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ABSTRACT  

 

COMPUTATION OF ELECTROMAGNETIC FIELDS SCATTERED 

BY CYLINDRICAL TARGETS BURIED IN A MEDIUM WITH A 

PERIODIC SURFACE 

 

Senem MAKAL 

 

Department of Electronics and Communications Engineering 

Ph.D. Thesis 

 

Advisor: Assoc. Prof. Dr. Ahmet KIZILAY 

 

Electromagnetic scattering from a two dimensional, cylindrical, and dielectric object of 

arbitrary cross-section buried in a lossy dielectric half-space having a periodically rough 

surface is investigated by a new numerical method. The method is outlined for TMz 

(horizontally) polarized incident wave.  

The basis of the new solution technique is that if a target is close to the surface, the 

electromagnetic fields will be nearly identical to that without the target, except within 

the region of finite extent near the target. Thus, the current on the surface will be 

affected only in a finite portion of the surface near the target. The electric field integral 

equations (EFIEs) for the equivalent currents on the target and the perturbation 

equivalent currents (the difference currents with target present and with target absent) 

on the surface are obtained by using this approach and solved by the Method of Moment 

(MoM) in frequency domain. Then, inverse Fourier transform is utilized to get the time 

domain signals. The short-pulse scattering results is used to investigate the effects of 

multipath. 

Key Words: Electromagnetic scattering, the Method of Moment, perturbational field, 

integral equations. 
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ÖZET 

PERİYODİK BİR YÜZEY ALTINA GÖMÜLÜ SİLİNDİRİK 

HEDEFLERDEN SAÇILAN ELEKTROMAGNETİK ALANLARIN 

HESAPLANMASI 

 

Senem MAKAL 

 

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Danışman: Doç. Dr. Ahmet KIZILAY 

 

Sonsuz uzun, engebeli ve kayıplı bir dielektrik ortamda gömülü bir dielektrik hedeften 

saçılan elektromagnetik dalganın elektriksel alan değeri TMz polarizasyonu için 

perturbasyon yaklaşımı ile çözülmüştür.  

Kullanılan bu yeni çözüm metodunun temeli, eğer hedef cisim periyodik yüzeye yakın 

ise, elektromanyetik alanların hedef cismin bulunmadığı durumdaki alanlar ile sadece 

hedef cisme yakın sonlu bir bölgede farklı olacağına ve bu sayede periyodik yüzeydeki 

eşdeğerlik akımının hedef cismin hemen üzerindeki sonlu bir yüzeyde değişiklik 

göstereceğine dayanmaktadır. Bu yaklaşımla silindirik hedefin üzerindeki eşdeğerlik 

akımlarına ve sinüzoidal yüzey üzerindeki perturbasyon (hedefin olduğu ve olmadığı 

durumlardaki eşdeğer akımlar arasındaki fark akımı) eşdeğerlik akımlarına ait elde 

edilen elektrik alan entegral denklemleri, frekans domeninde Moment Metodu 

kullanarak çözülmüş ve bu sayede geniş bantta, saçılan elektrik alana ait çözümler elde 

edilmiştir. Sonrasında, ters Fourier dönüşümü ile zaman domeni işaretleri bulunmuş ve 

böylece kısa darbe saçılma işaretleri kullanılarak çoklu yansıma etkileri incelenmiştir.  

Anahtar Kelimeler: Elektromagnetik alanlar, Moment Metodu, perturbasyon alanları, 

integral denklemleri. 

 

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
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CHAPTER 1 

INTRODUCTION 

1.1  Literature 

Solution of the electromagnetic scattering by buried objects has been interested by 

many researches. Therefore, several techniques have been employed to obtain the 

scattered fields. This is because scattered field values can be used in nondestructive 

evaluation applications such as detecting landmines, buried pipes, near-surface 

geophysical exploration, and also archeological studies [1-7]. As a result, an efficient 

way of calculating scattered field is important for ground-penetrating radar applications. 

 

Many different techniques have been developed for two-dimensional scattering from 

buried objects. Especially, a large number of exact and numerical techniques are related 

to the assumption of a flat interface, because of the reduction of mathematical and 

computational complexity. For example, Uzunoglu et al. have computed the scattered 

electric field from underground tunnels using a Green's function approach, and analyzed 

the scattered amplitude for various observation angles [8]. Kanellopoulos et al. have 

used the same analytical approach for conducting wires buried in earth [9]. Also, Born 

approximation and Sommerfield integrals with fast evaluation methods have been the 

other ways to build an analytical solution for buried scatterer [10-12]. Naqvi et al. have 

used plane wave expansion and excitation of current on a cylinder for the scattered 

electric field from a conducting cylinder deeply buried in a dielectric half-space [13]. 

Another analytical method containing plane wave representation has been developed by 

Ahmed et al. [14]. 
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In case the surface of the half-space is rough, Cottis and Kanellopoulos assume a 

sinusoidal interface and use an integral equation combined with the extended boundary 

condition approach for the scattering from a buried circular cylinder in [15] and [16]. 

An analytical solution of the scattering problem from a dielectric cylinder buried 

beneath a slightly rough surface is developed by Lawrence and Sarabandi [17]. Altuncu 

et al. present a method using the Green’s function of the half-space with rough 

boundary where the cylindrical bodies are located [18]. 

1.2 The Aim of the Thesis 

The aim of this thesis is to obtain a fast and simple solution method for the complex 

problem of calculation of the scattered fields from a cylindrical object buried under a 

rough surface. This new solution technique is outlined for TMz scattering from a 

cylindrical object buried in a lossy half-space. The surface equivalence principle and a 

perturbation method are employed to form a set of EFIEs for the currents on the object 

and the portion of the surface most strongly interacting with the object. Then, MoM is 

used to solve the EFIEs in the frequency domain to obtain the scattered electric field, 

and inverse Fourier transform is utilized to get the time domain signals. 

1.3 Hypothesis 

The idea behind the new solution technique is that if a target is close to the surface, the 

electromagnetic fields will be nearly identical to that without the target, except within 

the region of finite extent near the target [19, 20]. Thus, the current on the surface will 

be affected only in a finite portion of the surface near the target. Therefore, the 

perturbation equivalent currents are approximated to zero outside a finite region above 

the object. The EFIEs are solved in the frequency domain using MoM, and transformed 

into the time domain using IFT. 
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CHAPTER 2 

COMPUTATION OF TMz SCATTERING FROM A CYLINDRICAL 

DIELECTRIC OBJECT 

2.1 Introduction  

The problem of electromagnetic scattering from a two-dimensional, dielectric, and 

cylindrical object of arbitrary cross section is considered. First, the analytical solution of 

the problem is obtained. Then, the surface equivalence principle is used for the 

numerical solution of the same problem. Numerical solution method is outlined for the 

case of arbitrary cross-section, and specialized for circular cross-section. Finally, 

computed results of these two solutions are compared. 

2.2 Analytical Solution 

The scattered electric field from a dielectric cylindrical object of circular cross section is 

calculated by expressing the plane waves by cylindrical wave functions [21, 22]. As 

shown in Figure 2.1, TMz polarized incident wave
  iE  is assumed to be incident with 

the incidence angle of i  
on the object having a radius ar . The surface of the object is 

represented by cS . 
   

The plane waves can be represented by an infinite sum of cylindrical wave functions, 

and the incident electric field [21, 22] 

 0 0
ˆ ˆi i n jn

z n

n

E zE zE j J k e 






                                                                                  (2.1) 
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cS

0 0, 

ar

1 1 1, ,  

 

Figure 2. 1 An infinitely long cylindrical object of circular cross-section. 

since it must be periodic in   and finite at 0  , where   is the magnitude of the two-

dimensional position vector. Here, 0k
 
is the free-space wave number. The position 

vector 

ˆ ˆxx yy                                                                                                                     (2.2) 

The scattered electric field in the region exterior to the cylinder

 

   2

0 0
ˆs n jn

n n

n

E zE j a H k e 






                                                                                    (2.3) 

and the total field in the cylinder 

 0 1
ˆt n jn

n n

n

E zE j b J k e 






                                                                                       (2.4) 

where 1 1 1ck    , and 1
1 1

1

1c j


 


 
  

 
.  The magnetic field can be computed 

from the electric field (E-field), and therefore [21, 22] 

 0
0

0 0

1 ˆi i n jn

n

n

E
H E j J k e

j j

 
 






                                                              (2.5) 
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   20
0

0 0

1 ˆs s n jn

n n

n

E
H E j a H k e

j j

 
 






                                                     (2.6) 

 0
1

1 1

1 ˆt t n jn

n n

n

E
H E j b J k e

j j

 
 






                                                            (2.7) 

where 0 0 0/  
 
and 1 1 1/ c  

 
are the intrinsic impedance of free half-space 

and lossy dielectric, respectively. The unknown coefficients na  and nb  can be found by 

applying the boundary condition of  

     , , ,i s t

z a z a z aE r E r E r                                                                                      (2.8) 

