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ABSTRACT

COMPUTATION OF ELECTROMAGNETIC FIELDS SCATTERED
BY CYLINDRICAL TARGETS BURIED IN A MEDIUM WITH A
PERIODIC SURFACE

Senem MAKAL

Department of Electronics and Communications Engineering
Ph.D. Thesis

Advisor: Assoc. Prof. Dr. Ahmet KIZILAY

Electromagnetic scattering from a two dimensional, cylindrical, and dielectric object of
arbitrary cross-section buried in a lossy dielectric half-space having a periodically rough
surface is investigated by a new numerical method. The method is outlined for TM,
(horizontally) polarized incident wave.

The basis of the new solution technique is that if a target is close to the surface, the
electromagnetic fields will be nearly identical to that without the target, except within
the region of finite extent near the target. Thus, the current on the surface will be
affected only in a finite portion of the surface near the target. The electric field integral
equations (EFIEs) for the equivalent currents on the target and the perturbation
equivalent currents (the difference currents with target present and with target absent)
on the surface are obtained by using this approach and solved by the Method of Moment
(MoM) in frequency domain. Then, inverse Fourier transform is utilized to get the time
domain signals. The short-pulse scattering results is used to investigate the effects of
multipath.

Key Words: Electromagnetic scattering, the Method of Moment, perturbational field,
integral equations.
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OZET

PERIYODIK BiR YUZEY ALTINA GOMULU SILINDIRIK
HEDEFLERDEN SACILAN ELEKTROMAGNETIK ALANLARIN
HESAPLANMASI

Senem MAKAL

Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Doktora Tezi

Danigman: Dog¢. Dr. Ahmet KIZILAY

Sonsuz uzun, engebeli ve kayipli bir dielektrik ortamda gomiilii bir dielektrik hedeften
sacilan elektromagnetik dalganin elektriksel alan degeri TM, polarizasyonu igin
perturbasyon yaklasimi ile ¢oziilmiistiir.

Kullanilan bu yeni ¢6ziim metodunun temeli, eger hedef cisim periyodik ylizeye yakin
ise, elektromanyetik alanlarin hedef cismin bulunmadigr durumdaki alanlar ile sadece
hedef cisme yakin sonlu bir bélgede farkli olacagina ve bu sayede periyodik yiizeydeki
esdegerlik akiminin hedef cismin hemen flizerindeki sonlu bir yiizeyde degisiklik
gosterecegine dayanmaktadir. Bu yaklasimla silindirik hedefin {izerindeki esdegerlik
akimlarina ve siniizoidal yiizey {izerindeki perturbasyon (hedefin oldugu ve olmadigi
durumlardaki esdeger akimlar arasindaki fark akimi) esdegerlik akimlarmna ait elde
edilen elektrik alan entegral denklemleri, frekans domeninde Moment Metodu
kullanarak ¢6ziilmiis ve bu sayede genis bantta, sacilan elektrik alana ait ¢oziimler elde
edilmistir. Sonrasinda, ters Fourier doniisiimii ile zaman domeni isaretleri bulunmus ve
bdylece kisa darbe sagilma isaretleri kullanilarak ¢oklu yansima etkileri incelenmistir.

Anahtar Kelimeler: Elektromagnetik alanlar, Moment Metodu, perturbasyon alanlari,
integral denklemleri.

YILDIZ TEKNIiK UNiVERSITESI FEN BiLIMLERI ENSTITUSU
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CHAPTER 1

INTRODUCTION

1.1 Literature

Solution of the electromagnetic scattering by buried objects has been interested by
many researches. Therefore, several techniques have been employed to obtain the
scattered fields. This is because scattered field values can be used in nondestructive
evaluation applications such as detecting landmines, buried pipes, near-surface
geophysical exploration, and also archeological studies [1-7]. As a result, an efficient

way of calculating scattered field is important for ground-penetrating radar applications.

Many different techniques have been developed for two-dimensional scattering from
buried objects. Especially, a large number of exact and numerical techniques are related
to the assumption of a flat interface, because of the reduction of mathematical and
computational complexity. For example, Uzunoglu et al. have computed the scattered
electric field from underground tunnels using a Green's function approach, and analyzed
the scattered amplitude for various observation angles [8]. Kanellopoulos et al. have
used the same analytical approach for conducting wires buried in earth [9]. Also, Born
approximation and Sommerfield integrals with fast evaluation methods have been the
other ways to build an analytical solution for buried scatterer [10-12]. Naqvi et al. have
used plane wave expansion and excitation of current on a cylinder for the scattered
electric field from a conducting cylinder deeply buried in a dielectric half-space [13].
Another analytical method containing plane wave representation has been developed by
Ahmed et al. [14].



