

<u>YILDIZ TEKNİK ÜNİVERSİTESİ</u> FEN BİLİMLERİ ENSTİTÜSÜ

Reaktif Buh, Tek, ite Haz, Ince Film, Diel, Özel, Al, Beğli Değ,

Doktora Tezi

GÜZİN AKTULGA

T. C. ISTANBUL ÜNIVERSITESI FEN BILIMLERI ENSTITÜSÜ FIZIK BÖLÜMÜ

1168

REAKTIF BUHARLAŞTIRMA TEKNIĞİ İLE HAZIRLANAN ALO. VE AL- ALO. İNCE FİLMLERİNİN DIELEKTRİK ÖZELLİKLERİNİN ALANA BAĞLI DEĞİŞİMLERİ

DOKTORA TEZI

GÜZİN AKTULGA

ISTANBUL - 1985

YILDIZ UNIVERSITESI GENEL KİTAPLIĞI Kot . Fen Bil. Ens. 23 Alındığı Yer 16.9.1987 Tarih . Fatura . 1500 IL. Fiati : 1/6 Ayniyat No 44910 Kayıt No . 537.24 UDC : 378.242 Ek

X

Ion P.

T.C. İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK BÖLÜMÜ

REAKTIF BUHARLAŞTIRMA TEKNIĞI İLE HAZIRLANAN ALO_{*} VE AL- ALO_{*} İNCE FILMLERININ DIELEKTRIK ÖZELLIKLERININ ALANA BAĞLI DEĞIŞIMLERI

23

DOKTORA TEZI

GÜZİN AKTULGA

İSTANBUL - 1985

TEŞEKKÜR

Bu çalışma İstanbul Üniversitesi Fen Fakültesi Genel Fizik Ana Bilim Dalında Prof. Dr. Hülya Demirvont yönetiminde başlatılmıştır. Kendisinin Üniversiteden ayrılmasından sonra Prof. Dr. Nezihe Taşköprülü yönetiminde sürdürülmüştür. Değerli katkılarından dolayı hocalarım Sayın Prof. Dr. Hülya Demirvont'a ve Sayın Prof. Dr. Nezihe Taşköprülü'ye teşekkür ederim.

Çalışmanın devamı boyunca gösterdiği yakın ilgi ve calışmanın teorik bölümünün gerçekleştirilmesindeki voğun yardımları için sevgili eşim ve meslekdaşım Dr. Ender Aktulga'ya teşekkür etmekten büyük bir zevk duyuyorum.

Sevgili kuzenim Mimar Tülin Sevin şekillerin çizilmesinde, sevgili arkadaşım Mine Arşık da tezin daktilosunda sonsuz özveri, özen ve sabır gösterdiler. Kendilerine minnet borçluyum.

Rectarding the

Bu çalışmada reaktif buharlaştırma tekniği ile hazırlanan saf AIO_x ve sermet $AI-AIO_x$ filmlerinin dielektrik özellikleri incelendi.

Reaktif buharlaştırma tekniği ile hazırlanan filmlerin her iki yüzü aluminyum elektrodlarla kaplanarak oluşturulan kondansatörlerin, kompleks kapasite bileşenlerinin, değişik frekanslar için değerleri, Schering köprüsünde ölçüldü ve relaksasyon spektrumları elde edildi.

Doğru elektrik alanın relaksasyon spektrumları üzerindeki etkisini incelemek amacıyla, örneklerin kompleks kapasite bileşenlerinin Schering köprüsünde doğru alan altında ölçülmesini sağlayan bir devre geliştirildi ve örneklere ait relaksasyon spektrumlarının alana bağlı değişimleri gözlendi. Bu değişimlerin eskime ile gerçekleşen değişimlere benzerliği vurgulandı.

Relaksasyona neden olan yapısal özelliklerin anlaşılmasını ve alanın yapı üzerindeki etkilerinin araştırılmasını sağlamak üzere geliştirilen yöntem yardımıyla, arayüz polarizasyon mekanizmasının oluşturduğu bu relaksasyonun, heterojen yapılarda ortaya çıkan bir Maxwell-Wagner relaksasyonu olduğu belirlendi.

Söz konusu yöntemin uygulanması ile elde edilen Maxwell-Wagner eşdeğer devre elemanlarının, alana bağlı değişimleri analiz edildi.

Heterojenliğin ölçüsünü veren bir parametre tanımlandı ve bu parametrenin alana bağlı değişimlerinden, alanla yapının heterojenliğinin daha da arttığı anlaşıldı.

ÖZET

SUMMARY

In this study, the dielectric properties of the thin films of pure AlO_x and cermet Al-AlO_x have been investigated. These films were prepared using reactive evaporation technique.

The both faces of the films investigated, have been coated with the aluminium electrodes to form the capacities. The values of the components of the complex capacities for the films studied have been measured as a function of frequency using Schering Bridge and from the results the relaxation spectrums have been obtained.

For the investigation of the effect of dc field on the relaxation spectrums, the new experimental system has been developed. This system incorporates with Schering Bridge. The variation with the applied dc field of the relaxation spectrums of the films investigated have been studied. It was found that this variation is similar to the variation with aging.

The new method in determining the equivalent circuit elements of Maxwell-Wagner has been developed to understand the structural properties causing the relaxational behaviour and to investigate the field effect on the structure of the films studied. It has been confirmed that the relaxation which is caused by the mechanism of the interface polarization. is the relaxation of Maxwell-Wagner found in the heterogen structures.

The variations with the dc field of the equivalent circuit elements obtained by the new method which has been mentioned, have been analyzed.

The new parameter which gives a measure of the heterogeneity has been defined and from the variations with the field of this parameter have been understood that the heterogeneity of the structure is increased by the applied dc field.

İÇİNDEKİLER

I.	BOLOM	:	GiRi\$ 1
II.	BOLOM	:	REAKTIF BUHARLAŞTIRMA TEKNİĞİ 4
	II.A	:	Film Hazırlama Tekniği 4
	II.B	:	Oksit Filmlerindeki Metal Konsantrasyonunun
			Belirlenmesi Yöntemi 5
III.	BÖLÜM	:	DIELEKTRIKLER
	III.A	:	Dielektriklerin Elektrik Özellikleri 9
	III.A.1	:	Polarizasyon
	III.A.2	:	Kompleks Permitivite ve Kompleks Kapasite 14
	III.A.3	:	Permitivite Bileşenlerinin Frekans Spektrumu 19
	III.A.4	:	Relaksasyon ve Rezonans Spektrumlarının
			Eşdeğer Devreleri 21
	III.A.5	:	Maxwell-Wagner Relaksasyonu ve Eşdeğer
			Devresi
	III.A.6	:	Argand Diyagramlari
	III.B	:	Kompleks Kapasitenin Ölçülmesi (Schering
1			Köprüsü) 37
IV.	BÖLÜM	:	A10. ve A1-A10. FILMLERINDE KOMPLEKS
			X X X X X X X X X X X X X X X X X X X
			SONUCLAR
	IV.A	:	Alo ve Al-Alo Film Örneklerinin
			K X Hazırlanması 41
	IV.B	:	Örneklerin Kompleks Kapasitelerinin dc
			Alana Bağlı Frekans Spektrumları 43
	IV.B.1	:	Ørneklerin Kompleks Kapasitelerinin dc
			Alan Altında Kapasite Köprüsü ile Ölcülmesi
			Tekniği (Mixer Devresi) 43
	IV.B.2	:	Ölcü Sonucları ve Değerlendirilmesi 47
	IV.C	:	Ørneklerin Kompleks Kapasitelerinin Zamana
			Bağlı Frekans Spektrumları
	IV.D	:	Ørneklerin Kompleks Kapasite Ølcü Sonucları-
			nın Tartısılması 91

V. BOLOM	: KOMPLEKS KAPASITENIN FREKANSA BAĞLI DEĞİŞİM
	LARININ BELİRLENMESİ
V.A	: Yöntem
V.B	: Yöntemin Denel Eğrilere Uygulanması 99
V.C	: Eşdeğer Devre Elemanlarının Alana Bağlı
	Değişimleri ve Tartışması 116
VI. BOLOM	: GENEL DEĞERLENDİRME 119
EKLER	:
EK-1	: AYNI C KONDANSATORONE EŞDEĞER PARALEL VE
	SERİ DEVRELERİN ELEMANLARI ARASINDAKİ DÖ-
	NÜŞÜM BAĞINTILARI 121
EK-2	: McDONALD-FRIAUF, MAXWELL-GARNET, McDONALD
	FRIAUF-MAXWELL GARNET EŞDEĞER DEVRELERININ
	ADMITANSLARININ HESAPLANMASI VE KOMPLEKS
	KAPASİTELERİNİN GERÇEL VE SANAL BİLEŞENLE-
	RININ ELDE EDILMESI 123
EK-3	: MAXWELL-WAGNER EŞDEĞER DEVRESİNİN ADMİTANS-
	LARININ HESAPLANMASI VE KOMPLEKS KAPASITESI-
	NİN GERÇEL VE SANAL BİLEŞENLERİNİN ELDE
	EDİLMESİ 129
KAYNAKLAR	:

vi

I. BOLOM

GİRİŞ

İnce filmler gösterdikleri fiziksel özellikleri nedenivle günümüz teknolojisinde geniş bir yer tutmaktadır.

Yapılan teorik ve denel yoğun çalışmalar sonucu kullanım alanları gün geçtikçe çoğalmakta ve yaygınlaşmaktadır. Bu kullanım alanları içinde, anahtarlama ve bellek özelliği taşıyan elektrik devre elemanları^(1,2) bilgisayar bellekleri⁽³⁾, ışık denetimli anahtarlama sistemleri^(4,5), foto alıcılar⁽⁶⁾, istenilen özelliklerde yansıtma ve geçirme filtreleri⁽⁷⁾, mekanik dayanıklılığı arttırıcı veya dış etkilerden koruyucu kaplamalar⁽⁸⁾ve ısı yansıtıcı filmler⁽⁹⁾ sayılabilir.

İnce filmlerin hazırlanış parametreleri filmlerin gösterdikleri fiziksel özelliklerle yakından ilgilidir. Bu yüzden filmlerin gösterdiği özelliklerin yanısıra, filmin hazırlanma koşulları ve kullanılan ölçü teknikleri birlikte verilmelidir.

Film hazırlama teknikleri, kullanılacak malzemenin özelliklerine bağlı olarak; vakumda ısısal buharlaştırma (20, 21, 22), anodik oksidasyon (23), sputtering (24, 25) gibi tekniklerdir. Kullanılan ölçü teknikleri ise sonuçların presizyonu açısından önem taşımaktadır. Hazırlanan filmlerdeki presizyon ölçmeleri, filmlerin üzerinde oluşturulduğu taşıyıcının, yüzey düzgünlüğüne ve optik parametrelerine bağlı olduğundan taşıyıcıların, optik işlenmiş veya kristal olarak seçilmesi gerekmektedir (26).

Film kalınlıklarının belirlenmesinde ise Fizeau franilarından yararlanılan^(17,18) ya da Feco franjlarından yararlanılan⁽¹⁹⁾ duyarlı interferometrik yöntemler kullanılır.

Fiziksel özellikleri araştırılan film, içinde metal parçacıkların bulunduğu sermet yapıda bir oksit filmi ise bu durumda incelenecek filmde bulunan metal parçacıkların konsantrasyonunun belirlenmesi gerekmektedir. Konsantrasyon belirlenmesi için iki yöntem geçerlidir. Bunlar, tünel eklem yöntemi⁽²⁰⁾ ve optik absorpsiyon yöntemidir⁽²¹⁾.

Bu çalışmada reaktif buharlaştırma tekniği kullanılarak ve vakum parametreleri uygun seçilerek hazırlanan saf AlO, ve düşük konsantrasyonda aluminyum metal parçacıkları içeren sermet Al-AlO_x ince filmlerinin dielektrik özellikleri incelendi. Bir cam taşıyıcı üzerine buharlaştırılan aluminyum alt elektrod, üzerine reaktif yolla buharlaştırılan film ve filminde üzerine alt elektroda çapraz olarak buharlaştırılan aluminyum üst elektrodların kaplanması ile elde edilen örneklerin, kompleks kapasite bileşenleri 400 Hz-15000 Hz frekans aralığında Schering Köprüsünde ölçüldü.

Elde edilen frekans spektrumlarının analizinden, bu spektrumların Maxwell-Wagner relaksasyon spektrumlarına benzerliği görüldü.

Daha sonra, örneklerin kompleks kapasite bileşenlerinin doğru alan altındaki değişimlerini incelemek amacıyla Schering Köprüsüne uygulanabilen bir mixer devresi geliştirildi. Böylece örneklere ait relaksasyon spektrumlarının doğru alan altındaki değişimleri incelendi.

Arayüz polarizasyon mekanizmasının⁽²²⁾ neden olduğu Maxwell-Wagner relaksasyonunun⁽²³⁾ heterojen yapılarda görüldüğü ve doğru alan altında ise yapının daha heterojen bir yapıya dönüştüğü kanısına varıldı. Bunun teorik olarak sağlanması icin geliştirilen yöntem aracılığı ile denel relaksasyon eğrilerine ait Maxwell-Wagner eşdeğer devrelerinin devre elemanları hesaplandı ve bu elemanların doğru alandaki değişimlerinden, uygulanan alanın etkisiyle örneklerin daha heterojen bir yapı gösterdikleri, tanımlanan bir heterojenlik parametresi aracılığı ile açıklandı.

Çalışmada I. Bölüm olarak verilen giriş bölümünden sonra, reaktif buharlastırma tekniğiyle uygun vakum koşullarında istenilen özellikteki filmlerin hazırlanması ve bu filmlerin içindeki metal konsantrasyonunun belirlenmesi yönteminin verildiği II. Bölüm, daha sonra filmlerin dielektrik özelliklerinin anlatıldığı III. Bölüm yer almaktadır. IV. Bölümde hazırlanan AlO_x ve Al-AlO_x filmlerinin elde ediliş koşulları ve bu filmlerin doğru alan altında, kompleks kapasite bileşenlerinin ölcülmesi ile elde edilen denel sonuçlar verilmekte ve bu sonuçların değerlendirilmesi yapılmaktadır. V. Bölümde de örneklerin kompleks kapasitelerinin frekansa bağlı değişim eğrilerinden, elektrik eşdeğer devre elemanlarının belirlenmesi yöntemi verilmekte ve yöntemin denel eğrilere uygulanması sağlanarak sonucların eşdeğer devre elemanları cinsinden alana bağlılığı tartışılmaktadır. Ve son bölüm olan VI. Bölüm de ise elde edilen sonuçların genel değerlendirilmesi yapılmaktadır.

filmlerin hazırlantsı tirasında, Erneklerin yapısına ve delavınıla tiziksel özelliklerina otki edetilen vatun parametrelerinin sanışı eldukca fazladır. Ancak, bu vatun parametrelerinden ilk ücü film ern isterlier kasullarda elde cellebilmesinde en etkin olen parametelerdir.

bir vakumoa buhariastirme isinen sirastedar etkin olen bu ud parametreinin uygun olarak secilmesi durumunda tasivici uzerine kaplanen filr metalik fazda olbuorse, buharlastirma hizinin azaltilmasi is filmin metal fazinda alt azalme olur. Ancaz avni cunarlastirma bizinda, kaynak-tasivici uzeklicini arttirirsak, ortalama serbest yol uteretağından huharlasan metal parcasiklarının reaktif göz etgolarr ile carbista olasılıdı artar ve filmin metalik jazında bir əzalma

II. BOLOM

REAKTIF BUHARLAŞTIRMA TEKNİĞİ

II.A FİLM HAZIRLAMA TEKNİĞİ

Saf metallerin 10⁻⁴-10⁻⁷ torr artık gaz basıncında ve uygun vakum koşullarında, termik olarak buharlaştırılması tekniği, reaktif buharlaştırma tekniği olarak adlandırılır.⁽²⁷⁾

Buharlaştırılan metaller, vakum parametrelerine bağlı olarak; metalik yapı, metal-metaloksit karışımı yapı (sermet yapı) veya saf metaloksit yapı gösterirler.

Reaktif buharlaştırma tekniği ile elde edilen filmlerin fiziksel özellikleri, örneklerin elde edilişi sırasındaki vakum parametrelerine sıkı sıkıya bağlıdır. Bu parametreler arasında,

- 1- Vakum mertebesi
 - 2- Kaynak-taşıyıcı arası uzaklığı
 - 3- Buharlaştırma hızı
 - 4- Buharlastırılan malzemenin cinsi
 - 5- Vakumdaki artık gazın cinsi
 - 6- Taşıyıcı sıcaklığı ve cinsi
 - 7- Isiticinin gücü

sayılabilir.

Filmlerin hazırlanışı sırasında, örneklerin yapısına ve dolayısıyla fiziksel özelliklerine etki edebilen vakum parametrelerinin sayısı oldukça fazladır. Ancak, bu vakum parametrelerinden ilk üçü filmlerin istenilen koşullarda elde edilebilmesinde en etkin olan parametrelerdir.

Bir vakumda buharlaştırma işlemi sırasında, etkin olan bu üç parametrenin uygun olarak seçilmesi durumunda taşıvıcı üzerine.kaplanan film metalik fazda oluyorsa, buharlaştırma hızının azaltılması ile filmin metal fazında bir azalma olur. Ancak aynı buharlaştırma hızında, kaynak-taşıyıcı uzaklığını arttırırsak, ortalama serbest yol uzayacağından buharlaşan metal parçacıklarının reaktif gaz atomları ile çarpışma olasılığı artar ve filmin metalik fazında bir azalma olur. Yapı metal-metaloksit karışımı demek olan sermet bir yapı bicimine dönüşür.

Bu kez de buharlaştırma hızı ve kaynak-taşıyıcı uzaklığı birlikte aynı kalmak koşulu ile vakum mertebesi düşürülürse ortamdaki reaktif qaz atomlarının sayısı artacağından, buharlaşan metal parcacıkları ortamdaki reaktif gaz atomları ile daha fazla çarpışma olanağı bulur ve filmin yapısında oksit faza doğru kavma gözlenir. Ve bu vakum parametreleri avnı yönde daha da ileri götürülürse sonunda bütün buharlaşan metal parcacıkları, reaktif gaz atomlarıyla çarpışarak taşıvıcı üzerine oturur ve film saf metaloksit bir yapıya dönüşmüş olur.

Diğer bütün vakum parametreleri aynı kalmak kosulu ile artık gazın cinsi değiştirilirse (örneğin oksijen gazı), buharlaşan metal parçacıkları ile çarpışma yapabilen gaz moleküllerinin sayısı artar ve dolayısıyla filmin saf metaloksit olma olasılığı artar.

Taşıyıcının cinsi, buharlasacak malzemenin de cinsine bağlı olarak, parçacıkların taşıyıcı üzerine yapısma veya yüzeyden vansıma oranını değiştirir. Taşıyıcı sıcaklığı ise metalik fazda tasıyıcı üzerine gelen parçacıkların kimyasal reaksiyonunu hızlandırıcı yönde etki yapar.

II.B OKSİT FİLMLERİNDEKİ METAL KONSANTRASYONUNUN BELİRLENMESİ YÖNTEMİ

Oksit filmlerindeki, optik absorpsiyon, akım geçiş özellikleri ve dielektrik özellikler metal-metaloksit filmlerindeki metal konsantrasyonuna bağlıdır.

Sermet yapıdaki oksit filmlerinin icinde bulunan metal konsantrasyonunun belirlenmesinde kullanılan iki farklı vöntem vardır.

1- Tünel Eklem yöntemi⁽²⁰⁾

2- Optik Absorpsiyon yöntemi⁽²¹⁾

Burada konsantrasvon belirleme vöntemlerinden ikincisi olan "Optik Absorpsiyon Yöntemi" kısa olarak verilecektir.

İcinde metal parçacıkları bulunan bir oksit filminin interferometre ile ölçülen kalınlığı d_{in}, yansıtma gücü _p ve geçirgenliği T olsun (Sekil-la). İncelenen örnekte saçılma nedeniyle ışık kaybı, toplam absorpsiyon yanında yok sayılacak kadar küçükse, böyle bir filmi; taşıyıcı üzerinde, oksit içindeki metal parçacıklarının biraraya gelmesiyle oluşturduğu kalınlık d_m , yansıtma gücü ρ_m ve geçirgenliği T_m olan ince metal filmi ve onun üzerinde bir oksit filmi olacak şekilde (taşıyıcı + metal + oksit) düşünelim.

Şekil-1 Metal-Metaloksit filmlerinde optik absorpsiyon modeli

Şekil-la'da içinde aluminyum metal parçacıkların homojen olarak dağıldığı oksit filmi, Şekil-lb'de ise aluminyum metal parçacıklarının biraraya gelmesi ile oluşturulan d_m kalınlıklı metal filmi ve bu filmin üzerinde (d_{in}-d_m) kalınlıklı saf oksit filmi görülmektedir.

$$A_{t} = A_{m} + A_{s}$$
(1)

)

(2)

ayrıca

 $\rho + T + A_t = 1$

dir. A_s çok küçük olduğundan

toplam absorpsiyon, metalik absorpsiyona eşit olur.

Şekil-2 Reaktif buharlaştırma tekniğiyle elde edilen saf aluminyum metal filmlerinin yansıtma gücü ve geçirgenliğinin film kalınlığı ile değişimi

(3)

Örneklerdeki aluminyum konsantrasyonunu belirlemek amacıyla 10⁻⁵ torr basınçta aluminyumun termik buharlaştırılmasıyla elde edi-1en 50 A⁰-600 A⁰ kalınlıktaki Al metal filmlerinin yansıtma ve geçirgenlik eğrisi Şekil-2'de verilmiştir.

Bu eğri yardımıyla elektrik veya dielektrik özellikleri incelenen örneklerin ölçülen ρ ve T değerlerine karşılık olan ρ_m ve T_m değerleri ve dolayısıyla oksit içindeki, d_m metal filminin kalımlığı bulunur.

Optik yöntem aracılığı ile bulunacak olan konsantrasyon C_{op} ile gösterilmek üzere

$$\frac{d_{m}}{d_{in}} = \frac{C_{op}}{0,74}$$

bağıntısından yararlanarak

Birthen O, yiku He V w

$$fop = \frac{d_m}{d_{in}} \cdot 0,74$$

bulunur. Burada d_m.0,74 = (d_m)_N normallestirilmis kalınlığa eşittir. Sermet Al-Al0_x filminin toplam kalınlığı d_{in} bilindiğine göre (5) bağıntısı aracılığıyla filmin konsantrasyonu hesaplanır.

(4)

(5)

III. BÖLÜM

DİELEKTRİKLER

III.A DİELEKTRİKLERİN ELEKTRİK ÖZELLİKLERİ

III.A.1 Polarizasyon

Elektrodlarının arası boş olan bir kondansatör bir doğru gerilim kaynağına bağlandığında, kondansatör elektrodlarında, kaynak gerilimine eşit bir potansivel farkına ulaşılıncaya kadar yük birikir. Biriken Q_0 yükü ile V kaynak gerilimi arasında sabit bir oran vardır ve bu C_0 oranına kondansatörün boşluk (geometrik) kapasitesi denir:

$$C_{0} = \frac{Q_{0}}{V}$$
(6)

Elektrodlar arasına yerleştirilen bir dielektrik ortamda, elektrik alan etkisiyle oluşan dipol zincirleri, Şekil-3'de de gösteril-

Şekil-3 Dielektrik polarizasyonun şematik olarak gösterilişi

diği gibi, elektrodlardaki bir kısım yüklerin nötralize olmalarına yol açarlar. Elektrodlar arasındaki gerilimin aynı değeri koruması, serbest kalan yüklerin Q_0 'a ulaşması ile sağlanacağından, elektrodlarda biriken yük artarak Q ya ulaşır. Bu Q yükünün; Q_0 kadarı serbest, $(Q-Q_0)$ kadarı ise bağlı yüklerdir. Dielektrik ortam, dolayısıyla, kondansatörün kapasitesini C_0 dan C ye çıkartmıştır:

$$c = \frac{1}{v}$$

Dielektrik ortamın $\varepsilon_r^{'}$ bağıl permitivitesi

$$r' = \frac{C}{C_0}$$
(8)

olarak tanımlandığına göre (6) ve (7)

rillies i someunda o

$$Q_{0} = \frac{Q}{\varepsilon_{r}'}$$
(9)

elde edilir. Son bağıntı, kondansatör elektrodlarında biriken Q yükünün Q/ ε'_r kadarının serbest yük, Q(1-1/ ε'_r) kadarının da bağlı yük olduğunu göstermektedir.

Bunlara göre, Q yükünün elektrod yüzeyindeki dağılımını veren yüzey yük yoğunluğu q ise, serbest yük yoğunluğu q/ ε_r , bağlı yük yoğunluğu da q(1-1/ ε_r) dir.

Ote yandan, Gauss yasasının paralel plaklı kondansatöre uygulanması ile

$$\stackrel{\rightarrow}{\mathsf{D}} = \epsilon' \stackrel{\rightarrow}{\mathsf{E}} = \epsilon_{r}' \stackrel{\rightarrow}{\epsilon_{o}} \stackrel{\rightarrow}{\mathsf{E}}$$
(10)

olarak tanımlanan D elektrik indüksiyon vektörünün (elektrik akı yoğunluğu) skaler değerinin, q yük yoğunluğuna eşit olduğu bulunur.

 $| \stackrel{\rightarrow}{D} | = q$ (11)

Kondansatör plakları arasında dielektrik ortamın bulunmaması durumunda elektrik akı yoğunluğu vektörü

$$\dot{D}_{0} = \varepsilon_{0} \dot{E}$$
(12)

10

(7)

elektrodlardaki yük yoğunluğu da q/ ϵ'_r olduklarından

$$\dot{D}_{0} = \varepsilon_{0} \dot{E} = q/\varepsilon_{r}$$
(13)

dir. k tamplanar i elektrik dipol moment vektori ile tensil edi-

Kondansatör plakları arasına bir dielektrik ortamın yerleştirilmesi sonucunda ortaya çıkan elektrik akı yoğunluğu artışı polarizasyon olarak tanımlanır.

$$\vec{P} = \vec{D} - \vec{D}_{0} \qquad (14a)$$

$$\vec{P} = \vec{D} - \varepsilon_{0}\vec{E} \qquad (14b)$$

$$\vec{P} = \varepsilon'\vec{E} - \varepsilon_{0}\vec{E} \qquad (14c)$$

$$\vec{P} = (\varepsilon_{\gamma}' - 1) \varepsilon_{0}\vec{E} \qquad (14d)$$

$$\vec{P} = \chi \varepsilon_{0} \vec{E} \qquad (14e)$$

 χ ye elektrik süsseptibilite denir. (11) ve (13) bağıntıları yardımıyla (14a) dan

$$\dot{P} = (1-1/\epsilon_{r}') q$$
 (15)

elde edilir. Bu, polarizasyonun miktarca bağlı yük yoğunluğuna eşit olduğunu göstermektedir. (13) ve (15) bağıntıları yardımıyla da (14e) den süsseptibilite için

$$q = \frac{(1-1/\varepsilon_r') q}{q/\varepsilon_r'}$$
(16)

yazılabilir. Bu da, süsseptibilitenin bağıl yük yoğunluğunun serbest yük yoğunluğuna oranı olduğunu göstermektedir.

Birbirlerinin d kadar uzağında zıt polariteli +0, -0 yük çifti, bir elektrik dipol olusturur. Bu dipollariziense bekanzinslerz ve bunlars babiz polarizieneútier-

 $\begin{array}{c} \rightarrow & \rightarrow \\ \mu &= Q \ d \end{array}$

olarak tanımlanan $\vec{\mu}$ elektrik dipol moment vektörü ile temsil edilir. $\vec{\mu}$ vektörünün yönü eksi yükten, artı yüke doğrudur. Buna göre, dielektrik ortamın toplam dipol momenti miktarca, elektrodlardaki toplam bağlı yük ile elektrodlar arası uzaklığın çarpımına, başka deyişle de bağlı yük yoğunluğunun plaklar arasındaki hacımla çarpımına eşittir. Bağlı yük yoğunluğunun, polarizasyon vektörünün skaler değerine eşit olduğu, dielektriğin elektrik dipol momentinin de elektrik alan yönünde, dolayısıyla da P polarizasyonu yönünde olduğu gözönüne alınırsa, polarizasyonun, dielektrik ortamın birim hacminin dielektrik dipol momentine özdeş olduğu görülür.