 

     , , ,i s t

a a aH r H r H r                                                                                      (2.9)

 

More explicitly, for the tangential electric and magnetic field on the boundary [21,22]  

       2

0 0 0 0 0 1

n jn n jn n jn

n a n n a n n a

n n n

E j J k r e E j a H k r e E j b J k r e  
  

  

  

            (2.10) 

     

 

20 0
0 0

0 0

0
1

1

n jn n jn

n a n n a

n n

n jn

n n a

n

E E
j J k r e j a H k r e

j j

E
j b J k r e

j

 



 



 
 

 






 



 


            (2.11) 

Taking advantage of the orthogonality of Bessel functions 

       2

0 0 0 0 0 1

n n n

n a n n a n n aE j J k r E j a H k r E j b J k r                                             (2.12) 

       20 0 0
0 0 1

0 0 1

n n n

n a n n a n n a

E E E
j J k r j a H k r j b J k r

  

                                               (2.13) 

Solving the equations (2.12) and (2.13), the unknown coefficients na  and nb  

       

           
1 0 1 0 0 1

2 2

0 1 0 1 1 0

n a n a n a n a

n

n a n a n a n a

J k r J k r J k r J k r
a

J k r H k r J k r H k r

 

 

 


 
                                                 (2.14) 

           

           

2 2

0 0 0 0

1 2 2

0 1 0 1 1 0

n a n a n a n a

n

n a n a n a n a

J k r H k r J k r H k r
b

J k r H k r J k r H k r

 

 


 
                                              (2.15) 

The scattered E-field is calculated by using na  coefficient. Large argument 

approximation of the Hankel function for far-field calculation [21, 22] 
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 
0

0

(2)

0 0

0

2
lim

jk

k

j e
H k

k






 




                                                                                   (2.16)

 Thus, the scattered E-field in the far zone 










n

jn

n

n
jk

s eaj
e

k

j
EzE 





0

0

0

2
ˆ


                                                                           (2.17) 

2.3 Numerical Solution 

Although there are exact solutions for scattering by cylinders of circular and elliptical 

cross-section, calculation of scattered fields from cylinders of arbitrary cross-section are 

obtained by numerical methods [23-25]. Here, to analyze the accuracy of the numerical 

solution, the surface equivalence principle and MoM are used for the same problem.  

2.3.1 The Surface Equivalence Principle 

In the surface equivalence principle, actual sources such as an antenna are replaced by 

equivalent sources [21-25]. The fields outside an imaginary closed surface are obtained 

by replacing the electric and magnetic equivalent currents radiating in unbounded media 

and satisfying the boundary conditions. If the currents are selected so that the fields 

inside the closed surface are zero or any other value and the field at an arbitrary point 

outside is determined, this is called external equivalence. In external equivalence 

principle, the whole space parameters are chosen as the parameters of the exterior 

medium. If the currents are selected so that the fields outside the closed surface are zero 

or any other value and the field at an arbitrary point inside is determined, this is called 

internal equivalence. In internal equivalence principle, the whole space parameters are 

chosen as the parameters of the interior medium [25].   

2.3.1.1 Theory 

The surface equivalence principle is used to solve the scattered E-field by a two-

dimensional cylindrical object of arbitrary cross section as shown in Figure 2.2. 
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00 ,

cS

cn̂

111 ,, 

 

Figure 2. 2 An infinitely long cylindrical object of arbitrary cross-section. 

In Figure 2.2, ˆcn  is the outward unit normal vector to cS . The incident field is a TMz 

plane wave with angle i  
from the horizontal 

   0 cos sin

0
ˆ, i ijk x yiE x y z E e

 


  
                                                                                  (2.18) 

Figure 2.3 shows the external equivalence principle applied to the problem in Figure 

2.2. The whole space parameters are chosen as  0 0,   [26, 27]. The surface is 

replaced by surface electric ( )cJ  and magnetic ( )cM  currents 

ˆ
c

c c S
J n H                                                                                                               (2.19) 

ˆ
c

c cS
M E n                                                                                                             (2.20) 

At any point outside the surface, the total fields are E  and H . The total fields are zero 

under the surface 

   ,
c c

s i

ext c c S S
E J M E                                                                                          (2.21) 
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00 ,

cS

cJ


,E H

0

0





H

E




00 ,

cM


 

Figure 2. 3 The external equivalence principle applied to the problem in Figure 2.2. 

Here, ext means external and 
cS   represents the surface just inside 

cS . Then, the internal 

equivalence principle is applied in Figure 2.4 to the problem shown in Figure 2.2. 

Therefore, the whole space parameters are chosen as  1 1 1, ,  
 
[26, 27]. The surface is 

replaced by ( )cJ
 
and ( )cM . The total fields are zero at any point external to

cS
          

 

 , 0
c

s

int c c S
E J M                                                                                               (2.22) 

Here, int means internal, and 
cS  represents the surface just outside 

cS . 

In other words, there are two equations (2.21) and (2.22) to be solved by using MoM 

and two unknown currents to calculate the scattered field. The E-field is expressed in 

terms of electric and magnetic potential functions [23], and equations (2.21) and (2.22) 

can be rewritten as 

   
0

1
,ext e i

c c z

xt

z
z

cj A J F M SE


     
 

                                                           (2.23)

 

   
1

1
0,int int

c c c

c

z
z

j A J F M S


      
 

                                                          (2.24) 
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cS

,E H

0

0





H

E




cJ




cM

111 ,, 

111 ,, 

 

Figure 2. 4 The internal equivalence principle applied to the problem in Figure 2.2. 

where A
 
and F

 
denote the magnetic and electric vector potential, respectively. They 

are given by the following line integrals 

     (2)

0  
4

jC

A J H k dl
j


      

 

                                                                    (2.25) 

     (2)

0
4

mC

F M H k dl
j


      

 

                                                                    (2.26) 

where 



is a two-dimensional position vector for source points 

ˆ ˆx x y y                                                                                                                 (2.27)

 

The contours over J  and M
 
are 

jC
 
and mC , respectively. The two equations (2.23) 

and (2.24) are solved numerically using MoM for two unknown surface currents            

( ,c cJ M ).  

2.3.1.2 MoM Solution 

The currents on the surfaces of dS
 
and cS are approximated by linear segments as 

shown in Figure 2.5.  

   
1

ˆ
cN

c c

c i i

i

J z I P 


 





                                                                                              (2.28) 
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   
1

ˆ
c

c
N

i i i

c

c

i

M K P  


 





                                                                                         (2.29) 

where cN
 
is the number of segments on cS . c

iI  
and c

iK
 
are the unknown values of 

electric and magnetic current on the i th segment of cS , respectively. The unit vector in 

the circumferential direction tangent to the ith segment of cS  is denoted by î , and the 

unit vector in the z -direction is denoted by ẑ . Pulse functions (
cP ) are chosen as the 

expansion functions and defined as unity on segment Cci.  

Segment Cci

i
i+1

i+2

i+3

n


n+1

n+2

n+3

 

Figure 2. 5 Linear segmentation of the cylindrical object. 

Using equation (2.26) and (2.29), it is explained in detail in Appendix A and can be 

shown that 

   
 )

10

(20
1 0

ˆ

4

1 c

ci

cN
icx

i

e t

c

i C

njk
K k dF HM l

 







 
 


                                   (2.30) 

Equations (2.23) and (2.24) can be rewritten using point matching at cN

 

points on the 

surface, the coupled EFIEs become 



11 

 

 

 
 

(2)0
0 0

1

(2)0
1 0

1

4

ˆ
,

4

c

ci

c

ci

N
c

i

i C

cN
ic i

i z c

i C

I H k dl

njk
K H k dl E S


 

 
 

 







  

 
    



 

                              

(2.31) 

 

 
 

(2)1
0 1

1

(2)1
1 1

1

4

ˆ
0,

4

c

ci

c

ci

N
c

i

i C

cN
ic

i c

i C

I H k dl

njk
K H k dl S


 

 
 

 







 

 
   



 

                                   

(2.32)

 

where (2)

0H
 
is the zeroth-order Hankel function of the second kind, and (2)

1H
 
is the first-

order Hankel function of the second kind. After pulse weighting functions are used to 

transform these EFIEs to linear equations, they can be written in matrix form 

1 1

2 2 0

c
C M c

c
C M

Z Z VI

Z Z K

    
    
    

                                                                                        

(2.33) 

Here, 1CZ , 2CZ , 1MZ , and 2MZ  are the square sub matrixes of c cN N . The element in 

the ith row and the nth column of these matrixes is equal to the E-field at the midpoint 

of the nth segment of cS , produced by electric and magnetic currents lying on the ith 

segment of cS . The left hand side of the equation is the column sub vectors containing 

the unknown expansion coefficients. The right hand side of the equation contains the 

incident field on cS . The ith element of cV  is the incident field at the middle of the ith 

segment of cS .   