In case the surface of the half-space is rough, Cottis and Kanellopoulos assume a
sinusoidal interface and use an integral equation combined with the extended boundary
condition approach for the scattering from a buried circular cylinder in [15] and [16].
An analytical solution of the scattering problem from a dielectric cylinder buried
beneath a slightly rough surface is developed by Lawrence and Sarabandi [17]. Altuncu
et al. present a method using the Green’s function of the half-space with rough
boundary where the cylindrical bodies are located [18].

1.2 The Aim of the Thesis

The aim of this thesis is to obtain a fast and simple solution method for the complex
problem of calculation of the scattered fields from a cylindrical object buried under a
rough surface. This new solution technique is outlined for TM, scattering from a
cylindrical object buried in a lossy half-space. The surface equivalence principle and a
perturbation method are employed to form a set of EFIEs for the currents on the object
and the portion of the surface most strongly interacting with the object. Then, MoM is
used to solve the EFIEs in the frequency domain to obtain the scattered electric field,

and inverse Fourier transform is utilized to get the time domain signals.

1.3 Hypothesis

The idea behind the new solution technique is that if a target is close to the surface, the
electromagnetic fields will be nearly identical to that without the target, except within
the region of finite extent near the target [19, 20]. Thus, the current on the surface will
be affected only in a finite portion of the surface near the target. Therefore, the
perturbation equivalent currents are approximated to zero outside a finite region above
the object. The EFIEs are solved in the frequency domain using MoM, and transformed

into the time domain using IFT.



CHAPTER 2

COMPUTATION OF TM, SCATTERING FROM A CYLINDRICAL
DIELECTRIC OBJECT

2.1 Introduction

The problem of electromagnetic scattering from a two-dimensional, dielectric, and
cylindrical object of arbitrary cross section is considered. First, the analytical solution of
the problem is obtained. Then, the surface equivalence principle is used for the
numerical solution of the same problem. Numerical solution method is outlined for the
case of arbitrary cross-section, and specialized for circular cross-section. Finally,

computed results of these two solutions are compared.

2.2 Analytical Solution

The scattered electric field from a dielectric cylindrical object of circular cross section is

calculated by expressing the plane waves by cylindrical wave functions [21, 22]. As

shown in Figure 2.1, TM;, polarized incident wave (E‘) is assumed to be incident with

the incidence angle of ¢ on the object having a radius r,. The surface of the object is

represented by S. .

The plane waves can be represented by an infinite sum of cylindrical wave functions,
and the incident electric field [21, 22]

E'=ZE! = ZE, f i3, (kep)e™ (2.1)



Figure 2. 1 An infinitely long cylindrical object of circular cross-section.
since it must be periodic in ¢ and finite at p =0, where p is the magnitude of the two-
dimensional position vector. Here, k, is the free-space wave number. The position
vector
0 =XX+Vyy (2.2)

The scattered electric field in the region exterior to the cylinder

E® =ZE, Z i"a,H (k,p)e™ (2.3)

N=—o0

and the total field in the cylinder

—zEOZ i"b,d, (kp)e™ (2.4)

N=—o0

where k, = o/ e, , and gclzgl(l— ji]. The magnetic field can be computed
W&,
from the electric field (E-field), and therefore [21, 22]

Gi__ 1

VxE'= ¢— i (kop)e™ (2.5)
Ja’luo 11, nz—;o )



H =- VxES = ¢— j"a H!® (k,p)em (2.6)
jou, j onzoo (kor)

- 1

Hi=——— VxE'= ¢— i"0,3! (k,p)e™™ 2.7)
jou im zzo 2

where 7, =1, /&, and n, =.J1 /e, are the intrinsic impedance of free half-space

and lossy dielectric, respectively. The unknown coefficients a, and b, can be found by

applying the boundary condition of
E; (r..4)+E; (r.¢)=E;(L..¢) (2.8)
Hy (. ¢)+H; (r,¢)=H;(r.¢) (2.9)

More explicitly, for the tangential electric and magnetic field on the boundary [21,22]

OZ i3, (kor, e +E, Z jraH? (kora) el = E, Z i"b,d, (kr,)e" (2.10)

—00 N=—o0 N=—o0

1= Z i1 (kor, e + & Z j"a H k r,)e"