Dielektrik ortamın birim hacminin dielektrik dipol momenti, birim hacimdeki N elemanter dipolün toplam etkinliğinin sonucu olacağına göre, bu dipollerin ortalama momenti olmak üzere, polarizasyon

$$\vec{P} = N \mu$$
(18)

olarak yazılabilir. Ayrıca $\vec{\mu}$ momentinin dielektrik içindeki lokal (yerel) elektrik alanı il<u>e</u> orantılı olduğu kabul edilebilir. Dipole etki eden bu yerel alan E₁ ile gösterilecek olursa

$$\vec{\mu} = \alpha \vec{E}_{1}$$
(19)

ile tanımlanan α ya dipolün polarizlenebilirliği (polarizebilitesi) denir. Buna göre P vektörü için

$$\vec{P} = (\varepsilon_{\gamma}' - 1) \epsilon_{0} \vec{E} = N \alpha \vec{E}_{1}$$
(20)

Clausius denklemi yazılabilir.

Dipoller, atomlar ve moleküllerce değişik mekanizmalar aracılığıyla oluşturulurlar. a polarizebilitesi, bu mekanizmalara ait polarizebilitelerin bir bileşkesidir.

12

(17)

Polarizlenme mekanizmaları ve bunlara bağlı polarizlenebilirlikler aşağıdaki gibi sıralanabilir: Optik Polarizlenme

Bir atomun, pozitif yüklü bir iç kabuk ve bunu saran bir elektron bulutundan oluştuğu gözönüne alınabilir. Bir alan uygulandığında, elektron bulutu, atom merkezine oranla küçük bir ötelenme yaparak bir dipol momentin oluşmasına neden olur. Bu mekanizma, görülür ışığın frekanslarına eşit ya da daha büyük öztitreşim frekansları veren, elektronların elastik ötelenmesi modelinin karakteristiklerini taşır. Elektronik polarizlenme olarak da adlandırılan bu polarizlenmeye ilişkin polarizlenebilirliğe $\alpha_{\rm e}$ optik (elektronik) polarizlenebilirlik denir.

Moleküler Polarizlenme

İki değişik atomdan oluşan bir molekül ele alınacak olursa, atomlar arasındaki etkileşim nedeni ile elektronların, atomlar arasındaki yeni ber dağılım gösterecekleri bu dağılımın, atomları birleştiren eksene göre simetrik olacağı, ancak genelde sözkonusu eksen boyunca bir dipol momentin ortaya çıkacağı düşünülür. Dipol momentleri olan iki yada daha çok atomlu moleküllere polar molekül denir. Atomları özdeş olan iki atomlu bir molekülün dipol momenti simetri nedeniyle sıfır olacaktır. Bu moleküller polar değildir.

Polar moleküller, bir alan uygulandığında iki mekanizmanın etkisinde kalırlar. Birincisinde, alan atomların ötelenmesine, dolayısıyla da molekülün dipol momentinin değişmesine yol acabilir. Buna atomik polarizlenme denir. Atomik polarizlenebilirlik de α_a ile gösterilir. İkinci olarak da, molekül bir bütün olarak, dipolün yönünü alanın yönüne çevirmek için dönme eğilimi gösterir. Buna da yönelme (oryantasyon) polarizasyonu denir. Yönelme polarizlenebilirliği de α_d ile gösterilir.

Arayüz Polarizlenmesi

Bir kristal içindeki çeşitli kusurlar, uygulanan elektrik alanın etkisiyle kristal boyunca ilerleyen serbest yük taşıyıcılarını tuzaklayarak, buralarda birikmelerine yol açarlar. Böylece oluşan lokal yük yığılmaları, buradaki yüklerin elektrodlarda kendi karsıtlarını indükleyerek dipol momentlerin olusmalarına yol açarlar. Kristallerdeki bu farklı mekanizmaya arayüz polarizlenmesi denir. Arayüz polarizlenebilirliği de α; ile gösterilir.

Dielektrik ortamın a polarizlenebilirliği, dielektrik malzemenin özelliğine ve uyqulanan alanın zamana bağlı biçimine göre, yukarıda sayılan polarizlenebilirliklerin bir kısmı ya da tümünce yapılan değişik ağırlıktaki katkılarla oluşturulur:

$$\alpha = \alpha_e + \alpha_a + \alpha_d + \alpha_i \tag{21}$$

III.A.2 Kompleks Permitivite ve Kompleks Kapasite

Permitivite, Coulomb Yasası tarafından ortamın bir özelliği olarak tanımlanır. ε permitivitesinin, boşluğun ε_{o} permitivitesine oranı olan

$$\varepsilon_{r} = \frac{\varepsilon}{\varepsilon_{0}}$$
(22)

 ε_r ye ortamın bağıl permitivitesi denir. Boşluğun permitivitesi ise

$$e_0 = 8,85.10^{-12}$$
 Farad/metre (23)

dir.

Paralel plaklı boşluk kondansatörünün kapasitesi, plakların yüzeyi A, plakların arasındaki uzaklık da d olmak üzere

$$C_{0} = \varepsilon_{0} \frac{A}{d}$$
(24)

olarak verilir. Plaklar arasına, e_r bağıl permitiviteli, polar olmayan bir ideal yalıtkan ortam yerleştirildiğinde kapasitenin değeri

 $C = \varepsilon_r C_0$ (25a)

$$C = \varepsilon_{\gamma} \varepsilon_{0} - \frac{A}{d}$$
(25b)
$$C = \varepsilon - \frac{A}{d}$$
(25c)

olur.

olerak badlıdır. e

Kondansatöre uygulanan bir V gerilimi, kondansatör plaklarında Q yükünün birikmesine neden olur.

$$Q = C V$$
(26)

Uygulanan gerilim bir $V = V_0 \exp(j\omega t)$ alternatif gerilimi ise, plaklardaki yük, bu gerilim ile aynı fazda bir değişim gösterir:

$$Q = C V_{o} \exp (j\omega t)$$
(27)

Bu durumda dış devrede

$$I = \frac{dQ}{dt} = j \omega C V_{0} exp (j\omega t)$$
(28a)

$$I = j \omega C V$$
(28b)

akımı vardır. Akım gerilimin 90⁰ ilersindedir.

Kondansatör plakları arasındaki polar olmayan ortam, ideal yalitkan değilse akımın (28b) ile verilen değerine bir de gerilim ile aynı fazda olan küçük bir G V iletkenlik bileşeni eklemek gerekir:

$$I = (j \omega C + G) V$$
(29)

Serbest yüklerin hareketinden kaynaklanan, ve dolayısıyla frekansa bağlı olmayan G iletkenliği, dielektrik ortamın boyutlarına

$$G = \sigma - \frac{A}{d}$$
(30)

15

(25c)

olarak bağlıdır. σ, iletkenlik katsayısı adını alır. İletkenliğin tersi ise dirençtir ve R ile gösterilir. (25c) ve (30) bağıntıları yardımıyla (29) bağıntısı

$$\frac{I}{A} = (j\omega\varepsilon + \sigma) \frac{V}{d}$$
(31)

biçiminde yazılabilir.

Kondansatör plakları arasındaki E elektrik alan şiddetinin, gerilim ve plaklar arasındaki uzaklığa

$$E = \frac{V}{d}$$
(32)

olarak bağlı olduğu, J akım yoğunluğunun da

$$J = \frac{I}{A}$$
(33)

olarak tanımlandığı bilindiğine göre (31) bağıntısı

$$J = (j\omega\varepsilon + \sigma) E$$
(34)

olarak yazılabilir. Son bağıntı

E

ε"

 $J = j\omega \overline{\epsilon} E$ (35)

olarak da yazılabilir. Bu bağıntıda yer alan $\overline{\epsilon}$ kompleks büyüklüğüne, kompleks permitivite denir. (34) ve (35) bağıntılarına göre,

$$\overline{\varepsilon} = \varepsilon - j \frac{\sigma}{\omega} \text{ appreciation of the sector (36)}$$

dir.

$$= \varepsilon$$
(37a)
$$= \frac{\sigma}{\omega}$$
(37b)

alınarak kompleks permitivitenin

$$\overline{\varepsilon} = \varepsilon' - j\varepsilon'' \tag{38}$$

biçiminde yazılması sağlanır.

Bağıl kompleks permitivite, (22) bağıntısına benzer biçimde

$$\overline{\varepsilon}_{r} = \frac{\overline{\varepsilon}_{0}}{\varepsilon_{0}}$$
(39)

olarak tanımlanır. Buna göre

$$\varepsilon'_{r} = \varepsilon'/\varepsilon_{o} = \varepsilon/\varepsilon_{o} = \varepsilon_{r}$$
 (40a)

$$\varepsilon_{r}^{"} = \varepsilon^{"}/\varepsilon_{o} = \sigma/\omega\varepsilon_{o}$$
(40b)

olmak üzere, bağıl kompleks permitivite

$$\overline{\epsilon}_{r} = \epsilon_{r}' - j\epsilon_{r}'' \tag{41}$$

dir.

Mutlak ve bağıl permitivitelere göre

$$\overline{c} = \overline{c} - \frac{A}{d}$$
 (42a)

$$\overline{C} = \overline{\varepsilon}_{r} \varepsilon_{o} \frac{A}{d} = \overline{\varepsilon}_{r} C_{o} = \frac{\overline{\varepsilon}}{\varepsilon_{o}} C_{o}$$
(42b)

$$\overline{C} = \varepsilon'_{r}C_{0} - j\varepsilon''_{r}C_{0} = \frac{\varepsilon'}{\varepsilon_{0}}C_{0} - j\frac{\varepsilon''}{\varepsilon_{0}}C_{0}$$
(42c)

olarak tanımlanan C kompleks kapasitesi, bileşenleri

$$C' = \varepsilon'_{r}C_{0} = \frac{\varepsilon'}{\varepsilon_{0}}C_{0} = \varepsilon' \frac{A}{d} = \varepsilon' \frac{A}{d} = C$$
(43a)

17

$$C'' = \varepsilon_{r}^{"}C_{0} = \frac{\varepsilon''}{\varepsilon_{0}}C_{0} = \varepsilon'' \frac{A}{d} = \frac{\sigma}{\omega} \frac{A}{d} = \frac{G}{\omega} = \frac{1}{\omega R}$$
(43b)

olmak üzere

117-

$$\overline{C} = C' - jC''$$
(44)

biçiminde de yazılabilir. Bu kompleks kapasitenin admitansı

$$Y = j\omega C = j\omega C' + \omega C''$$
(45)

ya da (43a) ve (43b) bağıntıları kullanılırsa

$$Y = j_{\omega}C + G = j_{\omega}C + \frac{1}{R}$$
(46)

biçiminde yazılabilir. Bunlara göre (29) bağıntısı

$$I = j_{\omega} CV \tag{47a}$$

$$I = (j\omega C + \omega C) V$$
(47b)

olarak da yazılabilir.

Şekil-4 de akımın bileşenleri gösterilmektedir. Dielektriğin

ideal olmaması, akımın & açısı
kadar geri kalmasına yol açmaktadır. Dielektrikdeki iletkenlikten
doğan kaybın bir ölçüsü olan bu
açı, kayıp açısı, açının tanjantı da kayıp tanjantı veya kayıp
faktörü olarak adlandırılır.
Sekil-4 den

$$tg\delta = \frac{C''}{C'}$$
(43)

olarak elde edilir. (43a) ve (43b) bağıntılarına göre de

$$tg\delta = \frac{\sigma}{\varepsilon\omega}$$
 (49)

18

dır.

Kondansatör plakları arasındaki ortamın polar bir dielektrik olması durumunda iletkenliğe serbest yüklerin yanısıra, bağlı yükler de katkıda bulunacaklardır. Bu nedenle G ve σ nın kendileri de frekansa bağlı kompleks büyüklükler olacaklardır. Bu durumda

$$\overline{\varepsilon} = \varepsilon' - j\varepsilon'' \tag{38}$$

kompleks permitivitesinin her ikisi de frekansa bağımlı ε ' ve ε " bileşenlerinin permitivite ve iletkenliğe bağlılığı (37a) ve (37b) bağıntıları ile verilenden daha karmaşık olurlar.

III.A.3 Permitivite Bileşenlerinin Frekans Spektrumu

Şekil-5 Bağıl kompleks permitivitenin gerçel ve sanal bileşenlerinin frekans spektrumu

Şekil-5 uzay yüklerini de içeren tipik bir polar ortamın kompleks permitivitesinin gerçel ve sanal bileşenlerinin frekans spektrumunu göstermektedir.⁽²³⁾

Söz konusu spektrum, ortamdaki değişik polarizlenme mekanizmalarının frekansa göre değişen katkılarının toplamından oluşmaktadır. Her mekanizma belli bir kritik frekansa (öz titreşim frekansı) sahiptir. Bu frekansın üstünde söz konusu mekanizmanın etkisi giderek tükenmektedir. Küçük frekanslara gidildikçe daha çok sayıda mekanizmanın katkısı görülmektedir. 10²⁰ Hz ve daha yüksek frekanslardaki alanların, ortamda, polarizlenme etkisi yapmadıkları görülmektedir. (Şekil-5, 1 sayılı bölge). 10¹⁹ Hz mertebesindeki bir frekansta (X-ışınları mertebesi) iç elektronların optik polarizlenmesine ilişkin rezonans görülmektedir. Daha düşük frekanslarda da süren bu polarizlenme bağıl permitivitenin gerçel bileşenini, boşluğun bağıl permitivitesi olan birimin üzerine çıkarmaktadır (Şekil-5, 2 sayılı bölge).

Daha düşük frekanslarda valans elektronlarının rezonansları görülmektedir. Bunların altında ise, dış elektronların optik polarizlenmelerinin de katkısıyla permitivitenin yeniden yükseldiği, kırmızıaltı ve görünür ışık frekansları bölgesi yer almaktadır (Şekil-5, 3 sayılı bölge).

Uzak kırmızıaltı bölgede yeni bir rezonans görülmektedir. Katkısı burada başlayan atomik polarizlenme mekanizmasının etkisiyle permitivitede yeni bir artış daha olmaktadır (Şekil-5, 4 sayılı bölge).

Frekansın daha küçük değerlerine inince, uygulanan alan ile ortam arasında relaksasyon tipindeki interaksiyonlar görülmektedir. Dipol yönelme polarizasyonunun katkısıyla permitivite daha yüksek bir değere ulaşmaktadır (Şekil-5, 5 sayılı bölge).

Elektrodlarda rekombinasyona elvermeyen, dolayısıyla da çok düsük frekanslarda her yarım periyodda bir yönünü değistiren makroskobik dipoller gibi davranan taşıyıcılar içeren malzemede görülen uzay yük polarizasyonunun katkısıyla permitivite son bir yükselme daha gösterir (Şekil-5, 6 sayılı bölge). Kondansatör plaklarına uygulanan $V = V_0 \exp(j\omega t)$ geriliminin,

$$= j_{\omega}CV$$
 (47a)

akımına yolaçtığı, C kompleks kapasitesinin

I

$$\overline{C} = C' - j_{\omega}C'' \tag{44}$$

olarak tanımlandığı, dolayısıyla bu kapasitenin admitansının

εο

$$Y = j_{\omega}\overline{C} = j_{\omega}C' + {}_{\omega}C''$$
(45)

olduğu, C've C'nün de

$$C' = \varepsilon_{\gamma}^{'} C_{0}^{'} = \frac{\varepsilon_{0}^{''}}{\varepsilon_{0}} C_{0}^{'}$$

$$(43a)$$

$$C'' = \varepsilon_{\gamma}^{''} C_{0}^{'} = \frac{\varepsilon_{0}^{''}}{\varepsilon_{0}} C_{0}^{'}$$

$$(43b)$$

oldukları bilinmektedir. (25)

Şekil-6 Paralel ve seri eşdeğer devreler a- Paralel eşdeğer devre b- Seri eşdeğer devre C kondansatörü, C_p kapasiteli bir kayıpsız kondansatör ile buna paralel olarak bağlı R_p direnci ile temsil edilebilir (Şekil-6a). Bu eşdeğer devrenin admitansı, C kondansatörünün (45) ile verilen admitansına eşit olmalıdır.

$$j\omega C_{p} + \frac{1}{R_{p}} = j\omega C' + \omega C'' \quad (50)$$

Buna göre kompleks kapasitenin C've C"bileşenleri ile eşdeğer devre elemanları arasındaki dönüşüm bağıntıları

$$C' = C_{p}$$
(51a)

$$C'' = \frac{1}{\omega R_{p}}$$
(51b)

biçimindedir. Bu durum da

$$tg\delta = \frac{C}{C} = \frac{1}{\omega R_p C_p}$$
(52a)

$$\varepsilon_{r}' = \frac{C}{C_{0}} = \frac{C_{p}}{C_{0}}$$
(52b)

$$\varepsilon_{r}^{"} = \frac{C_{o}^{"}}{C_{o}} = \frac{1}{\omega R_{p}C_{o}}$$
(52c)

bağıntıları elde edilir.

C kondansatörü, kayıpsız bir C_s kondansatörü ile buna seri olarak bağlı bir R_s direnci ile de temsil edilebilir (Şekil-6b). Seri eşdeğer devrenin admitansının, C kondansatörünün admitansına eşitlenmesiyle,

$$\frac{j\omega C_{s}}{1 + j\omega C_{s} R_{s}} = j\omega C' + \omega C''$$
(53)

bağıntısı elde edilir. Gerçel ve sanal terimlerin eşitlenmesiyle de

$$C' = \frac{C_{s}}{1 + \omega^{2}C_{s}^{2}R_{s}^{2}}$$
(54a)
$$C'' = \frac{\omega C_{s}^{2}R_{s}}{1 + \omega^{2}C_{s}^{2}R_{s}^{2}}$$
(54b)

elde edilir. Bu durumda da

$$tg\delta = \frac{C''}{C} = \omega C_s R_s$$
 (55a)

$$\varepsilon_{r}^{\prime} = \frac{C_{s}^{\prime}}{C_{o}} = \frac{C_{s}^{\prime}C_{o}}{1 + \omega^{2}C_{s}^{2}R_{s}^{2}} = \frac{C_{s}^{\prime}C_{o}}{1 + tg^{2}\delta}$$
(55b)

$$\varepsilon_{r}^{"} = \frac{C^{"}}{C_{0}} = \frac{\omega C_{s} R_{s}}{1 + \omega^{2} C_{s}^{2} R_{s}^{2}} \frac{C_{s}}{C_{0}} = \frac{tg\delta}{1 + tg^{2}\delta} \frac{C_{s}}{C_{0}}$$
(55c)

bağıntılarına varılır.

Aynı C kondansatörüne eşdeğer paralel ve seri devrelerin elemanları arasındaki dönüşüm bağıntıları Ek-l de gösterildiği üzere

$$C_{p} = \frac{C_{s}}{1 + \omega^{2} C_{s}^{2} R_{s}^{2}}$$
(56a)

$$R_{p} = \frac{1 + \omega^{2}C_{s}^{2}R_{s}^{2}}{\omega^{2}C_{s}^{2}R_{s}^{2}s}$$
(56b)
$$C_{s} = \frac{1 + \omega^{2}C_{p}^{2}R_{p}^{2}}{\omega^{2}C_{p}R_{p}^{2}}$$
(57a)

$$R_{s} = \frac{R_{p}}{1 + \omega^{2} C_{p}^{2} R_{p}^{2}}$$
(57b)

gibidir. Ayrıca

$$\omega C_{s} R_{s} = \frac{1}{\omega C_{p} R_{p}}$$
(58)

olduğu görülmektedir.

 \bar{C} kapasitesinin, Şekil-6 da gösterilen C_p , R_p paralel devresiyle ya da C_s , R_s seri devresiyle temsil edilmesinin yalnızca sabit bir frekans için anlamı vardır. Bu eşdeğer devreler, permitivite bileşenlerinin frekans aralığında gösterdikleri relaksasyon ve rezonans spektrumlarını karşılayamamaktadırlar (Şekil-7).

23

verilen admitansing esitlenerek, kompleks C kapasitesinin C

Paralel R , C ve seri R , C devrelerinin frekans spektrumları pŞekil-7 a- Paralel devrenin frekans spektrumu b- Seri devrenin frekans spektrumu

Relaksasyon spektrumlarını karşılamak için önerilen eşdeğer devreler Şekil-8 de gösterilmektedir. Bu devrelerin admitansları Ek-2 de gösterildiği üzere hesaplanıp, C nin (45) bağıntısı ile

Şekil-8 Relaksasyon spektrumlarının esdeğer devreleri a- McDonald-Friauf esdeğer devresi (MF)

b- Maxwell-Garnet eşdeğer devresi (MG)
c- McDonald-Friauf - Maxwell-Garnet eşdeğer devresi (MFMG)

verilen admitansına eşitlenerek, kompleks C kapasitesinin C ve C bileşenleri elde edilir. Böylece, McDonald-Friauf eşdeğer devresi için

$$C'(MF) = \frac{(C_{1s} + C_{1p}) + \omega^{2}C_{1p}C_{1s}^{2}R_{1}^{2}}{1 + \omega^{2}C_{1s}^{2}R_{1}^{2}}$$
(59a)
$$C''(MF) = \frac{\omega C_{1s}^{2}R_{1}}{1 + \omega^{2}C_{1s}^{2}R_{1}^{2}}$$
(59b)

Maxwell-Garnet eşdeğer devresi için

$$C'(MG) = \frac{C_2 [1 + \omega^2 (C_1 + C_2) C_1 R_1^2]}{1 + \omega^2 (C_1 + C_2)^2 R^2}$$
(60a)

$$C''(MG) = \frac{\omega C_2 R_1}{1 + \omega^2 (C_1 + C_2)^2 R_1^2}$$
(60b)

McDonald Friauf - Maxwell Garnet eşdeğer devresi için

$$C'(MFMG) = \frac{C_{2}([C''(MF)]^{2}+C'(MF)[C'(MF)+C_{2}])}{[C''(MF)]^{2}+[C'(MF)+C_{2}]^{2}}$$
(61a)
$$C''(MFMG) = \frac{C_{2}^{2}C''(MF)}{[C''(MF)]^{2}+[C'(MF)+C_{2}]^{2}}$$
(61b)

bağıntıları bulunur.

Ek-2 de gösterildiği üzere (59a), (60a), (61a) ile verilen $C = C'(\omega)$ spektrumları,

$$C' = \frac{A + B(\omega/\omega_{o})^{2}}{1 + (\omega/\omega_{o})^{2}} = B + \frac{A - B}{1 + (\omega/\omega_{o})^{2}}$$
(62)

bağıntısına, (59b), (60b), (61b) ile verilen $C = C'(\omega)$ spektrumları da

$$C'' = \frac{A - B}{1 + (\omega/\omega_{o})^{2}} (\omega/\omega_{o})$$
(63)

bağıntısına uyarlar. Şekil-9 da (62) ve (63) ile verilen spektrumlar görülmektedir. Bu spektrumlar Şekil-5 deki relaksasyonlar ile, bu

sekildeki yatay eksenin frekansın logaritmasına göre bölümlendiği gözönüne alınarak karşılaştırılırsa, söz konusu eşdeğer devrelerin relaksasyon spektrumlarına uygun spektrumlar gösterdiği anlaşılacaktır. (62) ve (63) bağıntılarında yer alan A, B ve ω_{0} sabitlerinin eşdeğer devrelerdeki elemanlar cinsinden ifadeleri Ek-2 de gösterildiği üzere Tablol deki gibi elde edilirler. $C' = C'(\omega)$ eğrisi maksimumdan $\omega = \omega_{0}$ da geçmektedir.

Rezonans spektrumları, permitivitenin sanal bileşenindeki keskin artışlar ve gerçel bileşenindeki hızlı değişme ö-

zellikleri ile relaksasyon spektrumlarından ayrılmaktadır. Bu özellikleri karşılayan eşdeğer devreler L indüktörü, C kondansatörü ve R direncinin uygun kombinezonları ile elde edilirler. Bu devrelerin en basiti R, L, C seri devresidir.^(25, 26)

26

-		-		-	-	
1	\square	R	1	()	-	
	m	$\boldsymbol{\nu}$	-	U	-	

Relaksasyon spektrumlarının eşdeğer devrelerine ait ortak bağıntılarda yer alan katsayıların eşdeğer devre elemanları cinsinden ifadeleri

Eşdeğer devre	A	В	ω
McDonald-Friauf	C _{ls} +C _{lp}	C _{lp}	R ₁ C _{1s}
Maxwell-Garnet	C ₂	$\frac{c_1c_2}{c_1+c_2}$	$\frac{1}{R_{1}(C_{1}+C_{2})}$
McDonald-Friauf Maxwell-Garnet	$\frac{C_2(C_{1s}+C_{1p})}{(C_{1s}+C_{1p}+C_2)}$	C _{1p} C ₂ . C _{1p} +C ₂ .	$\frac{C_{1s}+C_{1p}+C_2}{R_1C_{1s}(C_{1p}+C_2)}$

III.A.5 Maxwell-Wagner Relaksasyonu ve Eşdeğer Devresi

Plaklarının arası boşken kapasitesi

$$C_0 = \varepsilon_0 \frac{A}{d}$$

olan kondansatörün, aralarındaki uzaklık d olan plaklarının arasına, polar olmayan ve permitivitesi ε_1 , iletkenliği σ_1 olan bir malzemeden d₁ kalınlığında bir tabaka, yine polar olmayan ve permitivitesi ε_2 , iletkenliği σ_2 olan malzemeden de, ilk tabakadan artan boşluğu tümüyle kapatacak d₂ kalınlığında bir tabaka yerleştirilmesiyle sağlanan \overline{C} kapasitesi, tabakaların (42a) bağıntısına göre

(64a)
$$\overline{c}_2 = \overline{c}_2 \frac{A}{d_2}$$
(64b)

olan kapasitelerinden elde edilir:

bicimiae dönüsecegi of

$$\frac{1}{\overline{c}} = \frac{1}{\overline{c_1}} + \frac{1}{\overline{c_2}}$$
(65)

 \overline{C} , \overline{C}_1 ve \overline{C}_2 nin (45) bağıntısına göre

$$Y = j_{\omega}\overline{C}$$
(66a)
$$Y_{1} = j_{\omega}\overline{C}_{1}$$
(66b)

$$Y_2 = j_{\omega}\overline{C}_2$$
 (66c)

olan admitansları yardımıyla (65) bağıntısının

$$\frac{1}{\gamma} = \frac{1}{\gamma_1} + \frac{1}{\gamma_2}$$

olarak yazılabileceği; (64a), (64b), (66b), (66c), (36), (25c), (30) bağıntılarının birlikte değerlendirilmesiyle elde edilen

$$Y_{1} = j\omega\overline{c}_{1} = j\omega\overline{c}_{1} \frac{A}{d_{1}} = j\omega(\varepsilon_{1} - \frac{\sigma_{1}}{\omega}) \frac{A}{d_{1}} = \sigma_{1} \frac{A}{d_{1}} + j\omega\varepsilon_{1} \frac{A}{d_{1}}$$

$$= \frac{1}{R_{1}} + j\omega C_{1}$$

$$Y_{2} = j\omega\overline{c}_{2} = j\omega\varepsilon_{2} \frac{A}{d_{2}} = j\omega(\varepsilon_{2} - \frac{\sigma_{2}}{\omega}) \frac{A}{d_{2}} = \sigma_{2} \frac{A}{d_{2}} + j\omega\varepsilon_{2} \frac{A}{d_{2}}$$

$$= \frac{1}{R_{2}} + j\omega C_{2}$$

$$(67b)$$

bağıntıları yardımıyla da

$$\frac{1}{Y} = \frac{1}{\frac{1}{R_1} + j\omega C_1} + \frac{1}{\frac{1}{R_2} + j\omega C_2}$$
(68)

biçimine dönüşeceği görülür. Buna göre iki tabakalı C kondansatörünün admitansı, bir kolunda $R_1 = d_1/A\sigma_1$ direnci, diğer kolunda $C_1 = \varepsilon_1 A/d_1$ kayıpsız kondansatörü bulunan paralel bir devre ile bir kolunda $R_2 = d_2/A\sigma_2$ direnci, diğerinde de $C_2 = \varepsilon_2 A/d_2$ kondansatörü bulunan ikinci bir paralel devrenin seri olarak bağlanması ile elde edilen devrenin admitansına eşittir (Şekil-10).