The self terms     should be calculated carefully, because the argument of the 

Hankel functions becomes very small and the integration of the Hankel function 

becomes difficult to compute numerically. Therefore, the self-terms should be 

approximated by using the Hankel function terms for small arguments [28] as shown in 

Appendix B. 

 (2)

0

2
1 ln 1

4
ciC

c ck
H k dl j


 



   
       

  



                                                (2.34) 

 
 (2)

1

ˆ 2

ci

c

i

C

n j
H k dl

k

 
 

 

 
  

                                                                     (2.35)  
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where c  is the length of the segment on cS and 1.781  .  

The unknown expansion coefficients are solved and the far scattered field can be 

computed by using  
cJ

 
and 

cM  

 

 

0

0

0

0

cos sin0

10

cos sin0

10

2

4

2

4

c

s

s

c

s

s

c c
Njk

jk x ys

z i i

i

Njk
jk x y

i i

c c

i

j e
E I e

k

jk j e
K e

k


 


 



 

 


  




  



  

 





  

                                        

(2.36) 

where s  
is the scattering angle. 

2.4 Numerical Results 

In the two-dimensional case, the scattering radar cross section is given by [29] 

 
 

2

,
lim 2

s

z s

s i

z

E

E

 
  




                                                                                             

(2.37) 

Figure 2.6 shows the scattering cross section of a circular dielectric cylinder calculated 

by both analytical and numerical methods. There are three different numerical results 

obtained by changing the points per free-space wavelength ( ppw ) used to represent the 

currents on the object. In figures, free-space wavelength is indicated by ( 0 ). As it is 

seen that the ppw increases, there is an excellent agreement between the analytical and 

numerical solutions.  
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CHAPTER 3 

COMPUTATION OF TMz SCATTERING FROM A CYLINDRICAL 

OBJECT COATED WITH A DIELECTRIC MATERIAL 

3.1 Introduction 

In this chapter, the problem of electromagnetic scattering from a two-dimensional 

cylinder of arbitrary cross section coated with a dielectric material is considered. First, 

the analytical and numerical solutions of the problem relating to the conducting 

cylindrical object coated with a dielectric material are given, and then computed results 

of these two solutions are compared for the case of circular cross-section. Then, these 

steps are also applied for the problem relating to the dielectric cylindrical object coated 

with a dielectric material.  

3.2 Scattering from a Conducting Cylindrical Object Coated with a Dielectric 

Material 

3.2.1 Analytical Solution 

The scattered E-field from a conducting cylindrical object coated with a dielectric 

material is calculated by expressing the plane waves by cylindrical wave functions. As 

shown in Figure 3.1, conducting and dielectric objects have circular cross-section. The 

radius and the surface of the coated cylinder are br  and dS ; respectively. 
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cS

00 ,

1 1 1, ,  

ar

br
dS

2

 

Figure 3. 1 A conducting cylindrical object of circular cross-section coated with a 

dielectric cylindrical object of circular cross-section 

As mentioned in chapter 2, the incident E-field [21, 22] 

 0 0
ˆ ˆi i n jn

z n

n

E zE zE j J k e 






                                                                                 (3.1) 

The scattered E-field in the region exterior to the dielectric cylinder 

   2

0 0
ˆs n jn

n n

n

E zE j a H k e 






                                                                                  (3.2) 

and the total field in the dielectric cylinder 

   0 1 0 1
ˆ ˆt n jn n jn

n n n n

n n

E zE j b J k e zE j c Y k e  
 

 

 

                                             (3.3) 

The magnetic field can be computed from the E-field, and therefore [21, 22] 

 0
0

0 0

1 ˆi i n jn

n

n

E
H E j J k e

j j

 
 






                                                              (3.4) 

   20
0

0 0

1 ˆs s n jn

n n

n

E
H E j a H k e

j j

 
 






                                                     (3.5) 

   0 0
1 1

1 1 1

1 ˆ ˆt t n jn n jn

n n n n

n n

E E
H E j b J k e j b Y k e

j j j

    
  

 
 

 

                  (3.6) 
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The unknown coefficients na , nb  and nc
 
can be found by applying the boundary 

condition of  

     , , ,i s t

z b z b z bE r E r E r                                                                                      (3.7) 

 

     , , ,i s t

b b bH r H r H r                                                                                      (3.8) 

 , 0t

aE r                                                                                                                    (3.9)

 

More explicitly, for the tangential electric and magnetic field on the boundary [21, 22]  

       

 

2

0 0 0 0 0 1

0 1

n jn n jn n jn
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n n b

n

E j J k r e E j a H k r e E j b J k r e

E j c Y k r e

  



  
  

  






 



  


         (3.10) 
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   
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j b J k r e j b Y k r e
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 

 

 

 
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 

 

  

 

 

 
(3.11) 

   0 1 0 1 0n jn n jn

n n a n n a

n n

E j b J k r e E j c Y k r e 
 

 

 

  
                                             

(3.12) 

Taking advantage of the orthogonality of Bessel functions 

         2

0 0 0 0 0 1 0 1

n n n n

n b n n b n n b n n bE j J k r E j a H k r E j b J k r E j c Y k r                  (3.13) 

         20 0 0 0
0 0 1 1

0 0 1 1

n n n n

n b n n b n n b n n b

E E E E
j J k r j a H k r j b J k r j c Y k r

   

                     (3.14) 

   0 1 0 1 0n n

n n a n n aE j b J k r E j c Y k r                                                                       

(3.15) 

Solving the equations (3.13), (3.14) and (3.15), the unknown coefficients na ,
 nb

 
and nc

 

are calculated and the scattered E-field is calculated by using na  coefficient [21, 22] 

0

0

0

2
ˆ

jk
s n jn

n

n

j e
E zE j a e

k




 

 




                                                                              (3.16) 
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3.2.2 Numerical Solution 

To analyze the accuracy of numerical solution of this problem, the surface equivalence 

principle and MoM are used.  

3.2.2.1 Theory 

The surface equivalence principle is used to find the total field at an external point of 

the problem shown in Figure 3.2. It has two steps containing two equivalent and simpler 

problems. Figure 3.3 shows the external equivalence problem. The whole space 

parameters are chosen as  0 0,  . The surface is replaced the equivalent surface 

electric current by 
dJ  and the equivalent surface magnetic current 

dM [26, 27] 

 
ˆ

d
d d S

J n H                                                                                                              (3.17) 

 
ˆ

d
d dS

M E n                                                                                                             (3.18) 

where ˆdn
 
is the outward unit normal vector to dS . 

00 ,

cS

cn̂

111 ,, 

2

dS

dn̂

 

Figure 3. 2 An infinitely long conducting cylindrical object of arbitrary cross-section 

coated with a dielectric cylindrical object of arbitrary cross-section  
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At any point outside the surface, the total fields are E  and H . The total field is zero 

inside dS  denoted 

dS  

   ,
d d

s i

ext d d S S
E J M E                                                                                         (3.19) 

Figure 3.4 shows the internal equivalence problem. The whole space parameters 

are chosen as  1 1 1,,   . The total field is zero on both 

dS
 
and 

cS  

 , , 0
d

s

int d d c S
E J M J                                                                                             (3.20) 

 , , 0
c

s

int d d c S
E J M J                                                                                             (3.21) 

00 ,

dS

00 ,

,E H

0

0





H

E




dJ


dM


 

Figure 3. 3 The external equivalence principle applied to the problem in Figure 3.2. 

where 
dS  represents the surface just outside 

dS . 
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
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E




dJ
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

dM


cJ
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Figure 3. 4 The internal equivalence principle applied to the problem in Figure 3.2. 

In other words, there are three equations (3.19), (3.20) and (3.21) to be solved by using 

MoM and three unknown currents to calculate the scattered field. The E-field is 

expressed in terms of electric and magnetic potential functions, and equations (3.19), 

(3.20) and (3.21) can be rewritten as [26, 27] 

   
0

1
,ext e i

d d z

xt

z
z

dj A J F M SE


     
 

                                                          (3.22)

 

     
1

1
,0z z

int int int

d d c d

c
z

j A J F M j A J S 


       
 

                                   (3.23) 

     
1

1
,0z z

int int int

d d c c

c
z

j A J F M j A J S 


       
 

                                   (3.24) 

Three equations (3.22)-(3.24) are solved numerically using MoM for three unknown 

surface currents ( , ,d d cJ M J ).  

3.2.3 MoM Solution 

The currents on the surfaces of dS
 
and cS

 
are approximated by linear segments [26, 27] 

   
1

ˆ
dN

i i

i

d d

dJ z I P 

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
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                                                                                             (3.25) 
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 
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cJ z I P 
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



                                                                                              (3.27) 

where dN
 
is the number of segments on dS . d

iI
 
and d

iK
 
are the unknown values of 

electric and magnetic current on the i th segment of dS , respectively. 

