.106)

By solving the following system of equations we obtain the unknown coefficients
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vector C

(c1

p
2− 2 c2

p
2

5
− 21 c3

p
2
�

1
25

�2

+ 1.740904404 c2 51/4
p

2

− 3.780249564 c3 51/4
p

2− 0.07597883649= 0,

c1

p
2+ 6 c2

p
2

5
+ 11 c3

p
2
�

1
25

�2

+ 3.481808807 c2 21/4 51/4

− 1.193763020 c3 21/4 51/4 − .2757795878= 0,

(c4

p
2− 6 c5

p
2

5
+ 11 c6

p
2
�

1
25

�2

+ 1.740904404 c5 33/4 51/4
p

2

− 11.34074869 c6 33/4 51/4
p

2− 0.6382412480= 0,

(c4

p
2+ 2 c5

p
2

5
− 21 c6

p
2
�

1
25

�2

+ 1.740904404 c5 43/4 51/4
p

2

− 8.157380637 c6 43/4 51/4
p

2− 1.251100475= 0,

(c4

p
2+ 2 c5

p
2+ 3 c6

p
2)2 + 8.704522019 c5

p
2− 24.87006291

c6

p
2− 2.243503145= 0,

c1

p
2− 2 c2

p
2+ 3 c3

p
2= 0.

. (4.107)

Next, the approximate solution is

u(t) =































































0.05524271727

0.04419417380

0.01104854344

0.4087961132

0.1325825206

0.01104854345































































T 





























































p
2

(8t − 2)
p

2

(64 t2 − 32 t + 3)
p

2

p
2

(8t − 6)
p

2

(64 t2 − 96 t + 35)
p

2































































. (4.108)

Table 4.7 shows the proposed method approach to the exact solution with k = 2, M =
3,λ = 1, y = 1 and c = 1 and its far from it with other values of k, M for example

k = 1, M = 7.
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Figure 4.6 Approximate solution using the GHW method for Example 4.7

Table 4.7 Absolute error for Example 4.7

t Exact solution
The proposed method

k = 1, M = 7

The proposed method

k = 2, M = 3

0.1 0.01 0.169306097 1 ×10−11

0.2 0.04 0.0611645753 1 ×10−11

0.3 0.09 0.0866363132 3 ×10−11

0.4 0.16 0.191276130 2 ×10−10

0.5 0.25 0.267164826 0.250000010

0.6 0.36 0.338061520 8.9 ×10−9

0.7 0.49 0.517676305 8 ×10−9

0.8 0.64 0.741063194 6.8 ×10−9

0.9 0.81 0.269133388 5.8 ×10−9
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5
SOLVING FRACTIONAL PARTIAL DIFFERENTIAL

EQUATIONS BY USING GENERALIZED GEGENBAUER-

HUMBERT WAVELETS

Fractional partial differential equations (FPDEs) attracted a lot of scientists, owing

to effectively represent of the real world problems. A considerable techniques were

evolved to find approximate solutions of FPDEs. However, these techniques can not

be useful in general because of the features of each method. Wavelets beat the lacks

of the methods (numerical or analytical)by utilizing a family of orthogonal functions

to reduce the given problem to some of algebraic equations (linear or non- linear) as

a system.

Recently wavelet techniques have a wide applications in disciplines of physics

and engineering; especially signal analysis, optimal control, numerical analysis,

time–frequency analysis and fast algorithms [50]. Some researchers investigated and

employed a new algorithm of wavelets called scale-3 Haar wavelets to solve initial and

boundary value problems and other PDEs problems [51], [52] and [53]. Massive

interest have been dedicated to solve the FPDEs using operational matrices, orthogonal

polynomials such as: Chebyshev polynomials, Legendre polynomials and Gegenbauer

polynomials, Fourier approximation and wavelet methods. The authors used Haar

wavelets and their operational matrix to solve FPDEs in [54]. R. Jiwari used the

quasilinearization and uniform Haar wavelets to solve Burgers’ equation [55] and

[56]. In 2015 Rahimkhani and others to find the solution of pantograph fractional

differential equation employed generalized form of Bernoulli wavelet with fractional

order [57], while in 2018 he and Ordokhani solved the FPDEs with Dirichlet boundary

conditions by using Bernoulli wavelets collocation and the fractional integral operator

together [58]. In the other hand Heydari and others used Legendre wavelets with

their operational matrices to solve the same type of FPDEs [59]. [60] Chohan and

Shah solved FPDEs by using the operational matrices based on Jacobi polynomials.

The researchers dedicated the collection method of Chebyshev wavelets (3rd kind) to

69



solve FPDE with variable coefficients [61]. Firoozjaee and Yousefi used polynomial

basis functions after transformed FPDEs into optimization problem, employed Ritz

approximation to find the solution of FPDEs as a result in [62].

This chapter introduce an approximate method based on GHW method to reach the

solution of the FPDEs subject to the two types of conditions (initial- boundary and

boundary).

5.1 Convergence of The GHW Method

In this part, we investigate the convergence of the presented method.

Theorem 5.1. If a continuous function u(x , t) ∈ L2(R × R), and bounded on [0, 1) ×
[0,1), namely |u(x , t)| ≤ δ, then the GHW expansion of the function converges uniformly

to u(x , t).

Proof. Suppose that u(x , t) be a function defined over [0,1)×[0, 1) and bounded such

that:

|u(x , t)| ≤ δ, (5.1)

where δ is a positive constant. Coefficients of the GHW for the continuous function

u(x , t) can be defined as:

ui j =

∫ 1

0

∫ 1

0

u(x , t)ψy,c
i (x)ψ

y,c
j (t) d x d t

= 2k1/2
1

Æ

hm1

∫ 1

0

∫

I1

u(x , t) Pλ,y,c
m1
(2k1 x − 2n1 + 1)ψy,c

j (t) d x d t,

(5.2)

where I1 =
�2n1−1

2k1
, 2n1

2k1

�

.

Now, by change of variable 2k1 x − 2n1 + 1= v, we get

ui j =
2k1/2

2k1

1
Æ

hm1

∫ 1

0

ψ
y,c
j (t)

�

∫ 1

−1

u
�

v + 2n1 − 1
2k1

, t
�

Pλ,y,c
m1
(v) dv

�

d t. (5.3)

By the mean value theorem of integral calculus, we will obtain

ui j =
1

2k1/2

1
Æ

hm1

∫ 1

0

ψ
y,c
j (t) u

�

η+ 2n1 − 1
2k1

, t
�

�

∫ 1

−1

Pλ,y,c
m1
(v) dv

�

d t, (5.4)
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where η ∈ (−1, 1).

ui j =
1

2k1/2

1
Æ

hm1

∫ 1

0

ψ
y,c
j (t) u

�

η+ 2n1 − 1
2k1

, t
�

 

∫ 1

−1

c Pλ,y,c
m1+1

′
(v)

2λ(m1 + 1)
dv

!

d t, (5.5)

since Pλ,y,c
m1

′(v) = 2λ
c (m1 + 1) Pλ,y,c

m1+1(v).

ui j =
1

2k1/2

1
Æ

hm1

∫ 1

0

ψ
y,c
j (t) u

�

η+ 2n1 − 1
2k1

, t
�

 

c Pλ,y,c
m1+1(v)

2λ(m1 + 1)

!1

−1

d t

=
c

λ2k1/2

1
Æ

hm1

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

×
∫ 1

0

ψ
y,c
j (t) u

�

η+ 2n1 − 1
2k1

, t
�

d t

=
c

λ2k1/2

1
Æ

hm1

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

×
∫

I2

u
�

η+ 2n1 − 1
2k1

, t
�

2k2/2
1

Æ

hm2

Pλ,y,c
m2
(2k2 t − 2n2 + 1) d t

(5.6)

where I2 =
�2n2−1

2k2
, 2n2

2k2

�

.

By changing the variable 2k2 t − 2n2 + 1=ω, we get

ui j =
c 2k2/2

λ2k1/2 2k2

1
Æ

hm1
hm2

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

×
∫ 1

−1

u
�

η+ 2n1 − 1
2k1

,
ω+ 2n2 − 1

2k2

�

Pλ,y,c
m2
(ω) dω.