J770n —00 on—oo (211)
— 0 el ing
= i"bd, (kr,)e
im nz—;O
Taking advantage of the orthogonality of Bessel functions
on—an (kora)+ EO j_nanHISZ) (kOra) = EOj_nbn‘]n (klra) (212)
5 j’”J;(kora)+5 j’”anH;(z)(kora)— i "b,J; (kiry) (2.13)
Mo 7o m
Solving the equations (2.12) and (2.13), the unknown coefficients a, and b,
2 - nlJr:(kOra)(;])n(klra)— 13 (Ko )J’(k r,) (2.14)
modn (Kt ) H? (Kol ) =3, (Kt ) HA ™ (o, )
' (2) _ 1(2)
b =1, Jn(kora)Hn(z)(kora) 3, (kory ) H; (S)kora) (2.15)
OJr:(klra)Hn (kora)_nl‘]n(klra)Hr: (kOra)

The scattered E-field is calculated by using a, coefficient. Large argument
approximation of the Hankel function for far-field calculation [21, 22]

5



1 = ko
lim HO (kp)= |21 &

kop—o0 ko_ﬂ- \/;

Thus, the scattered E-field in the far zone

J "

2.3 Numerical Solution

(2.16)

Although there are exact solutions for scattering by cylinders of circular and elliptical
cross-section, calculation of scattered fields from cylinders of arbitrary cross-section are
obtained by numerical methods [23-25]. Here, to analyze the accuracy of the numerical
solution, the surface equivalence principle and MoM are used for the same problem.

2.3.1 The Surface Equivalence Principle

In the surface equivalence principle, actual sources such as an antenna are replaced by
equivalent sources [21-25]. The fields outside an imaginary closed surface are obtained
by replacing the electric and magnetic equivalent currents radiating in unbounded media
and satisfying the boundary conditions. If the currents are selected so that the fields
inside the closed surface are zero or any other value and the field at an arbitrary point
outside is determined, this is called external equivalence. In external equivalence
principle, the whole space parameters are chosen as the parameters of the exterior
medium. If the currents are selected so that the fields outside the closed surface are zero
or any other value and the field at an arbitrary point inside is determined, this is called
internal equivalence. In internal equivalence principle, the whole space parameters are

chosen as the parameters of the interior medium [25].

2.3.1.1 Theory

The surface equivalence principle is used to solve the scattered E-field by a two-

dimensional cylindrical object of arbitrary cross section as shown in Figure 2.2.



RS

Figure 2. 2 An infinitely long cylindrical object of arbitrary cross-section.

In Figure 2.2, i, is the outward unit normal vector to S_. The incident field is a TM,

plane wave with angle ¢ from the horizontal

E’i (X, y) —3 Eo ejko(xcos¢),+ysin¢g) (218)

Figure 2.3 shows the external equivalence principle applied to the problem in Figure

2.2. The whole space parameters are chosen as (50, uo) [26, 27]. The surface is

replaced by surface electric (J,) and magnetic (M_) currents

(2.19)

x i (2.20)

At any point outside the surface, the total fields are E and H . The total fields are zero

under the surface

(2.21)




Figure 2. 3 The external equivalence principle applied to the problem in Figure 2.2.

Here, ext means external and S_ represents the surface just inside S_ . Then, the internal
equivalence principle is applied in Figure 2.4 to the problem shown in Figure 2.2.

Therefore, the whole space parameters are chosen as (&,, 4,0, ) [26, 27]. The surface is

replaced by (=J_) and (-M.) . The total fields are zero at any point external to S

Eve(-3.,-M,)|,. =0 (2.22)

S¢
Here, int means internal, and S_ represents the surface just outside S, .

In other words, there are two equations (2.21) and (2.22) to be solved by using MoM
and two unknown currents to calculate the scattered field. The E-field is expressed in
terms of electric and magnetic potential functions [23], and equations (2.21) and (2.22)

can be rewritten as

—ijjX‘(JC)—gi[wﬁext(mc)]z=—E;, S; (2.23)
— jowA™ (—JC)—gi[vXﬁim (—Mc)l:o, S’ (2.24)



N En Oy

) ¢
] coe
e
AN ’ C
S,

Figure 2. 4 The internal equivalence principle applied to the problem in Figure 2.2.

where A and F denote the magnetic and electric vector potential, respectively. They
are given by the following line integrals

A(p)=~[3(p )HE (K|p-5'

) (2.25)

F(p)=-— [ M(p'HP (k|p-5'

) dI’ (2.26)

where p' is a two-dimensional position vector for source points
p=XX+y'y (2.27)

The contours over J and M are C ; and C,_, respectively. The two equations (2.23)

and (2.24) are solved numerically using MoM for two unknown surface currents

(Je.M,).