Equations (3.22)-(3.24) can be rewritten using equations (3.25)-(3.27) 
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(3.30)

 

where dC
 
is the contour representing of dS .  

The unknown expansion coefficients are solved and the far scattered field can be 

computed using  dJ
 
and dM  
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(3.31) 

where d  is the length of the segment on dS . 

3.3 Scattering from a Dielectric Cylindrical Object Coated with a Dielectric 

Material 

3.3.1 Analytical Solution 

As shown in Figure 3.5, both of the dielectric objects have circular cross-section. The 

incident fields, the scattered fields in the region exterior to the cylinder having radius   

br , and the total fields in the cylinder having radius br  are calculated by expressing the 

plane waves by cylindrical wave functions as shown in equations (3.1)-(3.6). 
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Figure 3. 5 A dielectric cylindrical object of circular cross-section coated with a 

dielectric cylindrical object of circular cross-section 
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The total field in the cylinder having radius ar  
[21, 22] 
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The magnetic field can be computed from the E-field, and therefore 
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The unknown coefficients na , nb , nc and nd
 
can be found by applying the boundary 

condition of  
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More explicitly, for the tangential electric and magnetic field on the boundary [21, 22]  
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 






 



 

                               

(3.41) 

Taking advantage of the orthogonality of Bessel functions 

         2

0 0 0 0 0 1 0 1

n n n n

n b n n b n n b n n bE j J k r E j a H k r E j b J k r E j c Y k r                  (3.42) 

         20 0 0 0
0 0 1 1

0 0 1 1

n n n n

n b n n b n n b n n b

E E E E
j J k r j a H k r j b J k r j c Y k r

   

                     (3.43) 

     0 1 0 1 0 2

n n n

n n a n n a n n aE j b J k r E j c Y k r E j d J k r                                              (3.44) 

     0 0 0
1 1 2

1 1 2

n n n

n n a n n a n n a

E E E
j b J k r j c Y k r j d J k r

  

                                           (3.45) 

Solving the equations (3.42)-(3.45), the unknown coefficients na ,
 nb , nc  and nd

 
are 

calculated and the scattered E-field is calculated by using na  coefficient and equation 

3.16. 

3.3.2 Numerical Solution 

The surface equivalence principle and MoM are used to solve this problem numerically.  

3.3.2.1 Theory 

The surface equivalence principle is used to find the total field at an external point of 

the problem shown in Figure 3.6. 

Figure 3.7 shows the external equivalence principle applied to the problem in Figure 

3.6. The total fields are zero under the surface 

   ,
d d

s i

ext d d S S
E J M E                                                                                         (3.46) 

Figure 3.8 shows the internal equivalence problem. The total field is zero on both 



dS  and 

cS  
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Figure 3. 6 An infinitely long dielectric cylindrical object of arbitrary cross-section 

coated with a dielectric cylindrical object of arbitrary cross-section  
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Figure 3. 7 The external equivalence principle applied to the problem in Figure 3.6. 
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Figure 3. 8 The internal equivalence principle applied to the problem in Figure 3.6. 

 , , , 0
d

s

int d d c c S
E J M J M                                                                                   (3.47) 

 , , , 0
c

s

int d d c c S
E J M J M                                                                                    (3.48) 

Figure 3.9 shows the internal equivalence problem for the points inside of the cylinder. 

The total field is zero on both 
cS   that represents the surface just outside 

cS . 

 , 0
c

s

int c c S
E J M                                                                                                (3.49) 

cS

,E H
0

0




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



cJ




cM



222 ,, 

222 ,, 

 

Figure 3. 9 The internal equivalence principle for the points inside of the cylinder 

applied to the problem in Figure 3.6. 
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In other words, there are four equations (3.46)-(3.49) to be solved by using MoM and 

four unknown currents to calculate the scattered field. The E-field is expressed in terms 

of electric and magnetic potential functions, and equations (3.46)-(3.49) can be 

rewritten as [26, 27] 

   
0

1
,ext e i

d d z

xt

z
z

dj A J F M SE


     
 

                                                          (3.50)

 

   

   

1

1

1
0

1

,

int int

d d

c

int int

c c d

c

z
z

z
z

j A J F M

j A J F M S









     
 

     
 

                          (3.51) 

   

   

1

1

1
0

1

,

int int

d d

c
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c c c

c

z
z

z
z

j A J F M

j A J F M S









     
 

     
 

                            (3.52) 

   
2

1
,0int i

z
z

nt

c c c

c

j A J F M S


     
 

                                                           

(3.53) 

where 2
22

2

1c j


 


 
  

 
. Four equations (3.51)-(3.54) are solved numerically using 

MoM for four unknown surface currents ( , ,,d d c cJ M J M ). 

3.3.3 MoM Solution 

The currents on the surfaces of  dS
 
and cS are approximated by linear segments [26, 27] 

   
1

ˆ
dN

i i

i

d d

dJ z I P 


 





                                                                                            (3.54) 

   
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ˆ
d

d
N

i i i

d

d

i

M K P  


 





                                                                                         (3.55) 

   
1

ˆ
cN

i i

i

c c

cJ z I P 


 





                                                                                              (3.56) 
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i i i
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M K P  

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



                                                                                         ( 3.57) 

Equations (3.50)-(3.53) can be rewritten using equations (3.54)-(3.57) 
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(3.61) 

where 2 2 2ck    .The unknown expansion coefficients are solved and the far 

scattered field can be computed using equation (3.31). 
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3.4 Numerical Results 

Scattering cross section of a circular perfectly conducting cylindrical object coated with 

a dielectric material and a circular dielectric cylindrical object coated with a dielectric 

material are shown in Figure 3.10. and 3.11, respectively.  The results are obtained by 

using both analytical and numerical methods. The ppw is chosen as 20, and a good 

agreement is observed between the two methods. 

0
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



T
M

0ar

 Figure 3. 10 Scattering cross section of a circular perfectly conducting cylindrical 

object coated with a dielectric material for 1f  GHz, 20si   , 1 04 
 
F/m, 

1 0 
 
H/m, 0br    and 1 0.0 

 
Sm

-1 
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Figure 3. 11 Scattering cross section of a circular dielectric cylindrical object coated 

with a dielectric material for 1f  GHz, 20si   , 1 04 
 
F/m, 02 2 

 
F/m, 

21 0   
 
H/m, 0br    and 21 0.0  

 
Sm
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CHAPTER 4 

COMPUTATION OF TMz SCATTERING FROM AN OBJECT 

BURIED IN A MEDIUM WITH A FLAT SURFACE BY A 

PERTURBATION METHOD 

4.1 Introduction 

In this chapter, a new numerical solution method is presented for the electromagnetic 

field scattered by a cylindrical object with an arbitrary cross-section buried in a lossy 

dielectric half-space. The dielectric half-space is considered to be flat, and the method is 

outlined for TMz polarized incident wave. The surface equivalence principle and a 

perturbation method are utilized to form a set of electric field integral equations (EFIEs) 

for the currents on the object and the portion of the surface most strongly interacting 

with the object. To obtain the scattered E-field, the EFIEs are solved in the frequency 

domain using MoM. 

4.2 Scattering from a Conducting Cylindrical Object Buried in a Medium with a 

Flat Surface 

4.2.1 Theory 

The geometry of the problem is shown in Figure 4.1. A perfectly conducting (PEC) 

object is located ch
 
below the surface. The distance between y-axis and the object axis 

is indicated by cx .   
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Figure 4. 1 The geometry of the problem 

The scattered E-field ( )sE
 
can be written as the sum of the scattered field from the PEC 

object and the flat surface 

s S TE E E                                                                                                                  (4.1) 

S  and T  indicate surface and object, respectively. The scattered E-field from the 

surface can be written as 

S I PE E E                                                                                                                  (4.2) 

where 
PE

 
is the perturbational field produced by the difference, or perturbation currents 

p

dJ
 
and p

dM , and 
IE
 
is the field due to currents IJ

 
and 

IM
 
on the surface which is 

impressed by the incident field without the object present. Therefore, the difference 

currents can be defined as p I

dJ J J S

 
and p I

dM M M S . Here, J S

 
and M S

 

represent the equivalent currents on the surface. Then, substituting equation (4.2) into 

the equation (4.1) gives 

s I P TE E E E                                                                                                          (4.3) 

The unknown currents are the equivalent perturbation currents on the surface and the 

induced current on the object. These currents are obtained by using the surface 



32 

 

equivalence principle. 