(5.7)

Again using the mean value theorem of integral calculus, the following equation that
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we have

ui j =
c

λ2(k1+k2)/2

1
Æ

hm1
hm2

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

× u
�

η+ 2n1 − 1
2k1

,
ξ+ 2n2 − 1

2k2

�

∫ 1

−1

Pλ,y,c
m2
(ω) dω, whereξ ∈ (−1, 1)

=
c

λ2(k1+k2)/2

1
Æ

hm1
hm2

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

× u
�

η+ 2n1 − 1
2k1

,
ξ+ 2n2 − 1

2k2

�

∫ 1

−1

c Pλ,y,c
m2

′(ω)

2λ(m2 + 1)
dω,

=
c2

λ2 2(k1+k2)/2

1
Æ

hm1
hm2

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

× u
�

η+ 2n1 − 1
2k1

,
ξ+ 2n2 − 1

2k2

�

�

Pλ,y,c
m2
(ω)

2(m2 + 1)

�1

−1

=
c2

λ2 2(k1+k2)/2

1
Æ

hm1
hm2

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

× u
�

η+ 2n1 − 1
2k1

,
ξ+ 2n2 − 1

2k2

�

 

Pλ,y,c
m2+1(1)− Pλ,y,c

m2+1(−1)

2(m2 + 1)

!

.

(5.8)

Therefore

�

�ui j

�

�=
c2

λ2 2(k1+k2)/2

1
Æ

hm1
hm2

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

×
�

�

�

�

u
�

η+ 2n1 − 1
2k1

,
ξ+ 2n2 − 1

2k2

�

�

�

�

�

 

Pλ,y,c
m2+1(1)− Pλ,y,c

m2+1(−1)

2(m2 + 1)

!

≤
c2

λ2 2(k1+k2)/2

1
Æ

hm1
hm2

 

Pλ,y,c
m1+1(1)− Pλ,y,c

m1+1(−1)

2(m1 + 1)

!

 

Pλ,y,c
m2+1(1)− Pλ,y,c

m2+1(−1)

2(m2 + 1)

!

δ,

(5.9)

since u(x , t) is bounded. Hence
∑∞

i=0

∑∞
j=0 ui j is absolutely convergent.

■
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5.2 Implementation of the proposed method

In this section, we will apply the GHW method to find the solution for the following

problems:

5.2.1 Type 1

The partial differential equations with fractional order:

∂ αu
∂ xα

= F

�

x , t, u(x , t),
∂ γu
∂ xγ

,
∂ ϑu
∂ tϑ

,
∂ βu
∂ tβ

�

, γ > 0,ϑ ≤ 1, 1< α,β ≤ 2 (5.10)

with the Dirichlet boundary conditions:

u(x , 0) = f0(x), u(0, t) = g0(t),

u(x , 1) = f1(x), u(1, t) = g1(t),
(5.11)

where the functions fi(x) and gi(t) are twice continuously differentiable functions on

L2[0, 1]. To solve the above problem we approximate

∂ α+βu
∂ xα∂ tβ

≃ Ψ y,c T (x)UΨ y,c(t), (5.12)

where U = [ui j]m̂×m̂ represent an unknown matrix which should be identified and

Ψ y,c(.) is defined as in Eq.2.40. When applied the integration of fractional order β of

Eq.5.12 with respect to t, we have

∂ αu
∂ xα
≃ Ψ y,c T (x)U P y,c,β Ψ y,c(t) +

∂ αu
∂ xα

�

�

�

�

t=0

+ t
∂

∂ t

�

∂ αu
∂ xα

�

�

�

�

�

t=0

(5.13)

Putting t = 1 in Eq.5.13 and considering Eq.5.11, we have

∂

∂ t

�

∂ αu
∂ xα

�

�

�

�

�

t=0

≃
∂ α f1

∂ xα
−
∂ α f0

∂ xα
−Ψ y,c T (x)U P y,c,β Ψ y,c(1). (5.14)

By substituting Eq.5.14 into Eq.5.13, we yield

∂ αu
∂ xα
≃ Ψ y,c T (x)U P y,c,β Ψ y,c(t)− t Ψ y,c T (x)U P y,c,β Ψ y,c(1)

+ (1− t)
∂ α f0

∂ xα
+ t

∂ α f1

∂ xα
.

(5.15)
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On the other hand, by performing the integration of fractional order α of Eq.5.12 with

respect to x , we obtain

∂ βu
∂ tβ
≃ (P y,c,α Ψ y,c(x))T U Ψ y,c(t) +

∂ βu
∂ tβ

�

�

�

�

x=0

+ x
∂

∂ x

�

∂ βu
∂ tβ

��

�

�

�

x=0

. (5.16)

We putting x = 1 in Eq.5.16 and considering Eq.5.11, we have

∂ βu
∂ tβ
≃ (P y,c,α Ψ y,c(x))T U Ψ y,c(t)− x (P y,c,α Ψ y,c(1))T U Ψ y,c(t)

+ (1− x)
∂ β g0

∂ tβ
+ x

∂ β g1

∂ tβ
.

(5.17)

Next, by fractional integrating of order α of Eq.5.15 with respect to x , and considering

Eq.5.11, we get

u(x , t)≃ (P y,c,α Ψ y,c(x))T U P y,c,β Ψ y,c(t)− t (P y,c,α Ψ y,c(x))T

U P y,c,β Ψ y,c(1)− x (P y,c,α Ψ y,c(1))T U P y,c,β Ψ y,c(t)

+ x t (P y,c,α Ψ y,c(1))T U P y,c,β Ψ y,c(1) + R(x , t),

(5.18)

where

R(x , t) =g0(t) + (1− t)( f0(x)− f0(0)− x f ′0(0)) + t ( f1(x)

− f1(0)− x f ′1(0)) + x (g1(t)− g0(t))− x (1− t)

( f0(1)− f0(0)− f ′0(0))− x t( f1(1)− f1(0)− f ′1(0)).

(5.19)

Now, by fractional differentiation of order γ of Eq.5.18 with respect to x , we yield

∂ γu
∂ xγ
≃
�

P y,c,α−γ Ψ y,c(x)
�T

U P y,c,β Ψ y,c(t)− t
�

P y,c,α−γ Ψ y,c(x)
�T

U P y,c,β Ψ y,c(1)−
x1−γ

Γ (2− γ)
(P y,c,α Ψ y,c(1))T U P y,c,β Ψ y,c(t)

+
x1−γ t
Γ (2− γ)

(P y,c,α Ψ y,c(1))T U P y,c,β Ψ y,c(1) +
∂ γR(x , t)
∂ xγ

.

(5.20)

By using fractional derivative of order θ of Eq.5.18 with respect to t, we get

∂ θu
∂ tθ
≃ (P y,c,α Ψ y,c(x))T U P y,c,β−θ Ψ y,c(t)−

t1−θ

Γ (2− θ )
(P y,c,α Ψ y,c(x))T U P y,c,β Ψ y,c(1)− x (P y,c,α Ψ y,c(1))T

U P y,c,β−θ Ψ y,c(t) +
x t1−θ

Γ (2− θ )
(P y,c,α Ψ y,c(1))T U P y,c,β

Ψ y,c(1) +
∂ θR(x , t)
∂ tθ

.

(5.21)
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By substituting Eq.5.15, 5.17-5.21 into Eq.5.10, and replacing ≃ by =, and taking

collocation points x i, t i = (2i − 1)/2m̂; i = 1,2, · · · , m̂, into the generated equation,

we get the non-linear system of algebraic equation as follows:

∂ αu
∂ xα
− F

�

x , t, u(x , t),
∂ γu
∂ xγ

,
∂ ϑu
∂ tϑ

,
∂ βu
∂ tβ

��

�

�

�

(x i ,t i)

= 0, i, j = 1, · · · , m̂. (5.22)

To solve the above system and finding U , any iterative method such as Newton’s

iterative method can be used. We get the approximate solution by substituting U

into Eq.5.18.