2.3.1.2 MoM Solution

The currents on the surfaces of S, and S_ are approximated by linear segments as

shown in Figure 2.5.

3B )= 1R (7)) (2.28)



Mc(ﬁ'):_ tKP*(P') (2.29)

where N, is the number of segments on S_. IS and K; are the unknown values of
electric and magnetic current on the ith segment of S_, respectively. The unit vector in

the circumferential direction tangent to the ith segment of S_ is denoted by 7,, and the

unit vector in the z-direction is denoted by 2. Pulse functions (P°) are chosen as the

expansion functions and defined as unity on segment Ce;.

Y
A

Segment Cg;
i
i+1
n+3 i+2
I+3
n+2
n+1
/ n
0
» T

Figure 2. 5 Linear segmentation of the cylindrical object.

Using equation (2.26) and (2.29), it is explained in detail in Appendix A and can be

shown that
iVXFext( )_J_i J‘H(z) |) ﬁ.c -Eﬁi’ﬁ’)dlr (2.30)
o 4 =T Cq |,0_p

Equations (2.23) and (2.24) can be rewritten using point matching at N_ points on the

surface, the coupled EFIES become

10



a),uozch‘H(z) |)d|r

| s (2.31)
ik 5 Ke [ H (ky|5-51) (Rl P
4 =l -7
NC
%ZM HE? (4] 7)o
oo (5-7) (2.32)
P=P) o o
ZK me( 1P pDWoﬂ =0, S,

where H{? is the zeroth-order Hankel function of the second kind, and H,? is the first-

order Hankel function of the second kind. After pulse weighting functions are used to
transform these EFIEs to linear equations, they can be written in matrix form

201 ZMl ¢ _Vc 233
Zey Zu, | K {o} (233

Here, Z.,, Z.,, Z,,,, and Z,,, are the square sub matrixes of N_xN.. The element in

the ith row and the nth column of these matrixes is equal to the E-field at the midpoint

of the nth segment of S_, produced by electric and magnetic currents lying on the ith
segment of S_. The left hand side of the equation is the column sub vectors containing

the unknown expansion coefficients. The right hand side of the equation contains the

incident field on S, . The ith element of V, is the incident field at the middle of the ith

segment of S .

The self terms (5= ") should be calculated carefully, because the argument of the

Hankel functions becomes very small and the integration of the Hankel function
becomes difficult to compute numerically. Therefore, the self-terms should be

approximated by using the Hankel function terms for small arguments [28] as shown in

Appendix B.
jH<2>(k| |)d|’~A{1 jz(ln(kj j—lﬂ (2.34)
Cy

B (P=P) 2]
IHl(Z)(k |p—p|)£p—f)d| ;?J (2.35)
2 p—p

11



where A° is the length of the segment on S_and » =1.781.

The unknown expansion coefficients are solved and the far scattered field can be

computed by using J, and M

e Top ZNC jko (X cosg+y'singy)
Cr~JKo s 's c
k V4 e A

2] e ikop N

koﬂ' \/;,Z:l:

where ¢, is the scattering angle.

(2.36)
KCe jko(x'cos¢s+y'sin¢s)AF

2.4 Numerical Results

In the two-dimensional case, the scattering radar cross section is given by [29]

2

E; (p.4.)
£ (2.37)

z

o(¢,)=Ilim2zp

p—>®

Figure 2.6 shows the scattering cross section of a circular dielectric cylinder calculated
by both analytical and numerical methods. There are three different numerical results

obtained by changing the points per free-space wavelength ( ppw ) used to represent the
currents on the object. In figures, free-space wavelength is indicated by (4,). As it is

seen that the ppw increases, there is an excellent agreement between the analytical and

numerical solutions.

12



50 ! ! 1 )
—— Analytical Solution 5 5

---- Numerical Solution (10 ppw)
RIEEEE Numerical Solution (20 ppw)
—— Numerical Solution (40 ppw)

IN
Q

OO 0.2 04 0.6 0.8 1
ra //10

Figure 2. 6 Scattering cross section of a circular dielectric cylinder for f =1GHz,
¢ =¢, =20, & =4g, FIm, 11, = 1, Himand o, =0.0 Sm™.
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CHAPTER 3

COMPUTATION OF TM, SCATTERING FROM A CYLINDRICAL
OBJECT COATED WITH ADIELECTRIC MATERIAL

3.1 Introduction

In this chapter, the problem of electromagnetic scattering from a two-dimensional
cylinder of arbitrary cross section coated with a dielectric material is considered. First,
the analytical and numerical solutions of the problem relating to the conducting
cylindrical object coated with a dielectric material are given, and then computed results
of these two solutions are compared for the case of circular cross-section. Then, these
steps are also applied for the problem relating to the dielectric cylindrical object coated

with a dielectric material.