Şekil-10 İki tabakalı kondansatör ve eşdeğer devresi

(68) bağıntısı, Y nin (45) bağıntısındaki ifadesi yardımıyla

$$\frac{1}{\omega C'' + j\omega C'} = \frac{R_1}{1 + j\omega R_1 C_1} + \frac{R_2}{1 + j\omega R_2 C_2}$$
(69)

biçimine dönüştürülür. Bağıntının gerçel ve sanal bileşenlere ayrılması ile, \overline{C} kompleks kapasitesinin gerçel ve sanal bileşenleri olarak

$$C' = \frac{(R_1^2 C_1 + R_2^2 C_2) + \omega^2 R_1^2 R_2^2 C_1 C_2 (C_1 + C_2)}{(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 (C_1 + C_2)^2}$$
(70a)

$$c'' = \frac{(R_1 + R_2) + \omega^2 R_1 R_2 (R_1 C_1^2 + R_2 C_2^2)}{\omega [(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 (C_1 + C_2)^2]}$$
(70b)

elde edilir. Bu bağıntılar,

$$A_{1} = \frac{R_{1}^{2}C_{1} + R_{2}^{2}C_{2}}{(R_{1} + R_{2})^{2}}$$
(71a)

$$B_{1} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$$
(71b)

$$A_{2} = \frac{R_{1}R_{2} (C_{1} + C_{2})}{(R_{1} + R_{2})^{2}}$$
(71c)

$$B_{2} = \frac{R_{1}C_{1}^{2} + R_{2}C_{2}^{2}}{(R_{1} + R_{2}) (C_{1} + C_{2})}$$
(71d)

gibi kapasite boyutundaki katsayılar ve frekans boyutundaki

$$\omega_{o} = \frac{R_{1} + R_{2}}{R_{1} R_{2} (C_{1} + C_{2})}$$
(72)

katsayısı yardımıyla

$$C' = \frac{A_{1} + B_{1} (\omega/\omega_{o})^{2}}{1 + (\omega/\omega_{o})^{2}} = B_{1} + \frac{A_{1} - B_{1}}{1 + (\omega/\omega_{o})^{2}}$$
(73)

$$C'' = \frac{A_2 + B_2(\omega/\omega_0)^2}{(\omega/\omega_0) [1 + (\omega/\omega_0)^2]} = \frac{A_2}{(\omega/\omega_0)} + \frac{B_2 - A_2}{1 + (\omega/\omega_0)^2} (\omega/\omega_0) (74a)$$

$$C'' = \frac{A_2}{(\omega/\omega_0)} + \frac{A_1 - B_1}{1 + (\omega/\omega_0)^2} (\omega/\omega_0)$$
(74b)

olarak yazılabilirler. C've C" bileşenlerinin, dolayısıyla da $\varepsilon'_r = C'/C_0$ ve $\varepsilon''_r = C''/C_0$ permitivite bileşenlerinin frekansa göre değişimleri Şekil-ll de gösterilmiştir. Şekilden de anlaşılacağı

üzere, kondansatör plakları arasındaki iki tabakanın permitivite ve iletkenliklerinin frekansla değişmemelerine karşın, iki tabakanın toplam permitivite bileşenleri frekansa bağlı bir değişim göstermektedir. (73) bağıntısı (62) bağıntısıyla karşılaştırılırsa Şekil-10 daki eşdeğer devre ile relaksas-

yon spektrumlarını karşılayan Şekil-8 deki devrelere ait gerçel kapasite bileşeninin dolayısıyla gerçel permitivite bileşeninin frekansa bağlı değişimlerinin aynı oldukları görülür. Bu nedenle iki tabakalı kondansatörün frekans spektrumundan da relaksasyon olarak söz edilir.

(74) bağıntısı ile (63) bağıntısı ise birbirlerine tümüyle uymamaktadır. (74b) bağıntısında, (63) bağıntısından farklı olarak yer alan $A_2/(\omega/\omega_0)$ terimi küçük frekanslara gidildikçe etkin olmakta ve C bileşeninin sonsuza yaklaşmasına yol açmaktadır, oysa (63) bağıntısı ile verilen C = C (ω) değişimi, C bileşeninin, küçük frekanslar yönünde sıfıra yönelmesini öngörmektedir.

Sanal kapasite bileşeninin frekansa bağlı değişiminin, dipol oryantasyon relaksasyonunu karşılayan eşdeğer devreye ait sanal kapasite bileşeninin değişiminden değişik olması nedeniyle, iki tabaka kondansatörünün relaksasyonu değişik bir relaksasyon türü oluşturmaktadır.⁽²⁶⁾ Bu relaksasyona Maxwell-Wagner relaksasyonu, Şekil-10 daki devreye de Maxwell-Wagner eşdeğer devresi denir. Önceki relaksasyon türü ise Debye relaksasyonu olarak bilinir.^(23, 26)

İki tabakalı kondansatör uçlarına V doğru gerilimi uygulanırsa, gerilimin tabakalara göre dağılımı zamana bağlı bir değişim gösterir. Şekil-12b de gösterildiği üzere birinci tabaka sınır yüzeyleri

- Şekil-12 Maxwell-Wagner eşdeğer devresine uygulanan doğru gerilimin paralel devrelere dağılımının zamana bağlı değisimi a- Maxwell-Wagner eşdeğer devresi
 - b- Uygulanan gerilim ve gerilim dağılımının zamana bağlı değişimleri (C₂/C₁ ≠ R₁/R₂) c- Uygulanan gerilim ve gerilim dağılımının zamana bağlı
 - değişimleri $(C_2/C_1 = R_1/R_2)$

arasındaki V_1 gerilimi, $C_2V/(C_1+C_2)$ den $R_1V/(R_1+R_2)$ ye eksponansiyel bir değişme gösterirken, ikinci tabaka sınır yüzeyleri arasındaki V_2 gerilimi de $C_1 V/(C_1+C_2)$ den $R_2 V/(R_1+R_2)$ ye eksyonansiyel olarak değişmektedir.

Buna göre gerilimin uygulandığı andaki gerilimler arasındaki oran

$$\begin{bmatrix} \frac{V_1}{V_2} \end{bmatrix} = \frac{\frac{C_2}{C_1 + C_2}}{\frac{C_1}{C_1 + C_2}} = \frac{C_2}{C_1} = \frac{\varepsilon_2}{\varepsilon_1}$$
(75)

olmakta ve bu oran zamanla

$$\begin{bmatrix} \frac{V_1}{V_2} \end{bmatrix} = \frac{\frac{R_1 V}{R_1 + R_2}}{\frac{R_2 V}{R_1 + R_2}} = \frac{R_1}{R_2} = \frac{\sigma_2}{\sigma_1}$$

32

(76)

değerine yaklaşmaktadır.

t = 0 için gerilim dağılımı, seri C_1 , C_2 devresindeki gerilim dağılımı gibi, $t \rightarrow \infty$ için de seri R_1 , R_2 devresindeki gerilim dağılımı gibidir. Başka bir deyişle gerilim t = 0 da, kapasitelere göre dağılmışken, bu dağılım zamanla değişmekte ve $t \rightarrow \infty$ için dağılım dirençlerin dağılımına uymaktadır.

$$\frac{\varepsilon_2}{\varepsilon_1} = \frac{\sigma_2}{\sigma_1}$$
(77)

yada aynı anlama gelen,

$$\frac{C_2}{C_1} = \frac{R_1}{R_2}$$
(78)

koşulu V₁ ve V₂ geriliminin, buna bağlı olarak da V₁/V₂ gerilim dağılımının sabit kalmasına yol açacaktır (Şekil-12c).

(78) koşulu (71a-d) bağıntılarına ve (72) bağıntısına yerleştirildiğinde

$$A_{1} = B_{1} = A_{2} = B_{2} = \frac{C_{1}C_{2}}{C_{1}+C_{2}} = \frac{R_{1}C_{1}}{R_{1}+R_{2}} = \frac{R_{2}C_{2}}{R_{1}+R_{2}}$$
(79)
$$\omega_{o} = \frac{1}{R_{1}C_{1}} = \frac{1}{R_{2}C_{2}}$$
(80)

bağıntıları ve bunlar yardımıyla da

$$C' = \frac{C_1 C_2}{C_1 + C_2} = B_1$$
(81)

$$C'' = \frac{1}{(R_1 + R_2) \omega}$$
 (82)

elde edilir. C1 ve C2 kapasitelerinin seri eşdeğeri

$$=\frac{c_{1}c_{2}}{c_{1}+c_{2}}$$
(83)

ile R₁ ve R₂ dirençlerinin seri eşdeğeri de

C_=

$$R_e = R_1 + R_2$$
 (84)

ile gösterilirse (81) ve (82) bağıntıları

$$C' = C_e$$
(85)
$$C'' = \frac{1}{R_o \omega}$$
(86)

olarak da yazılabilir. Bunlara göre (77) koşuluna uyan iki tabakalı kondansatörün eşdeğeri, bir kolunda C_e kapasiteli kondansatörün, diğer kolunda da R_e direncinin bulunduğu bir paralel devredir ve Şekil-7a daki frekans spektrumunu gösterir.

Öte yandan, iki tabakalı kondansatör için çıkartılan tüm bağın-

Şekil-13 İki değişken ortamın oluşturduğu çok tabakalı kondansatör tılar ε_1 , σ_1 ve ε_2 , σ_2 ile belirtilen iki değişik ortamın, Şekil-13 de gösterildiği üzere çok katlılık göstermesi durumunda da tümüyle geçerlidir: ε_1 ve σ_1 li tabakaların direnc, kapasite ve kalınlıkları R_{1i} , C_{1i} , d_{1i} tabakaların toplam kalınlığı da d_1 ile; ε_2 ve σ_2 li tabakalarınkiler de R_{2i} , C_{2i} , d_{2i} ve d_2 ile gösterilmek üzere Y toplam admitansı

$$\frac{1}{\gamma} = \Sigma \left[\frac{1}{\frac{1}{R_{1i}} + j\omega C_{1i}} + \frac{1}{\frac{1}{R_{2i}} + j\omega C_{2i}} \right]$$

$$\frac{1}{\gamma} = \sum \left[\frac{1}{\frac{\sigma_1 A}{\sigma_1 i} + j\omega} \frac{\varepsilon_1 A}{\sigma_1 i} + \frac{1}{\frac{\sigma_2 A}{\sigma_2 i} + j\omega} \frac{\varepsilon_2 A}{\sigma_2 i} \right]$$

$$\frac{1}{\gamma} = \sum \left[\frac{d_1 i}{\sigma_1 A + j\omega \varepsilon_1 A} + \frac{d_2 i}{\sigma_2 A + j\omega \varepsilon_2 A} \right]$$

$$\frac{1}{\gamma} = \frac{d_1}{\sigma_1 A + j\omega \varepsilon_1 A} + \frac{d_2}{\sigma_2 A + j\omega \varepsilon_2 A} = \frac{1}{\frac{\sigma_1 A}{\sigma_1} + j\omega} \frac{1}{\sigma_1 A} + \frac{1}{\frac{\sigma_2 A}{\sigma_2} + j\omega} \frac{\varepsilon_2 A}{\sigma_2 A}$$

$$\frac{1}{\gamma} = \frac{1}{\frac{1}{\gamma} + j\omega \varepsilon_1 A} + \frac{1}{\frac{1}{\gamma} + j\omega \varepsilon_2 A} = \frac{1}{\frac{\sigma_1 A}{\sigma_1} + j\omega} \frac{1}{\sigma_1 A} + \frac{1}{\frac{\sigma_2 A}{\sigma_2} + j\omega} \frac{\varepsilon_2 A}{\sigma_2 A}$$

$$\frac{1}{\gamma} = \frac{1}{\frac{1}{\gamma} + j\omega \varepsilon_1} + \frac{1}{\frac{1}{\gamma} + j\omega} \frac{1}{\sigma_1 A} + \frac{1}{\frac{\sigma_1 A}{\sigma_2} + j\omega} \frac{1}{\sigma_2 A} + \frac$$

olarak elde edilir. Sonuncu bağıntı iki tabaka için yazılan (68) bağıntısının aynıdır.

2

Daha da genel olarak, her tabakanın ε_i , σ_i gibi değişik katsayılara sahip olduğu çok tabakalı bir örnek alındığında da benzer özellikler elde edilir. ε_i nin dağılımı ile σ_i nin dağılımı farklı olduğu oranda relaksasyon spektrumları elde edilecektir.

Arayüz polarizlenme mekanizması, yüklerin biriktiği süreksizlik bölgelerinin ortam içindeki dağılımı ile ilgili olması nedeniyle Maxwell-Wagner relaksasyonuna uyan bir relaksasyona neden olmaktadır. Ancak bu relaksasyonun ortaya çıkması permitivitenin uzaysal dağılımının, iletkenliğin uzaysal dağılımından değişik olmasını gerektirdiğinden, homojen yapılarda Maxwell-Wagner relaksasyonu gözlenemez. Bu bakımdan Maxwell-Wagner relaksasyonu yapının heterojenliğinin göstergesi, bunun da ötesinde bir ölçüsüdür.

III.A.6 Argand Diyagramları

Dielektrik ortamın kompleks permitivitesinin sanal bileşeninin, gerçel bileşene göre değişimini, ya da plakların arasında söz konusu dielektriğin bulunduğu kondansatörün kompleks kapasitesinin C["] sanal bileşeninin, C['] gerçel bileşenine göre değişimi Argand diyagramı olarak bilinir. Debye relaksasyonunun Argand diyagramı, bu relak-

Şekil-14 Relaksasyon spektrumlarının Argand diyagramları

sasyona ait (62) ve (63) bağıntılarından (ω/ω_{o}) ın yok edilmesiyle elde edilen

$$\left[C' - \frac{A+B}{2} \right]^2 + C''^2 = \left[\frac{A-B}{2} \right]^2 \quad (88)$$

denkleminin öngördüğü üzere, C´eksenini B ve A da kesen bir yarım dairedir (Şekil-14, 1 sayılı eğri).

Maxwell-Wagner relaksasyonunun Argand diyagramı ise (73) ve (74b) bağıntılarından elde edilebilen

$$\begin{bmatrix} C' - B_1 \end{bmatrix} \begin{bmatrix} A_1 + A_2 - C' \end{bmatrix}^2 = \begin{bmatrix} A_1 - C' \end{bmatrix} C''^2$$
(89)

bağıntısının öngördüğü üzere, C eksenini B_1 de kesen ve C = A_1 düşey doğrusuna asimtotik olarak yaklaşan bir eğridir (Şekil-14, 2, 3 ve 4 sayılı eğriler).

 C_2/C_1 oranı R_1/R_2 oranına yaklaştıkça, başka deyişle de ϵ_2/ϵ_1 oranı σ_2/σ_1 oranına yaklaştıkça, Şekil-14 deki küçük sayılı eğrilerden, büyük sayılı eğrilere geçilir. Bu iki oranın eşit olması durumunda da, (81) bağıntısının da öngördüğü üzere (Şekil-14, 5 sayılı eğri), C'= B₁ düşey doğrusu elde edilir.

Buna göre Maxwell-Wagner relaksasyonuna ait Argand eğrileri küçük sayılı eğrilere benzediği ölçüde ortamın heterojen, büyük sayılı eğrilere benzeyen eğriler elde edildiği ölçüde de ortamın homojen olduğu kanısına varılabilir.

III.B Kompleks Kapasitenin Ölçülmesi (Schering Köprüsü)

Dielektrik örneklerin kompleks permitivitelerinin ölçülmesi için seçilecek teknikler, ölçünün yapılacağı frekans aralığına göre değişiklik gösterirler. Düşük frekanslardaki permitivite ölçmelerinde, kapasite köprüsünden yararlanılır. Bu teknik 10^7 sn^{-1} lik frekanslara kadar etkili olabilmektedir. Bu frekans aralığının 10^4 sn^{-1} den büyük büyük frekans bölgesinde rezonans devresi tekniği de kullanılabilmektedir.^(25, 26)

Kapasite köprüsü tekniğinde, Şekil-15 deki Schering Köprüsü kullanılır. Dielektrik ortamın karşılıklı iki paralel yüzünün elektrodlarla kaplanmasıyla elde edilen kompleks kapasiteli C kondansatörü, köprünün AD koluna yerleştirilir. İstenilen frekans için köprü, değişken

Şekil-15. Schering köprüsü a- Schering köprüsü

a- Schering köprüsü b- Schering köprüsü (sematik)

devre elemanlarının ayarlanması ile, dengeye getirilir.⁽²⁵⁾ Köprü orta kolun bir yanında kalan kollardaki empedansların oranı, diğer yandaki kolların empedanslarının oranına eşit olması koşuBu koşul Şekil-15 deki büyüklüklere göre;

$$\frac{Z_4}{Z_3} = \frac{Z_1}{Z_2} \qquad (90)$$

ya da

$$Z_2 Z_4 = Z_1 Z_3$$
 (91)

empedans yerine admitanslar yazılırsa da,

$$Y_1 Y_3 = Y_2 Y_4$$
 (92)

olarak ifade edilebilir. Kolların

$$Y_{l} = \frac{1}{R_{l}} + j_{\omega}C_{l}$$
(93a)

$$Y_2 = \frac{1}{R_2} + j_{\omega}C_2$$
 (93b)

$$Y_3 = j_{\omega}C_3 \tag{93c}$$

$$Y_4 = j_{\omega}C$$
 (93d)

admitansları (92) bağıntısına yerleştirilirse,

$$\frac{1 + j_{\omega}R_{1}C_{1}}{R_{1}} j_{\omega}C_{3} = \frac{1 + j_{\omega}R_{2}C_{2}}{R_{2}} j_{\omega}C$$
(94)

bağıntısı ve bu bağıntıdan da C kompleks kapasitesi için

$$\overline{C} = \frac{R_2}{R_1} C_3 \frac{1 + j \omega R_1 C_1}{1 + j \omega R_2 C_2}$$
(95)

ya da

yilmasiyla (92)-

$$\overline{C} = \frac{R_2}{R_1} C_3 \frac{\left[1 + \omega^2 R_1 R_2 C_1 C_2\right] + j\omega \left[R_1 C_1 - R_2 C_2\right]}{1 + \omega^2 R_2^2 C_2^2}$$
(96)

elde edilir. C kompleks kapasitesi, C gerçel ve C sanal bileşenleri cinsinden

$$\overline{C} = C' - jC''$$
 (44)

olarak ifade edildiğine göre, söz konusu bileşenlerin, köprü elemanlarının dengede alacakları değerlere bağlı ifadeleri, (96) bağıntısı uyarınca,

$$c' = \frac{R_2}{R_1} c_3 \frac{1 + \omega^2 R_1 R_2 C_1 C_2}{1 + \omega^2 R_2^2 C_2^2}$$
(97)

$$C'' = \frac{R_2}{R_1} C_3 \frac{\omega [R_2 C_2 - R_1 C_1]}{1 + \omega^2 R_2^2 C_2^2}$$
(98)

olurlar. (48) bağıntısına göre, C[°] nün C[°] ne oranı olan tgö kayın faktörü de son iki bağıntı yardımıyla

$$cg\delta = \frac{\omega \left[\frac{R_2 C_2 - R_1 C_1}{1 + \omega^2 R_1 R_2 C_1 C_2} \right]}{(99)}$$

biçiminde yazılabilir.

R₁ direncinin bulunduğu koldaki kontrol edilemeyen kapasitif etkileri temsil eden küçük C₁ kapasitesinin (stray kapasite) yok sayılmasıyla (97) (98) ve (99) bağıntıları

$$c'' = \frac{R_2}{R_1} \frac{C_3}{1 + \omega^2 R_2^2 c_2^2} \omega R_2 c_2$$
(101)

$$tg\delta = \omega R_2 C_2 \tag{102}$$

bağıntılarına indirgenir. (100) bağıntısı, (102) yardımıyla

$$c' = \frac{R_2}{R_1} \frac{C_3}{1 + tg^2 \delta}$$
(103)

olarak da yazılabilir.

Köprünün R_1 ve R_2 dirençleri kademeli olarak, C_2 ve C_3 kapasiteleri ise sürekli olarak değiştirilebilir. Denge sağlandığında, önce uygulanan frekans, köprüden okunan R_2 direnci ve C_2 kapasitesinden (102) bağıntısı yardımıyla tgő, sonra R_2/R_1 oranı ve C_3 kapasitesinden ve tgő dan (103) yardımıyla C bileşeni bulunur. C bileşeni de (48) bağıntısı uyarınca C ile tgő nın çarpımıdır:

$$C'' = C' tg\delta$$
(104)

Dielektrik ortamın bağıl kompleks permitivitesinin gerçel ve sanal bileşenleri ise, elektrodların A yüzeyi ve elektrodlar arası d uzaklığından,

$$C_0 = \varepsilon_0 \frac{A}{d}$$
(24)

olarak hesaplanan C_oyardımıyla, (43a) ve (43b) bağıntıları uyarınca yazılan

$$\varepsilon_{r}' = \frac{C'}{C_{0}}$$

$$\varepsilon_{r}'' = \frac{C''}{C_{0}}$$
(105)
(106)

bağıntılarından hesaplanır.

ne yüksek termik fletkonlige sahip Cornine 7058 elkroskop canları üzerine hazırlanmıştır.Camlar, once deterjan ile mokanik olarak temizlennis ve şaf sudan geçirildikten sonra, sıcak kromik asıl cözeltisinde bir süre bekletilmislerdir. Daha sonra saf su ile yikanan cemlar 200⁹C deki etüvde ili sast kurutulmus ve vekundaki yerine jerleştirilIV. BÖLÜM

Alo ve Al-Alo Filmlerinde kompleks kapasite ölçmeleri ve elde edilen denel sonuçlar

IV.A Alo ve Al-Alo Film ÖRNEKLERİNİN HAZIRLANMASI

Bu çalışmada saf AlO_x filmleri ile düşük konsantrasyonlu sermet Al-AlO_x filmlerinin dielektrik özellikleri incelenmek istendiğinden, örneklerin karşılıklı iki yüzü aluminyum elektrodlarla kaplanarak, kompleks kapasiteli kondansatörler oluşturulmuştur.⁽²⁷⁾

Şekil-16 Hazırlanan örneklerin geometrisi (plan ve kesit) a- Üst elektrodlar, b- Alo, veya Al-Alo, filmleri, c- Alt elektrodlar, d- Taşiyıcı cam tabaka

Dielektrik ölçmelerin yapıldığı örnekler, düşük elektrik iletkenliğe ve yüksek termik iletkenliğe sahip Corning 7058 mikroskop camları üzerine hazırlanmıştır.Camlar, önce deterjan ile mekanik olarak temizlenmiş ve saf sudan geçirildikten sonra, sıcak kromik asit çözeltisinde bir süre bekletilmişlerdir. Daha sonra saf su ile yıkanan camlar 200°C deki etüvde iki saat kurutulmuş ve vakumdaki yerine yerleştirilmişlerdir. Vakumdaki buharlaştırılma işlemleri sırasında flaman olarak 0,5 mm çapında ve 14 cm uzunluğunda spiral şeklinde hazırlanan tungsten teller kullanılmıştır.

Elektrod tutucu, alt ve üst elektrod malzemesi olarak aluminyum seçilmiştir. Elektrodlar ve AlO_x filmler, Johnson Matthey L.T. firmasından sağlanan % 99,999 saflıkta, 0,5 mm çapındaki aluminyum tellerinin vakumda buharlaştırılmasıyla elde edilmiştir. Şekil-16 da geometrisi verilen örneklerin hazırlanışı şu sıra ile gerçekleştirilmiştir.

Uygun maskeler kullanılarak, 10⁻⁵ torr'luk hava basıncı, 2000 A⁰/dak lık buharlaştırma hızı ve 7 cm lik kaynak-taşıyıcı uzaklığı koşullarında yapılan buharlaştırmalarla cam taşıyıcı üzerine önce elektrod tutucuları, sonra da 500-1000 A⁰ kalınlığında, 2 mm genişliğindeki alt elektrodlar kaplanmıştır.

Alt elektrodlar üzerine de daha sonra, hava basıncının $(10^{-3} - 3.10^{-3})$ torr, buharlaştırma hızının da (100-400) A⁰/dak aralıklarında seçilmesi ve kaynak-taşıyıcı uzaklığının 12 cm alınması ile gerçek-leştirilen buharlaştırmalarla, değişik özelliklere sahip 4 mm geniş-likte Al0_x veya Al-Al0_x filmlerinin kaplanması sağlanmıştır.

Oksit filminin üzerine de alt elektroda çapraz olarak üst elektrodlar, yine 10⁻⁵ torr'luk hava basıncı ve 2000 A⁰/dak lık buharlaştırma hızında ve 2 mm genişliğinde kaplanmıştır.

Böylece hazırlanan örneklerin etkin alanı 4 mm² olmaktadır.

Saf AlO_x ve sermet Al-AlO_x filmlerinin elde edilişi sırasında, en kolay kontrol edilebilen buharlaştırılma hızı değişken vakum parametresi olarak seçilmiştir. Saf AlO_x filmlerin hazırlanması için bu hız \sim 100 A^O/dak ya kadar düşürülmüştür.

Şekil-16 da görüldüğü gibi, aynı taşıyıcı üzerinde benzer özellikte beş kapasitif bölgenin oluşumuna izin veren bir maske seçilmiş, böylece bu bölgelerden birinin dielektrik özelliklerinin doğru alan altındaki değişimleri izlenirken, benzer özelliğe sahip diğer bir kapasitif bölgenin dielektrik özelliklerinin zamana bağlı değişiminin gözlenmesi ve böylece bu iki değişimin karşılaştırılması sağlanmıştır.

Elektrod tutucuları ve alt elektrodu kanlanmış olan cam taşıyıcı, AlO_X filmi kaplanmak için vakuma yerleştirilirken, örneğin yanına, daha sonra bu filmin kalınlığının ölçülmesinde kullanılacak bir cam taşıyıcı ile geçirgenliğinin ölçülmesinde kullanılacak ikinci bir cam taşıyıcı daha konulmuştur.

Filmlerin kalınlığı, Hilger and Watts L.T. yapımı N-130 tipindeki interferometre ile (100 \pm 10) A^O hata ile ölçülmüştür.

Filmlerin geçirgenlikleri, dalga boyunun fonksiyonu olarak 4000-8000 A^O arasındaki spektral bölgede çalışan Carl Zeis Jena'nın spektrofotometresi ile ölçülmüş ve konsantrasyonları, Bölüm II.B de verilen optik absorpsiyon yöntemi ile ve aluminyum metal filmlerinin geçirgenliklerinin kalınlığa bağlı değişim eğrileri yardımıyla (5) bağıntısından hesaplanmıştır.

IV.B ÖRNEKLERİN KOMPLEKS KAPASİT ELERİNİN d.c. Alana bağlı FREKANS SPEKTRUMLARI

IV.B.1 Örneklerin Kompleks Kapasitelerinin d.c. Alan Altında Kapasite Köprüsüyle Ölçülmesi Tekniği (Mixer Devresi)

Örneklerin kompleks kapasite bileşenleri General Radio 716-C tipinde bir Schering köprüsünde ölçülmüştür. Köprünün normal koşullardaki hatası 10³ Hz için ± % 0,1 olarak verilmektedir. Kapasite köprüsünü besleyen ossilatör General Radio 1301-A tipindedir. Köprünün dengesinin gözlenmesinde ise General Radio 1232-A tipindeki detektör kullanılmıştır.