5.2.2 Type 2

Consider the partial fractional differential equations with the following form

∂ αu
∂ xα

= F

�

x , t, u(x , t),
∂ γu
∂ xγ

,
∂ βu
∂ tβ

�

, γ > 0,β ≤ 1, 1< α≤ 2 (5.23)

with initial condition

u(x , 0) = f0(x), (5.24)

and boundary conditions:

u(0, t) = g0(t), u(1, t) = g1(t), (5.25)

where the functions f0(x) and gi(t) are given functions in L2[0,1]. For solving this

problem we approximate

∂ α+βu
∂ xα∂ tβ

≃ Ψ y,c T (x)UΨ y,c(t), (5.26)

where U = [ui j]m̂×m̂ is an unknown matrix which should be found. By the integral of

fractional order β of Eq. 5.26 with respect to t, we yield

∂ αu
∂ xα
≃ Ψ y,c T (x)U P y,c,β Ψ y,c(t) +

∂ αu
∂ xα

�

�

�

�

t=0

≃ Ψ y,c T (x)U P y,c,β Ψ y,c(t) +
∂ α f0

∂ xα
.

(5.27)

Furthermore, by applying the fractional integration of order α of Eq.5.26 with respect

to x , we obtain Eq.5.16. Putting x = 1 in Eq.5.16 and considering Eq.5.25, we get
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Eq.5.17. Now, by the integration with fractional order α of Eq.5.27, we have

u(x , t)≃ (P y,c,α Ψ y,c(x))T U P y,c,β Ψ y,c(t)

− f0(x)− f0(0)− x f ′0(0) + g0(t) + x
∂ u
∂ x

�

�

�

�

x=0

.
(5.28)

By putting x = 1 in Eq.5.28 and concluding Eq’s.5.24, 5.25, we can rewrite Eq.5.28

as
u(x , t)≃ (P y,c,α Ψ y,c(x))T U P y,c,β Ψ y,c(t)− x (P y,c,α Ψ y,c(1))T

U P y,c,β Ψ y,c(t) +H(x , t)
(5.29)

where

H(x , t) = g0(t) + f0(x)− f0(0)− x f ′0(0) + x (g1(t)− g0(t))

− x ( f0(1)− f0(0)− f ′0(0)).
(5.30)

By drive Eq.5.29 with fractional order γ with respect to x , we obtain

∂ γu
∂ xγ
≃
�

P y,c,α−γ Ψ y,c(x)
�T

U P y,c,β Ψ y,c(t)−
x1−γ

Γ (2− γ)

(P y,c,α Ψ y,c(1))T U P y,c,β Ψ y,c(t) +
∂ γH(x , t)
∂ xγ

.

(5.31)

Now, by substituting Eq.5.27,5.17,5.29 and 5.31 in Eq.5.23 with replacing≃ by= and

taking the collocation points as in the Type 1, we obtained the following nonlinear

system of equations

∂ αu
∂ xα
− F

�

x , t, u(x , t),
∂ γu
∂ xγ

,
∂ βu
∂ tβ

��

�

�

�

(x i ,t i)

= 0, i, j = 1, · · · , m̂, (5.32)

which can be solved for the unknown matrix U .

5.3 Numerical Illustration

To illustrate the accuracy of the presented method, the results are examined by using

L∞, L2 maximum absolute error and root mean square error respectively as:

L∞ = Max
1≤i≤m̂
|u(x i, t i)− ũ(x i, t i)| , (5.33)

L2 =

√

√

√ 1
m̂

m̂
∑

i=1

|u(x i, t i)− ũ(x i, t i)|
2. (5.34)
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Example 5.1 Let consider the following fractional partial differential equation:

∂ 3/2u(x , t)
∂ x3/2

+
∂ 3/4u(x , t)
∂ x3/4

+
∂ 4/3u(x , t)
∂ t4/3

+ u(x , t) = f (x , t), (5.35)

with

f (x , t) = x2 + t +
4
p

x
p
π
+

16
p

2 Γ (3/4)
5π

, (5.36)

and the boundary conditions:

u(x , o) = x2, u(o, t) = t,

u(x , 1) = x2 + 1, u(1, t) = 1+ t.
(5.37)

Where the exact solution of the above problem is u(x , t) = x2 + t.

The approximate solution obtained by the method presented in Section 5.2.1 as follow

as: Suppose
∂

3
2+

4
3 u

∂ x
3
2∂ t

4
3

≃ Ψ y,c T (x)UΨ y,c(t). (5.38)

By the fractional integration of order 4/3 of the Eq.5.38 with respect to t, then putting

t = 1 we obtain

∂ 3/2u
∂ x3/2

≃ Ψ y,c T (x)U P y,c,4/3 Ψ y,c(t)− t Ψ y,c T (x)U P y,c,4/3 Ψ y,c(1) +
4
p

x
p
π

. (5.39)

While integrate Eq.5.38 of order 3/2 with respect to x , then putting x = 1 we have

∂ 4/3u
∂ t4/3

≃
�

P y,c,3/2 Ψ y,c(x)
�T

U Ψ y,c(t)− x
�

P y,c,3/2 Ψ y,c(1)
�T

U Ψ y,c(t). (5.40)

Now, integrate Eq.5.39 of order 3/2 with respect to x , yields Eq.5.18 where

R(x , t) = t +w2. (5.41)

Next, to get ∂ 3/4u
∂ x3/4 as Eq.5.20 by fractional integration of order 3/4 of Eq.5.18 with

respect to x and

∂ 3/4R(x , t)
∂ x3/4

=
16 x5/4

p
2 Γ (3/4)

5 π
. (5.42)

By substituting Eq’s.5.39,5.40, 5.18 and 5.20 in Eq.5.35. Then substituting the

collocation points into the obtained equation, solving the system of algebraic equations

to find the unknown matrix U . The errors in some nodes (x , t) ∈ [0, 1] for λ, y, c =
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Figure 5.1 The approximate solution of Example 5.1.

1, k = 3 and M = 3 as in Table 5.1. Fig.5.1 represents the approximate solution by

the GHW method for m̂ = 12. The results in Table 5.2 are compared the proposed

method with the method that used by M.H. Hayderi et al [59].

Table 5.1 The errors for a different values of t of Example 5.1

t 0.1 0.3 0.5 0.7 0.9

L2 3.242 ×10−12 2.309 ×10−11 6.992 ×10−10 8.834 ×10−10 4.887 ×10−9

L∞ 7.449 ×10−12 4.146 ×10−11 1.573 ×10−9 2.245 ×10−9 1.603 ×10−8

Example 5.2 Consider the fractional partial differential equation:

∂ 1.5u(x , t)
∂ x1.5

+
∂ 1.2u(x , t)
∂ t1.2

= f (x , t), (5.43)

with

f (x , t) =
4
p

x
p
π
+

5 t4/3

2 Γ (4/5)
, (5.44)
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and the boundary conditions:

u(x , o) = x2, u(o, t) = t2,

u(x , 1) = x2 + 1, u(1, t) = 1+ t2.
(5.45)

Where the exact solution of the above problem is u(x , t) = x2 + t2.

Using the same procedure in Section 5.2.1 as: Let

∂ 1.5+1.2u
∂ x1.5∂ t1.2

≃ Ψ y,c T (x)UΨ y,c(t). (5.46)

By the fractional integration of order 1.2 of the Eq.5.46 with respect to t, then putting

t = 1 we obtain

∂ 1.5u
∂ x1.5

≃ Ψ y,c T (x)U P y,c,1.2 Ψ y,c(t)− t Ψ y,c T (x)U P y,c,1.2 Ψ y,c(1) + 2.256758334
p

x .

(5.47)

While integrate Eq.5.46 of order 1.5 with respect to x , then putting x = 1 we have

∂ 1.2u
∂ t1.2

≃
�

P y,c,1.5 Ψ y,c(x)
�T

U Ψ y,c(t)−x
�

P y,c,1.5 Ψ y,c(1)
�T

U Ψ y,c(t)+2.147342548 t4/5.

(5.48)

By substituting Eq’s.5.47, 5.48 in Eq.5.43. Then solving the system of algebraic

equations that be obtained after substitute the collocation points in the generated

equation to find the unknown matrix U . Numerical results obtained by the proposed

method for y, c, λ = 1 and for the different values of k, M consider Table 5.4 and

Fig.5.2.
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The absolute error of Example 5.2 for k = 3, M = 3.