3.2 Scattering from a Conducting Cylindrical Object Coated with a Dielectric
Material

3.2.1 Analytical Solution

The scattered E-field from a conducting cylindrical object coated with a dielectric
material is calculated by expressing the plane waves by cylindrical wave functions. As
shown in Figure 3.1, conducting and dielectric objects have circular cross-section. The

radius and the surface of the coated cylinder are r, and S, ; respectively.

14



Figure 3. 1 A conducting cylindrical object of circular cross-section coated with a
dielectric cylindrical object of circular cross-section

As mentioned in chapter 2, the incident E-field [21, 22]
= JE! = 2E, Z i3, (kep)e™ (3.1)
The scattered E-field in the region exterior to the dielectric cylinder

E® =ZE, z i"a,H (k,p)e™ (3.2)

N=—o0

and the total field in the dielectric cylinder

E'=ZE, i i"b,d, (kp)e™ +2E, Z i"cY, (kp)e™ (3.3)

N=—o0 =—00

The magnetic field can be computed from the E-field, and therefore [21, 22]

1

H' = VxE' = ¢— i3 (kyp)e™ (3.4)
JCO,UO J 0 nz—oo )

H®=- VxE® = ¢— j"a H! (k,p)em (3.5)
joout, j onz_:; (kor)

- 1 =g

H'=———VxE'= i "b,d; (ko) eJ”¢+¢ i) (kp)e™ (3.6)
jorn Jf71 Z:‘o ' im nz )

15



The unknown coefficients a,, b, and c, can be found by applying the boundary

condition of

E; (%,.4)+E: (1,4)=E;(r,.¢) (3.7)
Hy (1,0)+H; (5, 0) =H,(r,.¢) (3.8)
E; (r,,¢)=0 (3.9)

More explicitly, for the tangential electric and magnetic field on the boundary [21, 22]

E, Z i3, (kon, )& +E, Z i"a,HP (kor)e™ =E, Z i 0,d, (ki )e™
e - = (3.10)
+E, z i, (kr,)e™

N=—

S Z P30 (kon,)e™ + = Z i "a,H/ (kor, el =

= o= . (3.12)
E Z i, J; (kr)el + E DY, (ki )e™
1771 n=—o0 771 n=—o0
E, Y. i"bJ, (kr) eJ“¢+EOZJ "c,Y, (k.r,)e" =0 (3.12)

Taking advantage of the orthogonality of Bessel functions

Eoi "3, (Kot )+ Eo i "a,H? (koky ) = Eo i "B, d, (K )+ Eo e, Y, (K, ) (3.13)
Eo o3 (ion, )+ B2 0, HI® (kor, ) = 52 570,37 (et )+ 2 e, (k) (3.14)
770 770 771 771

EO jinbn‘]n (klra ) + E0 jinCnYn (klra) =0
(3.15)

Solving the equations (3.13), (3.14) and (3.15), the unknown coefficients a,, b, and c,

are calculated and the scattered E-field is calculated by using a, coefficient [21, 22]

g (A€ f j"a e (3.16)
“\ k7 \/; =0T '
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3.2.2 Numerical Solution

To analyze the accuracy of numerical solution of this problem, the surface equivalence

principle and MoM are used.

3.2.2.1 Theory

The surface equivalence principle is used to find the total field at an external point of
the problem shown in Figure 3.2. It has two steps containing two equivalent and simpler
problems. Figure 3.3 shows the external equivalence problem. The whole space

parameters are chosen as (&,,4,). The surface is replaced the equivalent surface

electric current by J, and the equivalent surface magnetic current M, [26, 27]

(3.17)

x Ay (3.18)

Figure 3. 2 An infinitely long conducting cylindrical object of arbitrary cross-section
coated with a dielectric cylindrical object of arbitrary cross-section

17



At any point outside the surface, the total fields are E and H . The total field is zero
inside S, denoted S,
(3.19)

Ex (T My )|, = (=€)
Figure 3.4 shows the internal equivalence problem. The whole space parameters

Sa

are chosen as (&, 14,0, ). The total field is zero on both S; and S

Esi (=35 —M,, 3|, =0 (3.20)
Esi(-35,-Mq, 3| =0 (3.21)
E,H
go;,uo '.""
E=0
;! H =0
\\‘ 80,/,!0

-
Seoae”®

Figure 3. 3 The external equivalence principle applied to the problem in Figure 3.2.

where S represents the surface just outside S, .