Before applying the surface equivalence principle to the original problem, the scattered 

E-field IE
 
should be obtained when the flat surface is the only scatterer. Therefore, the 

flat surface is chosen to be the only scatterer shown in Figure 4.2. 

dS

 00 ,

1 1 1, ,  
 

Figure 4. 2 The flat surface as a scatterer 

Figure 4.3 shows the external equivalence principle applied to the problem in Figure 

4.2. The whole space parameters are chosen as  0 0,  . The surface is replaced by 

surface electric ( )IJ  and magnetic ( )IM  currents. At any point outside the surface, the 

total fields are E  and H . The total fields are zero under the surface 

  0
d

i I

ext S
E E                                                                                                          (4.4)

 

  0
d

i I

ext S
H H                                                                                                         (4.5) 

Then, the internal equivalence principle is applied in Figure 4.4 to the problem shown in 

Figure 4.2. Therefore, the whole space parameters are chosen as  1 1 1, ,   . The 

surface is replaced by ( )IJ
 
and ( )IM

 
currents.  
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Figure 4. 3 External equivalence applied to the problem in Figure 4.2 

The total fields are zero at any point external to 
dS  

  0
d

I

int S
E                                                                                                                   (4.6)

 

  0
d

I

int S
H                                                                                                                   (4.7) 
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

,

0

0


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E
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

IMIJ

dS

111 ,, 

111 ,, 

 

Figure 4. 4. Internal equivalence applied to the problem in Figure 4.2 

Now, with the knowledge of scattered E-fields on the surface when there is not any 

object, the original problem in Figure 4.1 can be solved. Initially, the external 

equivalence principle is applied in Figure 4.5. The total field outside the surface is the 

sum of the incident and scattered field 

 



34 

 

i sE E E                                                                                                                   (4.8)
 

i sH H H                                                                                                                (4.9) 

and the scattered E-field is 

s I P

ext extE E E                                                                                                            (4.10) 

In Figure 4.5, p

dJ
 
and p

dM
 
are the perturbation currents 

ˆ
d

p P

d d S
J n H                                                                                                            (4.11)

 

ˆ
d

p P

d dS
M E n                                                                                                          (4.12) 

The total field is zero just inside the surface
dS  

 
d

s i

S
E E                                                                                                              (4.13)
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Figure 4. 5 The external equivalence principle applied to the problem in Figure 4.1 

Then, the field caused by perturbation currents becomes 

   
d d

P I i

ext extS S
E E E                                                                                              (4.14) 
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Now, equation (4.4) is used in equation (4.14), then the value of the perturbation field 

on 
dS   becomes 

 , 0
d

P p p

ext d d S
E J M                                                                                                     (4.15) 

Then, the internal equivalence principle is applied in Figure 4.6 to the problem shown in 

Figure 4.1. There is no incident wave, and the total fields under the surface contain just 

the scattered fields 

sE E                                                                                                                      (4.16)
 

sH H                                                                                                                     (4.17)
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Figure 4. 6 The internal equivalence principle applied to the problem in Figure 4.1 

The scattered E-field is expressed 

s I P T

int intE E E E                                                                                                     (4.18)
 

The total E-field is zero outside 
dS  

     ,
d d d

P p p T I

int d d c intS S S
E J M E J E                                                                  (4.19)

 

After equation (4.6) is used in equation (4.19), the scattered E-field on 
dS 

 
becomes 
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   , 0
d d

P p p T

int d d cS S
E J M E J                                                                             (4.20)

 

The total field is also zero inside 
cS  

     ,
c c c

P p p T I

int d d c intS S S
E J M E J E                                                                  (4.21)

 

I

intE
 
on 

cS   is the E-field value on the object points when the object is absent. Therefore, 

this E-field can be obtained analytically in a closed form as 

 1 sin cos

0
ˆ t tjk x yI

intE zT E e
 

                                                                                           (4.22)
 

The transmission coefficient is indicated by T  

1

1 0

2 cos

cos cos

i

i t

T
 

   



                                                                                              (4.23)

 

Here, t  
is the transmission angle and defined by Snell's law; 

1 0 0

1 1

sin cost i

c

 
 

 


 

   
 

                                                                                          (4.24)
 

In other words, there are three equations (4.15), (4.20) and (4.21) to be solved by using 

MoM and three unknown currents to calculate the scattered field. 

The E-field is expressed in terms of electric and magnetic potential functions, and 

equations (4.15), (4.20) and (4.21) can be rewritten as; 

   
0

1
0,ext p ext p

z d d d
z

j A J F M S


    
 

                                                             (4.25)
 

     
1

1
0,int p int int p

z d z c d d

c
z

j A J j A J F M S 


       
 

                                  

(4.26)

 

     
1

1
,int p int int p I

z d z c d int c
z

c
z

j A J j A J F M E S 


             
                      

(4.27)

 

Three equations (4.25)-(4.27) are solved numerically using MoM for three unknown 

surface currents ( , ,p p

d d cJ M J ). The currents on the surfaces of dS
 

and cS are 

approximated by linear segments 
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ˆ
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p d d

d i i
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J z I P 

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   
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ˆ
dN

p d d

d i i i

i

M K P  


 





                                                                                        (4.30) 

Equations (4.25)-(4.27) can be rewritten using equations (4.28)-(4.30) 
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                  (4.33) 

Then, pulse weighting functions are used to transform these EFIEs to linear equations. 

These linear equations are solved to obtain the unknown currents, and the far scattered 

field can be computed using only p

dJ
 
and p

dM . 

4.3 Scattering from a Dielectric Cylindrical Object Buried in a Medium with a 

Flat Surface 

4.3.1 Theory 

A dielectric object is located under the flat surface as shown in Figure 4.7. The 

unknown currents are the equivalent perturbation currents on the surface and the 

induced currents on the object. These currents are obtained by using the surface  
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Figure 4. 7 The geometry of the problem 

equivalence principle. 

The original problem in Figure 4.7 can be solved with the knowledge of 
IE  explained 

in Chapter 4.2.1. Initially, the external equivalence principle is applied in Figure 4.8. 

The total field outside the surface is the sum of the incident, and scattered field 

i sE E E                                                                                                                (4.34)
 

i sH H H                                                                                                             (4.35) 

and the scattered E-field is 

s I P

ext extE E E                                                                                                           (4.36) 

The total field is zero just inside the surface
dS  

 
d

s i

S
E E                                                                                                             (4.37)

 

 



39 

 

00 ,

0E


HE


,

p

dM


p

dJ


dS

0H 
00 ,

 

Figure 4. 8 The external equivalence principle applied to the problem in Figure 4.7 

Then, the field caused by perturbation currents becomes 

   
d d

P I i

ext extS S
E E E                                                                                              (4.38) 

Now, equation (4.4) is used in equation (4.38), then the value of the perturbation field 

on 
dS   becomes 

 , 0
d

P p p

ext d d S
E J M                                                                                                     (4.39) 

Then, the internal equivalence principle is applied in Figure 4.9 to the problem shown in 

Figure 4.7. There is no incident wave, and the total fields under the surface contain just 

the scattered fields 

sE E                                                                                                                        (4.40)
 

sH H                                                                                                                      (4.41)
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Figure 4. 9 The internal equivalence principle applied to the problem in Figure 4.7 

The scattered E-field is expressed; 

s I P T

int intE E E E                                                                                                      (4.42)
 

The total E-field is zero outside 
dS  

     , ,
d d d

P p p T I

int d d c c intS S S
E J M E J EM                                                            (4.43)

 

After equation (4.6) is used in equation (4.43), the scattered E-field on 
dS 

 
becomes, 

   , 0,
d d

P p p T

int d d c cS S
E J M ME J                                                                       (4.44)

 

The total field is also zero inside 
cS , 

     , ,
c c c

P p p T I

int d d c c intS S S
E J M E J EM                                                            (4.45) 

Figure 4.10 shows the equivalence principle for the points inside of the cylinder applied 

to the problem in Figure 4.7. The whole space parameters are chosen as  2 2 2, ,   . 

The total field is zero on 
cS   
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 , 0
c

T

int c c S
E J M                                                                                                 (4.46)

 

Here, int means internal to the cylinder.  
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Figure 4. 10 The equivalence principle for the points inside of the cylinder applied to 

the problem in Figure 4.7 

 

In other words, there are four equations (4.39), (4.44), (4.45) and (4.46) to be solved by 

using MoM and four unknown currents to calculate the scattered field. 

The E-field is expressed in terms of electric and magnetic potential functions, and 

equations (4.39), (4.44), (4.45) and (4.46) can be rewritten as; 

   
0

1
0,ext p ext p

z d d d
z

j A J F M S


    
 

                                                             (4.47)
 

     
1

1
0,int p int int p

z d z c d d

c
z

j A J j A J F M S 


       
 

                                  

(4.48)

 

     
1

1
,int p int int p I

z d z c d int c
z

c
z

j A J j A J F M E S 


             
                      

(4.49) 

   
2

1
- - - - 0,int int

z c c c
z

c

j A J Ñ F M S


  
 

                                                           

(4.50) 

Four equations (4.47)-(4.50) are solved numerically using MoM for four unknown 

surface currents ( , ,,p p

d d c cJ M J M ). The currents on the surfaces of dS
 

and cS are 

approximated by linear segments 
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Equations (4.47)-(4.50) can be rewritten using equations (4.51)-(4.54) 
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Then, pulse weighting functions are used to transform these EFIEs to linear equations. 