The absolute error of Example 5.2 for k = 2, M = 3.

The absolute error of Example 5.2 for k = 1, M = 3.

Figure 5.2 Absolute errors with different values of k, M for Example 5.2.
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Table 5.4 The comparison of errors for different values of k, M in different values of
t of Example 5.2.

t 0.1 0.3 0.5 0.7 0.9

L∞ for k = 1, M = 3 8.065770E-12 1.798584E-11 4.476419E-12 4.859402E-11 1.412257E-10

L2 for k = 1, M = 3 8.947909E-12 1.524394E-11 3.348171E-12 4.550491E-11 1.299698E-10

L∞ for k = 2, M = 3 1.720468E-11 4.185996E-11 3.104470E-10 2.117184E-10 1.216400E-10

L2 for k = 2, M = 3 1.468218E-11 3.080179E-11 1.777416E-10 1.268601E-10 8.001475E-11

L∞ for k = 3, M = 3 2.058742E-11 1.019086E-10 1.370306E-9 5.407648E-10 1.711939E-9

L2 for k = 3, M = 3 9.660581E-12 4.845856E-11 4.134269E-10 2.124966E-10 5.419098E-10

Example 5.3 Consider the following fractional partial differential equation:

∂ 1/8u(x , t)
∂ x1/8

+
∂ 1/3u(x , t)
∂ t1/3

=
8 x7/8

7 Γ
�

7
8

� +
3 t2/3

2 Γ
�

2
3

� , 0≤ x , t ≤ 1, (5.49)

with initial -boundary conditions as:

u(x , 0) = x , u(0, t) = 2 t,

u(x , 1) = x + 2 u(1, t) = 1+ 2 t.
(5.50)

The exact solution of this problem u(x , t) = x + 2t.

When we applied the GHW method to solve the above problem using the same

procedure in the previous examples, Table 5.3 shows variation of the error values

between the Ref. [63] method and the proposed method. In addition, GHW method

given better results with less k, M and y, c,λ= 1. Fig.5.3 has been shown the absolute

error when k = 2, M = 4, y, c and λ = 1. While 5.5 explained the absolute errors for

a different values of k, M and y, c,λ= 1.

Example 5.4 Consider the following Burger’s fractional differential equation:

∂ αu(x , t)
∂ xα

−
∂ βu(x , t)
∂ tβ

− u(x , t)
∂ u(x , t)
∂ x

= 0, 0< β ≤ 1, 1< α≤ 2, (5.51)

subject to the conditions:

u(x , 0) = 2 x ,

u(0, t) = 0, u(1, t) =
2

1+ 2 t
.

(5.52)

The exact solution of this problem u(x , t) = 2 x
1+2 t .
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Figure 5.3 Absolute error of the approximate solution obtained by GHW method of
Example 5.3

Table 5.5 The absolute errors of the proposed method for y, c,λ= 1 and different
values of k, M for Example 5.3.

(x,t) k = 2, M = 4 k = 3, M = 3 k = 3, M = 4

(0.1,.01) 1.6056 ×10−11 5.2862 ×10−13 1.2600 ×10−13

(0.2,0.2) 9.8585 ×10−12 3.5051 ×10−11 1.2991 ×10−11

(0.3,0.3) 4.0419 ×10−11 5.3720 ×10−12 1.4337 ×10−12

(0.4,0.4) 2.0966 ×10−12 1.3186 ×10−11 1.2011 ×10−11

(0.5,0.5) 4.9595 ×10−12 2.2372 ×10−10 1.1894 ×10−11

(0.6,0.6) 1.4464 ×10−12 9.9521 ×10−11 6.7577 ×10−12

(0.7,0.7) 4.9868 ×10−13 3.7911 ×10−11 5.6182 ×10−13

(0.8,0.8) 5.6008 ×10−13 2.3421 ×10−12 3.0564 ×10−11

(0.9,0.9) 3.5169 ×10−13 2.3494 ×10−11 1.1616 ×10−10

To solve the above problem by the method in Section 5.2.2, we integrate Eg.5.26 of

fractional order β with respect to t, we have

∂ αu
∂ xα
≃ Ψ y,c T (x)U P y,c,β Ψ y,c(t). (5.53)
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Figure 5.4 Absolute error of the approximate solution obtained by GHW method of
Example 5.4.

Next by integrating Eg.5.26 of fractional order α with respect to x and putting x = 1,

we yield

∂ βu
∂ tβ
≃ (P y,c,α Ψ y,c(x))T U Ψ y,c(t)− x (P y,c,α Ψ y,c(1))T U Ψ y,c(t)−

4 x
(1+ 2 t)2

. (5.54)

By the integration with fractional order α of Eq.5.53, and putting x = 1 we obtain

Eq.5.29 where

H(x , t) =
2 x

1+ 2 t
. (5.55)

By substituting γ= 1 in Eq.5.31 we obtain ∂ u
∂ x where

∂ H(x , t)
∂ x

=
2

1+ 2 t
. (5.56)

Now, substitute Eq’s 5.53,5.54, 5.29 and 5.31 in Eq.5.51 and solving the non-linear

obtained system to find the unknown matrix U .

Fig.5.4 has been shown the absolute error when k = 1, M = 3, y, c,λ= 1 and α= 1.5.

The results in Table 5.6 consider the absolute errors for a different values of α with

notation the results obtained for 15th digits number.
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Table 5.6 The absolute errors of the proposed method for y, c,λ= 1, k = 1, M = 3
and different values of α for Example 5.4.

(x,t) Absolute Error α= 1.2 Absolute Error α= 1.5 Absolute Error α= 1.75

(0.1,0.1) 0.5361633e-1 0.2336636E-1 0

(0.2,0.2) 0.1254141 0.5675636E-2 0

(0.3,0.3) 0.1765109 0.8496859E-2 0

(0.4,0.4) 0.2235409 0.3020368E-2 0

(0.5,0.5) 0.2789657 4.889778E-13 0

(0.6,0.6) 0.3510744 0.3020368E-2 0

(0.7,0.7) 0.4439836 0.8496859E-2 0

(0.8,0.8) 0.5576372 0.5675636E-2 0

(0.9,0.9) 0.6878067 0.2336636E-1 0

Example 5.5 Consider the following time- fractional diffusion equation:

∂ βu(x , t)
∂ tβ

−
∂ 2u(x , t)
∂ x2

= f (x , t), 0< x < 1, 0< t ≤ 1, 0< β ≤ 1, (5.57)

where

f (x , t) =
2 t2−β

Γ (3− β)
− 2 (5.58)

and the initial-boundary conditions:

u(x , 0) = x2, u(0, t) = t2, u(1, t) = 1+ t2. (5.59)

The exact solution of this problem is u(x , t) = x2 + t2.

We reach the exact solution with error equal to zero when k = 2, M = 2, 3, β = 0.5,1

and y, c, λ= 1. Absolute error of this problem when k = 2, M = 3, β = 0.9 shown in

Fig.5.5 and Table 5.7 with different k, M , β , all the results obtained with y, c, λ = 1.

Moreover, Table 5.8 shows the performance of GHW method when its error compared

with method used in Ref [64] the results obtained when y, c, λ= 1 with notation the

results obtained for 15th digits number.
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Figure 5.5 Absolute error of Example 5.5.

Table 5.7 The absolute errors for y, c, λ= 1 and different values of k, M , β for
Example 5.5.

(x,t) k = 2, M = 3, β = 0.5 k = 3, M = 3, β = 0.5 k = 2, M = 3, β = 0.9 k = 3, M = 3, β = 0.9

(0.2,0.2) 0 1.2606 ×10−12 6.8115 ×10−12 1.2865 ×10−13

(0.4,0.4) 0 1.6297 ×10−12 2.4000 ×10−12 8.9881 ×10−12

(0.6,0.6) 5.8127 ×10−12 3.4912 ×10−11 1.6885 ×10−11 5.0683 ×10−11

(0.8,0.8) 1.2010 ×10−10 2.2643 ×10−11 9.2382 ×10−11 4.0967 ×10−11

Table 5.8 Comparison the absolute errors for Example 5.5.