18



Figure 3. 4 The internal equivalence principle applied to the problem in Figure 3.2.

In other words, there are three equations (3.19), (3.20) and (3.21) to be solved by using
MoM and three unknown currents to calculate the scattered field. The E-field is

expressed in terms of electric and magnetic potential functions, and equations (3.19),

(3.20) and (3.21) can be rewritten as [26, 27]

—ja)Ath(jd)—gi[VxIfe“(l\ﬁd)l=—E;, S; (3.22)
—joA™ (—jd)_i[wﬁ"“ (-M,)] - joAr(3,)=0, s; (3.23)
oA (<3,) - [VxF (-M,)] - AN (3,)=0, S (3.24)

cl

Three equations (3.22)-(3.24) are solved numerically using MoM for three unknown

surface currents (J,,M,,J.).

3.2.3 MoM Solution

The currents on the surfaces of S; and S, are approximated by linear segments [26, 27]

5, ()= 12 18P8 (7)) (3.25)

19



M, (ﬁ')sziKidPid (5) (3.26)
J.(7) =22 1R () (3.27)

where N, is the number of segments on S,. 1 and K are the unknown values of

electric and magnetic current on the ith segment of S, , respectively.

Equations (3.22)-(3.24) can be rewritten using equations (3.25)-(3.27)

Ng
—E DN [ HE (k|5

i=1 _deiN Ad (q #,) (3.28)
J ; - = r]i \p—p , i _
_Toiz_l:Kidc{i HfZ)(k0|p—P|)Wdl -E,, S,
Nd
CE2 N [HE (ka7
1= Cdi
Ko @ = (A=A
) ;Ki Cf H? (k|5 - 7) P di (3.29)
NC
+wTﬂlzliCI H? (k |p—-p])dl'=0, S;
=
Ng
a)Tlulzlid .[ HO(Z)(k1|ﬁ_ﬁ')d|’
- Cdl
Jk Ng o, ﬁ|d (ﬁ_ﬁr) ’
+71; Kidc[i Hf2)(kl|p—P|)Wdl (3.30)

+“’T“li I [ H? (k |p-p])dI'=0, s,
i=1 Ci

where C, is the contour representing of S .

The unknown expansion coefficients are solved and the far scattered field can be

computed using J, and M,

20



e ko Js d jko (X' cosgy+y'sing,) 4 d
—J% s s
k . ZI A

2J e*jkop Ng

k” \/; i=1

where A° is the length of the segment on S, .

(3.31)

+ Ki e—jko(x'cos¢s+y’sin¢s)Aq

3.3 Scattering from a Dielectric Cylindrical Object Coated with a Dielectric
Material

3.3.1 Analytical Solution

As shown in Figure 3.5, both of the dielectric objects have circular cross-section. The
incident fields, the scattered fields in the region exterior to the cylinder having radius

r,, and the total fields in the cylinder having radius r, are calculated by expressing the

plane waves by cylindrical wave functions as shown in equations (3.1)-(3.6).

Figure 3. 5 A dielectric cylindrical object of circular cross-section coated with a
dielectric cylindrical object of circular cross-section

21



The total field in the cylinder having radius r, [21, 22]

EY = JE, f j"d,J, (k,p)e™ (3.32)

N=—o0

The magnetic field can be computed from the E-field, and therefore

H2 - _

- iz d, 37 (kp0)e ™ (3.33)
Jou, 113 0=

The unknown coefficients a , b, , c,and d, can be found by applying the boundary

condition of

B} (5,,0)+E: (. 6) =E (1. 9) (3.34)
Hy (5. 0)+ H3 (1, 0) =HJ (1. 6) (335)
E)(n.4)=E(r.9) (3.36)
HJ' (r.¢) = H} (r..9) (3.37)

More explicitly, for the tangential electric and magnetic field on the boundary [21, 22]

OZJ 2 (Ko )™ +E, Z] aHz(k r,)e
- (3.38)

= E, z i"0,J, (ki )e™ +E, i i"c,Y, (kr,)e™™

N=—c0 N=—00

5 S Z i"30 (kory )@+ =) Z j"a H/ (k r,)e"

1770 N=-o0 770 N=—o0 (3 39)
E 400 . . '
0 -on Jn¢ 0 -n ' ng
i3 ( +— > J7bY. (kr, )e
Cim 20 im Zg (k)

E, ZJ‘"bJ (kr,)e™ +E, ZJ "c.Y, (kr,)e™
N (3.40)