-	n	n		~		0
L	A	В	1	U	-	1
		-	-	-		-

- Annal Contraction			
Kademe Sıra Sayısı	R (n}	(Ω)	R2/R1
1	200 K	200 K	
2	20 K	20 K	1
3	20 K	2 K	10
4	20 K	200	100
5	20 K	20	1000
6	2 K	2 K	1
7	200	200	1

Schering Köprüsünlin direnç kademeleri

Şekil-17 Mixer Devresi (kesik çizgili çerçeve içinde) ve Schering Köprüsüne bağlanması

Sekil-15 ve Sekil-17 de görülen R_1 ve R_2 dirençleri kademeli olarak, C_2 ve C_3 kapasiteleri de sürekli olarak değişmektedir. Tablo-2 köprünün direnç kademelerindeki dirençleri ve oranlarını göstermektedir. Kompleks kapasite bileşenlerinin, köprü elemanlarının denge durumundaki değerleri cinsinden ifadeleri Bölüm III.B de çıkarılmıştır. Bunlara göre ilk olarak ossilatörden okunan f frekansına ait $\omega = 2\pi f$ açısal frekansından, bu-

lunulan direnç kademesine ait R₂ direncinden ve değişken C₂ kondansatörüne ait skaladan okunan C₂ kapasitesinden

tas

$$= \omega R_2 C_2 \qquad (102)$$

bağıntısı yardımıyla, too kayıp faktörü elde edilir. İkinci olarak kademenin R_2/R_1 oranı ve değişken C_3 kondansatörünün skalasından okunan C_3 kapasitesi ve (102) den hesaplanan too kayıp faktöründen

$$C' = \frac{R_2}{R_1} \frac{C_3}{1 + tg^2 \delta}$$
(103)

bağıntısı yardımıyla kompleks kapasitenin C[']gerçel bileşeni ve son olarak da tgδ ve C[']den

$$C = C tg\delta$$
 (104)

bağıntısı yardımıyla kompleks kapasitenin C["] sanal bileşeni elde edilmektedir. Çalışmada d.c. alanın, örneklerin dielektrik özelliklerine etkisi incelendiğinden, örneklerin kapasite bileşenlerinin, örnek alan altında tutulurken ölçülmesine gerek duyulmuştur.

Bu gereklilik bir d.c. gerilim kaynağından bir potansiyometre ile bölünerek alınan doğru gerilimin, ossilatörün alternatif gerilimiyle birleştirilip köprü devresinin jeneratör girişleri olan, Şekil-17 de D ve B ile gösterilen noktalara uygulanmasıyla yerine getirilmiştir. Bunun için Şekil-17 de kesik çizgilerle çizilen çerçeve içinde yer alan ve doğru gerilimle alternatif gerilimi birleştiren bir Mixer Devresi geliştirilmiştir.

Mixer Devresince sağlanan bileşke gerilimin a.c. bileşeni köprü kollarında elemanların empedansları ile orantılı olarak dağıldığın-

Şekil-18 Doğru gerilimin köprü kollarında dağılımına ait eşdeğer devre

dan, köprünün denge koşulları, başka bir deyişle A ve C ucları arasında herhangi bir a.c. geriliminin ölçülememesi için gereken koşullar aynı kalır. Bileske gerilimin d.c. bileseni ise köprü kollarında dirinclerle orantılı bir dağılım gösterir. Bu dağılım Şekil-18 yardımıyla hesaplanabilir. Şekilde R₂ ye seri olarak bağlı olduğu görülen sargının direnci 10 Ω mertebesindedir. R2 direnci yanında yok sayılabilecek kadar küçüktür. R1 ve R2 dirençlerinin R eşdeğeri

$$R = \frac{R_1 R_2}{R_1 + R_2}$$
(107)

bağıntısından hesaplanabilir. Bu çalışmada yalnızca 3 ve 4 sayılı kademeler kullanılmıştır. R₁ ve R₂ dirençlerinin bu kademedeki değerlerinden, 3 sayılı kademe için R = 1,818 K $_{\Omega}$, 4 sayılı kademe için de R = 198 $_{\Omega}$ hesaplanır. D ve A noktaları arasındaki direnç değeri ise, C kompleks kapasitesinin, söz konusu frekansa ait eşdeğer paralel devresindeki R_p direncidir. (51b) bağıntısına göre bu değer, C sanal bileşeninden

$$R_{p} = \frac{1}{\omega C''}$$
 (108)

olarak hesaplanır. The solution alan altında alçı alanın frekensi

Bunlara göre, örnek elektrodları arasındaki V. Örnek gerilimin, Mixer Devresinin sağladığı d.c. gerilim bileşeni V ye bağımlılığı

$$V_{\text{örnek}} = \frac{R_p}{R_p + R}$$
 (109)

olarak, (108) bağıntısı yardımıyla da.

$$V_{\text{ornek}} = \frac{1}{1 + \omega C'' R} V$$
(110)

olarak elde edilir.

Örneği etkileyen E d.c. alanı, d örneğin kalınlığını göstermek üzere

$$E = \frac{V_{\text{örnek}}}{d} = \frac{1}{d} \frac{V}{1 + \omega C''R}$$
(111)

Tablo-4 de verilen (d_{in}) film koltnitistari, minariastinna i lemi strasında ürneğin yanına yerlestirilen eyri bir cap taşıyıcı üzarine kaplanan filme ait interferometrede (100 ± 100 Å⁰ hata fil ölcülmüs kalınlık değerleridir, dolayısıyla ele indenin brooğe eli ortalama bir kalınlıktır.

Kalimint ülenekte kullanılan bu een tasiyictdir. Samaklandaki bes ayrı kapasitif böigenin herbirina olan deşisik atşkirkları de değerlendirilecek olursa, bu ortalana kaliminğin, ber bir kapasitif bölgenin kalınlığını tan olarak tensil edemeyeceli acıktır.

IV.B.2 Ölçü Sonuçları ve Değerlendirilmesi

Değişik vakum koşullarında Bölüm IV.A da anlatıldığı biçimde hazırlanan örneklerin kompleks kapasite bileşenlerinin, önce uygulanan a.c. alanın frekansına bağlılığı incelenmiştir. Daha sonra da örneklere Bölüm IV.B.l de anlatılan ve Şekil 17 de devre şeması gösterilen Schering köprüsü bağlantılı bir Mixer devresi aracılığı ile hem a.c. hem de a.c.+d.c. alan uygulanmış ve örneklerin kompleks kapasite bileşenlerinin, sabit d.c. alan altında a.c. alanın frekansına göre değişimleri ve sabit a.c. alan frekanslarında d.c. alanın şiddetine göre değişimleri gözlenmiştir.

Ancak, örneklerde alınan ölçüler ve sonuçlarına geçmeden önce hazırlanan örneklerin özellikleri ve başlangıç kapasitif değerleri Tablo-3 aracılığı ile gösterilmiştir. Tablo-3 de yer alan kapasitif değerler, örneklerin vakumdan çıkışlarını izleyen ilk dört saat içinde alınmış değerlerdir. Bu tablonun ilk sütununda örnek numaraları yer almıştır. İkinci ve üçüncü sütunda, Schering köprüsünden okunan C_3 ve tg $\delta = \omega R_2 C_2$ değerleri gösterilmiştir. Daha sonraki üç sütunda ise örneklerin (103), (104) ve (108) bağıntılarından hesaplanan C', C'' ve R_p değerlerine yer verilmiştir. Tablo-4 de ise örneklerin interferometre ile ölçülen kalınlık-

Tablo-4 de ise örneklerin interferometre ile ölçülen kalınlıkları d_{in}, optik geçirgenlikleri T(%), optik absorpsiyon yöntemi ile bulunan örneklerdeki metal konsantrasyonları $C_{op}(%)$ ve örneklerin bağıl permitivite bileşenlerinin hesabında kullanılan A/d oranları ve (24) bağıntısından hesaplanan C_{o} kapasiteleri gösterilmiştir.

Tablo-4 de verilen (d_{in}) film kalınlıkları, buharlaştırma işlemi sırasında örneğin yanına yerleştirilen ayrı bir cam taşıyıcı üzerine kaplanan filme ait interferometrede (100 ± 10) A⁰ hata ile ölçülmüş kalınlık değerleridir, dolayısıyla söz konusu örneğe ait ortalama bir kalınlıktır.

Kalınlık ölçmekte kullanılan bu cam taşıyıcının, örneklerdeki beş ayrı kapasitif bölgenin herbirine olan değişik uzaklıkları da değerlendirilecek olursa, bu ortalama kalınlığın, her bir kapasitif bölgenin kalınlığını tam olarak temsil edemeyeceği açıktır.

Uygulanan tekniğin, kalınlıkların kesin olarak belirlenmesine

-	Λ	D	1	0		2	
L	А	В	L	U	-	3	

 \forall rneklerin Başlangıç Kapasiteleri ve Dirençleri (f = 1 KHz sabit)

			and the second second		
örnek No.	C ₃ (nF)	tgð ·	$C' = C_p(nF)$	C ["] (nF)	R _p (KΩ)
N12-B1 N12-B2 N12-B3 N12-B4 N12-B5	51,58 10,37 91,64 94,34 95,10	0,51 0,173 >0,56 >0,56 >0,56 >0,56	40,93 10,07 - -	20,88 1,74 - -	7,6 365,5 <4,1 <3,9 <3,9
N1 3-B1 N1 3-B2 N1 3-B3 N1 3-B4 N1 3-B5	22,90 19,84 22,10 21,26 26,75	0,203 0,208 0,222 0,256 0,223	21,99 19,02 21,06 19,95 25,48	4,46 3,96 4,68 5,11 5,68	356,5 402,4 340,4 311,6 280,1
N14-B1 N14-B2 N14-B3 N14-B4 N14-B5	51,3 76,5 174,0 132,0 140,0	0,25 0,533 0,523 0,472 >0,56	48,3 59,58 136,63 107,95	12,07 31,75 71,46 50,95	13,2 5,0 2,2 3,1 <2,7
N15-B1 N15-B2 N15-B3 N15-B4 N15-B5	15,52 17,93 19,28 16,9 15,77	0,241 0,239 0,244 0,24 0,303	14,67 16,96 18,20 15,98 14,44	3,54 4,05 4,44 3,83 4,38	45,0 39,3 35,8 41,5 27,5
N17-B1 N17-B2 N17-B3 N17-B4 N17-B5	45,52 46,24 - 46,72	0,25 0,261 - 0,222	42,84 43,29 - 44,52	10,71 11,30 9,88	14,9 14,1 - 16,1
N18-B1 N18-B2 N18-B3 N18-B4 N18-B5	58,68 59,48 60,58 61,70 52,48	0,103 0,115 0,122 0,127 0,115	58,06 58,70 59,69 60,72 51,79	5,98 6,75 7,28 7.71 5,96	26,6 23,6 21,9 20,6 26,7

Örnek No.	$d_{in}(A^{O})$	T(%)	C _{op} (%)	A/d(m)	C _o (nF)
itunda, bu l	dition bes	inda viero	Tolet ater	nde hasar	anan, bi
NIZ	/20	77	8,8	55,55	0,491
N13	400	100	0	100,0	0,885
N14	390	. 95	7,4	102,56	0,907
N15	420	97	5	95,24	0,843
N17	350	100	0	114,3	1,011
N18	200	100	0	200	1,770

TABLO-4

elvermemesi ve kalınlığın zamana ve uygulanan alana bağlı olarak değişmediği varsayımının kesin olmaması nedenleriyle, doğru alanın dielektrik özelliklere etkisi ile ilgili analizlerde, kalınlığa bağlı permitivite bileşenleri yerine, doğrudan ve ±% 0,1 hata ile ölçülebilen kapasite bileşenleri esas alınmıştır.

Şekil-17 de şematik olarak gösterilen mixer devresinin Schering köprüsüne uygulanmasıyla sağlanan a.c.+d.c. alanının etkisiyle örneklerde gözlenen, kompleks kapasite bileşenlerinin, farklı ve sabit d.c. alan şiddeti değerlerinde a.c. alanın frekansına bağlı değişimleri ile, a.c. alanın farklı ve sabit frekanslarında d.c. alanın şiddetine bağlı değişimleri aşağıda verilmektedir.

Şekil-19 ve Şekil-20 de N12-Bl numaralı örneğe ait kompleks kapasitenin $C' = C_p$ gerçel ve C" sanal kapasite bileşenlerinin, sabit d.c. alan değerlerinde, a.c. alanın frekansına bağlı değişimleri gösterilmiştir.

Şekil-21 de ise aynı örneğin (108) bağıntısından hesaplanan R_p direncinin, a.c. alanın frekansına bağlı değişimleri verilmiştir.

Şekil-22, Şekil-23 ve Şekil-24 de ise yine N12-B1 numaralı örneğin C've C[°] kapasite bileşenlerinin ve R_p direncinin sabit frekanslardaki d.c. alan şiddetine bağlı değişimleri çizilmiştir.Bu grafiklerin çizilmesine olanak sağlayan N12-B1 numaralı örneğin ölçü sonuçları Tablo-5 de gösterilmektedir. Bu tablo ve arkasından gelen 6, 7, 8, 9 ve 10 numaralı tablolarda, ilk sütunda örneklere uygulanan d.c. alan şiddetinin değerleri, ikinci ve üçüncü sütunda kapasite köprüsü yardımıyla her (f) frekansında ölçülen C₃ ve tgö değerleri gösterilmiştir. Daha sonraki üç sütunda, bu bölümün başında verildiği biçimde hesaplanan, örneklerin kompleks kapasitelerinin C['], C["] bileşenleri ve R_p dirençleri gösterilmiştir. Son iki sütunda ise köprüye uygulanan V gerilimine karşılık örneklerin her frekansta aldığı R_p direnç değerlerinden, (109) bağıntısı yardımıyla hesaplanan (V_{örnek}) gerilimleri ve bu gerilimlerin kalınlığa bölünmesiyle bulunan (E_{örnek}) alan değerleri sıralanmıştır.

Örnek numaralarındaki son sayı, aynı örnekte yer alan beş kapasitif bölgeden hangisinde ölçmenin yapıldığını göstermektedir. Bu durumda N12-B1, 12 numaralı örneğin, 1 inci kapasitif bölgesinde ölçü yapıldığını anlatmaktadır.

Şekil-19 ve Şekil-20 den de görüldüğü gibi örneğe, d.c. alan uygulandığında kompleks kapasitelerinin hem gerçel hem de sanal bileşenlerinde bir azalma gözlenmektedir. Bu azalma uygulanan alan şiddetine bağlıdır.

Şekil-21 de ise örneğin R_p direncinin alan altındaki değişimi incelenmiştir. Burada da örneğin direncinde d.c. alanın şiddetine bağlı olarak bir artma göze çarpmaktadır. Örneğin N12-B1 no.lu örneğin f = 1 KHz deki R_p direnci E_{d.c.} = 0 alan değerinde 25 K Ω iken E_{d.c.} = 6,9x10⁵ V/cm alan değerinde 142 K Ω a yükselmiştir. Bu durumda örneğin R_p direnci \sim 5,5 katı kadar artma göstermiştir.

Şekil-22, Şekil-23 ve Şekil-24 de C', C["] ve R_p değerlerindeki, d.c. alan şiddetine bağlı bu değişimler daha açık bir biçimde görülmektedir. Ve N12-Bl no.lu örnekte C['] ve C["] nün d.c. alan şiddeti ile azalması, küçük alan değerlerinden başlayarak oluşmuştur. C['] ve C["] nün alan şiddetiyle azalması, küçük alan değerlerinde daha hızlı olmuş. ve alan şiddetinin artması ile bu azalmada yavaşlamıştır. Ve dolayısıyla Şekil-24 deki R_p nin de alan şiddetiyle değişimi küçük alan şiddetlerinde daha büyük artışlar göstermiş ve 4.10⁵ V/cm den sonra R_p direncinin artışında da yavaşlama gözlenmiştir.

			1					
E	f (Hz)	C ₃ (nF)	tgð	C (nF)	C" (nF)	R _p (ΚΩ)	V _{örnek} (Volt)	E _{örnek} x10 ⁵ (V/cm)
V = 0 E = 0	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	21,8 20,22 18,56 17,51 16,18 15,38 14,80 14,40 13,91 13,51 13,21	0,38 0,353 0,316 0,301 0,282 0,277 0,26 0,249 0,245 0,252	19,042 17,979 16,734 15,918 14,832 14,24 13,742 13,482 13,095 12,743 12,416	7,246 6,347 5,526 5,033 4,471 4,028 3,812 3,517 3,265 3,126 3,138	29,29 25,07 19,20 15,81 11,86 9,23 8,35 7,54 6,50 5,09 3,38		
V = 1V E = 1,33x10 ⁵ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	20,44 19,22 17,61 16,66 15,50 14,75 14,24 13,70 13,22 12,82 12,56	0,357 0,342 0,317 0,306 0,293 0,269 0,265 0,241 0,229 0,222 0,222	18,118 17,206 16,0 15,232 14,227 13,749 13,301 12,946 12,559 12,215 11,931	6,485 5,885 5,074 4,662 4,254 3,709 3,532 3,124 2,88 2,717 2,739	32,72 27,04 20,91 17,07 12,47 10,73 9,01 8,49 7,37 5,86 3,37	0,99 0,99 0,99 0,99 0,98 0,98 0,98 0,98	1,38 1,38 1,37 1,37 1,37 1,36 1,36 1,36 1,36 1,35 1,34 1,32
V = 2V E = 2,77x10 ⁵ V/cm	600 750 1000 2000 3000 4000 5000 6000 7500 10000 15000	17,00 16,24 15,44 14,44 13,74 12,92 12,42 12,08 11,80 11,56 11,34 11,18	0,304 0,287 0,271 0,250 0,234 0,216 0,207 0,188 0,180 0,171 0,165 0,178	15,553 14,997 14,381 13,586 13,021 12,341 11,905 11,664 11,429 11,228 11,038 10,836	4,742 4,317 3,901 3,405 3,059 2,671 2,474 2,202 2,057 1,928 1,824 1,929	55,93 49,15 40,80 31,16 26,01 19,86 16,08 14,45 12,89 11,00 8,72 5,50	1,99 1,99 1,99 1,99 1,98 1,98 1,98 1,97 1,97 1,97 1,97 1,96 1,96 1,93	2,76 2,76 2,76 2,75 2,75 2,75 2,75 2,74 2,74 2,73 2,72 2,71 2,68

N12-Bl Numaralı Örnekte, d.c. Alanı Altında Yapılan Kompleks Kapasite Ölçmeleri

TABLO-5

TABLO-5/1

E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	·C" (nF)	R _p (ΚΩ)	V _. Örnek (Volt)	E _{örnek} x10 ⁵ (V/cm)
V = 3 V E = 4,16x10 ⁵ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	12,65 11,94 11,44 11,06 10,83 10,56 10,40 10,26 10,18 10,10 10,06 10,04	0,241 0,187 0,159 0,136 0,124 0,108 0,102 0,096 0,094 0,093 0,097 0,110	11,954 11,536 11,155 10,86 10,664 10,437 10,292 10,164 10,09 10,012 9,965 9,918	2,833 2,157 1,781 1,48 1,329 1,31 1,05 0,985 0,951 0,934 0,971 1,097	91,99 98,35 89,31 71,64 59,85 46,89 37,88 32,31 27,89 22,71 16,38 9,67	2,99 2,99 2,99 2,99 2,99 2,99 2,99 2,98 2,98	4,15 4,15 4,15 4,15 4,15 4,15 4,14 4,14
V = 4 V E = 5,55×10 ⁵ V/cm	600 750 1000 2000 3000 4000 5000 6000 7500 10000 15000	11,16 10,92 10,63 10,34 10,19 10,01 9,84 9,74 9,66 9,62 9,56 9,56	0,15 0,138 0,127 0,109 0,107 0,094 0,086 0,084 0,082 0,083 0,086 0,1	10,912 10,713 10,462 10,217 10,073 0,92 9,767 9,671 9,594 9,553 9,489 9,463	1,643 1,487 1,324 1,118 1,084 0,941 0,843 0,814 0,791 0,797 0,816 0,954	161,40 142,70 120,13 94,88 73,36 56,34 47,17 39,06 33,51 26,60 19,50 11,12	4,0 3,99 3,99 3,99 3,99 3,99 3,98 3,98 3,98	5,54 5,54 5,54 5,53 5,53 5,53 5,52 5,52 5,52 5,51 5,51 5,49 5,45
V = 5 V E = 6,93×10 ⁵ V/cm	600 750 1000 2000 3000 4000 5000 6000 7500 10000 15000	10,39 10,22 10,0 9,76 9,61 9,41 9,32 9,23 9,23 9,18 9,14 9,10 9,10	0,131 0,123 0,112 0,099 0,091 0,082 0,079 0,076 0,077 0,076 0,079 0,078	10,232 10,067 9,874 9,665 9,529 9,346 9,261 9,126 9,125 9,087 9,042 9,012	1,347 1,24 1,113 0,975 0,875 0,772 0,733 0,698 0,703 0,692 0,718 0,886	196,87 171,13 142,96 110,86 90,89 68,66 54,26 45,58 37,70 30,66 22,14 11,96	4,99 4,99 4,99 4,99 4,99 4,99 4,99 4,98 4,98	6,93 6,93 6,92 6,92 6,92 6,91 6,91 6,91 6,90 6,90 6,89 6,87 6,82

TABLO-5/1

E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	C" (nF)	R _p (ΚΩ)	V _{örnek} (Volt)	E _{örnek} x10 ⁵ (V/cm)
V = 3 V E = 4,16x10 ⁵ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	12,65 11,94 11,44 11,06 10,83 10,56 10,40 10,26 10,18 10,10 10,06 10,04	0,241 0,187 0,159 0,136 0,124 0,108 0,102 0,096 0,094 0,093 0,097 0,110	11,954 11,536 11,155 10,86 10,664 10,437 10,292 10,164 10,09 10,012 9,965 9,918	2,833 2,157 1,781 1,48 1,329 1,31 1,05 0,985 0,951 0,934 0,971 1,097	91,99 98,35 89,31 71,64 59,85 46,89 37,88 32,31 27,89 22,71 16,38 9,67	2,99 2,99 2,99 2,99 2,99 2,99 2,98 2,98	4,15 4,15 4,15 4,15 4,15 4,15 4,15 4,14 4,14
V = 4 V E = 5,55×10 ⁵ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	11,16 10,92 10,63 10,34 10,19 10,01 9,84 9,74 9,66 9,62 9,56 9,56	0,15 0,138 0,127 0,109 0,107 0,094 0,086 0,084 0,082 0,083 0,086 0,1	10,912 10,713 10,462 10,217 10,073 0,92 9,767 9,671 9,594 9,553 9,489 9,463	1,643 1,487 1,324 1,118 1,084 0,941 0,843 0,814 0,791 0,797 0,816 0,954	161,40 142,70 120,13 94,88 73,36 56,34 47,17 39,06 33,51 26,60 19,50 11,12	4,0 3,99 3,99 3,99 3,99 3,99 3,98 3,98 3,98	5,54 5,54 5,54 5,53 5,53 5,53 5,53 5,52 5,52 5,52 5,51 5,51 5,51 5,49 5,45
V = 5 V E = 6,93x10 ⁵ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	10,39 10,22 10,0 9,76 9,61 9,41 9,32 9,23 9,23 9,18 9,14 9,10 9,10	0,131 0,123 0,099 0,091 0,082 0,079 0,076 0,077 0,076 0,079 0,078	10,232 10,067 9,874 9,665 9,529 9,346 9,261 9,176 9,125 9,087 9,042 9,012	1,347 1,24 1,113 0,975 0,875 0,772 0,733 0,698 0,703 0,692 0,718 0,886	196,87 171,13 142,96 110,86 90,89 68,66 54,26 45,58 37,70 30,66 22,14 11,96	4,99 4,99 4,99 4,99 4,99 4,99 4,98 4,98	6,93 6,93 6,93 6,92 6,92 6,91 6,91 6,91 6,90 6,90 6,89 6,87 6,82

(1)-19 Altra: ornegade jerkij oli elen cenerier nee ke

Şekil-19 N12-B1 örneğinde farklı d.c. alan değerlerinde kapasitenin gerçel bileşeninin, frekans spektrumu

Şekil-20 N12-Bl örneğinde, farklı d.c. alan değerlerinde, kapasitenin sanal bileşeninin, frekans spektrumu

Şekil-21 N12-B1 örneğinde farklı d.c. alan değerlerinde, R direncinin frekans spektrumu

Yine Şekil-22, Şekil-23 ve Şekil-24 den görüldüğü gibi örneğin C ve C kapasite bileşenlerinin küçük alan değerlerindeki frekans bağımlılıkları, alanın artması ile azalmıştır. İkinci olarak da yüksek frekanslarda kapasitif bileşenlerin d.c. alandan etkilenmeleri azalmıştır.

Şekil-22 N12-Bl örneğinin sabit frekanslarda kapasitenin gerçel bileşeninin d.c. alan şiddetine bağlı değişimi

Şekil-23 N12-B1 no.lu örneğin kapasitesinin sanal bileşeni C["] nün d.c. alan şiddetine bağlı değişimi

.

Şekil-24 N12-Bl örneğinin kapasitesinin R_p direncinin d.c. alan şiddetine bağlı değişimi

.30,68 0,99

E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	C" (nF)	^Ρ .p (ΚΩ)	^V örnek (Volt)	E _{örnek} x10 ⁵ (V/cm)
$\mathbf{E} = 0$	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15006	15,58 15,22 14,95 14,67 14,34 13,94 13,70 13,37 13,20 13,06 12,96 12,90 12,84 12,92	0,170 0,161 0,153 0,143 0,133 0,119 0,114 0,103 0,100 0,098 0,099 0,102 0,112 0,140	15,14 14,832 14,605 14,373 14,09 13,744 13,522 13,228 13,068 12,933 12,833 12,765 12,680 12,671	2,578 2,397 2,243 2,064 1,876 1,639 1,549 1,369 1,312 1,230 1,272 1,308 1,422 1,774	154,32 132,77 118,22 102,77 84,82 64,74 51,37 38,75 30,32 24,87 20,84 16,22 11,19 5,98		5.12 5.12 5.12 5.12 5.11 5.11 5.10 5.09 5.09 5.09 5.09 5.00 7.69 7.69 7.69
V = 0.5 V E = 1,28×10 ⁵ V/cm	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	15,46 15,16 14,80 14,54 14,24 13,84 13,63 13,33 13,16 13,00 12,88 12,83 12,77 12,89	0,167 0,164 0,153 0,138 0,129 0,115 0,110 0,099 0,097 0,094 0,095 0,099 0,108 0,137	15,035 14,76 14,459 14,265 14,006 13,657 13,466 13,198 13,035 12,883 12,763 12,704 12,622 12,65	2,525 2,428 2,22 1,979 1,808 1,578 1,485 1,317 1,274 1,222 1,221 1,263 1,364 1,74	157,52 131,09 119,48 107,20 88,03 67,22 53,57 40,27 31,21 26,04 21,71 16,80 11,67 6,09	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	1,28 1,28 1,28 1,28 1,28 1,28 1,28 1,28
V = 1V E = 2,56x10 ⁵ V/cm	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	15,00 14,24 14,06 13,86 13,60 13,32 13,12 12,36 12,76 12,64 12,56 12,54 12,50 12,60	0,16 0,133 0,125 0,117 0,108 0,098 0,098 0,083 0,083 0,082 0,082 0,082 0,084 0,088 0,099 0,126	14,621 13,992 13,841 13,670 13,442 13,192 12,993 12,77 12,673 12,554 12,471 12,441 12,376 12,402	2,351 1,861 1,74 1,61 1,457 1,295 1,28 1,071 1,044 1,037 1,053 1,107 1,236 1,564	169,22 171,02 152,43 131,73 109,21 81,92 62,15 49,52 38,07 30,68 25,18 19,17 12,87 6,78	1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,99 0,99	2,56 2,56 2,56 2,56 2,56 2,56 2,55 2,55

TABLO-6 N13-B3 Numaralı Örnekte, d.c. Alanı Altında Yapılan Kompleks Kapasite Ölçmeleri

C' С" Rp f Eörnek E C3 tgδ Vörnek x10⁵(V/cm) (nF)(Volt) (Hz)(nF)(nF) $(K\Omega)$ 1,307 13,24 0,099 13,109 304,28 2,0 400 500 13,04 0,094 12,924 1,219 261,08 2,0 12,94 0,091 12,832 1,173 2,0 600 226,07 2,0 12,86 0,086 12,764 1,102 192,51 750 12,597 2,0 1000 12,68 0,030 1,016 156,05 12,46 2,0 2 V 5,13×10⁵ V/cm 12,388 0,075 0,939 112,89 1500 0,844 12,30 0,069 12,241 94,21 2,0 2000 12,16 5,11 12,106 0,807 0,066 65,66 1,99 3000 5,11 4000 0,067 12,005 0,809 49,16 1,99 11,96 11,92 11,92 1,99 5000 0,069 11,903 0,823 38,67 5,10 0,071 11,859 0,844 31,40 23,34 5,10 6000 0,076 11,85 0,909 1,98 5,08 7500 1 1 0,086 15,53 1,97 5,06 10000 11,89 11,801 1,024 1,95 > Ш 12,00 0,115 1,363 7,54 5,00 15000 11,841 389,0 3,0 12,40 7,69 400 0,083 12,315 1,022 12,24 0,078 12,164 0,96 331,36 3,0 7,69 500 12,14 7,69 3,0 0,075 12,071 0,911 291,10 600 750 12,04 0,074 11,973 0,895 237,10 3,0 7,69 1000 11,90 0,068 11,845 0,806 197,42 3,0 7,68 V ,69×10⁵ V/cm 11,72 0,733 144,77 7,68 0,063 11,674 11,579 3,0 1500 0,059 11,62 2,99 2000 0,687 79,40 2,99 7,67 0,058 11,44 0,668 3000 11,48 2,99 7,67 11,40 0,059 11,36 0,673 59,12 4000 11,33 11,30 11,28 2,99 0,060 11,288 0,688 46,24 7,66 5000 7,657,64 0,063 11,254 11,226 37,19 2,98 0,713 6000 27,47 13 0,772 2,98 7500 0,068 11 11 0,88 18,08 2,97 7,61 10000 11,26 0,078 11,19 11,254 2,93 > Ш 0,105 1,19 8,92 7,52 15000 11,38 400 11,82 0,074 11,755 0,872 456,23 4,0 10,25 10,25 11,584 0,799 389,01 4,0 11,64 0,069 500 347,6 4,0 11,54 0,066 11,489 0,763 10,25 600 11,44 0,061 11,396 0,704 301,35 4,0 10,25 750 11,32 0,058 11,58 0,663 239,82 4,0 10,25 1000 0,587 ,02×10⁶ V/cm 10,25 0,052 11,088 180,62 4,0 1500 11,12 0,574 138,54 3,99 10,24 2000 11,04 0,052 11,01 10,872 0,549 10,24 0,05 96,51 3,99 10,90 3000 3,99 0,559 71,15 10,23 0,051 10,811 4000 10,84 10,22 10,76 0,054 10,728 0,579 54,90 3,99 5000 10,21 10,19 10,74 10,73 10,705 43,84 0,056 0,605 3,98 6000 3,98 4 32,63 0,65 7500 0,06 10,69 1 1 10,72 0,07 10,666 0,752 21,16 3,96 10,16 10000 > U 0,095 1,026 10,33 3,92 10,06 15000 10,80 10,701

TABLO-6/1

TABLO-6/2

E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	C" (nF)	R _p (KΩ)	V _{örnek} (Volt)	E _{örnek} x10 ⁵ (V/cm)
$E = 1,28x10^{\circ}V/cm$	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	10,90 10,80 10,72 10,64 10,54 10,40 10,33 10,24 10,18 10,13 10,10 10,10 10,10 10,18	0,062 0,053 0,054 0,052 0,050 0,045 0,044 0,043 0,044 0,043 0,044 0,046 0,049 0,054 0,054 0,063 0,086	10,857 10,763 10,688 10,611 10,513 10,378 10,31 10,22 10,159 10,107 10,075 10,07 10,059 10,105	0,678 0,63 0,577 0,554 0,53 0,467 0,453 0,444 0,455 0,471 0,495 0,544 0,635 0,87	586,73 505,23 458,95 382,60 299,8 227,12 175,41 119,45 87,29 67,45 53,55 38,95 25,25 12,19	5,0 5,0 5,0 5,0 5,0 5,0 4,99 4,99 4,99 4,99 4,99 4,99 4,98 4,97 4,96 4,92	12,82 12,82 12,81 12,81 12,81 12,81 12,81 12,81 12,80 12,79 12,78 12,77 12,76 12,71 12,61

Tablo-6 da, N13-B3 numaralı örneğe ait d.c. alan altındaki kapasitif ölçme sonuçları verilmiştir. Bu örnek Tablo-4 den de anlaşılacağı üzere d = 400 A^{O} kalınlığında ve saf olarak hazırlanmış bir örnektir.