The method in Ref. [64] The proposed method

(x,t) J = 1, m= 2 J = 1, m= 3 J = 2, m= 2 k = 2, M = 3, β = 0.5 k = 3, M = 3, β = 0.5

(0.2,0.25) 3.3 ×10−2 4.4 ×10−3 8.8 ×10−2 0 7.6392 ×10−13

(0.4,0.25) 1.9 ×10−2 5.1 ×10−2 9.8 ×10−2 0 2.7958 ×10−13

(0.6,0.25) 1.6 ×10−2 7.1 ×10−2 3.4×10−1 0 4.4831 ×10−12

(0.8,0.25) 1.2 ×10−1 2.8 ×10−2 4.3 ×10−1 0 1.6001 ×10−11

Example 5.6

∂ 2u(x , t)
∂ x2

+
∂ βu(x , t)
∂ tβ

+ x
∂ u(x , t)
∂ x

= f (x , t), 0≤ x , t < 1, 0< β ≤ 1 (5.60)
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Figure 5.6 Approximate solution of Example 5.6 with k = 2, M = 3, β = 0.5

With

f (x , t) = 2 tβ + 2 x2 + 2, (5.61)

and the initial- boundary conditions as:

u(x , 0) = x2,

u(0, t) =
2 Γ (β + 1)
Γ (2β + 1)

t2β , u(1, t) = 1+
2 Γ (β + 1)
Γ (2β + 1)

t2β .
(5.62)

The exact solution of the above problem is

u(x , t) = x2 +
2 Γ (β + 1)
Γ (2β + 1)

t2β . (5.63)

We applied the GHW method to solve this problem for y, c, λ = 1 and k = 2, M =
3,β = 0.5 as in Fig’s 5.6 and 5.7. F. Zhou and X. Xu Ref. [61] established the

preference of their method by a comparison between the 3rd kind of Chebyshev

wavelets collection to solve this problem with some other methods. As a result, to

prove the efficiency and accuracy of the GHW method, Table 5.9 and Table 5.10

comparing the results of the proposed method with Ref. [61] results with notation

the results obtained for 17th digits number.
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Figure 5.7 Absolute error of Example 5.6 with k = 2, M = 3, β = 0.5

Table 5.10 Comparison of the absolute error of Example 5.6 with
k = 2, M = 3,β = 0.5 and t = 0.5.

x Exact solution Method of Ref. [61] The present method

(0.1,0.1) 0.896226925452758 1.110 ×10−16 0

(0.2,0.2) 0.926226925452758 1.110 ×10−16 0

(0.3,0.3) 0.976226925452758 2.220 ×10−16 0

(0.4,0.4) 1.04622692545276 2.220 ×10−16 0

(0.5,0.5) 1.13622692545276 0 0

(0.6,0.6) 1.24622692545276 0 0

(0.7,0.7) 1.37622692545276 2.220 ×10−16 0

(0.8,0.8) 1.52622692545276 0 0

(0.9,0.9) 1.69622692545276 0 0
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6
SOLVING A COUPLED TIME- FRACTIONAL PARTIAL

DIFFERENTIAL BY USING GENERALIZED

GEGENBAUER- HUMBERT WAVELETS

Although, widespread of using partial differential equations to model different

physical and mathematical problems, majority of the PDE applications arise when

modeling these problems by using coupled systems of partial differential equations.

For instance chemical and engineering [65], [66], modeling heart electrical activity

(bio-mechanics) [67], [68] and modeling gravitational problems [69].

Fractional derivation and integration have attracted the attention of the researchers

recently. Comparing with differential equations with integer order fractional-order

differential equations have proven its efficiency and accuracy of describe the real

problems. Therefore, many authors modeled most of physical and engineering

problems by using systems of fractional differential equations for instance [70–75]
and [76]. As a result, several methods investigated to solve fractional partial

differential equations (FPDEs) analytically and numerically such as Kudryashov and

Bernstein methods [77, 78], homotopy analysis method [79, 80], transform method

like Sumudu and reduced differential [81, 82], and Adomain decomposition method

[83]. Wavelet is one of the numerical techniques based on orthogonal polynomials

used to find the approximate solution of FPDEs [84–87] and [50].

In fluid dynamics, the coupled systems of Whitham-Broer-Kaup (WBK) equations are

described shallow water waves propagation [88] with the form:

ut + u ux +ωx +δux x = 0,

ωt + (uω)x +ηux x x −δωx x = 0,
(6.1)

where the horizontal velocity denotes by u(x , t), ω(x , t) represent the height that

deviates from the equilibrium postion of liquid and δ,η are constants to represent the

different diffusion powers. In the last years, many techniques are developed to obtain
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the solutions of the (WBK) equations exactly and numerically like Xie et al. investigate

some solutions of new solitary wave by using the hyperbolic function method [89],
while Sayed and Kaya obtained the aapproximate solutions by applying Adomain

decomposition method [90] and by homotopy perturbation method Mohyud-Din et

al. [91] find the exact and approximate traveling wave solution of the (WBK) systems.

The time fractional form of (WBK) equations:

Dµt u+ u ux +ωx +δux x = 0,

Dµt ω+ (uω)x +ηux x x −δωx x = 0,
(6.2)

where 0< µ≤ 1. When η= 1 and δ = 0, system Eq.6.2 becomes modified Boussinesq

equations (MB) with fractional order and if η = 0, δ = 1/2 being approximate long

wave equations(ALW). In [92] Wang and Chen used residual power series method

to find the approximate travelling solutions of time fractional (WBK) equations. Ali

et al. [93] employed Laplace transform with Adomian decomposition method to

find the numerical solution of the fractional coupled nonlinear (WBK) systems. To

construct approximate solutions for a nonlinear coupled WBK and Jaulent–Miodek

system Al-Smadi et al.[94] implement the conformable residual power series.

In 19th century, Korteweg-de Vries equation (KdV) grew up the in the shallow water

by Hirota and Satsuma and it takes a wide applications for instance wave of ion

acoustic in plasma, in one dimensional long waves in shallow water waves and in

the density-stratified of ocean. The form of time fractional KdV can be as:

Dµt u= ζu ux + γωωx + ςux x x + f (x , t),

Dβt ω= ςωx x x − γuωx + g(x , t),
(6.3)

where 0< µ, β ≤ 1 and ζ, γ, ς are known constants. Bulut et al. [95] solved coupled

systems of the KdV equations by Haar wavelets and in 2018 Albuohimad et al. solved

these systems by using spectral collection method [96]. The authors in [97] and [98]
studied the solutions of KdV equations of 5th order and generalized KdV equation.

Ghany and Bab have investigated the Wick-type stochastic coupled KdV equation with

fractional order and the exact solution of it are presented [99]. Based on Legendre

polynomials Bhrawy and his friends solved the time fractional coupled Kdv equations

[100].

In this chapter, we choose another orthogonal polynomials called generalized

Gegnbauer -Humbert polynomials to construct generalized wavelets method for

solving coupled systems of FPDEs. The presented method are new to solve two types

of shallow waters as a coupled systems in addition to the known methods.
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6.1 characterization of the proposed method

In this section, we applied the GHW with their operational matrices of integration to

solve the following problems:

6.1.1 WBK equation

The partial differential equations with fractional order:

Dµt u+ u ux +ωx +δux x = 0,

Dµt ω+ (uω)x +ηux x x −δωx x = 0,
(6.4)

with the intial conditions:

u(x , 0) = f (x), ω(x , 0) = g(x). (6.5)

The procedure of the proposed method summarized as:

To solve this system, we suppose that

∂ µ+3u
∂ tµ∂ x3

= Ψ y,c T (x)UΨ y,c(t), (6.6)

and
∂ µ+3ω

∂ tµ∂ x3
= Ψ y,c T (x)WΨ y,c(t), (6.7)

where U = [ui j]m̂×m̂ and W = [ωi j]m̂×m̂ are unknown matrices which should be found

and Ψ y,c(.) is the vector that is defined in Eq. 2.40. By fractional integration of order

µ of Eq. 6.6 with respect to t and substituting the initial condition, we obtain

∂ 3u
∂ x3

= Ψ y,c T (x)U P y,c,µ Ψ y,c(t) + f ′′′(x). (6.8)

Now, integrating Eq.6.6 three times with respect to x we have

∂ µu
∂ tµ

=
�

P y,c,3 Ψ y,c(x)
�T

U Ψ y,c(t) +
∂ µu
∂ tµ

�

�

�

�

x=0

+ x
∂

∂ x

�

∂ µu
∂ tµ

�

�

�

�

�

x=0

+
x2

2
∂ 2

∂ x2

�

∂ µu
∂ tµ

�

�

�

�

�

x=0

.