=E, ZJ‘”dJ (k,r, e

22



& Z i, J;(kr,)eM + B Z j"cY el

J771 n=-o 771 N=-ow (341)

_E i-n ing

= i"dJl(k,r, )e

i, Z;o ‘
Taking advantage of the orthogonality of Bessel functions
Eyi "3, (Kol )+ Eoj "a,H (kok ) = Eg i 0,3, (kir )+ Eg i c,Y, (kity) (3.42)
o jogy (korb)+5 i"a,H® (kor )= Eojnp g (klrb)+5 iy, (k) (3.43)
o o i Ui
Eoi"b,Jd, (ki )+E i "c,Y, (kr,)=E,ji"d,J, (k,r,) (3.44)
E =_n E =—n ! E =N !
= by (ki )+ =2 5 (ke ) = =2 573, (Kt ) (3.45)

T i 7,

Solving the equations (3.42)-(3.45), the unknown coefficients a,, b,, ¢, and d, are

n?
calculated and the scattered E-field is calculated by using a, coefficient and equation

3.16.

3.3.2 Numerical Solution

The surface equivalence principle and MoM are used to solve this problem numerically.

3.3.2.1 Theory

The surface equivalence principle is used to find the total field at an external point of

the problem shown in Figure 3.6.

Figure 3.7 shows the external equivalence principle applied to the problem in Figure

3.6. The total fields are zero under the surface

s: =(_Ei)

Figure 3.8 shows the internal equivalence problem. The total field is zero on both

Sy and S_

Es (34, M,) (3.46)

Sa
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Figure 3. 6 An infinitely long dielectric cylindrical object of arbitrary cross-section
coated with a dielectric cylindrical object of arbitrary cross-section

Figure 3. 7 The external equivalence principle applied to the problem in Figure 3.6.
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[] C“ : — _,*_Md
[} - 4
t“ _}‘\ H — 0 : E, H :
v MR ; :
“ C ’ "
‘\‘ \s o"--‘ SC I'
. S, "l
‘,\‘ "o Sd

Figure 3. 8 The internal equivalence principle applied to the problem in Figure 3.6.

(3.47)

(3.48)

Figure 3.9 shows the internal equivalence problem for the points inside of the cylinder.

The total field is zero on both S that represents the surface just outside S, .

=0 (3.49)

S

Eisnt (_jc’_ Mc)

Figure 3. 9 The internal equivalence principle for the points inside of the cylinder
applied to the problem in Figure 3.6.
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In other words, there are four equations (3.46)-(3.49) to be solved by using MoM and
four unknown currents to calculate the scattered field. The E-field is expressed in terms
of electric and magnetic potential functions, and equations (3.46)-(3.49) can be
rewritten as [26, 27]

_ja)Afxt(jd)_i[vxlfext(M’d)] Z_E;, Sd_ (350)

&y

<
o
SN —
||
~N

—ij;m(_jd)_gi[vX (-
o (3.51)

ba : (3.52)
_ja)AZint<jC)_5_|:VX|fim (_MC):L =0’ Sc_
~jo (3, )= [vxF (N, )] -0, s; (3.53)

where ¢, =¢, [1— jij. Four equations (3.51)-(3.54) are solved numerically using
wE,

MoM for four unknown surface currents (J,,M,,J,,M,).

3.3.3 MoM Solution

The currents on the surfaces of S, and S_are approximated by linear segments [26, 27]

3, ()= 12 18R (7)) (3.54)
Mo ()= EKIP(5') (3.55)
J(7) =22 1R () (3.56)
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M. (5')=D 4KP(5') (357)

Ny
Cl)luozlidJ‘HéZ)(kO| )dlr
i=1 Cqi ) ) ¥ (_’ _”) (3.58)
Ko S ke [HO (k15— 5 N -(p—p dl'=—E' §-
4 ; |é[i 1 ( 0|p p) |ﬁ—/_jl z
a)ﬂlzdhd I H(Z)(k |—> |)d|!
=1 Cai
j S (2) — —-r ﬁId(ﬁ ﬁ’) '
- H, k dl
LS
. (3.59)
—“12 1E [ HP (k|5 -5l
i=1 Cy
j_N (2) ﬁ (,5 ,5) ' +
4; Cj (k|p-p |/3—;3' di'=0, S;
Ng
%Zu’ [ HE (k|5 p1)all
=1 Cqi
TR [ - T 2 Al
r (3.60)
Z'ff H® 5))dl’
=i
Jk, 8 c %) ~ ﬁuc (/3_/3’) ' -
+—> K’ | H k - dl'=0, S,
4 2 CJ 1 (k5-51) 57|
—a)ﬂzzliCJ-HéZ)(k2|ﬁ -r)dlr
=l cy y ) . (_’ _’,) (3.61)
_JKy Ke[H® (k. |5— 5 n-(p—p dl'=0, S
4 ; IC_[ 1 (2|,0 ,0|) |,b._lb.,| c