Şekil-25, Şekil-26 ve Şekil-27 de sabit d.c. alan değerlerinde örnekteki kapasite bileşenlerinin frekansa bağlı değişimleri; Şekil-28, Şekil-29 ve Şekil-30 da ise sabit frekanslarda, aynı bileşenlerin d.c. alana bağlı değişimleri incelenmiştir. Bu grafiklerden de anlaşılacağı üzere d.c. alan şiddetinin artması ile örneğin C've C" bileşenlerinde önceki örnekte görülen azalmalara benzer azalmalar görülmüş, ancak örneklerin kalınlıklarına, konsantrasyonlarına göre bu C've C" bileşenlerinin azalma hızları farklı d.c. alan şiddetlerinde farklılıklar göstermiştir.

Şekil-25 ve Şekil-26 da görülen ve ilerideki şekillerde de görülecek olan kesikli çizgiler, V. Bölümde açıklanan yöntem yardımıyla çizilen Maxwell-Wagner relaksasyonuna ait teorik eğriler olup açıklaması V. Bölümde yapılacaktır. Şekil-26 da ayrıca noktalı çizgilerle gösterilen eğri ise, yine V. Bölümde açıklaması yapılacak olan Debye tipi bir relaksasyon gösteren ve Maxwell-Garnet eşdeğer devresine ait N13-B3 örneğinin E = 0 için frekans spektrumunu vermektedir.

Şekil-25 N13-B3 örneğinde farklı d.c. alan değerlerinde kapasitenin gerçel bileşeninin frekans spektrumu

Şekil-26 N13-B3 örneğinde farklı d.c. alan değerlerinde kapasitenin sanal bileşeninin frekans spektrumu

Sekt)-27 813-83 Geneminde Farklinder, alan degerlerinde

Şekil-27 N13-B3 örneğinde farklı d.c. alan değerlerinde R direncinin frekans spektrumu

Şekil-23 N13-B3 örneğinde farklı frekanslarda kapasitenin gerçel bileşeninin d.c. alan şiddetiyle değişimi

Şekil-22 ile Şekil-28 karşılaştırılaçak olursa; Şekil-22 de, d.c. alam şiddetinin sıfırdan 0,5x10⁵ V/cm'e kadar C' değerlerinde küçük azalmalar olduğu, daha sonra $\sim 4x10^5$ V/cm alan değerine kadar C' nün hızla azaldığı $4x10^5$ V/cm den büyük değerlerde ise doğrusal olarak azaldığı gözlenebilir. Buna karşılık Şekil-28 de N13-B3 numaralı örneğin C' değeri $\sim 1,4x10^5$ V/cm alan değerine kadar yaklaşık olarak sabit kalmakta

Şekil-29 N13-B3 örneğinde C nün, d.c. alan şiddetiyle değişimi

ve bu alan değerinden başlayarak doğrusal olarak azalmaya devam etmektedir. N12-Bl numaralı örneğe ait Şekil-23 eğrisi ile N13-B3 numaralı örneğe ait Şekil-29 eğrisi de karşılaştırılırsa benzer farklılıklar gözlenir. Aynı örneklerin R_p dirençlerinin alana bağlı değişimlerini gösteren Şekil-24 ile Şekil-30 un karşılaştırılması durumunda da N12-Bl'e ait R_p direncinin önce hızla arttığı ve 4,16x10⁶ V/cm alan değerinden sonra doğrusal olarak artmaya devam ettiği, oysa

Şekil-30 N13-B3 örneğinde R direncinin d.c. alan şiddetiyle değişimi

N13-B3'e ait (Şekil-30) R_p direncinin 1,28x10⁵ V/cm alan değerine kadar sabit kaldıktan sonra doğrusal olarak artmaya başladığı görülebilir.

-	η.	5		0	-
	\Box	K		11	- /
1	\sim	D	-	U	- /

N14-B4 Numaralı Örnekte d.c. Alanı Altında Yapılan Kompleks Kapasite Ölçmeleri

E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	c" (nF)	R _p (ΚΩ)	V _{örnek} (Volt)	E _{örnek} x10 ⁵ (V/cm)
V = 0	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	- 19,20 18,43 17,64 16,60 15,95 15,17 14,72 14,36 14,14 13,90 13,62 13,45	0,269 0,267 0,249 0,231 0,223 0,209 0,207 0,205 0,202 0,200 0,206 0,233	17,898 17,203 16,607 15,756 15,188 14,534 14,111 13,78 13,585 13,363 13,064 12,756	4,826 4,594 4,141 3,646 3,400 3,033 2,93 2,825 2,745 2,692 2,974	- 54,95 46,19 38,43 29,09 23,40 17,46 13,58 11,27 9,66 7,93 5,91 3,57		
V = 1 V E = 2,5x10 ⁵ V/cm	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	19,25 18,54 17,66 16,60 16,00 15,24 14,78 14,46 14,22 13,96 13,66 13,46	- 0,271 0,254 0,249 0,232 0,223 0,21 0,208 0,201 0,202 0,202 0,202 0,208 0,235	17,925 17,41 16,626 15,745 15,238 14,594 14,165 13,897 13,661 13,41 13,09 12,751	4,872 4,434 4,146 3,668 3,406 3,069 2,949 2,794 2,761 2,714 2,73 3,004	- 54,44 47,85 38,39 28,92 23,36 17,28 13,49 11,39 9,6 7,82 5,33 3,53	1,00 1,00 0,99 0,99 0,99 0,99 0,99 0,98 0,98 0	2,49 2,49 2,49 2,48 2,48 2,48 2,47 2,46 2,46 2,46 2,45 2,44 2,42 2,37
V = 2 V E = 5x10 ⁵ V/cm	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000	- 19,04 18,24 17,36 16,34 15,72 15,00 14,58 14,27 14,00 13,79 13,56 13,41	- 0,27 0,254 0,25 0,227 0,213 0,199 0,192 0,192 0,192 0,192 0,199 0,223	17,737 17,128 16,337 15,536 15,036 14,427 14,026 13,757 13,5 13,296 13,04 12,772	- 4,806 4,362 4,087 3,532 3,206 2,875 2,787 2,654 2,596 2,56 2,602 2,853	55,19 48,64 38,94 30,04 24,82 18,45 14,24 11,99 10,22 8,29 6,12 3,72	1,99 1,99 1,99 1,99 1,98 1,98 1,98 1,97 1,97 1,96 1,95 1,94 1,90	4,98 4,98 4,97 4,97 4,96 4,95 4,95 4,93 4,92 4,90 4,88 4,84 4,74

Rp E f С С Vörnek Eornek C3 tgδ (Hz) (nF) (nF) (nF)(KΩ) (Volt) $x10^{5}(V/cm)$ 16,50 0,224 15,706 3,529 2,99 7,48 500 90,18 0,21 3,207 15,90 82,69 2,99 600 15,224 7,48 750 15,42 0,199 14,828 2,961 2,99 71,66 7,48 2,737 14,93 14,26 0,189 58,14 42,64 7,477,46 1000 2,99 14,409 0,18 13,811 2,99 2,488 1500 3V 7,5×10⁵V/cm 13,84 2,98 2,374 2000 0,176 13,419 33,51 7,46 2,98 2,97 24,13 3000 13,26 0,17 12,884 2,198 7,44 12,96 12,74 12,56 12,34 4000 0,17 12,593 2,149 18,51 7,42 7,40 7,38 7,35 14,91 2,96 2,95 0,172 2,134 5000 12,371 0,172 12,196 2,106 12,59 6000 7500 2,94 0,174 11,974 2,092 10,14 || || 12,12 11,733 2,13 7,47 4,52 2,92 2,87 10000 0,181 7,30 **>**Ш 11,94 0,205 15000 11,458 2,349 7,18. 500 0,179 12,40 12,012 2,158 147,49 3,99 9,99 3,99 9,99 600 12,04 0,161 11,734 1,893 140,07 11,66 0,149 3,99 750 11,404 1,706 124,38 9,98 0,134 3,99 1000 11,36 11,157 1,504 105,82 9,98 10,94 10,74 0,12 0,113 3,99 10,783 1,299 31,67 9,93 1500 2000 66,08 10,603 1,204 3,99 9,97 10,46 0,103 10,349 49,53 3,98 9,96 3000 1,071 = 4V= 10⁶V/cm 10,30 10,199 39,23 3,98 3,98 9,95 9,94 4000 0,099 1,014 10,20 5000 0,098 10,101 0,999 31,84 27,30 3,97 10,14 9,93 6000 0,096 10,046 0,971 7500 10,06 0,097 9,965 0,972 21,83 3,96 9,91 0,103 10000 10,00 9,894 15,59 3,95 9,87 1,02 8,85 1,119 > Ш 9,78 15000 10,00 0,121 9,854 3,91

TABLO-7/1

Şekil-31 N14-B4 örneğinde gerçel kapasite bileşeninin frekans spektrumu

.Şekil-32 N14-B4 örneğinde sanal kapasite bileşeninin frekans spektrumu

-	n	5	1	0		0	
Ŀ	A	K	1		-	×.	
٤.	1	i	-	0		0	

N15-B5 Numaralı Örnekte d.c. Alanı Altında Yapılan Kompleks Kapasite Ölçmeleri

E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	C" (nF)	R _p (KΩ)	V _. örnek (Volt)	E _{örnek} x10 ⁵ V/cm
	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	14,18 13,68 13,00 12,24 11,86 11,28 10,96 10,70 10,56 10,41 10,26 10,14	0,275 0,266 0,254 0,234 0,205 0,183 0,164 0,152 0,145 0,142 0,136 0,142	· 13,177 12,772 12,21 11,6 11,377 10,913 10,672 10,458 10,34 10,203 10,071 9,938	3,634 3,404 3,104 2,722 2,342 2 1,751 1,59 1,506 1,452 1,376 1,416	72,98 62,33 51,26 38,97 33,97 26,51 22,71 20,01 17,60 16,61 11,56 7,49		
V = 1 V E = 2,38x10 ⁵ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	13,80 13,29 12,70 11,96 11,56 11,08 10,78 10,54 10,40 10,28 10,16 10,04	0,272 0,264 0,234 0,207 0,191 0,171 0,154 0,138 0,138 0,133 0,130 0,135	12,848 12,42 12,037 11,468 11,150 10,763 10,529 10,326 10,204 10,101 9,99 9,859	3,496 3,286 2,824 2,375 2,137 1,844 1,625 1,486 1,412 1,344 1,3 1,332	75,86 64,57 56,36 44,67 37,23 28,77 24,48 21,42 18,78 15,78 12,24 7,96	1,0 1,0 1,0 0,99 0,99 0,99 0,99 0,99 0,9	2,37 2,37 2,37 2,37 2,37 2,36 2,36 2,36 2,36 2,36 2,36 2,36 2,35 2,34 2,32
V = 2 V E = 4,76×10 ⁵ V/cm	500 600 750 1000 1500 2000 4000 5000 6000 7500 10000	14,80 14,70 14,60 14,44 14,14 8,94 8,62 8,49 8,40 8,32 8,24 8,24 8,18	0,189 0,185 0,179 0,173 0,159 0,149 0,128 0,119 0,116 0,111 0,112 0,114	14,289 14,212 14,143 14,017 13,787 8,745 8,48 8,37 8,287 8,287 8,217 3,137 8,074	2,701 2,631 2,54 2,433 2,203 1,304 1,087 0,999 0,964 0,917 0,912 0,923	117,82 100,80 83,54 65,39 48,17 60,99 36,60 31,85 27,52 23,12 17,44 11,49	2,0 2,0 1,99 1,99 1,99 1,99 1,99 1,99 1,99 1,	4,75 4,75 4,75 4,75 4,74 4,75 4,74 4,75 4,74 4,73 4,73 4,73 4,72 4,71 4,68

Rp С С V. örnek Eörnek E f C₂. tgδ $x10^{5}(V/cm)$ (nF)(Volt) (nF)(KΩ) (Hz) (nF)7,13 7,13 7,13 7,13 7,13 7,13 7,12 7,12 10,423 10,207 10,95 0,224 2,342 135,88 3,00 500 2,99 600 10,70 0,219 2,242 118,29 0,209 10,42 2,99 101,26 750 9,979 2,095 2,99 1000 10,04 0,195 9,669 1,892 84,11 1500 9,56 0,174 9,276 1,621 65,42 2,99 3 V 7,14×10⁵V/cm 7,127,11 1,522 52,28 2,99 9,36 0,167 9,105 2000 2,93 9,04 8,828 38,85 3000 0,154 1,365 7,107,097,09 0,138 33,39 28,75 8,80 1,191 2,98 4000 8,635 2,98 8,516 1,107 1,042 8,66 0,13 5000 2,93 8,56 8,431 25,44 6000 0,123 8,46 8,36 3,34 0,12 0,12 1,007 2,97 7,08 8,333 21,06 7500 7,05 2,96 0,991 10000 3,24 16,05 > Ш 15000 0,125 8,21 1,029 10,31 2,94 7,01 11,04 0,231 10,479 2,424 131,30 3,99 9,51 500 10,215 9,51 0,222 2,27 3,99 10,72 116,85 600 9,50 9,50 2,101 0,211 3,99 750 10,38 9,935 100,97 0,192 9,96 9,603 1,85 85,98 3,99 1000 .9,51 9,228 1,611 65,85 3,99 9,49 0,174 1500 4 V 9,52×10⁵V/cm 9,19 1,466 54,25 3,99 9,49 0,163 8,949 2000 8,85 8,652 9,48 40,54 3,98 0,151 1,308 3000 8,70 8,52 1,137 9,47 4000 0,133 8,548 34,97 3,98 0,123 30,72 8,392 1,036 3,97 9,46 5000 0,118 3,97 9,45 6000 8,40 8,283 0,983 26,96 8,34 3,96 7500 0,115 8,229 0,954 22,24 9,44 || || 8,23 8,12 0,112 8,127 17,46 3,95 9,42 0,911 10000 > Ш 0,113 8,017 0,906 11,70 3,93 9,36 15000

TABLO-8/1

Şekil-33 N15-B5 örneğinde gerçel kapasite bileşeninin frekans spektrumu

-	n	5	1	0	0
	Δ	ĸ		11	- u
8.1			-	U	2

N17-B5 Numaralı Örnekte d.c. Alanı Altında Yapılan Kompleks Kapasite Ölçmeleri

E	f	C3	tgð	c'	с"	R _D	Värnek	Eörnek	1
_	(Hz)	(nF)	-	(nF)	(nF)	(KΩ)	(Volt)	x10 ⁵ V/cm	
V = 0 E = 0	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 - 15000	31,92 31,20 30,16 28,34 27,14 26,02 24,55 23,58 22,96 22,48 21,83 21,26 20,80	0,243 0,244 0,250 0,253 0,259 0,265 0,272 0,280 0,291 0,304 0,301 0,336 0,394	30,138 29,443 28,38 27,093 25,424 24,306 22,849 21,861 21,164 20,573 20,009 19,093 17,993	7,327 7,192 7,106 6,878 6,604 6,453 6,233 6,13 6,164 6,263 6,164 6,263 6,035 6,431 7,106	.43,44 36,83 29,06 23,14 16,06 12,33 8,51 6,49 5,16 4,24 3,52 2,47 1,49			
V = 1 V E = 2,857x10 ⁵ V/cm	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	31,72 31,10 29,96 28,65 26,92 25,82 24,32 23,33 22,70 22,24 21,60 21,04 20,60	0,252 0,255 0,255 0,258 0,262 0,268 0,276 0,283 0,293 0,293 0,306 0,301 0,336 0,394	29,819 29,208 28,126 26,857 25,179 24,08 22,592 21,638 20,901 20,325 19,798 18,896 17,802	7,528 7,432 7,18 6,938 6,619 6,472 6,246 6,138 6,131 6,237 5,972 6,364 7,038	42,28 35,69 29,55 22,94 16,03 12,29 8,49 6,48 5,19 4,52 3,55 2,5 1,51	1,00 0,99 0,99 0,99 0,99 0,98 0,98 0,98 0	2,84 2,84 2,83 2,82 2,81 2,79 2,77 2,75 2,74 2,70 2,65 2,52	
V = 2 V E = 5,7x10 ⁵ V/cm	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	29,92 28,36 26,82 24,87 23,61 21,96 20,86 20,20 19,70 19,06 18,40 17,83	- 0,285 0,29 0,298 0,303 0,309 0,314 0,314 0,326 0,333 0,369 0,353 0,394	- 27,659 26,155 24,622 22,774 21,547 19,981 18,944 18,259 17,724 16,77 16,359 15,423	7,906 7,593 7,356 6,908 6,665 6,288 6,024 5,952 5,917 6,196 5,777 6,091	- 33,55 27,94 21,64 15,36 11,94 8,44 6,60 5,35 4,48 3,42 2,75 1,74	- 1,99 1,99 1,98 1,97 1,97 1,97 1,95 1,94 1,93 1,91 1,90 1,86 1,79	5,68 5,67 5,66 5,64 5,62 5,58 5,55 5,51 5,47 5,40 5,33 5,13	

				TABLO-9	/1				
E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	C" (nF)	R _p (ΚΩ)	V _{örnek} (Volt)	E _{örnek} x10 ⁵ V/cm	
V = 3 V E = 3,57x10 ⁵ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	21,40 19,94 18,23 17,26 16,02 15,28 14,84 14,50 14,16 13,74 13,37	0,341 0,333 0,321 0,312 0,299 0,288 0,285 0,295 0,28 0,295 0,28 0,279 0,296	- 19,166 17,939 16,524 15,72 14,697 14,105 13,721 13,334 13,129 12,743 12,286	6;542 5,99 5,308 4,919 4,409 4,07 3,918 3,941 3,678 3,563 3,563 3,648	32,43 26,57 19,99 16,18 12,03 9,77 8,12 6,73 5,77 4,47 2,91	2,98 2,98 2,97 2,96 2,95 2,94 2,93 2,91 2,90 2,87 2,81	8,52 8,51 8,49 3,47 8,43 8,40 8,37 8,32 8,32 8,28 8,20 8,02	
V = A V E = 1,143x10 ⁶ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	17,04 16,06 15,14 14,06 13,41 12,61 12,16 11,84 11,62 11,40 11,14 10,96	0,319 0,302 0,29 0,271 0,259 0,242 0,233 0,229 0,221 0,215 0,215 0,229	15,465 14,716 13,963 13,094 12,562 11,911 11,533 11,246 11,075 10,892 10,643 10,411	4,935 4,446 4,052 3,554 3,263 2,884 2,687 2,583 2,455 2,351 2,298 2,339	53,75 47,73 39,27 29,85 24,38 18,39 14,80 12,32 10,80 9,03 6,93 4,44	3,99 3,98 3,98 3,97 3,97 3,96 3,95 3,95 3,94 3,93 3,91 3,29 3,83	11,39 11,38 11,37 11,35 11,34 11,31 11,28 11,25 11,22 11,18 11,11 10,94	
V = 5 V E = 1,429×10 ⁶ V/cm	600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	14,64 13,92 13,16 12,28 11,80 11,16 10,78 10,54 10,40 10,20 10,20 . 9,86	0,291 0,278 0,261 0,245 0,232 0,213 0,208 0,201 0,197 0,191 0,189 0,198	13,495 12,92 12,316 11,584 11,197 10,671 10,33 10,13 10,01 9,839 9,671 9,484	3,93 3,593 3,222 2,839 2,597 2,283 2,154 2,037 1,974 1,882 1,835 1,886	60,49 59,06 49,39 37,37 30,63 23,23 18,47 15,62 13,44 11,27 8,67 5,62	4,98 4,98 4,98 4,97 4,97 4,97 4,96 4,95 4,94 4,93 4,91 4,89 4,83	14,24 14,23 14,21 14,19 14,16 14,13 14,11 14,08 14,04 13,96 13,79	

sty on Recommendations therein percel bilesenthin frekan

. 77

Şekil-35 N17-B5 örneğinde kapasitenin gerçel bileşeninin frekans spektrumu

Şekil-36 N17-B5 örneğinde kapasitenin sanal bileşeninin frekans spektrumu

T	n	D		n	- 1	0
	A	В	L	0	- 1	0

N18-B3 Numaralı Örnekte d.c. Alanı Altında Yapılan Kompleks Kapasite Ölçmeleri

E	f (Hz)	C ₃ (nF)	tgδ	C' (nF)	C" (nF)	R _p (KΩ).	V _{örnek} (Volt)	E _{örnek} x10 ⁵ V/cm
$\mathbf{F} = 0 \mathbf{y} = 2 \mathbf{y} = 1 2 \mathbf{y} = 1 \mathbf{y} = $	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	52,44 51,94 51,3 50,50 49,40 48,68 47,64 47,64 47,04 46,66 46,51 46,45 46,71 48,54	0,098 0,099 0,099 0,102 0,106 0,112 0,124 0,124 0,139 0,154 0,154 0,17 0,195 0,242 0,362	51,935 51,437 50,795 49,979 48,843 48,066 46,903 46,139 45,576 45,203 44,742 44,116 42,91	5,118 5,085 5,064 5,102 5,213 5,429 5,356 6,445 7,026 7,686 8,739 10,696 15,542	62,19 52,16 41,90 31,19 20,35 14,66 9,06 6,17 4,53 3,45 2,43 1,49 0,68		
$\frac{V}{E} = \frac{1V}{5 \times 10^5} V/cm$	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	52,0 51,16 50,26 49,32 48,04 47,18 46,08 45,42 45,0 44,84 44,71 44,94 46,54	0,105 0,104 0,105 0,109 0,114 0,125 0,138 0,152 0,168 0,192 0,238 0,353	51,427 50,603 49,721 48,772 47,473 46,568 45,362 44,565 43,981 43,605 43,115 42,521 41,377	5,427 5,303 5,173 5,166 5,187 5,334 5,703 6,172 6,692 7,336 8,292 10,14 14,615	58,65 49,97 41,02 30,81 20,45 14,92 9,30 6,45 4,76 3,62 2,56 1,57 0,73	1,0 1,0 0,99 0,99 0,99 0,98 0,97 0,96 0,95 0,93 0,89 0,78	4,89 4,88 4,88 4,87 4,85 4,85 4,84 4,80 4,75 4,80 4,75 4,70 4,65 4,55 4,35 3,85
$V = 2V_6$ E = 10 ⁶ V/cm	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	46,12 45,30 44,54 43,66 42,62 41,94 41,11 40,64 40,46 40,43 40,42 40,72 42,1	0,103 0,101 0,100 0,101 0,104 0,109 0,119 0,131 0,145 0,161 0,183 0,225 0,332	45,635 44,842 44,094 43,213 42,157 41,440 40,528 39,946 39,624 39,407 39,105 38,749 37,914	4,702 4,529 4,432 4,390 4,417 4,548 4,853 5,261 5,753 6,346 7,169 8,738 12,579	67,69 58,56 47,88 36,25 24,02 17,49 10,93 7,56 5,53 4,18 2,96 1,82 0,84	1,99 1,99 1,99 1,99 1,98 1,98 1,98 1,95 1,95 1,93 1,91 1,87 1,80 1,62	9,78 9,77 9,76 9,75 9,72 9,69 9,63 9,63 9,55 9,46 9,36 9,18 8,83 7,92

TABL0-10/1

E	f (Hz)	C ₃ tg (nF)	δ C' (nF)	C" (nF)	R _p (KΩ)	V _. örnek (Volt)	E _{örnek} x10 ⁵ V/cm
V = 2.5 V E = 1,25×10 ⁶ V/cm	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	45,59 0,1 44,38 0,1 43,36 0,1 42,46 0,1 41,36 0,1 40,63 0,1 39,68 0,1 39,15 0,1 38,8 0,1 38,8 0,1 38,64 0,1 38,46 0,1 38,56 0,2 39,7 0,3	05 45,090 02 43,917 01 42,915 03 42,005 09 40,873 15 40,096 27 39,047 41 33,379 57 37,364 73 37,509 99 36,993 44 36,385 59 35,162	4,747 4,504 4,368 4,368 4,46 4,625 4,968 5,438 5,951 6,512 7,364 8,394 12,630	67,05 58,88 48,53 36,44 23,79 17,20 10,68 7,32 5,35 4,07 2,88 1,79 0,84	2,49 2,49 2,49 2,49 2,48 2,47 2,45 2,45 2,43 2,41 2,38 2,34 2,25 2,02	12,22 12,21 12,20 12,19 12,15 12,11 12,03 11,93 11,81 11,68 11,46 11,02 9,90
V = 3 V E = 1,5x10 ⁶ V/cm	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	40,92 0,1 39,89 0,1 38,98 0,1 37,78 0,1 36,68 0,1 35,74 0,1 34,62 0,1 33,84 0,1 33,84 0,1 33,31 0,1 32,90 0,1 32,64 0,2 32,64 0,2 32,54 0,2 33,2 0,3	01 40,499 02 39,478 04 38,562 08 37,337 16 36,187 26 35,175 42 33,933 59 32,998 77 32,296 95 31,685 23 31,093 73 30,276 92 28,774	4,125 4,032 4,012 4,065 4,219 4,457 4,825 5,268 5,720 6,203 6,934 8,277 11,284	77,15 65,77 52,89 39,15 25,14 17,85 10,99 7,55 5,56 4,28 3,06 1,92 0,94	2,99 2,99 2,99 2,98 2,98 2,98 2,97 2,95 2,95 2,92 2,90 2,87 2,82 2,72 2,47	14,67 14,66 14,65 14,63 14,60 14,54 14,44 14,33 14,20 14,05 13,80 13,32 12,13
$V = 3, 5, V = 1, 75 \times 10^6 V/cm$	500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000	36,23 0,10 35,28 0,10 34,34 0,10 33,44 0,11 32,33 0,12 31,39 0,13 29,9 0,13 29,0 0,13 28,42 0,19 28,06 0,22 27,68 0,24 27,38 0,24 27,66 0.40	05 35,829 06 34,883 09 33,932 15 33,001 26 31,818 38 30,797 57 29,179 75 28,132 94 27,383 12 26,847 40 26,16 39 25,264 01 23,826	3,788 3,718 3,72 3,806 4,034 4,271 4,586 4,941 5,328 5,706 6,304 7,31 9,557	34,02 71,34 57,03 41,82 26,30 18,63 11,57 8,05 5,97 4,65 3,37 2,18 1,11	3,49 3,49 3,49 3,48 3,47 3,46 3,44 3,42 3,39 3,36 3,30 3,21 2,97	17,12 17,11 17,00 17,08 17,03 16,97 16,87 16,74 16,60 16,45 16,20 15,72 14,54

Şekil-37 N18-B3 örneğinde kapasitenin gerçel bileşeninin frekans spektrumu

Şekil-38 N18-B3 örneğinde kapasitenin sanal bileşeninin frekans spektrumu

IV.C ÖR NEKLERİN KOMPLEKS KAPASİTELERİNİN ZAMANA BAĞLI FREKANS SPEKT RUMLARI

Hazırlanan örneklerin kompleks kapasite bileşenlerinin zaman ile değişimlerini incelemek amacıyla örneklerin kapasitif değerleri belli zaman aralıkları ile ölçülmüştür.