These linear equations are solved to obtain the unknown currents, and the far scattered 

field can be computed using only p

dJ
 
and p

dM . 
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4.4 Numerical Results 

If it is not indicated otherwise; for all MoM solutions, the value of 20 ppw is used to 

represent the currents on the object and the surface. The object is chosen to be a 

cylinder with circular cross-section of radius ar  
(Figure 4.11).  
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Figure 4. 11 The geometry used for the numerical results 

The perturbation currents' behaviours are investigated in Figure 4.12 and 4.13 to 

validate the assumption that the equivalent currents on the surface will be affected only 

in a finite portion of the surface near the object. As expected, when the object is buried 

deeper, the perturbation currents spread along the surface. Therefore, it is important to 

select the truncation width ( wl ) carefully. 

To investigate the effect of the conductivity of the half-space, different conductivities 

are used and shown in Figure 4.14 and 4.15. It is seen that the amplitude of the 

perturbation currents decreases when the loss of the ground increases. 

After establishing the validity of our assumption, it is also necessary to determine 

accuracy of the method. This can be done by choosing the space parameters under the 

flat surface as  0 0,  . Thus, the scattered field is expected to behave like a PEC or 

dielectric cylinder. The scattered E-field is first solved by perturbation method, and then 

by analytical method. Then, these two results are compared in Figure 4.16 and 4.17.  
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Figure 4. 12 Perturbation (a) electric currents normalized with 0.0016 A/m and (b) 

magnetic currents normalized with 0.2968 V/m on the flat surface above the PEC object 

for f=1 GHz, 90si   , 0 / 3ar   m, 0.0c ax /r  , 1 015 
 
F/m, 1 0 

 
H/m and 

1 0.0 
 
Sm

-1 
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Figure 4. 13 Perturbation (a) electric currents normalized with 0.00073 A/m and (b) 

magnetic currents normalized with 0.16 V/m on the flat surface above the dielectric 

object for f=1 GHz, 90si   , 0 / 3ar   m, 0.0c ax /r  , 1 015 
 
F/m, 2 04 

 
F/m, 21 0   

 
H/m and 21 0.0  

 
Sm

-1
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Figure 4. 14 Perturbation (a) electric currents normalized with 0.0014 A/m and (b) 

magnetic currents normalized with 0.2627 V/m on the flat surface above the PEC object 

for f=1 GHz, 90si   , 0 / 3ar   m, 0ch   m,
 

0.0c ax /r  , 1 015 
 
F/m, and

 

1 0 
 
H/m 
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Figure 4. 15 Perturbation (a) electric currents normalized with 0.00051 A/m and (b) 

magnetic currents normalized with 0.12 V/m on the flat surface above the dielectric 

object for f=1 GHz, 90si   , 0 / 3ar   m, 0ch   m,
 

0.0c ax /r  , 1 015 
 
F/m, 

02 4 
 
F/m, and

 21 0   
 
H/m  
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Figure 4. 16 Scattered field from the PEC object (a) normalized amplitude and (b) phase 

for 0.01ar  m, 90si    , 1.0c ah /r  , / 0.0c ax r  , wl / 500ar  , 1 0    F/m, 

1 0.0 
 
Sm

-1
 and 1 0   H/m 
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Figure 4. 17 Scattered field from the dielectric object (a) normalized amplitude and (b) 

phase for 0.01ar  m, 90si    , 1.0c ah /r  , / 0.0c ax r  , wl / 500ar  , 1 0    F/m, 

02 4    F/m, 21 0.0  
 
Sm

-1
 and 21 0     H/m 
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The root-mean square error ( RMSE ) between the perturbation method and the analytical 

solution is calculated by using 

 

2

2
%

A P

RMS
A

E E
E

E


                                                                                             (5.34) 

where AE  and PE  show analytical and perturbation solutions; respectively. Then, the 

RMS error is calculated and shown in Figure 4.18. It is seen that the solution becomes 

more accurate for increasing truncation width and ppw.  

wl ch




ln
%

R
M

S
E






Figure 4. 18 The approximation difference of the method applied to the PEC object for 

f=1 GHz, 90si   , 0.01ar   m,  / 1.0c ah r  , 0.0c ax / r  , 1 0   F/m, 1 0.0 
 

Sm
-1

 and 1 0   H/m 

To validate the perturbation method for lossy half-space, the solution for the PEC object 

buried under a flat surface is compared to the results in [9] including Green's function 

approach. The comparison is shown in Figure 4.19. Increasing truncation width makes 

the solution to converge the result of Green's function approach.  
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Figure 4. 19 Scattered amplitude from a PEC cylindrical scatterer with circular cross-

section for f=30 MHz, 0.3ar   m, 1.7ch  m, / 0.0c ax r  , 1 015   F/m, 1 0    
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After determining the method's accuracy, the PEC object is chosen as a cylinder with 

elliptical cross-section in Figure 4.20. The effect of the incident angle is noticeable on 

the scattered amplitude in Figure 4.21. There is a reduction of the magnitude of the 

scattered field as the incident angle deviates from 90 . Also, if the object depth ch

increases, the scattered field magnitude reduces as shown in Figure 4.22. 
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Figure 4. 20 A cylindrical object with elliptical cross-section 
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Figure 4. 21 Relative scattered amplitude from a PEC cylindrical object with elliptical 

cross-section for f=1 GHz,
 

0.2ar   m, 0.1br   m, 1.0c bh / r  , 0.0c ax / r  , 1 015   

F/m, 1 0 
 
H/m and 1 0.01   Sm

-1
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Figure 4. 22 Relative scattered amplitude from a PEC cylindrical object with elliptical 

cross-section for f=1 GHz,
 

90i
 , 0.2ar   m, 0.1br   m, 0.0c ax / r  , 1 015   

F/m, 1 0 
 
H/m and 1 0.01   Sm

-1 

In Figure 4.23, the object is chosen as a cylinder having different dielectric constant. 

The scattered energy is concentrated around a scattering angle of 90
 even for very 

small incident angle. It is also observed that the difference between the dielectric 
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constant ( 2r  is the relative dielectric constant of the object) of the cylinder and the 

medium is effective on the scattered field amplitude. 

 

Figure 4. 23 Scattered amplitude from a dielectric cylindrical scatterer with circular 

cross-section for 0.01ar   m, 0.01ch  m, / 0.0c ax r  , 1 015   F/m, 21 0      

H/m, 30i
 , 1 0.01 

 
Sm

-1
 and 2 0.0 

 
Sm

-1 
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CHAPTER 5 

COMPUTATION OF TMz SCATTERING FROM AN OBJECT 

BURIED IN A MEDIUM WITH A PERIODIC SURFACE BY A 

PERTURBATION METHOD 

5.1 Introduction 

In this chapter, electromagnetic scattering from a cylindrical object of arbitrary cross-

section buried in a lossy dielectric half-space having a periodic surface (Figure 5.1) is 

investigated by the perturbation method. The surface equivalence principle and the 

perturbation method are employed to form a set of EFIEs for the currents on the object 

and the portion of the surface most strongly interacting with the object. Then, MoM is 

used to solve the EFIEs in the frequency domain to obtain the scattered electric.  

5.2 Theory 

The electric field value on the object points when the object is absent ( I

intE  on 
cS  ) is 

calculated by using the transmission coefficient for the flat surface problem. But for a 

rough surface, this electric field can be obtained by an integral equation formulation 

[30, 31]. Continuity of tangential E  and H on the surface lead to 

2 1z z zE E E                                                                                                                (5.1) 



55 

 

c
h

c
x

00
, 

111
,,  d

S

c
S

c
n̂

 
d

n̂

222
,, 

Region 1

Region 2 Region 3

Figure 5. 1 Geometry of cylindrical object buried inside a lossy half-space with periodic 

surface 
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                                                                                           (5.2) 

For calculating the field in Region 2, Region 1 is replaced with the equivalent 

polarization currents  (1)

0 1 1eq cJ j E     in a medium having wave number 1k . 