(6.9)

Putting x = 1 in Eq.6.9 and let u(0, t) = u0(t), u(1, t) = u1(t) and ∂ u(0,t)
∂ x = u3(t) and
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can be obtained from the exact solutions, we get

∂ µu
∂ tµ

=
�

P y,c,3 Ψ y,c(x)
�T

U Ψ y,c(t)− x2
�

P y,c,3 Ψ y,c(1)
�T

U

Ψ y,c(t) + x2 ∂
µu1

∂ tµ
+ (1− x2)

∂ µu0

∂ tµ
+ (x − x2)

∂ µu3

∂ tµ
.

(6.10)

By integrating of fractional order µ of Eq.6.10 with respect to t, we get

u(x , t) =
�

P y,c,3 Ψ y,c(x)
�T

U P y,c,µ Ψ y,c(t)

− (x2 + x)
�

P y,c,3 Ψ y,c(1)
�T

U P y,c,µ Ψ y,c(t) +H,
(6.11)

where H defined as the following equation

H = f (x) + x2 (u1(t)− u1(0)) + (1− x2) (u0(t)− u0(0))

+ (x − x2) (u3(t)− u3(0)).
(6.12)

Derive Eq.6.11 two times with respect to x we obtain the following equations

∂ u
∂ x
=
�

P y,c,2 Ψ y,c(x)
�T

U P y,c,µ Ψ y,c(t)

− (2 x + 1)
�

P y,c,3 Ψ y,c(1)
�T

U P y,c,µ Ψ y,c(t) +
∂ H
∂ x

.
(6.13)

∂ 2u
∂ x2

=
�

P y,c,1 Ψ y,c(x)
�T

U P y,c,µ Ψ y,c(t)

− 2
�

P y,c,3 Ψ y,c(1)
�T

U P y,c,µ Ψ y,c(t) +
∂ 2H
∂ x2

.
(6.14)

The same procedure applied of the next systems, we get

∂ 3ω

∂ x3
= Ψ y,c T (x)W P y,c,µ Ψ y,c(t) + g ′′′(x). (6.15)

Let ω(0, t) = ω0(t), ω(1, t) = ω1(t) and ∂ω(0,t)
∂ x = ω3(t) and can be obtained from

the exact solutions

∂ µω

∂ tµ
=
�

P y,c,3 Ψ y,c(x)
�T

W Ψ y,c(t)− x2
�

P y,c,3 Ψ y,c(1)
�T

W

Ψ y,c(t) + x2 ∂
µω1

∂ tµ
+ (1− x2)

∂ µω0

∂ tµ
+ (x − x2)

∂ µω

∂ tµ
.

(6.16)

ω(x , t) =
�

P y,c,3 Ψ y,c(x)
�T

W P y,c,µ Ψ y,c(t)

− (x2 + x)
�

P y,c,3 Ψ y,c(1)
�T

W P y,c,µ Ψ y,c(t) + R,
(6.17)
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and R defined as

R= g(x) + x2 (ω1(t)−ω1(0)) + (1− x2) (ω0(t)−ω0(0))

+ (x − x2) (ω3(t)−ω3(0)).
(6.18)

∂ω

∂ x
=
�

P y,c,2 Ψ y,c(x)
�T

W P y,c,µ Ψ y,c(t)

− (2 x + 1)
�

P y,c,3 Ψ y,c(1)
�T

W P y,c,µ Ψ y,c(t) +
∂ R
∂ x

.
(6.19)

∂ 2ω

∂ x2
=
�

P y,c,1 Ψ y,c(x)
�T

W P y,c,µ Ψ y,c(t)

− 2
�

P y,c,3 Ψ y,c(1)
�T

W P y,c,µ Ψ y,c(t) +
∂ 2R
∂ x2

.
(6.20)

Finally, substituting Eq.6.8,(6.10-6.20) in Eq.6.4 then take the collocation points for

t, x we obtain an algebraic nonlinear systems to find the matrices of coefficients U , W .

6.1.2 Kdv equation

Consider the time fractional coupled equation with the following form

Dµt u= ζu ux + γωωx + ςux x x + f (x , t),

Dβt ω= ςωx x x − γuωx + g(x , t),
(6.21)

with initial condition

u(x , 0) = f0(x), ω(x , 0) = g0(x) (6.22)

and boundary conditions:

u(0, t) = v1(t), u(1, t) = v2(t), ux(0, t) = v3(t)

ω(0, t) = r1(t), ω(1, t) = r2(t), ωx(0, t) = r3(t)
(6.23)

where ζ,γ,ς are known constants. Now, to solve the above coupled systems we

approximate the highest order using GHW wavelets as:

∂ 3u
∂ x3
≃ Ψ y,c T (x)UΨ y,c(t), (6.24)

∂ 3ω

∂ x3
≃ Ψ y,c T (x)WΨ y,c(t), (6.25)

where U = [ui j]m̂×m̂ and W = [ωi j]m̂×m̂ are unknown coefficients matrices which

should be found and Ψ y,c(.) is the vector defined in Eq.2.24. By integrating Eq.6.24
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three times with respect to x then substitute the boundary conditions, we obtain

∂ 2u
∂ x2

=
�

P y,c,1 Ψ y,c(x)
�T

U Ψ y,c(t) +
∂ 2u
∂ x2

�

�

�

�

x=0

. (6.26)

∂ u
∂ x
=
�

P y,c,2 Ψ y,c(x)
�T

U Ψ y,c(t) + x
∂ 2u
∂ x2

�

�

�

�

x=0

+
∂ u
∂ x

�

�

�

�

x=0

. (6.27)

u(x , t) =
�

P y,c,3 Ψ y,c(x)
�T

U P y,c,β Ψ y,c(t) + v1(t)

+
x2

2
∂ 2u
∂ x2

�

�

�

�

x=0

+ x
∂ u
∂ x

�

�

�

�

x=0

.
(6.28)

Putting x = 1 in last equation, we get

∂ 2u
∂ x2

�

�

�

�

x=0

=2 v2(t)− 2 v1(t)− 2 v3(t)− 2
�

P y,c,3 Ψ y,c(1)
�T

U P y,c,β Ψ y,c(t)

(6.29)

Next, substituting Eq.6.29 in Eqs.6.26,6.27 and 6.28 we have

∂ 2u
∂ x2

=
�

P y,c,1 Ψ y,c(x)
�T

U Ψ y,c(t)− 2
�

P y,c,3 Ψ y,c(1)
�T

U

Ψ y,c(t)− 2 (v2(t)− v1(t)− v3(t)).
(6.30)

∂ u
∂ x
=
�

P y,c,2 Ψ y,c(x)
�T

U Ψ y,c(t)− 2 x
�

P y,c,3 Ψ y,c(1)
�T

U P y,c,β Ψ y,c(t) + 2 x (v2(t)− v1(t)− v3(t)) + v3(t).
(6.31)

u(x , t) =
�

P y,c,3 Ψ y,c(x)
�T

U P y,c,β Ψ y,c(t)− x2
�

P y,c,3 Ψ y,c(1)
�T

U P y,c,β Ψ y,c(t) + v1(t) + (x − x2) v3(t)

+ x2 (v2(t)− v1(t)).

(6.32)

We applied the same steps of Eq.6.25 as

∂ 2ω

∂ x2
=
�

P y,c,1 Ψ y,c(x)
�T

W Ψ y,c(t)− 2
�

P y,c,3 Ψ y,c(1)
�T

W Ψ y,c(t)− 2 (r2(t)− r1(t)− r3(t)).
(6.33)

∂ω

∂ x
=
�

P y,c,2 Ψ y,c(x)
�T

W Ψ y,c(t)− 2 x
�

P y,c,3 Ψ y,c(1)
�T

U P y,c,β Ψ y,c(t) + 2 x (r2(t)− r1(t)− r3(t)) + r3(t).
(6.34)
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ω(x , t) =
�

P y,c,3 Ψ y,c(x)
�T

W P y,c,β Ψ y,c(t)− x2

�

P y,c,3 Ψ y,c(1)
�T

W P y,c,β Ψ y,c(t) + r1(t) + (x − x2)

r3(t) + x2 (r2(t)− r1(t)).