Zaman ile örneklerin kapasite bileşenlerinde gözlenen değişimleri, alan ile gözlenen değişimlerle karşılaştırabilmek amacıyla, aynı örnekte bulunan beş kapasitif bölgeden en az iki ya da üç tanesine ait kapasitif ölçmelerin belirli zaman aralıkları ile alınması gerekmektedir.

Tablo-ll ve Tablo-l2 de farklı iki örneğin değişik kapasitif bölgelerinde, ölçülen kapasite ve kayıp faktörleri ile önceki bölümlerde anlatıldığı biçimde hesaplanan C['], C^{''} değerlerinin zaman ile değişimleri verilmiştir.

Şekil-39 ve Şekil-40 da 12 numaralı örneğin farklı üç bölgesindeki C' ve C" kapasite bileşenlerinin zaman ile değişimleri gösterilmiştir. Örneğe yapımından 190 saat sonra uygulanan doğru alan ile örnekteki kapasite bileşenlerinin değişimi açık bir şekilde gözlenmektedir.

Örneklerin farklı bölgelerinde farklı zamanlarda alan altında değişik ölçmeler yapıldığı için örneklere uygulanan gerilimin sayısal değerini vermek çok doğru değildir. Çünkü, uygulanan alanın şiddeti ve uygulama süresi de ölçü sonuçlarına etki etmektedir. Bu yüzden, alanın şiddeti, uygulama süresi ve örneğin yapımından başlayarak hangi t anında alanın uygulandığı parametre alınarak yapılacak çalışma yeni bir araştırma konusudur. Yine de bir fikir vermesi bakımından N12-B1 no.lu örneğe maksimum 6,93x10⁵ V/cm lik alan şiddetinin uygulandığını söyleyebiliriz. N18 numaralı örneğin kapasite bileşenlerinin zaman ile değişimi Şekil-41 ve Şekil-42 de verilmiştir. N18-B3 no.lu örneğe uygulanan alan diğer örneklere uygulanan alana göre en büyük olanıdır ve değeri 1,75x10⁶ V/cm dir. (t = 57 saat)

TABLO-11

N12 Orneğinde Kapasite Bileşenlerinin Zamanla Değişimi

$d = 720 A^{0}$ C = % 8,8					
ÖRNEK NO. N12	t (saat)	C ₃ (nF)	tgs	C' (nF)	C" (nF)
N12-B1	4 24 54 78 144 192 318 364	51,58 32,50 26,24 23,16 22,1 20,22 + 9,92 9,98	0,57 0,454 0,408 0,376 0,361 0,353 † 0,139 0,145	41,03 26,94 22,49 20,29 19,55 17,97 9,73 9,78	20,81 12,24 9,18 7,63 7,04 6,36 1,35 1,41
N12-B3	4 24 54 78 144 192 318 364	91,64 52,16 38,0 33,18 28,23 27,10 25,54 .25,42	0,535 0,432 0,404 0,37 0,361 0,315 0,319	40,43 32,6 28,52 24,83 23,97 23,23 23,07	21,71 13,85 11,53 9,19 8,65 9,33 7,37
N12-B4	4 24 54 78 144 192 318 364	94,34 52,42 37,14 32,34 27,51 26,12 24,8 24,64	- 0,475 0,383 0,358 0,332 0,319 0,287 0,289	42,76 32,38 28,65 24,73 23,71 22,91 22,73	20,33 12,42 10,28 3,23 7,56 6,59 5,59
N12-B5	4 24 54 78 144 †	95,1 59,24 47,56 42,64	0,457 0,39 0,366 †	48,99 41,26 37,59	22,41 16,13 13,78
	318 364	19,06	0,231 0,234	18,09	4,18

+ Örneklere gerilim uygulandığını göstermektedir.

Şekil-39 N12 örneğinde gerçel kapasite bileşeninin zamanla değişimi

.

Şekil-40 N12 örneğinde sanal kapasite bileşeninin zaman ile değişimi

TABLO-12

 $d = 200 A^{0}$ f = 1 KHz. C = % 011 Rp $C = C_p$ С C3 tgδ ØRNEK NO. t (nF) $(K\Omega)$ (nF)(nF)N18 (saat) 5,98 58,06 26,61 58,68 0,103 1 N18-B1 11 0,115 58,70 23,58 B2 59,48 11 58,61 7,15 22,26 60,53 0,122 **B**3 7,71 5,96 11 60,72 20,64 61,70 0,127 B4 11 51,79 26,70 52,48 0,115 **B**5 50,85 4,97 32 51,34 0,097 21 N18-B1 U 0,103 0,109 5,32 29,9 51,53 52,08 B2 . 11 27,9 52,05 5,71 **B**3 52,63 26,4 6,04 н 52,88 0,115 52,18 B4 11 45,58 45,05 4,90 32,5 0,108 B5 +0,069 30,81 2,15 73,95 + 30,96 N18-B1 44 49,83 4,85 32,83 11 50,30 0,097 B2 5,08 31,53 11 50,67 50,16 0,101 **B**3 п 50,32 5,30 30,04 50,88 0,105 64 11 44,32 4,50 35,35 44,78 0,101 **B**5 30,32 2,14 74,51 30,47 0,07 93 N18-B1 38,28 4,16 11 + 43,8 + 0,095 43,40 B2 11 3,83 41,55 + 25,5 + 0,153 24,92 B3 49,27 48,70 11 0,108 5,28 30,13 B4 = 43,46 0,107 42,97 4,61 34,56 65

N-18 Örneğinde Kapasite Bileşenlerinin Zamanla Değişimi

+ Örneklere gerilim uygulandığını göstermektedir.

Şekil-42 N18 örneğinde sanal kapasite bileşeninin zaman ile değişimi

IV.D Örneklerin Kompleks Kapasite Ölçü Sonuçlarının Tartışılması

Örneklerin kompleks kapasite bileşenlerinin frekans spektrumlarının, uygulanan d.c. alana bağlı değişimleri incelendiğinde, kapasite bileşenlerinin d.c. alana bağlı bir azalma gösterdikleri görülmektedir.

Bu azalmanın biçimi, frekansın parametre alınmasıyla çizilmiş olan C = C'(E) ve C = C''(E) eğrilerinden daha iyi anlaşılmaktadır.

Bu eğrilere göre kapasite bileşenlerinde belli bir alan değerine kadar herhangi bir değişim görülmemekte, bu eşiğin aşılmasından sonra da önce hızlı bir azalma ve bunu izleyen bir doyum gözlenmektedir. Alan eşiği ve doyumu örnekten örneğe büyük değişiklikler cöstermektedir.

Reaktif buharlaştırma tekniği ile hazırlanan filmlerin yapısında zamanla olusan değişimler nedeniyle, bu örneklerin kapasitif bilesenlerinin frekans spektrumlarında da benzer değisimler olduğu bilinmektedir.⁽²⁴⁾

Buna dayanarak, alanın vapıdaki zamanla olusan değişimleri hızlandırdığı yargısına varılabilir.

Nitekim, reaktif buharlaştırma yoluvla elde edilen AlO_x filmlerinin belli bir alan altında form edilmesi ile fiziksel özelliklerinin zaman bağımlılığı ortadan kaldırılabilmektedir.

V. BØLÖM

KOMPLEKS KAPASİTENİN FREKANSA BAĞLI DEĞİŞİM EĞRİLERİNDEN, ELEKTRİK EŞDEĞER DEVRE ELEMANLARININ BELİRLENMESİ

V.A YÖNTEM

Bölüm III.A.4 de dipol yönelim (oryantasyon) polarizasyonu veya uzay yük polarizasyonu türündeki polarizasyonlara ait relaksasyonlar ve bunların eşdeğerleri ele alınmış ve bu relaksasyonların (Debye relaksasyonu)

$$C' = \frac{A + B (\omega/\omega_{o})^{2}}{1 + (\omega/\omega_{o})^{2}}$$
(62)

$$C'' = \frac{A - B}{1 + (\omega/\omega_{o})^{2}} (\omega/\omega_{o})$$
(63)

bağıntılarına uydukları açıklanmış ve bu $C = C'(\omega)$, $C' = C''(\omega)$ değişimleri Şekil-9 da gösterilmiştir. A, B ve ω_{o} parametrelerinin ilgili eşdeğer devre elemanları cinsinden ifadelerine de Tablo-1 de yer verilmiştir.

Bölüm III.A.5 de de arayüz polarizasyonuna ait relaksasyon ve bunun eşdeğeri olan Maxwell-Wagner eşdeğer devresi ele alınmış bu relaksasyonun ise,

$$C' = \frac{A_{1} + B_{1} (\omega/\omega_{o})^{2}}{1 + (\omega/\omega_{o})^{2}}$$
(73)

$$C'' = \frac{A_2}{(\omega/\omega_0)} + \frac{A_1 - B_1}{1 + (\omega/\omega_0)^2} \quad (\omega/\omega_0)$$
(74b)

bağıntılarına uyduğu açıklanmış, C ve C nün frekansa bu biçimde bağlı değişimleri de Şekil-ll de gösterilmiştir. A_1 , B_1 , A_2 ve ω_0 parametrelerinin, Şekil-lO da görülen Maxwell-Wagner eşdeğer devresine ait elemanlar cinsinden ifadeleri de sırasıyla (71a), (71b), (71c) ve (72) bağıntılarıyla verilmiştir.

 $C = C'(\omega)$ değişiminin her iki relaksasyon türü içinde aynı olduğu görülmektedir. $C = C''(\omega)$ değişimine gelince frekansın büyük değerleri için her iki relaksasyon aynı değişimi göstermekle birlikte, küçük frekanslara gidildikçe Debye relaksasyonuna ait C^{''} bileşeni sıfıra yaklaşırken, Maxwell-Wagner relaksasyonunda C^{''} bileşeni, $A_2(\omega/\omega_o)$ teriminin etkisiyle, hızla artmaktadır.

 $C = C'(\omega)$ ve $C = C'(\omega)$ denel eğrilerinden,yukarıdaki bağıntılarda yer alan parametrelerin elde edilmesi teorik olarak çok kolaydır. (73) bağıntısına göre

$$= 0 \rightarrow C = A_{1}$$
(112)

$$\omega = \omega \rightarrow C = B_1 \tag{113}$$

$$C' = [A_1 + B_1]/2 \rightarrow \omega = \omega_0$$
(114)

ilişkileri, (74b) bağıntısına göre de

$$\omega = \omega_{o} \rightarrow C'' = A_{2}^{+} - \frac{A_{1} - B_{1}}{2}$$
(115)

ilişkisi vardır. Bu ilişkilerin sırayla kullanılması ile $C = C'(\omega)$ eğrilerinden önce A_1 ve B_1 , sonra da bunlar yardımıyla ω_0 elde edilir. $C = C''(\omega)$ eğrisinden ω_0 için okunan C'' ve daha önce bulunan A_1 , B_1 parametrelerinden de A_2 elde edilir.

Debye relaksasyonu için $C = C(\omega)$ eğrisi yeterlidir. (112), (113) ve (114) bağıntılarından yararlanılarak A_1 , B_1 ve ω_0 elde edilebilir. Debye relaksasyonunda $A_2 = 0$ olduğundan, (115) bağıntısı yalnızca sağlama işlevini yerine getirir.

Ancak pratikte parametrelerin elde edilmesi bu kadar kolay olamamaktadır. IV. Bölümde verilen denel sonuçlardan görülebileceği gibi, ölçü yapılan frekans aralığı, küçük frekanslar tarafında, tgö kayıp faktörünün, kapasite köprüsünün ölçü alanının dışında kalması nedeniyle sınırlanmakta, dolayısıyla $C = C'(\omega)$ ve $C = C''(\omega)$ eğrilerinin kücük frekanslar bölgesi çizilememektedir. Ayrıca yine IV. Bölümde verilen eğrilerden görülebileceği üzere, yüksek frekanslar bölgesinde, örneklerin hazırlanma koşullarına bağlı olarak ortaya çıkan ve bu çalışmada ele alınmayan etkiler (örneğin dipol yönelme relaksasyonu?) nedeniyle $C = C'(\omega)$ ve $C = C''(\omega)$ eğrilerinde yükselme eğilimleri gözükmektedir. Bu da (113) ilişkisinin, denel eğriye uygulanmasını zorlaştırmakta ya da tümüyle engel olmaktadır.

Bu bakımdan, söz konusu parametrelerin denel eğrilerden elde edilmesi için, bu çalışmada aşağıda verilen yöntem geliştirilmiştir.

(73) bağıntısının düzenlenmesi ile

$$C' + C'(\omega/\omega_{o})^{2} = A_{1} + B_{1}(\omega/\omega_{o})^{2}$$
 (116a)

$$C_{\omega_{0}^{2}}^{2} + C_{\omega}^{2} = A_{1}\omega_{0}^{2} + A_{1}\omega_{0}^{2} + B_{1}\omega^{2}$$
(116b)

$$A_{1}\omega_{0}^{2} - C\omega_{0}^{2} + B_{1}\omega^{2} = C\omega^{2}$$
 (116c)

bağıntıları elde edilir. $C = C(\omega)$ eğrisinden alınan üç ω_i , $C_i(i=1,2,3)$ çifti (116c) bağıntısına götürülürse,

$$\begin{bmatrix} 1 & -C_{1}^{'} & \omega_{1}^{2} \\ 1 & -C_{2}^{'} & \omega_{2}^{2} \\ 1 & -C_{3}^{'} & \omega_{3}^{2} \end{bmatrix} \begin{bmatrix} A_{1}\omega_{0}^{2} \\ \omega_{0}^{2} \\ B_{1} \end{bmatrix} = \begin{bmatrix} C_{1}^{'}\omega_{1} \\ C_{2}^{'}\omega_{2} \\ C_{3}^{'}\omega_{3} \end{bmatrix}$$
(117)

denklem sistemi elde edilir.

$$\Delta = \begin{vmatrix} 1 & -C_1 & \omega_1^2 \\ 1 & -C_2 & \omega_2^2 \\ 1 & -C_3 & \omega_3^2 \end{vmatrix}$$
(118a)

(745)

(118b)

$$\Delta_{1} = \begin{bmatrix} c_{1}\omega_{1} & -c_{1} & \omega_{1}^{2} \\ c_{2}^{'}\omega_{2} & -c_{2}^{'} & \omega_{2}^{2} \\ c_{3}^{'}\omega_{3} & -c_{3}^{'} & \omega_{3}^{2} \end{bmatrix}$$

$$\Delta_{3}^{=} \begin{vmatrix} 1 & -c_{1}' & c_{1}'\omega_{1} \\ 1 & -c_{2}' & c_{2}'\omega_{2} \\ 1 & -c_{3}' & c_{3}'\omega_{3} \end{vmatrix}$$
(118d)

e the ortage cikers (118c)

determinantları yardımıyla

relatessyon en

$$A_{1}\omega_{0}^{2} = \frac{\Delta_{1}}{\Delta}$$
(119)

$$\omega_{0}^{2} = \frac{\Delta_{2}}{\Delta}$$
(120)

$$B_{1} = \frac{\Delta_{3}}{\Delta}$$
(121)

olarak çözülür. Bunlara göre A₁, (119) ve (120) bağıntılarından

$$A_{1} = \frac{\Delta_{1}}{\Delta_{2}}$$
(122)

olarak, w_o, (120) bağıntısı uyarınca,

$$\omega_{o} = \left[\begin{array}{c} \Delta_{2} \\ \Delta \end{array} \right]^{1/2}$$
(123)

olarak elde edilir. B₁ de (121) bağıntısına göre hesaplanır. (74b) bağıntısının düzenlenmesiyle de

$$A_{2} = C''(\omega/\omega_{o}) - \frac{A_{1} - B_{1}}{1 + (\omega/\omega_{o})^{2}} (\omega/\omega_{o})^{2}$$
(124)

bağıntısı elde edilir. Bu bağıntı yardımıyla parametresi belirlenir. Bu bağıntı (63) bağıntısı ile karşılaştırılacak olursa, Debye relaksasyonu için $A_2 = 0$ elde edilmesi gerektiği ortaya çıkar.

Reaktif buharlaştırma tekniği ile elde edilen dielektrik filmlerin heterojen yapılara sahip olacakları ve bu nedenle de arayüz polarizasyonlarının etken olduğu Maxwell-Wagner relaksasyonlarının gözlenmesine elverecekleri görüşü IV. Bölümde yer alan $C = C''(\omega)$ eğrilerine aykırı düşmemekle birlikte, bu eğrinin yukarıda da değinildiği üzere ölçü yapılmamış bulunulan küçük frekanslar bölgesinde maksimumdan geçerek sıfıra yaklaşabileceği ve dolayısıyla bu relaksasyonun bir debye relaksasyonu görünümü kazanabileceği ileri sürülebilir. Böyle bir durumun ortaya çıkmasının koşulu (124) bağıntısı yardımıyla elde edilecek A₂ parametresinin sıfır olarak hesaplanmasıdır. Bölüm IV.B de görüleceği üzere A₂ parametresi sıfırdan farklı olarak hesaplanmakta ve belirlenen parametreler yardımıyla çizilen teorik Maxwell_Wagner relaksasyon eğrileri, denel eğrilere çok iyi bir uyum göstermektedir.

Bu nedenle burada, (73) ve (74b) bağıntılarının A_1 , B_1 , A_2 ve ω_0 parametrelerinden, bu parametrelerin bağlı oldukları, Maxwell-Wagner eşdeğer devre elemanlarını hesaplama yöntemi üzerinde durulacaktır.

$$R_1/R_2 = r$$
 (125)

tanımı yapılırsa A_l için verilen (71a) ve A₂ için verilen (71c) bağıntıları

$$(1 + r)^2 A_1 = r^2 C_1 + C_2$$
(126)

$$(1 + r)^2 A_2 = rC_1 + rC_2$$
(127)

bağıntılarına dönüştürülebilir. (126) bağıntısının her iki tarafı r ile çarpılır ve bu bağıntıdan (127) bağıntısı taraf tarafa çıkartılıp düzenlenirse,

$$C_{1} = \frac{(1 + r) (A_{2} - rA_{1})}{r (1 - r)}$$
(123)

(127) bağıntısının her iki tarafı r ile çarpılır ve bundan (126) bağıntısı taraf tarafa çıkartılıp düzenlenirse de

$$C_2 = \frac{(1 + r) (A_1 - rA_2)}{(1 - r)}$$
(129)

bağıntıları elde edilir. (128) ve (129) bağıntıları, (71b) ye yerleştirilirse,

$$B_{1} = \frac{\frac{(1+r)(A_{2}-rA_{1})}{r(1-r)}}{\frac{(1+r)(A_{1}-rA_{2})}{(1-r)}} + \frac{(1+r)(A_{1}-rA_{2})}{(1-r)}$$
(130a)

$$B_{1} = \frac{1+r}{1-r} \frac{(A_{2}-rA_{1})(A_{1}-rA_{2})}{(A_{2}-rA_{1})+r(A_{1}-rA_{2})}$$
(130b)

$$B_{1} = \frac{1+r}{(1-r)} \frac{A_{1}A_{2}r^{2} - (A_{1}^{2} + A_{2}^{2})r + A_{1}A_{2}}{(1-r^{2})A_{2}}$$
(130c)

$$(1-r)^{2} B_{1}A_{2} = A_{1}A_{2}r^{2} - (A_{1}^{2}+A_{2}^{2})r + A_{1}A_{2}$$
(130d)

$$(A_1A_2 - B_1A_2)r^2 - (A_1^2 + A_2^2 - 2B_1A_2)r + A_1A_2 - B_1A_2 = 0$$
(130e)

bağıntıları elde edilebilir. Son bağıntı

$$A_{1} = \frac{A_{1}^{2} + A_{2}^{2} - 2B_{1}A_{2}}{(A_{1} - B_{1})A_{2}} = \frac{(A_{1} - A_{2})}{(A_{1} - B_{1})A_{2}} + 2$$
(131)

yardımıyla

$$r^2 - qr + l^* = 0$$
 (132)

olarak ifade edilebilir. (132) ikinci derece denkleminin

$$r = \frac{q - \sqrt{q^2 - 4}}{2}$$
(133)

çözümü (128) ve (129) bağıntılarına götürülürse C $_1$ ve C $_2$ kapasite değerleri elde edilmiş olur.

Ote yandan (72) bağıntısı, (125) tanımı yardımıyla

$$R_{1} = \frac{1 + r}{\omega_{o}(C_{1} + C_{2})}$$
(134)

bağıntısına dönüştürülebilir. ω_0 , r, C_1 ve C_2 bilindiklerine göre buradan R_1 ,(125) bağıntısından da R_2 hesaplanır. $C = C'(\omega)$ ve $C' = C''(\omega)$ eğrileri yanı sıra, bu değişime ait

 $C = C(\omega)$ ve $C = C(\omega)$ eğrileri yanı sıra, bu değişime ait C = C(C) Argand eğrisinin de çizilmiş olması durumunda A_1 , B_1 , A_2 ve ω parametrelerinin ilk üçü bu eğriden de elde edilebilir.

Şekil-14 de görüldüğü üzere eğri C eksenini C = B_1 de keser ve C = A_1 düşey doğrusuna da asimtotik olarak yaklaşır. Bu iki değerin ortalaması olan C = $[A_1+B_1]/2$ için C nün alacağı değer de C = $A_2+ [A_1-B_1]/2$ dir. Buna göre de C ekseni üzerinde B_1 ile A_1 in orta noktası merkez alınarak çizilen dairenin maksimum noktası ile C "eğrisi arasındaki düşey uzaklık A_2 dir. ω_0 ise, C = C (ω) eğrisinden okunacak bir (ω , C') çiftinden yararlanılarak elde edilir. Bunun için (116c) bağıntısının dönüştürülmesiyle sağlanan

$$\omega_{0} = \left[\frac{C' - B_{1}}{A_{1} - C'} \right]^{1/2} \omega$$
 (135)
bağıntısı kullanılabilir.

Ancak küçük frekanslarda ölçü yapılmamış olması, Argand eğrisinin düşey asimtoda çok yaklaşmadan kesilmesine yol açabilecektir. Ayrıca yüksek frekanslarda, özellikle de C = C (ω) eğrisinde görülen yükselmeler de Argand eğrisinin küçük C ler tarafındaki görünümünü bozacaktır. Bu bakımdan Argand eğrisinden yararlanan yöntem, uygulamada zorlukların doğmasına yol açmaktadır.

Bölüm V.B de, $C = C(\omega)$ eğrisinden alınan üç (ω, C) değer çifti ve $C = C'(\omega)$ eğrisinden alınan bir (ω, C') değer çiftine dayanan yöntem uygulanacak, yüksek frekans etkilerinden kaçınmak için de kücük frekanslar tarafına ağırlık verilecektir.

V.B YÖNTEMİN DE NEL EĞRİLERE UYGULANMASI

Bölüm IV. de değişik koşullarda hazırlanan örneklerin, kapasite köprüsünde elde edilen, kompleks kapasite bileşenlerinin frekans spektrumlarının alan altındaki değişimleri verilmiştir. Bu bölümde ise söz konusu spektrumlara ait eşdeğer devrenin belirlenmesi ve bu devreyi oluşturan elemanların elde edilmesi amaçlanmıştır. Böylece doğru alanın, frekans spektrumlarında gözlenen etkileri de, eşdeğer devre elemanlarındaki değişimlere indirgenerek incelenebilecektir.

Örnekler IV. Bölümdeki sıra ile ele alınmışlardır. Örneğe ait denel $C = C'(\omega)$ eğrisinden okunan üç ω , C' değer çiftinden, Bölüm V.A da verilen yöntem yardımıyla A_1 , B_1 ve $f_0 = \omega_0/2\pi$ parametreleri, $C = C'(\omega)$ eğrisinden okunan bir ω , C' değer çiftinden de A_2 parametresi hesaplanmıştır. A_2 parametreleri için, öngörüldüğü üzere sıfırdan farklı değerler elde edilmiş, böylece söz konusu spektrumların, Maxwell-Wagner relaksasyonuna ait oldukları ve dolayısıyla, eşdeğer devrelerinin de bir Maxwell-Wagner eşdeğer devresi (Şekil-10) olduğu belirlenmiştir.

 A_1 , B_1 , A_2 ve ω_0 parametrelerinden, Maxwell-Wagner eşdeğer devresinin R_1 , R_2 , C_1 , C_2 devre elemanları yine Bölüm V.A da verilen yöntemin uygulanmasıyla elde edilmiştir.

Denel eğrilerden okunan değer çiftleri, hesaplanan A₁, B₁, A₂ ve f_o parametreleri, eşdeğer devre elemanları, örneğe uygulanan doğru alanın şiddetine bağlı olarak sıralanmış ve her örnek için ayrı bir tablo düzenlenmiştir. Bu tablolara ayrıca R_1C_1 , R_2C_2 ve R_2C_2/R_1C_1 büyüklüklerine ait değerler de hesaplanarak eklenmiştir. (Tablo-13, 15, 17, 19, 21 ve 23)

Denel eğrilerden elde edilen A_1 , B_1 , A_2 ve ω_0 parametrelerinin temsil ettiği teorik Maxwell-Wagner relaksasyonu eğrilerinin, denel eğrilerle olan uyumunu göstermek üzere bu parametrelerden (73) ve (74b) bağıntıları yardımıyla teorik C = C'(f) ve C = C''(f) değişimleri elde edilmiş, bu değişimlere ait değerler için ayrı tablolar düzenlenmiş (Tablo-14, 16, 18, 20, 22 ve 24), eğrileri ise yalnız bir örnek için Şekil-43 ve Şekil-44 de diğer örnekler için Bölüm IV de çizilen denel eğrileriyle birlikte verilmiştir.