Applying 2-D Green’s theorem, the field in Region 2 includes just scattered field 

   
 

 
 2 2

2 2 2

,
,

p

z

z z

d dC

G E
E E G dl

n n

  
   

   
     

   
                                     (5.3) 

where 
pC  is the surface contour in its first period, and the periodic Green’s function 

 
   2

2

2

,
2

n nj x x jq y y

np n

j e e
G

w q



 
    



                                                                       (5.4) 

where 
pw  is the length of one period, 2 /n pn w    , 

2

2 2 2

1n nq k   , and  

1 sin ik  .     
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For the field in Region 1, Region 2 is replaced with the equivalent polarization currents 

 (2)

1 0 2eq cJ j E     in a medium having wave number 0k . The field in Region 1 

includes both scattered field and the incident field 

     
 

 
 1 1

1 1 1

,
,

p
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z z

d dC

G E
E E E G dl

n n

  
    

   
     

   
                             (5.5) 

After using equations (5.1) and (5.2) in equation (5.3) and (5.5) 

   
 
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2

0

,
,

p

z

z z

d dC

G E
E E G dl

n n

  
   
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   
     

   
                                     (5.6) 
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                           (5.7)

When   is a point on the surface 
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                   (5.9) 

where PV indicates principal value sense integration at field points    . Equation 

(5.8) and (5.9) is a pair of integral equations. These equations can be solved numerically 

by MoM to calculate the unknown field and its normal derivative. Then, the field in 

Region 2 is obtained by 

   
 

 
 2 1

2 2

0

,
,

p

z

z z

d dC

G E
E E G dl

n n

  
   



   
     

   
                                 (5.10) 

where 2zE  is equal to I

intE . 

There are four equations that are mentioned in equations (4.47)-(4.50) to be solved by 

using MoM and four unknown currents to calculate the scattered field. 
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5.3 Numerical Results 

For simplicity, the boundary interface  y x  defined by 

   cos 2p py x h x w                                                                                              (5.11) 

where 
ph
 
and 

pw  are the height and width of one period of the surface. The object is 

chosen to be a dielectric cylinder with circular cross-section of radius ar  as shown in 

Figure 5.2. 

ph

pw
wl

ch

cx
ar

 

Figure 5. 2 The geometry used for the numerical results  

The perturbation currents' behaviours are investigated in Figure 5.3 to validate the 

assumption that the equivalent current on the surface will be affected only in a finite 

portion of the surface near the object. As expected, when the object is buried deeper, the 

perturbation currents spread along the surface. Also, because of the conductivity of the 

half-space, the interactions between the cylinder and the periodic surface reduce. 

Therefore, the amplitudes of the perturbation currents decrease. 

To determine the accuracy of the method, the space parameters under the surface are 

chosen as  0 0,  . Thus, the scattered field is expected to behave like a dielectric 

cylinder. The scattered E-field is first solved by perturbation method, and then by 

analytical method. Then, these two results are compared in Figure 5.4.  
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Figure 5. 3 Perturbation (a) electric currents normalized with 0.0045 A/m and (b) 

magnetic currents normalized with 0.91 V/m on the surface for 1f   GHz,  

90si   , 0 3ar   m, 40awl r  , 
02 3pw   m,

 
0.25p ph w  ,

 
/ 0.0c ax r  , 

1 015 
 
F/m, 02 2.25 

 
F/m, 21 0   

 
H/m, 1 0.001 

 
Sm

-1
 and 2 0.0 

 
Sm

-1 
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Figure 5. 4 Scattered field (a) normalized amplitude and (b) phase for 90si   , 

0.1ar   m, 0.2pw   m,
 

0.25p ph w  ,
 

/ 0.0c ax r  , / 5.0c ah r  , 50awl r  , 1 0 
 

F/m, 02 4 
 
F/m, 21 0   

 
H/m, and 1 2 0.0  

 
Sm

-1 
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The RMS error is calculated for different number of point per wavelength (ppw), and 

shown in Figure 5.5. It is seen that the solution becomes more accurate for increasing 

truncation width and ppw. The convergence of the method with respect to ppw is 

similar to typical integral equations based approaches [32]. 

cwl h


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Figure 5. 5 The approximation difference for 1f   GHz, 90si   , 0 3ar   m, 

02 3pw   m,
 

0.25p ph w  ,
 

/ 1.0c ax r  , / r 5.0c ah  , 1 0 
 
F/m, 02 4 

 
F/m, 

21 0   
 
H/m, and 1 2 0.0  

 
Sm

-1 

Also, the results of the proposed method are compared with another method by 

considering a dielectric circular cylinder buried beneath a sinusoidal slightly rough 

surface. Then, the parameters are chosen as exactly the same with those given in [17]. 

The surface represents by    cos 2p py x h x w . Figure 5.6-5.13 demonstrate the 

effect of a sinusoidal surface for 400f   MHz, 30i
 , 

00.0064ph  ,
 

/ 0.0c ax r  , 

01.3ch  , 10cwl h  , 1 0(4 0.01)c j  
 
F/m, 02 2.25 

 
F/m, 21 0   

 
H/m, 

and 2 0.0 
 
Sm

-1
. 

 
Obviously, radar cross section (RCS) of these examples in Figure 

5.6-5.13 matches those given in [17]. 

The period of the surface is varied from 00.25  to 
 02  in Figure 5.6-5.9. The scattering 

pattern for 
00.25pw   is almost identical to that of a flat surface as seen in Figure 5.6. 

In Figure 5.7 and 5.8, the scattering pattern is significantly changed for 
00.4pw 
 
and 

00.6pw  . In Figure 5.9, the scattering pattern once again approaches that of a flat 
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surface for 
02pw  . So, the scattering pattern is only significantly affected by a range 

of surface frequencies. 




d
B



 degrees
 

Figure 5. 6 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 00.16ar   m, 
00.25pw  m 

The simulations are repeated for various size of the buried object in Figure 5.10-5.13 

and it is shown that surface roughness outside a limited range of frequencies does not 

affected the scattering pattern of a larger buried object. 
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Figure 5. 7 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 00.16ar   m, 
00.4pw  m 
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Figure 5. 8 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 00.16ar   m, 
00.6pw  m 
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Figure 5. 9 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 00.16ar   m, 
02pw  m 
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Figure 5. 10 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 01.0ar   m, 
00.25pw  m 
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Figure 5. 11 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 01.0ar   m, 
00.4pw  m 
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Figure 5. 12 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 01.0ar   m, 
00.6pw  m 
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Figure 5. 13 Scattered amplitude from a cylindrical scatterer with circular cross-section 

for 01.0ar   m, 
02.0pw  m 
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The root-mean square error for a lossy media is calculated by using the convergence 

value of the scattered field ( P

LE ) for a very large truncation width 

 

2

2
%

L

L

P

lossy P

P

RMS

E E
E

E


                                                                                       (5.12) 

Then, the RMS error is calculated and shown in Figure 5.14. It is seen that the solution 

becomes more accurate for increasing truncation width. 
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Figure 5. 14 The approximation difference for 400f   MHz, 30i
 , 00.16ar   m, 

00.6pw   m,
 00.0064ph  ,

 
/ 0.0c ax r  , 00.17ch  , 10cwl h  , 1 0(4 0.01)c j  

 
F/m, 02 2.25 

 
F/m, 21 0   

 
H/m, and 2 0.0 

 
Sm

-1 

 

Figure 5.15 shows the influence of the target size and location on the electromagnetic 

scattering. When the object is shifted in x-direction to the right, the object gets closer to 

the periodic surface. As expected, the scattered field amplitude increases. If the object is 

buried deeper, the field propagates more distance in lossy media. As a result, 

attenuation of the field increases. In addition, the size of the object gets smaller, RCS 

reduces. Therefore, the amplitude of the scattered field decreases.  
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Figure 5. 15 Relative scattered amplitude from a cylindrical scatterer with circular 

cross-section for 100f   MHz, 20i
 , 

02 /pw k  m,
 00.2 /ph k , 10cwl h  , 

 
F/m, 

01 4 
 
F/m, 02 ò

 
F/m, 21 0   

 
H/m, 1 0.001 
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-1 
and 2 0.0 

 
Sm

-1 
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CHAPTER 6 

TIME DOMAIN ANALYSIS 

6.1 Introduction 

The perturbation method to calculate scattered fields from a buried object is outlined in 

Chapter 4 and Chapter 5. This method can be useful for ground-penetrating radar 

applications. In order to investigate the usage of this method, the analysis of transient 

scattering for TMz polarization from a cylindrical object buried in a lossy medium is 

considered in this chapter. The possible paths traveled by the reflected waves and the 

multiple reflections are identified by using timing analysis. 

The incident signal is constructed from a frequency spectrum of 1-30 GHz with 726 

data points. This frequency data is weighted using a double Gaussian function with the 

values of 
9

1 0.04 10    and 
9

2 0.0625 10    and shown in Figure 6.1a. Then, the 

weighted frequency data transformed into time domain using an inverse Fourier 

transform. The resulting transient incident TMz signal is shown in Figure 6.1b. 
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Figure 6. 1 The incident E-field waveform a) in frequency domain b) in time domain 

6.2 Time Domain Results 

The backscattered field from a PEC cylinder is shown in both the frequency and time 

domains in Figure 6.2. As expected the reflected field has a sign change because of a 
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single reflection from a PEC surface seen in time domain result in Figure 6.2b. 

The backscattered field from a buried PEC cylinder is shown in both the frequency and 

time domains in Figure 6.3. As seen in time domain results in Figure 6.3b, there are two 

reflections, one coming from the cylinder (L1) and one coming from the flat surface-

cylinder-flat surface path (L2) seen in Figure 6.4. The time passing between these two 

reflections is calculated by 

 1 1n n r

n

L L
t

c

 
                                                                                                              (6.1) 

where 1r  is the relative permittivity of the medium and c  is the speed of light in space 

[33]. 