(6.35)

We substitute Eqs.6.24,6.25 and 6.30-6.35 in Eqs.6.21 to get an algebraic nonlinear

systems after taking the collocation points for t, x , The solution of the algebraic

systems are the coefficient matrices U , W .

6.2 Numerical Exterminates

In order to evaluate the difference between analytic and numerical solutions, we

concern the root mean square error L2 and maximum absolute error L∞ as:

L∞ = Max
1≤i≤m̂
|u(x i, t i)− ũ(x i, t i)| , (6.36)

L2 =

√

√

√ 1
m̂

m̂
∑

i=1

|u(x i, t i)− ũ(x i, t i)|
2. (6.37)

Example 6.1 Let be consider the following fractional WBK equations:

Dµt u+ u ux +ωx +δux x = 0,

Dµt ω+ (uω)x +ηux x x −δωx x = 0,
(6.38)

with the initial conditions:

u(x , 0) = ϑ− 2 B ξ coth(ξ (x +τ)),

ω(x , 0) = −2 B (B +δ) ξ2 csch2(ξ (x +τ)),
(6.39)

where B =
p

η+δ2 and ϑ, ξ, τ are arbitrary constants. The exact solutions of this

problem are
u(x , t) = ϑ− 2 B ξ coth(ξ (x +τ− ϑ t)),

ω(x , t) = −2 B (B +δ) ξ2 csch2(ξ (x +τ− ϑ t)).
(6.40)

Assume that, we take ϑ = 0.005, ξ = 0.1, η = δ = 1.5 and τ = 10. Figures 6.1

and 6.2 shows the solutions of the above systems using the GHW method comparison

with the exact solutions each of u(x , t) and ω(x , t) respectively. Tables 5.1 and

5.2 present the absolute errors between the numerical solutions by The Adomian’s

decomposition method (ADM), the variational iteration method (VIM), the optimal

homotopy asymptotic method (OHAM), the proposed method (GHW) for µ, y, c, k =
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1, M = 3 λ = 0.75 and the exact solution of Example 6.1. As the results shown in

Table 6.1 and Table 6.2 the approximate solutions using GHW method are converge

to the exact solutions more than the other methods used in Ref.[101].

Table 6.1 The absolute errors of u(x , t) obtained by GHW method for µ, y, c and
k = 1, M = 3 λ= 0.75 and other different methods for Example 6.1.

(x,t) |uexact − uADM | |uexact − uV I M | |uexact − uOHAM | |uexact − uGHW |

(0.1, 0.1) 1.04892E-4 1.23033E-4 1.07078E-4 5.8025294E-9

(0.1, 0.3) 9.64474E-5 3.69597E-4 3.04565E-4 5.44560154E-8

(0.1, 0.5) 8.88312E-5 6.16873E-4 4.81303E-4 1.82970833E-8

(0.2, 0.1) 4.25408E-4 1.19869E-4 1.04388E-4 8.42524053E-8

(0.2, 0.3) 3.91098E-4 3.60098E-4 2.97260E-4 3.200613516E-7

(0.2, 0.5) 3.60161E-4 6.01006E-4 4.70138E-4 4.207822714E-7

(0.3, 0.1) 9.71922E-4 1.16789E-4 1.01776E-4 1.413342633E-7

(0.3, 0.3) 8.93309E-4 3.50866E-4 2.90150E-4 5.209119286E-7

(0.3, 0.5) 8.22452E-4 5.85610E-4 4.59590E-4 7.11230198E-7

(0.4, 0.1) 1.75596E-3 1.13829E-4 9.92418E-5 1.829480986E-7

(0.4, 0.3) 1.61430E-3 3.41948E-4 2.83229E-4 6.768077318E-7

(0.4, 0.5) 1.48578E-3 5.70710E-4 4.49118E-4 9.22440849E-7

(0.5, 0.1) 2.79519E-3 1.10936E-4 9.67808E-4 2.15394022E-7

(0.5, 0.3) 2.56714E-3 3.33274E-4 2.76492E-4 8.05449061E-7

(0.5, 0.5) 2.36184E-3 5.56235E-4 4.38895E-4 1.083714796E-6

Example 6.2 Consider the time modified Boussinesq equation that is represent a

special case of WBK equation when η= 1,δ = 0 as:

Dµt u+ u ux +ωx = 0,

Dµt ω+ (uω)x + ux x x = 0,
(6.41)
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Figure 6.1 Exact and GHW approximate solution of u(x , t) Example 6.1 for
µ, k, y, c = 1, λ= 0.75, M = 3 .
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Figure 6.2 Exact and GHW approximate solution of ω(x , t) Example 6.1 for
µ, k, y, c = 1, λ= 0.75, M = 3.
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Table 6.2 The absolute errors of ω(x , t) obtained by GHW method for µ, y, c and
k = 1, M = 3 λ= 0.75 and other different methods for Example 6.1.

(x,t) |ωexact −ωADM | |ωexact −ωV I M | |ωexact −ωOHAM | |ωexact −ωGHW |

(0.1, 0.1) 6.41419E-3 1.10430E-4 5.86860E-5 2.87481624E-7

(0.1, 0.3) 5.99783E-3 3.31865E-4 3.04565E-4 7.87636054E-7

(0.1, 0.5) 5.61507E-3 5.54071E-4 3.08812E-4 1.74257851E-6

(0.2, 0.1) 1.33181E-2 1.07016E-4 5.56884E-5 3.8768900E-10

(0.2, 0.3) 1.24441E-2 3.21601E-4 2.97260E-4 1.1092180E-8

(0.2, 0.5) 1.16416E-2 5.36927E-4 2.92626E-4 1.4388176E-7

(0.3, 0.1) 2.07641E-2 1.03737E-4 5.28609E-5 1.85719630E-7

(0.3, 0.3) 1.93852E-2 3.11737E-4 2.90150E-4 5.23858578E-7

(0.3, 0.5) 1.81209E-2 5.20447E-4 2.77382E-4 8.70705450E-7

(0.4, 0.1) 2.88100E-2 1.00579E-4 5.01929E-5 2.77264136E-7

(0.4, 0.3) 2.68724E-2 3.02245E-4 2.83229E-4 7.77062976E-7

(0.4, 0.5) 2.50985E-2 5.04593E-4 2.63019E-4 1.34517282E-7

(0.5, 0.1) 3.75193E-2 9.75385E-5 4.76741E-5 2.83022620E-7

(0.5, 0.3) 3.49617E-2 2.93107E-4 2.76492E-4 7.94669230E-7

(0.5, 0.5) 3.26239E-2 4.89335E-4 2.49480E-4 1.31951855E-6

with the intial conditions:

u(x , 0) = ϑ− 2 ξ coth(ξ (x +τ)),

ω(x , 0) = −2 ξ2 csch2(ξ (x +τ)),
(6.42)

where ϑ, ξ, τ are arbitrary constants. The exact solutions of this problem are

u(x , t) = ϑ− 2 ξ coth(ξ (x +τ− ϑ t)),

ω(x , t) = −2 ξ2 csch2(ξ (x +τ− ϑ t)).
(6.43)
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Figure 6.3 shows the coupled surface of the exact and GHW approximate solution

for u(x , t) and ω(x , t) at µ, y, c and k = 1, M = 3 λ = 0.75, respectively. Table

6.3 and Table 6.4 show the absolute errors of the exact solutions and the approximate

solutions by methods in Ref.[101] and GHW method for u(x , t) andω(x , t) Ref.[101],
respectively. The results show that the approximate solutions by GHW method are

converge to the exact solutions more than the other methods.

Table 6.3 The absolute errors of u(x , t) obtained by GHW method for µ, y, c and
k = 1, M = 3 λ= 0.75 and other different methods for Example 6.2.