 A_1, B_1 ve ω_0 parametreleri yardımıyla (63) bağıntısına göre elde edilebilecek teorik C = C (f) değişimi, Debye relaksasyonuna aittir. Bu relaksasyona ait C = C (f) eğrileri, denel C = C (f) eğrilerini karşılayamamakta, buna karşılık Maxwell-Wagner relaksasyonuna ait C = C (f) eğrileri denel eğrilerle iyi bir uyum göstermektedir. Maxwell-Wagner eğrilerine ait değerlerin verildiği tablolarda, teorik Debye eğrilerine ait değerlere de yer verilmiş, ancak yalnızca N13-B3 No.lu örneğe ait teorik Debye eğrisi, IV. Bölüm Şekil-26 da denel ve teorik Maxwell-Wagner C = C (f) eğrileriyle birlikte gösterilmiştir.

Denel C'= C'(f) ve C'= C'(f) eğrilerinin, bunların düşük frekans bölgelerinden yararlanılarak elde edilen teorik C = C'(f) ve C'= C'(f) eğrileriyle karşılaştırılması sonucunda, bazı örneklerin C = C (f) denel eğrisinin, yüksek frekanslarda teorik olarak öngörülen asimtotik değerinin altına düşme eğilimi gösterdiği, C'= C'(f) denel eğrisinin de bir artma eğilimine girdiği gözlemlenmektedir.

Bu eğilimlerin görünür duruma geldiği frekanslar, örneklerin hazırlanma koşullarına ve tazeliklerine göre değişmektedir. 17 ve 18 no. lu örneklerde bu frekanslar, Maxwell-Wagner relaksasyonunun görüldüğü frekansların oldukça yakınlarına kadar inmekte ve denel eğrilerle, teorik eğriler arasındaki özellikle de denel C = C''(f) ve teorik C = C''(f)arasındaki farkın büyük ölçüde artmasına yol açmaktadır.

Konumuz dışında kalan bu olayın ikinci bir relaksasyona, bir dipol oryantasyon relaksasyonuna ait olduğu düşünülebilir.

TABL0-13

BRNEK NO. N12-B1

		and the second	1.4. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
	. د	1,27	1,38	1,48	1,56
	R ₂ C ₂ R ₁ C ₁	18,56	23,86	30,73	36,53
	R ₂ C ₂ (µsec)	915,05	1368,98	2494,6	2965,81
	R ₁ C ₁ (µsec)	49,30	57,37	70,33	81,19
eman.	R2 (Kn)	42,62	81,73	223,33	283,81
evre El	R ₁ (KΩ)	1,61	1,82	601, L	1,23
leğer De	с ₂ (nF)	21,47	16,75	1002L. II	10,45
M-W Eso	с ₁ (nF) (30,62	31,52	61,69	66,01
1500	A ₂ (nF)	1,83	1,03	0,37	0,33
	B ₁ (nF)	12,62	10,94	9,45	9,02
	A ₁ (nF)	19,98	16,04	11,05	10,36
	f ₀ (KHz)	1,97	1,85	1,92	1,70
al Veriler	c' c" (nF) (nF)	19,042 14,832 13,095 7,246	15,553 12,341 11,228 4,317	10,912 9,92 9,553 1,487	10,212 9,346 9,087 1,24
Dene	f (Hz)	750 3000 7500 750	600 3000 7500 750	600 3000 7500 7500	600 3000 7500 750
2000 0000 5000	Ex10 ⁵ (V/cm)		2,77	5,55	6,93

TABLO-14

WRNEK NO. N12-B1		TE	TEORİK EĞRİLER						
Ex10 ⁵ (V/cm	f) (Hz)	c' (nF)	C ["] (nF) Debye	C"(nF) M-V!	Ex10 ⁵ (V/cm)	f (Hz)	C' (nF)	C ["] (nF) Debye	C"(nF) M-W
0	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	19,68 19,53 19,35 19,15 18,46 17,27 16,24 14,83 14,05 13,61 13,34 13,10 12,90 12,75	1,14 1,76 2,05 2,32 2,97 3,55 3,68 3,37 2,91 2,50 2 ,18 1,80 1,39 0,95	10,43 8,95 8,05 7,46 6,57 5,94 5,48 4,57 3,81 3,22 2,78 2,28 1,75 1,19	6,93	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	10,29 10,25 10,21 10,17 10,02 9,77 9,58 9,35 9,23 9,16 9,12 9,09 9,06 9,04	0,30 0,36 0,42 0,47 0,59 0,66 0,66 0,57 0,48 0,41 0,35 0,29 0,22 0,15	1,70 1,48 1,35 1,27 1,14 1,04 0,94 0,76 0,62 0,52 0,44 0,36 0,23 0,19
2,77	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	15,81 15,69 15,55 15,40 14,88 14,01 13,29 12,39 11,83 11,55 11,38 11,23 11,10 11,01	1,05 1,29 1,50 1,69 2,14 2,50 2,54 2,54 2,28 1,94 1,66 1,42 1,19 0,91 0,62	5,82 5,10 4,67 4,41 4,04 3,77 3,50 2,91 2,42 2,04 1,75 1,44 1,10 0,75		E:=0			
5,55	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000	10,99 10,95 10,91 10,87 10,71 10,45 10,22 9,92 9,75 9,66 9,60 9,55 9,51 9,48	0,32 0,39 0,45 0,51 0,65 0,77 0,80 0,73 0,62 0,54 0,46 0,38 0,30 0,20	2,09 1,81 1,64 1,53 1,36 1,25 1,15 0,96 0,80 0,68 0,68 0,68 0,58 0,48 0,37 0,25					

Şekil-43 N12-B1 örneğinde gerçel kapasite bileşeninin denel ve teorik frekans spektrumu

Şekil-44 N12-B1 örneğinde sanal kapasite bileşeninin denel ve teorik frekans spektrumu

BRNEK NO. N13-B3

TABL0-15

			TAPL0-16		And the second second second second second second second second second second second second second second second		
	13-8	1,51	1,57,80	1,1	1,77	1,91	1,97
	R2C2 R1C1	32,71	37,08	50,79	59,19	80,67	93,92
	R ₂ C ₂ (µsec)	2436,95	2997,54	3920,12	4753,35	7042,3	7866,49
	R ₁ C ₁ (µsec)	74,51	30,83	77,18	30,31	87,29	83,76
emanla.	R2 (Kn)	162,63	212,14	301,73	389,30	606,05	729,73
evre El	R ₁ (Ka)	0,92	0,82	0,61	0,61	0,69	0,58
değer D	c ₂ (nF)	14,93	14,13	12,99	12,21	11,62	10,78
M-W Es	C ₁ (nF)	80,99	98,57	126,53	131,65	126,51	144,42
2	Å2 (nF)	0,54	0,44	0,28	0,22	0,16	0,12
	B ₁ (nF)	12,64	12,36	11,78	11,17	10,64	10,03
	A ₁ (nF)	14,82	14,02	12,94	12,17	11,60	10,76
	f _o (KHz)	1,82	1,72	1,87	1,83	1,63	1,77
nel Veriler	c' c" (nF) (nF)	14,605 13,228 12,765 2,064	13,841 12,77 12,441 1,61	12,832 12,106 11,85 1,102	12,071 11,44 11,226 0,895	11,489 10,872 10,69 0,704	10,638 10,22 10,07 0,554
Dei	f (Hz)	600 3000 7500 750	600 3000 7500 750	600 3000 7500 7500	600 3000 7500 750	600 3000 7500 750	600 3000 7500 750
7	Ex10 ⁵ (V/cm)	0	2,61	5,13	7,69	10,2	12,8

ØRNEK	NO. 1	V13-B3	TE	EORİK EĞRİ	LER	1.52		
Ex10 ⁵ (V/cm)	f) (Hz)	C' (nF)	C ["] (nF) Debye	C"(nF) M-V	Ex10 ⁵ f (V/cm)(H	C' z) (nF)	C ["] (nF) Debye	C"(nF) M-W
0	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000 20000	T4,72 14,67 14,61 14,54 14,31 13,94 13,63 13,23 13,02 12,90 12,83 12,77 12,71 12,68 12,66	0,46 0,56 0,65 0,73 0,92 1,07 1,08 0,96 0,82 0,70 0,60 0,50 0,38 0,26 0,20	2,89 2,50 2,27 2,06 1,89 1,72 1,57 1,29 1,06 0,89 0,77 0,63 0,48 0,32 0,24	7,69 4 5 6 7 10 15 20 30 40 50 60 75 100 150 200	00 12,12 00 12,10 00 12,07 50 12,04 00 11,94 00 11,77 00 11,62 00 11,34 00 11,25 00 11,23 00 11,18 00 11,18	0,21 0,25 0,30 0,33 0,42 0,49 0,50 0,44 0,38 0,32 0,28 0,23 0,23 0,18 0,12 0,09	1,23 1,07 0,98 0,92 0,83 0,76 0,70 0,60 0,48 0,40 0,35 0,28 0,22 0,15 0,11
2,61	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000 20000	13,94 13,89 13,84 13,79 13,60 13,00 13,07 12,77 12,62 12,53 12,48 12,48 12,44 12,41 12,38 12,37	0,37 0,45 0,52 0,58 0,72 0,82 0,72 0,60 0,51 0,44 0,36 0,28 0,19 0,14	2,43 1,95 1,77 1,65 1,47 1,32 1,20 0,97 0,79 0,66 0,57 0,46 0,35 0,24 0,18	10,2 4 5 6 7 10 15 20 30 40 50 60 75 100 150 200	00 11,55 00 11,52 00 11,49 50 11,46 00 11,35 00 11,35 00 11,35 00 11,35 00 10,37 00 10,79 00 10,74 00 10,69 00 10,66 00 10,65	0,21 0,26 0,30 0,34 0,42 0,47 0,47 0,47 0,41 0,34 0,29 0,25 0,20 0,16 0,11 0,08	0,87 0,78 0,74 0,71 0,68 0,65 0,60 0,49 0,41 0,34 0,29 0,24 0,29 0,24 0,18 0,12 0,09
5,13	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	12,89 12,86 12,83 12,80 12,68 12,49 12,32 12,11 11,99 11,92 11,88 11,85 11,82 11,80 11,79	0,24 0,29 0,34 0,38 0,48 0,57 0,58 0,52 0,44 0,38 0,33 0,27 0,21 0,14 0,11	1,55 1,34 0,21 1,13 1,01 0,92 0,84 0,70 0,58 0,48 0,42 0,34 0,42 0,34 0,26 0,18 0,13	12,8 4 5 6 7 10 15 20 30 40 50 60 75 100 150 200	00 10,73 00 10,71 00 10,69 50 10,66 00 10,59 00 10,35 00 10,22 00 10,15 00 10,09 00 10,09 00 10,05 00 10,04	0,16 0,19 0,22 0,25 0,31 0,36 0,36 0,36 0,32 0,27 0,23 0,20 0,16 0,13 0,09 0,06	0,70 0,63 0,59 0,56 0,53 0,51 0,47 0,39 0,33 0,27 0,23 0,19 0,15 0,10 0,08

TABLO-16

BRNEK NO. N14-B4

TABL0-17

		-	1,39	1,41	1,41	1,52	1,55
		$\frac{R_2C_2}{R_1C_1}$	24,31	25,85	25,53	32,74	35 , 55
		R ₂ C ₂ . (µsec).	1454 ,66	1536,25	1559,11	1966,42	2849,74
		R ₁ C ₁ (µsec)	59,33	59,43	60,94	60,07	80,15
	lemanla.	R2 (K $_{\Omega}$)	76,16	80,18	82,58	123,83	234,74
	evre E	R ₁ (KΩ)	1,45	1,42	1,46	1,34	1,52
	değer De	C ₂ (nF)	19,10	19,06	13,88	15,38	12,14
and the second second	M-W ESO	C ₁ (nF)	41,26	41,35	<i>й</i> 2" Lt	44,83	52,73
		A ₂ (nF)	1,11	1,04	1,03	0,64	0,42
		B ₁ (nF)	13,05	13,10	13,00	11,73	9,87
		A ₁ (nF)	18,40	18,42	18,24	15,55	11,99
		f _o (KHz)	1,85	1,88	1,83	1,98	1,62
	el Veriler	c' c" (nF) (nF)	17,898 14,534 13,363 4,594	17,925 14,594 13,41 4,434	17,737 14,427 13,296 4,362	15,224 12,884 11,974 2,961	11,734 10,349 9,965 1,706
	Den	f (Hz)	600 3000 7500 750	600 3000 7500 750	600 3000 7500 750	600 3000 7500 750	600 3000 7500 750
		Ex10 ⁵ (V/cm)	0	2,5	5	7,51	10

-		5		0		0	
	Δ	K	1	()	-	N I	
1.1		ν	-	U			

Ex10 ⁵ (V/cm	f) (Hz)	C' (nF)	C ["] (nF) Debye	C"(nF) M-W
	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000 20000	18,17 18,04 17,90 17,74 17,20 16,29 15,53 14,53 14,53 14,00 13,70 13,52 13,36 13,23 13,16 13,10	1,10 1,34 1,57 1,77 2,24 2,62 2,67 2,39 2,04 1,74 1,51 1,25 0,96 0,65 0,49	6,23 5,45 4,98 4,70 4,29 3,98 3,69 3,08 2,55 2,15 1,85 1,52 1,64 0,79 0,59
7,51	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000 20000	15,40 15,32 15,22 15,12 14,77 14,15 13,62 12,88 12,48 12,24 12,1 11,97 11,87 11,79 11,76	0,74 0,91 1,06 1,20 1,54 1,84 1,91 1,76 1,52 1,31 1,14 0,94 0,73 0,5 0,37	3,92 3,45 3,18 3,02 2,81 2,69 2,55 2,18 1,84 1,56 1,35 1,11 0,85 0,58 0,44
10	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000 20000	11,87 11,31 11,73 11,66 11,40 11,01 10,71 10,35 10,17 10,07 10,01 9,97 9,92 9,89 9,88	0,49 0,60 0,69 0,77 0,95 1,06 1,04 0,89 0,74 0,62 0,53 0,74 0,62 0,53 0,44 0,33 0,23 0,17	2,18 1,94 1,81 1,73 1,62 1,51 1,37 1,11 0,90 0,76 0,64 0,53 0,40 0,27 0,20

ØRNEK NO. N15-B5

TABL0-19

а. <i>н</i>	Ч	2 1,32	0 1,30	7 1,40	3 1,40
	R ₂ C ₂ R ₁ C ₁	20,82	20,10	25,27	25,0
	R ₂ C ₂ (µsec)	1379,56	1349,64	1672,05	1908,06
600 750 1000 1500	R ₁ C ₁ (µsec)	66,27	67,14	66,17	76,23
lemanla	R2 (Ka)	98,05	93,73	157,0	177,0
evre E	R ₁ (۲۵)	1,90	1,85	1,85	2,31
değer D	C ₂ (nF)	14,07	13,67	10,65	10,78
M-W Eş	C ₁ (nF)	34,84	36,29	35,77	33,0
1500	A ₂ (nF)	16,0	06,0	0,53	0,56
3000 4600 5500	B ₁ (nF)	10,02	9,93	8,21	8,13
	A ₁ (nF)	13,55	13,19	10,41	10,51
	f _o (KHz)	1,74	1,76	1,88	1,60
el Veriler	c' c" (nF) (nF)	13,177 10,913 10,203 3,404	12,848 10,763 10,101 3,286	10,207 8,828 8,338 8,338 2,095	10,215 8,652 8,229 2,101
Den	f (Hz)	600 3000 7500 750	600 3000 7500 750	600 3000 7500 750	600 3000 7500 750
6006 7500 0000	Ex10 ⁵ (V/cm)	0	2,38	7,14	9,52

BRNEK NO. N17-B5

TABL0-21

	0. N	17-86 £	1,43	1,54	1,23	1,25	1,25
	f (Hz)	$\frac{R_2C_2}{R_1C_1}$	26,74	34,49	11, 01	17,75	17,98
	400	R ₂ C ₂ (usec)	3138,4	4177,38	2256,22	2460,6	2567,14
		R ₁ C ₁ (µsec)	117,39	120,76	103,04	138,62	142,76
	emanla.	R2 (KΩ)	93,88	125,56	90,94	129,03	158,27
	evre El	R ₁ (KΩ)	1,69	2,45	3,39	4,44	4,65
	leğer Do	c2 nF)	33,43	33,27	24,31	19,07	16,22
and the second se	M-W Eşd	C ₁ (nF) (69,46	49,29	34,82	31,22	30,70
	2000 2000 3000	A ₂ (nF)	1,78	1,55	2,06	1 , 62	1,30
		B ₁ (nF)	22,57	19,86	14,49	11,84	10,61
		A ₁ (nF)	32,28	32,02	23,10	17,86	15,33
		f _o (KHz)	0,93	0,80	0,82	0,74	0,75
	el Veriler	c' c" (nF) (nF)	29,443 27,093 24,306 7,192	27,659 24,622 21,547 7,906	19,166 17,939 15,72 6,542	15,465 13,963 12,562 4,935	13,495 12,316 11,197 3,93
	Den	f (Hz)	600 1000 2000 600	600 1000 2000 600	750 1000 2000 750	600 1000 2000 600	600 1000 2000 600
	0000	Ex10 ⁵ (V/cm)	0	5,7	8,57	11,43	14,29

. 111

TABLO-22

ORNEK NO. N17-B5

TEORİK EĞRİLER

						and the second se				
Ex10 ⁵ (V/cm)	f (Hz)	C' (nF)	C ["] (nF) Debye	C ["] (nF) M-W	/	Ex10 ⁵ (V/cm)	f (Hz)	c' (nF)	C ["] (nF) Debye	C"(nF) M-W
0	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	30,77 30,12 29,44 28,79 27,09 25,28 24,31 23,42 23,07 22,89 22,80 22,71 22,65 22,60	3,51 4,04 4,42 4,66 4,85 4,36 3,72 2,76 2,15 1,75 1,48 1,19 0,90 0,60	7,68 7,37 7,19 7,04 6,51 5,47 4,56 3,31 2,57 2,09 1,75 1,41 1,07 0,71		11,43	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	16,49 15,97 15,47 15,01 13,96 13,01 12,56 12,18 12,04 11,97 11,93 11,90 11,87 11,86	2,52 2,80 2,95 3,01 2,83 2,38 1,96 1,40 1,07 0,87 0,73 0,59 0,44 0,30	5,50 5,18 4,93 4,71 4,07 3,18 2,55 1,79 1,37 1,11 0,93 0,75 0,56 0,37
5,7	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	29,60 28,62 27,66 26,76 24,62 22,57 21,55 20,67 20,33 20,17 20,08 20,0 19,94 19,90	4,86 5,46 5,83 6,03 5,93 5,06 4,2 3,03 2,34 1,90 1,60 1,29 0,97 0,65	7,97 7,95 7,91 7,80 7,18 5,88 4,82 3,45 2,65 2,15 1,80 1,45 1,09 0,73		14,3	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	14,29 13,88 13,50 13,14 12,32 11,56 11,20 10,89 10,77 10,72 10,69 10,66 10,64 10,63	1,96 2,18 2,30 2,35 2,27 1,89 1,55 1,11 0,86 0,69 0,58 0,47 0,35 0,24	4,4 4,13 3,93 3,75 3,24 2,54 2,04 1,44 1,1 0,89 0,74 0,60 0,45 0,3
8,57	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	21,44 20,76 20,09 19,46 17,94 16,46 15,72 15,08 14,83 14,71 14,64 14,59 14,54 14,51	3,4 3,83 4,11 4,26 4,22 3,62 3,02 2,19 1,69 1,37 1,15 0,93 0,7 0,47	7,62 7,21 6,92 6,67 5,91 4,75 3,86 2,75 2,11 1,71 1,43 1,15 0,87 0,58			1.5 1 600 17.362			ALE A

BRNEK NO. N18-B3

TABL0-23/1

			1281.0.24				
	28-83	1,96	2,5	2,61			
	$\frac{R_2C_2}{R_1C_1}$	90,22	314,4	406,6			
	R ₂ C ₂ (µsec)	15150,5	49915,0	55454,0		85,15 44,53	
	R ₁ C ₁ (µsec)	167,93	158,75	136,38			
lemanla.	R2 (۲۵)	322,9	1170,9	1489,5	2000 4000 5000		
evre E	R ₁ (KΩ)	0,72	0,95	0,97			
dečer [C ₂ (nF)	46,92	42,63	37,23			
M-W Es	C ₁ (nF)	233,2	167,8	140,7			
20	A ₂ (nF)	0,62	0,17	0,12	000		
	B1 (nF)	39,06	33,99	29,43			
	A ₁ (nF)	46,71	42,57	37,18			
	f _o (KHz)	0,79	0,80	0,92			
nel Veriler	C C" C" (nF) (nF)	43,917 42,005 40,096 4,504	39,478 [.] 37,337 35,175 4,125	34,883 33,001 30,797 3,718	750 600 500 000 000 000		
Der	f (Hz)	600 1000 2000 600	600 2000 500	600 1000 2000 600	000 600 500		
1001	[x10 ⁵ V/cm)	2,5	2	17,5			

T	n.	n		0		5	1
	4	K	1	()	-	1	4
1.1		L	-	U		<u></u>	-

ØRNEK NO. N	18-B3	TE	TEORIK EĞRİLER					
Ex10 ⁵ f (V/cm) (Hz)	C' (nF)	C ["] (nF) Debye	C"(nF) M-W	Ex10 ⁵ (V/cm	f h) (Hz)	c' (nF)	C ["] (nF) Debye	C"(nF) M-W
- 0 400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	52,21 51,83 51,44 51,04 49,98 48,76 48,07 47,41 47,14 47,14 47,01 46,93 46,87 46,82 46,78	2,12 2,47 2,73 2,92 3,14 2,93 2,55 1,92 1,51 1,24 1,04 0,84 0,64 0,43	5,65 5,29 5,09 4,94 4,55 3,87 3,26 2,39 1,87 1,52 1,28 1,03 0,78 0,52	12,5	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	45,15 44,53 43,92 43,35 42,01 40,73 40,10 39,56 39,35 39,25 39,19 39,15 39,11 39,08	3,08 3,46 3,68 3,80 3,72 3,16 2,62 1,89 1,46 1,12 0,99 0,80 0,60 0,40	4,31 4,44 4,50 4,50 4,21 3,48 2,86 2,05 1,58 1,28 1,07 0,86 0,65 0,43
5 400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	51,63 51,12 50,60 50,09 48,77 47,34 46,57 45,86 45,58 45,44 45,36 45,29 45,24 45,20	2,73 3,14 3,44 3,64 3,80 3,43 2,94 2,18 1,71 1,39 1,17 0,95 0,71 0,48	5,53 5,38 5,31 5,24 4,92 4,18 3,50 2,56 1,99 1,62 1,36 1,10 0,83 0,55	15	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000 15000	40,85 40,16 39,48 38,85 37,34 35,89 37,18 34,56 34,32 34,21 34,14 34,09 34,05 34,02	3,43 3,85 4,12 4,25 4,18 3,56 2,96 2,13 1,65 1,34 1,12 0,90 0,68 0,46	3,77 4,13 4,34 4,44 4,32 3,65 3,02 2,18 1,68 1,36 1,15 0,92 C,69 0,46
10 400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000	45,83 45,33 44,84 44,37 43,21 42,04 41,44 40,91 40,70 40,60 40,54 40,50 40,46 40,43	2,52 2,86 3,09 3,22 3,26 2,84 2,39 1,75 1,35 1,1 0,93 0,75 0,56 0,38	4,68 4,59 4,53 4,46 4,12 3,42 2,82 2,03 1,57 1,27 1,07 0,86 0,65 0,43	17,5	400 500 600 750 1000 1500 2000 3000 4000 5000 6000 7500 10000	35,96 35,43 34,88 34,36 33,00 31,56 30,80 30,11 29,83 29,69 29,62 29,55 29,50 29,47	2,83 3,24 3,54 3,73 3,86 3,46 2,95 2,13 1,70 1,38 1,16 0,94 0,71 0,48	3,09 3,46 3,72 3,88 3,97 3,53 3,00 2,21 1,72 1,40 1,18 0,95 0,72 0,48

V.C eşdeğer devre elemanlarının alana bağlı değişimleri ve tartışması

Bölüm III.A.5 de ayrıntılı olarak görüldüğü üzere heterojen yapılarda ortaya çıkan Maxwell-Wagner relaksasyonuna ait en basit eşdeğer yapı, ε_1 , σ_1 katsayılı ve d₁ kalınlıklı bir tabaka ile ε_2 , σ_2 katsayılı ve d₂ kalınlıklı ikinci bir tabakanın oluşturdukları iki tabakalı bir kondansatördür.

Bu kondansatörün kompleks kapasite bileşenlerinin bir relaksasyon spektrumu vermeleri, permitivite dağılımın, iletkenlik dağılımından değişik olması koşuluna bağlıdır. Başka bir deyişle tabakaların permitivitelerinin $\varepsilon_2/\varepsilon_1$ oranı, tabakaların σ_2/σ_1 iletkenlik oranına eşitse, iki tabakalı kondansatör, homojen bir ortam gibi davranır ve bir Maxwell-Wagner relaksasyonu göstermesi söz konusu olamaz.

Hazırlanmış bir örneğin permitivitesinin hacımsal dağılımı, bu örneğin denel relaksasyon eğrilerinden elde edilen Maxwell-Wagner eşdeğer devresinin C₁ ve C₂ elemanlarına ait ε_1 ve ε_2 permitivitelerinin $\varepsilon_2/\varepsilon_1$ oranıyla temsil edilebilir. Öte yandan aynı örneğin iletkenliğinin hacımsal dağılımı da, aynı eşdeğer devrenin R₁ ve R₂ elemanlarına ait σ_1 ve σ_2 iletkenlik katsayılarının σ_2/σ_1 oranıyla temsil edilebilir. Bir örneğin heterojen olması demek, permitivite dağılımı ile, iletkenlik dağılımının birbirinden değişik olması demek olduğundan

$$\frac{\varepsilon_2/\varepsilon_1}{\sigma_2/\sigma_1}$$

oranı ya da bu oranın tersi heterojenliğin ölçüsüdür. Ve bu oranlar 1 den ne kadar büyük veya sıfıra ne kadar yakın iseler, ortam o kadar heterojendir. Bu bakımdan h heterojenlik katsayısı

$$h = | \lg \frac{\varepsilon_2 / \varepsilon_1}{\sigma_2 / \sigma_1} |$$
(136)

olarak tanımlanabilir. Bu tanıma göre, homojenlik h = 0 da sağlanır. h nın sıfırdan büyük değerler alması da, heterojenliğin bir göstergesidir.

Maxwell-Wagner iki tabaka kondansatörü ve eşdeğer devresini gösteren Şekil-10 da R_1 , R_2 , C_1 ve C_2 elemanları; permitivite, iletkenlik katsayıları ve kalınlıklar cinsinden

$$R_{1} = \frac{d_{1}}{\sigma_{1}A} \qquad R_{2} = \frac{d_{2}}{\sigma_{2}A} \qquad C_{1} = \frac{\varepsilon_{1}A}{d_{1}} \qquad C_{2} = \frac{\varepsilon_{2}A}{d_{2}} \qquad (137)$$

olarak verildiklerine göre

$$\frac{R_2 C_2}{R_1 C_1} = \frac{\varepsilon_2 / \sigma_2}{\varepsilon_1 / \sigma_1} = \frac{\varepsilon_2 / \varepsilon_1}{\sigma_2 / \sigma_1}$$
(138)

olduğu görülür. Buna göre h heterojenliğini veren (136) bağıntısı; (138) bağıntısı yardımıyla

$$h = | 1g - \frac{R_2 C_2}{R_1 C_1} |$$
(139)

bağıntısına dönüştürülebilir.

Her örnek için, doğru alan değerlerine bağlı olarak değişen heterojenlik katsayıları, (139) bağıntısı yardımıyla hesaplanmış ve Bölüm V.B de, eşdeğer devre elemanlarının verildiği tablolarda gösterilmişlerdir. Şekil-45 de ise örneklerin h heterojenlik katsayılarının, uygulanan doğru alana bağlı değişimleri grafik şeklinde verilmektedir.

Bu analiz yardımıyla elde edilen sonuca göre, reaktif buharlaştırma tekniği ile elde edilen örnekler heterojen yapı göstermektedirler. Uygulanan doğru alanlar ise, bu yapıların daha da heterojenleşmesinde etkili olmaktadırlar.