In Figure 6.3, 2 4 cL h , 1 2 cL h
 
and 1r  is chosen as 15, so 1t  is calculated as 2.582 

ns. The relative time 1t  found from Figure 6.3b is 2.594 ns. To investigate the effect of 

the burial depth of the cylinder, it is located nearer to the surface than the one in Figure 

6.3. Then, the backscattered field is calculated and shown in both the frequency and 

time domains in Figure 6.5. It is observed in Figure 6.5b that the time between the 

reflections decreases. There are four main reflections following the paths L1, L2, L3, and 

L4 as shown in Figure 6.4. Here, 1 2 cL h , 2 4 cL h , 3 6 cL h , 4 8 cL h . Therefore, 

1

1 2 3

2 c rh
t t t

c


       is equal to 0.2582 ns. The relative times 1t , 2t  

and 3t  

found from Figure 6.5b are 0.2625 ns, 0.2564 ns and 0.2597 ns, respectively. These are 

good agreements. 

 



70 

 

Frequency (GHz)




1/
2

0
/

/
s

a
E

E
r



 

                 (a) 

Time (ns)

S
ca

tt
er

ed
 E

le
ct

ri
c 

F
ie

ld
 

(R
el

at
iv

e)

                    (b) 

     Figure 6. 2 TMz backscattered field from a cylindrical PEC object with 0.01ar   m  

a) in frequency domain b) in time domain 
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Figure 6. 3 TMz backscattered field from a buried cylindrical PEC object for 0.01ar   

m,
 

0.1ch  m, / 0.0c ax r  , 1 015   F/m, 1 0    H/m, 90si    , and 1 0.001 
 

Sm
-1

 a) in frequency domain, b) in time domain 



72 

 

To investigate effect of the incidence angle on the scattered field, the incident angle is 

chosen as 20i
 . Then, the backscattered field is calculated and shown in both the 

frequency and time domains in Figure 6.6. The time between the two main reflections 

can be calculated by 

 

 
1 1

sin

n n r

n

t

L L
t

c





 
                                                                                                              (6.2) 

where t  is the angle measured from normal of the surface and found 14t
 . 1t  is 

calculated as 2.661 ns. The relative time 1t  found from Figure 6.6b is 2.5940 ns.  

The effect of the medium loss to the time domain signal is shown in Figure 6.7b. As 

expected, as the loss of the medium increases, the amplitude of the scattered field 

decreases.  
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Figure 6. 4 Expected reflections from a buried cylindrical object 

The backscattered field from a dielectric cylinder is calculated and shown in both the 

frequency and time domains in Figure 6.8. It is seen in Figure 6.8b that number of the 

reflections from the dielectric cylinder increases compared to the PEC cylinder. 

Because of the time domain answer of the dielectric cylinder, the backscattered field 
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from a buried dielectric cylinder (Figure 6.9b) is much more complicated than the 

backscattered field from the buried PEC cylinder. Therefore, time domain analysis 

becomes more difficult to identify the possible paths. 

The backscattered field from a PEC cylinder under a slightly rough surface is shown in 

Figure 6.10 and Figure 6.11. The relative time 1t  found from Figure 6.10b and Figure 

6.11b is 2.6260 ns and 2.8420 ns; respectively. These time values are similar to the ones 

in Figure 6.3b and Figure 6.6b, so the beginning of the first group and the last group of 

reflections are following the paths of L1 and L2, respectively. These groups of reflections 

contain some reflections caused by the surface roughness. However, their paths are 

difficult to identify. 
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Figure 6. 5 TMz backscattered field from a buried cylindrical PEC object for 0.01ar   

m,
 

0.01ch  m, / 0.0c ax r  , 1 015   F/m, 1 0    H/m, 90si    , and 

1 0.001 
 
Sm

-1
 a) in frequency domain, b) in time domain 
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Figure 6. 6 TMz backscattered field from a buried cylindrical PEC object for 0.01ar   

m, 0.1ch  m, / 0.0c ax r  , 1 015   F/m, 1 0    H/m, 20si    , and 1 0.001 
 

Sm
-1

 a) in frequency domain, b) in time domain 
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(b) 

Figure 6. 7 TMz backscattered field from a buried cylindrical PEC object for 0.01ar   

m, 0.1ch  m, / 0.0c ax r  , 1 015   F/m, 1 0    H/m, and 90si     a) in 

frequency domain ( 1 0.1   Sm
-1

), b) in time domain
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Figure 6. 8 TMz backscattered field from a cylindrical dielectric object for 0.01ar   m, 

1 04   F/m, and
 1 0    H/m a) in frequency domain, b) in time domain 
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Figure 6. 9 TMz backscattered field from a buried cylindrical dielectric object for 

0.01ar   m, 0.1ch  m, / 0.0c ax r  , 1 015   F/m, 02 4   F/m, 1 0.001   Sm
-1

, 

2 0.0   Sm
-1

, 1 0    H/m, and 90si     a) in frequency domain, b) in time 

domain 
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Figure 6. 10 TMz backscattered field from a buried cylindrical PEC object for 0.01ar   

m, 0.1ch   m, / 0.0c ax r  , 1 015   F/m, 1 0 
 
H/m, 90i s   , 0.1pw   m, 

/ 0.1p ph w   a) in frequency domain, b) in time domain
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Figure 6. 11 TMz backscattered field from a buried cylindrical PEC object for 0.01ar   

m, 0.1ch   m, / 0.0c ax r  , 1 015   F/m, 1 0 
 
H/m, 20i s   , 0.1pw   m, 

/ 0.1p ph w   a) in frequency domain, b) in time domain
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CHAPTER 7  

CONCLUSIONS 

In this thesis, a new numerical solution method for the scattering problems related to 

cylinder buried in a lossy medium excited by a TMz polarized electromagnetic wave has 

been presented. The surface equivalence principle and the perturbation method are 

employed to form a set of EFIEs for the currents on the object and the portion of the 

surface most strongly interacting with the object, and solved by MoM in frequency 

domain. The target is modeled using a two-dimensional cylindrical object, and the 

surface is chosen to be flat or sinusoidal. 

The surface equivalence principle is used to solve the scattered problem of a cylinder 

and a cylinder coated with a material in Chapter 2 and Chapter 3. Then, in Chapter 4 

and Chapter 5, the cylindrical target is buried under a surface having a flat and 

periodically rough surface. The validity of perturbation assumption is shown by 

calculating the perturbation currents on the surface. It is shown that the perturbation 

currents on the surface become negligible except within the region of finite extent near 

the object for lossy medium. Also, to investigate the accuracy of the method, the 

medium parameters are taken to be space parameters. It is seen that the method is very 

accurate. This solution method is utilized to study short pulse scattering from objects 

buried in a lossy medium with flat and then periodic surface in Chapter 6. 

The method yields quite accurate results for rough surfaces since the most appropriate 

truncation width is selected. Future study is devoted to extend the method to the buried 

3D objects. 
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APPENDIX-A  

CURVE OF THE MAGNETIC VECTOR POTENTIAL 

Rotational of magnetic potential vector is given by the following line integral: 

      (2)

0 .
4

C

F M M H k dl
j


                                                   (App.A.1) 

Using a vector identity 
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               (App.A.2) 

Because of the magnetic current depends on source coordinate variables 

  0M                                                                                                       (App.A.3) 

The gradient of the zeroth-order Hankel function 
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where 

 
R̂

 

 





                                                                                                        (App.A.5) 

and equation App.A.2 becomes 

         (2) (2)

0 1
ˆ ˆH k M kM R H k                                     (App.A.6) 

where ˆ ˆẑ n   ,    ˆ ˆ ˆˆ ˆ ˆˆ ˆR z n R R n z     and  here ˆ ˆ 0n z  . Equation App.A.6 

becomes 
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Finally, after using equation 2.29 in chapter 2, equation App.A.1: 
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APPENDIX-B  

CALCULATION OF SELF TERMS 

When the integration paths go through the source points, it makes the numerical 

integration very difficult to compute. Therefore, the self terms should be approximated 

by using the Hankel function terms for small arguments [21] 
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2
1 ln 1

2

L
L L

k u
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(App.B.1)

 

where Lu represents the position along segment L as shown in Figure App.B.1, and  

1.781  . Evaluation of the integrals containing self terms yields 
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Here, the widths of the constant-current strips are represented by s . 

During the integration while   ,  (2)

1H k    will vary rapidly when   gets 

close to  . The integration should be carefully evaluated since 0k    . 
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From Figure App.B.2  
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For small arguments  (2)

1H k    can be approximated as 
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Substituting (App.B.4) and (App.B.5) into (App.B.3) 
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Figure App.B.1 Evaluation of the self terms 
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