(x,t) |uexact − uADM | |uexact − uV I M | |uexact − uOHAM | |uexact − uGHW |

(0.1, 0.1) 8.16297E-7 6.35269E-5 6.35267E-5 1.19382200E-9

(0.1, 0.3) 7.64245E-7 1.90854E-4 1.90854E-4 2.30988830E-8

(0.1, 0.5) 7.16083E-7 3.18549E-4 3.18548E-4 4.40134333E-8

(0.2, 0.1) 3.26243E-6 6.18930E-5 6.18931E-5 1.00805065E-8

(0.2, 0.3) 3.05458E-6 1.85945E-4 1.85945E-4 7.25761641E-8

(0.2, 0.5) 2.86226E-6 3.10352E-4 3.10352E-4 1.424631520E-7

(0.3, 0.1) 7.33445E-6 6.03095E-5 6.03098E-5 1.276219628E-8

(0.3, 0.3) 6.86758E-6 1.81187E-4 1.81187E-4 1.323644038E-7

(0.3, 0.5) 6.43557E-6 3.02408E-4 3.02408e-4 2.568112803E-7

(0.4, 0.1) 1.30286E-5 5.87746E-5 5.87749E-5 1.243889115E-8

(0.4, 0.3) 1.22000E-5 1.76574E-4 1.76574E-4 1.926636025E-7

(0.4, 0.5) 1.14333E-5 2.94707E-4 2.94708E-4 3.700578182E-7

(0.5, 0.1) 2.03415E-5 5.72867E-5 5.72865E-5 1.221059764E-8

(0.5, 0.3) 1.90489E-5 1.72102E-4 1.72102E-4 2.440737588E-7

(0.5, 0.5) 1.78528E-5 2.87241E-4 2.87240E-4 4.667027683E-7
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Figure 6.3 Exact and GHW approximate solution of u(x , t), ω(x , t) of Example 6.2
for k, y, c = 1, λ= 0.75, M = 3 and µ,β = 0.9.
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Table 6.4 The absolute errors of ω(x , t) obtained by GHW method for µ, y, c and
k = 1, M = 3 λ= 0.75 and other different methods for Example 6.2.

(x,t) |ωexact −ωADM | |ωexact −ωV I M | |ωexact −ωOHAM | |ωexact −ωGHW |

(0.1, 0.1) 5.88676E-5 1.65942E-5 1.65942E-5 1.58982921E-8

(0.1, 0.3) 5.56914E-5 4.98691E-5 4.98691E-5 2.09296183E-7

(0.1, 0.5) 5.27169E-5 8.32598E-5 8.26491E-4 4.71065550E-7

(0.2, 0.1) 1.18213E-4 1.60813E-5 1.60812E-5 2.57052552E-8

(0.2, 0.3) 1.11833E-4 4.83269E-5 4.83269E-5 2.41109060E-8

(0.2, 0.5) 1.05858E-4 8.06837E-5 7.94290E-4 1.30548110E-8

(0.3, 0.1) 1.78041E-4 1.55880E-5 1.55880E-5 9.78459069E-8

(0.3, 0.3) 1.68429E-4 4.68440E-5 4.68439E-5 1.62540137E-7

(0.3, 0.5) 1.59428E-4 7.82068E-5 7.63646E-4 1.57921304E-7

(0.4, 0.1) 2.38356E-4 1.51135E-5 1.51135E-5 1.410219206E-7

(0.4, 0.3) 2.25483E-4 4.54174E-5 4.54174E-5 2.383027180E-7

(0.4, 0.5) 2.13430E-4 7.58243E-5 7.34471E-4 2.31763850E-7

(0.5, 0.1) 2.99162E-4 1.46569E-5 1.46569E-5 1.564239375E-7

(0.5, 0.3) 2.83001E-4 4.40448E-5 4.40448E-5 2.549799550E-7

(0.5, 0.5) 2.67868E-4 7.35317E-5 7.06678E-4 2.406138800E-7

Example 6.3 Consider the coupled KdV time- fractional equation as:

Dµt u= ζu ux + γωωx + ςux x x + f (x , t),

Dβt ω= ςωx x x − γuωx + g(x , t),
(6.44)

where ζ= −6, ς= −1 and γ= 3 with the initial conditions

u(x , 0) = 0, ω(x , 0) = 0, (6.45)
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and boundary conditions

u(0, t) = 0, ux(0, t) = u(1, t) = t2,

ω(0, t) = 0, ωx(0, t) =ω(1, t) = t2,
(6.46)

where

f (x , t) = 3x t4 +
2x t2−µ

Γ (3−µ)
, g(x , t) = 3x t4 +

2x t2−β

Γ (3− β)
.

The exact solution of this problem is u(x , t) =ω(x , t) = x t2.

In Fig. 6.4 shows that the absolute error of u(x , t), ω(x , t) of this problem when

applied the proposed method for k, y, c = 1, λ = 0.5, M = 5 and µ,β = 1. In the

other hand, Table 6.5 proved that when applied GHW method at µ = β = 1 is closer

to the exact solution more than µ= β = 0.5
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Figure 6.4 Absolute Errors of u(x , t), ω(x , t) of Example 6.3 for
k, y, c = 1, λ= 0.5, M = 5 and µ= β = 1.
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Example 6.4 We consider the coupled KdV time- fractional equation of Example 6.3

with the initial conditions

u(x , 0) = 0, ω(x , 0) = 0, (6.47)

and boundary conditions

u(0, t) = 0, ux(0, t) = u(1, t) =
p

t5,

ω(0, t) = 0, ωx(0, t) =ω(1, t) =
p

t5,
(6.48)

where

f (x , t) = 3x t5 +
x Γ (7

2)

Γ (7
2 −µ)

t5/2−µ, g(x , t) = 3x t5 +
x Γ (7

2)

Γ (7
2 − β)

t5/2−β . (6.49)

The exact solution of this problem is u(x , t) =ω(x , t) = x
p

t5.

Table 6.6 compared the results by using the absolute errors of each of method in

Ref. [102] and the proposed method for a different values of µ, β . As a result, the

numerical solution using the GHW method more accuracy and closed to the exact

solution.
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7
RESULTS AND DISCUSSION

In order to widespread applications of partial differential equations and the feature

of fractional order to represent most of the phenomena problem by the best way,

deriving of new numerical methods for solving these types of problems are necessary.

The main idea of this thesis is to build a new wavelet method and utilize it to solve

fractional partial differential equations. Three published papers has been provided for

this purpose in Chapters 3 to 6 as follows:

In Chapter 1, we look at the background, and literature related to the research

topic that is studied in this thesis, and the purpose of the chosen topic. Some

basic definitions of fractional calculus, wavelet, the generalized Gegenbauer- Humbert

wavelets and their operational matrix of fractional order integration are provided and

derived in Chapter 2.

In Chapter 3, a numerical technique of the generalized Gegenbauer- Humbert wavelet

method is constructed by using their operational matrix of fractional integration, and

employed to solve linear and non-linear fractional differential problems. The obtained

results show the effect of various parameters and the fractional orderα, of the accuracy

of the approximate solutions.

On the other hand, the operational matrices of integer and fractional order of the

GHW method are derived in Chapter 4. The proposed method demonstrated the

efficiency and accuracy when applied to solve fractional differential problems (linear

and non-linear) as compared with other methods, and comparison between different

special cases of the proposed method it self in some examples.

In Chapter 5, developed the GHW technique to solve fractional partial differential

equations with (initial-boundary and boundary ) conditions. Convergence analysis

of GHW method are established for two variables. The obtained results are good

compared with different methods, for instance Legender, and 3rd kind of Chebyshev

wavelet methods.
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Extending of GHW technique to apply to coupled systems of two types of shallow

waters (WBK and KdV) equstions in Chapter 6. The observed results are sufficient

and accurate comparing with the Adomian’s decomposition method, the variational

iteration method, the optimal homotopy asymptotic method, and other.

All the numerical results and graphs are yielded by algorithms created in Maple, and

the consequences are shown that the proposed method is successful in solving different

problems and systems of equations with high accuracy.

The GHW method can be developed to solve other real -life and physical phenomena

like modeling of diseases and engineering problems.
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