VI. BÖLÜM

GENEL DECERLENDIRME

Bu bölümde, yapılan çalışmada elde edilen denel ve teorik sonuçların genel bir değerlendirilmesi yapılacaktır.

Çalışmanın denel bölümünde, Schering Köprüsüne uygulanan mixer devresi aracılığı ile örneklerin kompleks kapasite bileşenlerinin doğru alan ile değişimleri incelenmiş ve aşağıda sıralanan gözlemler yapılmıştır.

1- Örneklerin kompleks kapasite bileşenleri, uygulanan doğru alanın şiddetine bağlı olarak azalmaktadır.

2- Doğru alan altında, örneklerin kompleks kapasite bileşenlerinin frekans bağımlılıkları azalmaktadır.

3- Sabit yüksek frekanslarda, R_p örnek dirençlerinin doğru alan şiddetine bağımlılıkları azalmaktadır.

4- Saf AlO_x filmlerinde, C = C (f) eğrileri küçük frekans değerlerinden başlayarak satürasyona ulaşmakta, sermet Al-AlO_x filmlerinde ise aynı gözlem ancak artan doğru alan değerlerinde yapılabilmektedir. Başka bir deyişle saf AlO_x filmlerin C', gerçel kapasite bileşeninin frekansa bağımlılığı daha az olmakta, sermet Al-AlO_x filmlerinin C' değerinin frekans bağımlılığındaki benzeri azalma ise, uygulanan doğru alanın şiddetinin artması ile sağlanabilmektedir. Ancak film kalınlığının azalması, artan elektrod etkileri yüzünden değişiklikler göstermektedir.

5- Örneklerin C ve C kapasite bileşenlerinin doğru alana bağlı frekans spektrumları, zamana bağlı frekans spektrumlarına benzer değişimler göstermektedir.

6- Birbirine yakın kalınlıktaki, saf AlO_x ve sermet Al-AlO_x filmlerinin, doğru alanın etkisiyle R_p dirençlerindeki artma, saf AlO_x filmlerinde daha fazla olmaktadır.

Teorik çalışmaların değerlendirilmesi ise aşağıda sıralanan sonuçları vermiştir.

1- Gözlenen relaksasyon bir Maxwell-Wagner relaksasyonudur.

2- Maxwell-Wagner relaksasyonuna temel olan polarizasyon arayüz

polarizasyonudur. Arayüz polarizasyonu yapının kusurlarına yük birikimi veya tuzaklanması nedeniyle oluşur, başka bir deyişle arayüz polarizasyonunun etkisi yapının heterojenliği ölçüsünde ortaya çıkar. Ortamın kapasitif dağılımı, iletkenlik dağılımından ne kadar farklı ise arayüz polarizasyonunun etkisi de o kadar büyük olur.

3- Buna göre Maxwell-Wagner eşdeğer devre elemanlarının doğru alan altındaki değişimleri incelenmis ve Maxwell-Wagner eşdeğerindeki R₁, R₂, C₁ ve C₂ devre elemanları cinsinden verilen heterojenlik parametresinin alan etkisiyle büyüdüğü gözlenmiştir. Böylece uygulanan alanın, ortamın heterojenliğini arttırdığı sonucuna varılmıştır.

a' badantasana.

EK-1

AYNI C KONDANSATORUNE EŞDEĞER PARALEL VE SERİ DEVRELERİN ELEMANLARI ARASINDAKİ DÖNÜŞÜM BAĞINTILARI

 $\overline{C} = C' - jC''$ kompleks kapasitesinin C' ve C'' bileşenleri, \overline{C} kapasiteli kondansatöre eşdeğer C_p, R_p paralel devresinin elemanları cinsinden

$$C' = C_{p}$$
(51a)
$$C'' = \frac{1}{\omega R_{p}}$$
(51b)

olarak, eşdeğer C_s, R_s seri devresinin elemanları cinsinden de

$$C' = \frac{C_{s}}{1 + \omega^{2}C_{s}^{2}R_{s}^{2}}$$
(54a)
$$C'' = \frac{\omega C_{s}^{2}R_{s}}{1 + \omega^{2}C_{s}^{2}R_{s}^{2}}$$
(54b)

$$C_{p} = \frac{C_{s}}{1 + \omega^{2}C_{s}^{2}R_{s}^{2}}$$
(56a)
$$R_{p} = \frac{1 + \omega^{2}C_{s}^{2}R_{s}^{2}}{\omega^{2}C_{s}^{2}R_{s}}$$
(56b)

Bu iki bağıntının çarpımı ile de

$$C_p R_p = \frac{1}{\omega^2 C_s R_s}$$
(136)

(54b)

ve dolayısıyla da

$$\omega C_{p}R_{p}$$

elde edilir. (58) bağıntısının her iki tarafının karesi alınıp (56a) da yerine konmasıyla

$$C_{p} = \frac{C_{s}}{1 + 1/\omega^{2}C_{p}^{2}R_{p}^{2}} = \frac{\omega^{2}C_{p}^{2}R_{p}^{2}C_{s}}{\omega^{2}C_{p}^{2}R_{p}^{2} + 1}$$
(137)

bu bağıntının düzenlenmesiyle de

dir, (140) bağıntısın

$$C_{s} = \frac{1 + \omega^{2} R_{p}^{2} C_{p}^{2}}{\omega^{2} C_{p} R_{p}^{2}}$$
(57a)

bulunur. (58) bağıntısının aynı biçimde, (56b) bağıntısının her iki tarafının R_s ye bölünmesiyle oluşturulan

$$\frac{R_{p}}{R_{s}} = \frac{1 + \omega^{2} C_{s}^{2} R_{s}^{2}}{\omega^{2} C_{s}^{2} R_{s}^{2}}$$
(138)

bağıntısına uygulanmasıyla

$$\frac{R_{p}}{R_{s}} = \frac{1 + 1/\omega^{2}C_{p}^{2}R_{p}^{2}}{1/\omega^{2}C_{p}^{2}R_{p}^{2}} = \omega^{2}C_{p}^{2}R_{p}^{2} + 1$$
(139)

bu bağıntının düzenlenmesiyle de

$$R_{s} = \frac{R_{p}}{1 + \omega^{2} C_{p}^{2} R_{p}^{2}}$$
(57b)

elde edilir. (57a) ve (57b) bağıntıları paralel eşdeğer devre elemanları yardımıyla, seri eşdeğer devre elemanlarının hesaplanabilmesini sağlayan dönüşüm denklemleridir.

EK-2

McDONALD-FRIAUF, MAXWELL-GARNET, McDONALD FRIAUF-MAXWELL GARNET EŞ-DEĞER DEVRELERININ ADMITANSLARININ HESAPLANMASI VE KOMPLEKS KAPASI-TELERININ GERÇEL VE SANAL BILEŞENLERININ ELDE EDILMESI

Şemasına, Şekil-8a da yer verilen, McDonald-Friauf devresinin admitansı:

$$Y(MF) = j_{\omega}C_{1p} + \frac{1}{R_{1} + 1/j_{\omega}C_{1s}}$$
(140)

dir. (140) bağıntısının düzenlenmesiyle

$$Y(MF) = \frac{j_{\omega}(C_{1p}+C_{1s}) - \omega^{2}C_{1p}C_{1s}R_{1}}{1 + j_{\omega}C_{1s}R_{1}}$$
(141)

bağıntısı, bu bağıntının (1 - $j_{\omega}C_{1s}R_{1}$) ile genişletilmesiyle de

$$Y(MF) = \frac{\omega^2 C_{1s}^2 R_1}{1 + \omega^2 C_{1s}^2 R_1^2} + j\omega \frac{[C_{1p} + C_{1s}] + \omega^2 C_{1p} C_{1s}^2 R_1}{1 + \omega^2 C_{1s}^2 R_1^2}$$
(142)

admitans bağıntısı elde edilir.

Şeması, Şekil-8b de gösterilen Maxwell-Garnet devresinin admi-

$$Y_{l} = j_{\omega}C_{l} + 1/R_{l} = \frac{1 + j_{\omega}C_{l}R_{l}}{R_{l}}$$
(143)

olan devre ile C₂ kapasiteli kondansatörün seri olarak bağlanmasıyla elde edilen bir devre olduğundan, empedansı

$$Z(MG) = 1/Y_1 + 1/j\omega C_2$$
(144a)

$$Z(MG) = \frac{R_1}{1 + j\omega C_1 R_1} + \frac{1}{j\omega C_2}$$
(144b)

124

$$Z(MG) = \frac{1 + j_{\omega}(C_{1}+C_{2})R_{1}}{j_{\omega}C_{2}-\omega^{2}C_{1}C_{2}R_{1}}$$
(144c)

dir. Devrenin admitansı ise buna göre

$$Y(MG) = \frac{j_{\omega}C_{2}^{-\omega^{2}}C_{1}C_{2}R_{1}}{1 + j_{\omega}(C_{1}^{+}C_{2}^{-})R_{1}}$$
(145)

dir. Bu bağıntı, paydasının eşleniği olan [l - jω(C_l+C₂)R_l] ile genişletilirse

$$Y(MG) = \frac{\omega^2 C_2^2 R_1}{1 + \omega^2 (C_1 + C_2)^2 R_1^2} + j_\omega \frac{C_2 [1 + \omega^2 (C_1 + C_2) C_1 R_1^2]}{1 + \omega^2 (C_1 + C_2)^2 R_1^2}$$
(146)

olarak da yazılır.

<u>Sekil-8c deki McDonald Friauf-Maxwell Garnet devresi ise admitan</u> <u>sı</u>, ifadesi (142) ile verilen Y(MF) olan bir Mac Donald-Friauf devresi ile C₂ kapasiteli kondansatörün seri olarak bağlanmasıvla elde edilmiştir. Bu nedenle empedansı

$$Z(MFMG) = 1/Y(MF) + 1/j\omega C_2$$
 (147a)

$$Z(MFMG) = \frac{j_{\omega}C_{2} + Y(MF)}{j_{\omega}C_{2}Y(MF)}$$
(147b)

admitansı da

$$Y(MFMG) = \frac{j_{\omega}C_{2}Y(MF)}{j_{\omega}C_{2}^{+}Y(MF)}$$
(148)

dir.

öte yandan $\overline{C} = C' - jC''$ kompleks kapasiteli kondansatörün admitansı da

$$Y = j_{\omega}C = j_{\omega}C + \omega C$$
(45)

dir. Kompleks kapasiteli kondansatörün esdeğer devresi, bir McDonald-Friauf devresi ise, C['] ve C^{''} kompleks kapasite bilesenleri (142) bağıntısı ile (45) bağıntısının sağ taraflarının esitlenmesi ile elde edilir.

125

(151)

$$C'(MF) = \frac{(C_{1p}+C_{1s}) + \omega^2 C_{1p}C_{1s}R_1^2}{1 + \omega^2 C_{1s}^2 R_1^2}$$
(59a)

$$C''(MF) = \frac{\omega C_{1s}^2 R_1}{1 + \omega^2 C_{1s}^2 R_1^2}$$
(59b)

Eşdeğer devrenin bir Maxwell-Garnet devresi olması durumunda da (146) bağıntısı ile (45) bağıntısının sağ tarafları eşitlenir:

$$C'(MG) = \frac{C_2 [1 + \omega^2 (C_1 + C_2) C_1 R_1^2]}{1 + \omega^2 (C_1 + C_2)^2 R_1^2}$$
(60a)

$$C''(MG) = \frac{\omega C_2^2 R_1}{1 + \omega^2 (C_1 + C_2)^2 R_1^2}$$
(60b)

Eşdeğer devre her iki devrenin bir karması olan McDonald Friauf-Maxwell Garnet devresi ise önce (148) bağıntısı, (45) bağıntısı uyarınca yazılabilecek olan

$$Y(MF) = j\omega C'(MF) + \omega C'(MF)$$
(149)

bačıntısı yardımıyla

$$Y(MFMG) = \frac{j_{\omega}C_{2}(j_{\omega}C'(MF) + \omega C'(MF))}{j_{\omega}C_{2} + j_{\omega}C'(MF) + \omega C''(MF)}$$
(150a)

$$Y(M FMG) = \frac{\omega^2 C_2 [jC''(MF) - C'(MF)]}{\omega C''(MF) + j\omega [C'(MF) + C_2]}$$
(150b)

biçimlerine, paydanın eşleniği ile genişletilerek de

$$Y(MFMG) = \frac{\omega c_2^2 c''(MF)}{[c''(MF)]^2 + [c'(MF)+c_2]^2} + j\omega \frac{c_2 ([c''(MF)]^2 + c'(MF)[c'(MF)+c_2]^2}{[c''(MF)^2] + [c'(MF)+c_2]^2}$$

$$C'(MFMG) = \frac{C_2([C''(MF)]^2 + C'(MF)[C'(MF)+C_2])}{[C''(MF)]^2 + [C'(MF)+C_2]^2}$$
(61a)

$$C''(MFMG) = \frac{C_2^2 C''(MF)}{[C''(MF)]^2 + [C'(MF) + C_2]^2}$$
(61b)

bağıntıları elde edilir. McDonald-Friauf eşdeğer devresine ait (59a) ve (59b) bağıntıları

$$C_{1p}^{+}C_{1s} = A$$
 (152a)

$$C_{1p} = B$$
 (152b)

$$R_1 C_{1s} = 1/\omega_0 \tag{152c}$$

olarak tanımlanan parametreler yardımıyla

$$C' = \frac{A + B(\omega/\omega_{o})^{2}}{1 + (\omega/\omega_{o})^{2}} = B + \frac{A - B}{1 + (\omega/\omega_{o})^{2}}.$$
 (62)

$$C'' = \frac{A-B}{1+(\omega/\omega_{o})^{2}} \quad (\omega/\omega_{o})$$
(63)

biçimlerinde yazılabilirler.

Maxwell-Garnet eşdeğer devresine ait (60a) ve (60b) bağıntıları da

C₂= A (153a)

$$\frac{c_1 c_2}{c_1 + c_2} = B$$
(153b)

$$R_{1}(C_{1}+C_{2}) = 1/\omega_{0}$$
(153c)

tanımlarının yapılmasıyla, yine (62) ve (63) bağıntıları biciminde ifade edilebilirler.

McDonald Friauf-Maxwell Garnet karma devresine ait $C = C'(\omega)$ ve $C = C'(\omega)$ bağıntıları ise (6la) ve (6lb) de McDonald-Friauf devresinin $C = C'(\omega)$ ve $C = C'(\omega)$ bağıntıları yardımıyla ifade edilmislerdir. Bu bağıntılardaki C'(MF) ve C''(MF) ler için (62) ve (63) bağıntılarıyla verilen ifadeler kullanılır, sonra da A, B ve ω_{o} parametreleri için (152a) (152b) ve (152c) deki değerler kullanılırsa

$$C'(MFMG) = C_{2} \frac{[A-B]^{2} (\omega/\omega_{o})^{2} + [A+B(\omega/\omega_{o})^{2}] [A+B(\omega/\omega_{o})^{2}+C_{2}[1+(\omega/\omega_{o})^{2}]]}{[A-B]^{2}(\omega/\omega_{o})^{2} + [A+B(\omega/\omega_{o})]^{2}}$$
(154a)

$$C'(MFMG) = C_{2} \frac{A[A+C_{2}] [1+(\omega/\omega_{o})^{2}] + B[B+C_{2}] [1+(\omega/\omega_{o})^{2}] (\omega/\omega_{o})^{2}}{[A+C_{2}]^{2} [1+(\omega/\omega_{o})^{2}] + [B+C_{2}]^{2} [1+(\omega/\omega_{o})^{2}] (\omega/\omega_{o})^{2}}$$
(154b)

$$C'(MFMG) = C_{2} - \frac{A[A+C_{2}] + B[B+C_{2}] (\omega/\omega_{0})^{2}}{[A+C_{2}]^{2} + [B+C_{2}]^{2} (\omega/\omega_{0})^{2}}$$
(154c)

$$C'(MFMG) = \frac{C_2[C_{1s}+C_{1p}] [C_{1s}+C_{1p}+C_2] + C_2C_{1p}[C_{1p}+C_2]C_{1s}^2R_1^2\omega^2}{[C_{1s}+C_{1p}+C_2]^2 + [C_{1p}+C_2]^2 C_{1s}^2R_1^2\omega^2}$$
(154d)

ve

$$C''(MFMG) = \frac{C_{2}^{2}[A-B] (\omega/\omega_{o})/[1+(\omega/\omega_{o})^{2}]}{([A-B]^{2}(\omega/\omega_{o})^{2}+[A+B(\omega/\omega_{o})^{2}+C_{2}+C_{2}(\omega/\omega_{o})^{2}]^{2})/[1+(\omega/\omega_{o})^{2}]^{2}}$$
(155a)

$$C''(MFMG) = \frac{C_2^2[A-B] (\omega/\omega_0) [1+(\omega/\omega_0)^2]}{[A+C_2]^2 [1+(\omega/\omega_0)^2] + [B_2+C_2]^2 [1+(\omega/\omega_0)^2] (\omega/\omega_0)^2}$$
(155b)

$$C''(MFMG) = \frac{C_2^2[A-B] (\omega/\omega_0)}{[A+C_2]^2 + [B_2+C_2]^2 (\omega/\omega_0)^2}$$
(155c)

$$C''(MFMG) = \frac{C_2^2 C_{1s}^2 R_1 \omega}{[C_{1s}^+ C_{1p}^+ C_2]^2 + [C_{1p}^+ C_2]^2 C_{1s}^2 R_1^2 \omega^2}$$
(155d)

elde edilirler.

badantastyla ver

$$\frac{C_2[C_{1s}+C_{1p}]}{C_{1s}+C_{1p}+C_2} = A$$
(156a)

$$\frac{C_2 C_{1p}}{C_{1p} + C_2} = B$$
(156b)

$$\frac{[C_{1p}+C_2] C_{1s}R_1}{C_{1s}+C_{1p}+C_2} = 1/\omega_0$$
(156c)

tanımları yapılırsa (154d) bağıntısının (62) bağıntısına dönüşeceği, (156a) ve (156b) tanımları uyarınca

$$A-B = \frac{c_2[c_{1s}+c_{1p}] [c_{1p}+c_2] - c_2c_{1p}[c_{1s}+c_{1p}+c_2]}{[c_{1p}+c_2] [c_{1s}+c_{1p}+c_2]}$$
(157a)

$$A-B = \frac{c_2^2c_{1s}}{[c_{1p}+c_2] [c_{1s}+c_{1p}+c_2]}$$
(157b)

olacağından, (155d) bağıntısının da (63) bağıntısına dönüseceği görülür. Bunlara göre adı gecen her üç esdeğere ait $C = C'(\omega)$ ve $C' = C''(\omega)$ denklemleri de aynı biçimlerdedir.

EK-3

MAXWELL-WAGNER EŞDEĞER DEVRESİNİN ADMİTANSLARININ HESAPLANMASI VE KOMPLEKS KAPASİTESİNİN GERÇEL VE SANAL BİLEŞENLERİNİN ELDE EDİLMESİ

Şekil-10 da görülen Maxwell-Wagner devresinin Y admitansı

$$\frac{1}{Y} = \frac{1}{1/R_1 + j\omega C_1} + \frac{1}{1/R_2 + j\omega C_2}$$
(68)

bağıntısıyla verilir. Bu bağıntının düzenlenmesiyle

$$\frac{1}{Y} = \frac{R_1}{1 + j_{\omega}C_1R_1} + \frac{R_2}{1 + j_{\omega}C_2R_2}$$
(158a)
$$[1 - \omega^2 C_1 C_2 R_1 R_2] + j_{\omega} [C_1 R_1 + C_2 R_2]$$
(158b)

$$Y = \frac{[R_1 + R_2] + j_{\omega}R_1R_2[C_1 + C_2]}{[R_1 + R_2] + j_{\omega}R_1R_2[C_1 + C_2]}$$
(158b)

son bağıntının, $[R_1+R_2] - j_{\omega}R_1R_2[C_1+C_2]$ ile genişletilmesiyle de

$$Y = \frac{[R_1 + R_2] + \omega^2 R_1 R_2 C_1 C_2 [C_1 + C_2]}{[R_1 + R_2]^2 + \omega^2 R_1^2 R_2^2 [C_1 + C_2]^2} + j\omega \frac{[R_1^2 C_1 + R_2^2 C_2] + \omega^2 R_1^2 R_2^2 C_1 C_2 [C_1 + C_2]}{[R_1 + R_2]^2 + \omega^2 R_1^2 R_2^2 [C_1 + C_2]^2}$$
(159)

bağıntısı elde edilir. C = C' - iC'' kompleks kapasiteli kondansatörün admitansı

$$Y = j_{\omega}\overline{C} = j_{\omega}C + \omega C$$
(45)

olduğundan, kompleks kapasiteli kondansatörün eşdeğer devresi bir Maxwell-Wagner devresi olması durumunda, C've C'kompleks kapasite bilesenleri (159) ve (45) bağıntılarının sağ taraflarının esitlenmesiyle elde edilirler:

$$C' = \frac{\left[R_{1}^{2}C_{1}+R_{2}^{2}C_{2}\right] + \omega^{2}R_{1}^{2}R_{2}^{2}C_{1}C_{2}\left[C_{1}+C_{2}\right]}{\left[R_{1}+R_{2}\right]^{2} + \omega^{2}R_{1}^{2}R_{2}^{2}\left[C_{1}+C_{2}\right]^{2}}$$
(70a)

$$c'' = \frac{[R_1 + R_2] + \omega^2 R_1 R_2 C_1 C_2 [C_1 + C_2]}{\omega ([R_1 + R_2]^2 + \omega^2 R_1^2 R_2^2 [C_1 + C_2]^2)}$$
(70b)

Bu bağıntılar

$$\frac{R_1^2 C_1 + R_2^2 C_2}{[R_1 + R_2]^2} = A_1$$
(71a)

$$\frac{c_1 c_2}{c_1 + c_2} = B_1$$
(71b)

$$\frac{R_1 R_2 [C_1 + C_2]}{[R_1 R_2]^2} = A_2$$
(71c)

$$\frac{R_1 C_1^2 + R_2 C_2^2}{[R_1 + R_2] [C_1 + C_2]} = B_2$$
(71d)

$$\frac{R_1 R_2 [C_1 + C_2]}{R_1 + R_2} = 1/\omega_0$$
(72)

tanımları yapılırsa

$$C' = \frac{A_{1} + B_{1} (\omega/\omega_{0})^{2}}{1 + (\omega/\omega_{0})^{2}} = B_{1} + \frac{A_{1} - B_{1}}{1 + (\omega/\omega_{0})^{2}}$$
(73)

$$C'' = \frac{A_2 + B_2(\omega/\omega_0)^2}{(\omega/\omega_0) [1 + (\omega/\omega_0)^2]} = \frac{A_2}{(\omega/\omega_0)} + \frac{E_2 - A_2}{1 + (\omega/\omega_0)^2} (\omega/\omega_0)$$
(74a)

bağıntılarına dönüşürler.

(74a) bağıntısının ikinci teriminde yer alan $[E_2-A_2]$ farkının (71c) ve (71d) tanımlarına göre

$$B_{2}-A_{2} = \frac{\left[R_{1}C_{1}^{2}+R_{2}C_{2}^{2}\right]\left[R_{1}+R_{2}\right]-R_{1}R_{2}\left[C_{1}+C_{2}\right]^{2}}{\left[R_{1}+R_{2}\right]^{2}\left[C_{1}+C_{2}\right]}.$$
 (160a)

$$B_{2}-A_{2} = \frac{R_{1}^{2}c_{1}^{2} + R_{2}^{2}c_{2}^{2} - 2R_{1}R_{2}c_{1}c_{2}}{[R_{1}+R_{2}]^{2} [C_{1}+C_{2}]}$$
(160b)

$$B_{2}-A_{2} = \frac{\left[R_{1}C_{1}-R_{2}C_{2}\right]^{2}}{\left[R_{1}+R_{2}\right]^{2}\left[C_{1}+C_{2}\right]}$$
(160c)

olduğu görülmektedir. Öte yandan $[A_1-B_1]$ farkı da (71a) ve (71b) tanımlarından

$$A_{1}-B_{1} = \frac{\left[R_{1}^{2}C_{1}+R_{2}^{2}C_{2}\right]\left[C_{1}+C_{2}\right]-\left[R_{1}+R_{2}\right]^{2}C_{1}C_{2}}{\left[R_{1}+R_{2}\right]^{2}\left[C_{1}+C_{2}\right]}$$
(161a)

$$A_{1}-B_{1} = \frac{R_{1}^{2}C_{1}^{2} + R_{2}^{2}C_{2}^{2} - 2R_{1}R_{2}C_{1}C_{2}}{\left[R_{1}+R_{2}\right]^{2}\left[C_{1}+C_{2}\right]}$$
(161b)

$$A_{1}-B_{1} = \frac{\begin{bmatrix} R_{1}C_{1}-R_{2}C_{2}\end{bmatrix}^{2}}{\begin{bmatrix} R_{1}+R_{2}\end{bmatrix}^{2}\begin{bmatrix} C_{1}+C_{2}\end{bmatrix}}$$
(161c)

olarak elde edilmektedir. (160c) ve (161c) bağıntılarının karşılaştırılması ile

$$B_2 - A_2 = A_1 - B_1$$
(162)

olduğu anlaşılır. (74a) bağıntısı, (162) bağıntısı yardımıyla

$$C'' = \frac{A_2}{(\omega/\omega_o)} + \frac{A_1 - B_1}{1 + (\omega/\omega_o)^2} \quad (\omega/\omega_o)$$
(74b)

bağıntısına dönüştürülebilir.

KAYNAKLAR

(1)	S.R. Ovshinsky, Phys. Rev. Letters, 21(1968) 1450
(2)	K. Sawamura and M. Saito, Japan J. Appl. Phys., 5(1966)182
(3)	G.R. Neal and J.A. Aseltine, IEEE, ED-20(1973)195
(4)	N. Holonyak and C.R. Thomas, Phys. Rev. Letters, 8(1962)426
(5)	O.J. Marsh, R. Baron and J.W. Mayer, Appl. Phys. Letters,
	7(1965)120
(6)	S.W. Ing, M.D. Tabak, IEEE, ED-20(1973)132
(7)	A. Thelen, "Physics of Thin Films", Vol.5, Academic Press,
	NewYork, 1969
(8)	P. White, Vacuum, 12(1962)15
(9)	A. Hjortsberg at al., Thin Solid Films, 90(1982)323
(10)	H.E. Bennet at al., J. Opt. Soc. Am., 52(1962)1245
(11)	L. Holland, "Vacuum Deposition of Thin Films", J. Wiley,
	NewYork, 1972
(12)	H.M. Smith and A.F. Turner, Appl. Opt., 4(1965)147
(13)	L. Young, "Anodic Oxide Films", Academic Press, NewYork, 1961
(14)	J.L. Vossen, RCA Rev., 32(1971)289 .
(15)	R.P. Howson and M.I. Ridge, Thin Solid Films, 77(1981)119
(16)	H.E. Bennet "Ind. Quality Control", No.8, (1964)18
(17)	S. Tolansky, "Multiple-Beam-Interferometry of Surfaces and
	Films", Oxford Univ. Press, London, 1955
(18)	O.S. Heavens, "Optical Properties of Thin Solid Films",
	London, 1955
(19)	G.D. Scott at al., J. Appl. Phys., 21(1950)843
(20)	A. Fontain and F. Mennier, Phys. Kondens. Mater., 14(1972)119
(21)	H. Birey, J. Appl. Phys., V.45, 9(1974)3946
(22)	F. Argal and A.K. Jouscher, Thin Solid Films 2(1968)185
(23)	R. Coelho, "Physics of Dielectrics", Elsevier Publ. Com.,
	NewYork 1979
(24)	H. Birey, J. Appl. Phys., 49(5), (1978)2898
(25)	J.C. Anderson, "Dielectrics", Chapman and Hall LTD. London,
	1964

- (26) A.R. Von Hippel, "Dielectrics and Waves", John Wiley, London, 1954
- (27) H. Birey, Appl. Phys. Letters, 23(1973)316
- (28) H. Birey, J. Appl. Phys., 48(12), (1977)5209
- (29) A. Akseli, Thin Solid Films, 80(1981)395