where Kk, = o\ u,e,, . The unknown expansion coefficients are solved and the far

scattered field can be computed using equation (3.31).
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3.4 Numerical Results

Scattering cross section of a circular perfectly conducting cylindrical object coated with
a dielectric material and a circular dielectric cylindrical object coated with a dielectric
material are shown in Figure 3.10. and 3.11, respectively. The results are obtained by
using both analytical and numerical methods. The ppw is chosen as 20, and a good
agreement is observed between the two methods.

60 '. '. '. ':
— Exact Solution |
SO « Numerical Solution (20 ppw) | {| |
Al
=
S
S
AN
0 E . E E
0 0.2 0.4 0.6 0.8 1

| r-a/ﬂ‘o |

Figure 3. 10 Scattering cross section of a circular perfectly conducting cylindrical
object coated with a dielectric material for f =1GHz, ¢ =¢, =20, &, =4¢, F/m,

1 =, Him, r, =4, and o, =0.0 Sm™
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60 '. '. '. T
Exact Solution 5

50

i Numerical Solution (20 ppw) |
I D T —
=
I e
STDYe| WU . e AT SR
N s |

e e e

0 0.2 04 0.6

-ra//lo |

Figure 3. 11 Scattering cross section of a circular dielectric cylindrical object coated
with a dielectric material for f =1GHz, ¢ =¢, =20", ¢ =4¢, FIm, &, =2¢, F/m,

=1, =, Him, r, =4, and o, =0, =0.0 Sm™
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CHAPTER 4

COMPUTATION OF TM, SCATTERING FROM AN OBJECT
BURIED IN A MEDIUM WITH A FLAT SURFACE BY A

PERTURBATION METHOD

4.1 Introduction

In this chapter, a new numerical solution method is presented for the electromagnetic
field scattered by a cylindrical object with an arbitrary cross-section buried in a lossy
dielectric half-space. The dielectric half-space is considered to be flat, and the method is
outlined for TM, polarized incident wave. The surface equivalence principle and a
perturbation method are utilized to form a set of electric field integral equations (EFIES)
for the currents on the object and the portion of the surface most strongly interacting
with the object. To obtain the scattered E-field, the EFIEs are solved in the frequency

domain using MoM.

4.2  Scattering from a Conducting Cylindrical Object Buried in a Medium with a

Flat Surface

4.2.1 Theory

The geometry of the problem is shown in Figure 4.1. A perfectly conducting (PEC)

object is located h, below the surface. The distance between y-axis and the object axis

is indicated by X .
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Figure 4. 1 The geometry of the problem

The scattered E-field (E®) can be written as the sum of the scattered field from the PEC

object and the flat surface
ES=E°+E' (4.1)

S and T indicate surface and object, respectively. The scattered E-field from the

surface can be written as

— — —

E°=E'+E° 4.2)
where E” is the perturbational field produced by the difference, or perturbation currents
JP and M/, and E' is the field due to currents J' and M' on the surface which is
impressed by the incident field without the object present. Therefore, the difference
currents can be defined as JP=J°-J' and MP=M°*-M'. Here, J° and M?®
represent the equivalent currents on the surface. Then, substituting equation (4.2) into
the equation (4.1) gives

ES=E'+EP+E' (4.3)

The unknown currents are the equivalent perturbation currents on the surface and the

induced current on the object. These currents are obtained by using the surface
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equivalence principle.

Before applying the surface equivalence principle to the original problem, the scattered

E-field E' should be obtained when the flat surface is the only scatterer. Therefore, the

flat surface is chosen to be the only scatterer shown in Figure 4.2.

&0y My

-+---- s

&, Iy, Oy S

Figure 4. 2 The flat surface as a scatterer

Figure 4.3 shows the external equivalence principle applied to the problem in Figure

4.2. The whole space parameters are chosen as (&, 4,). The surface is replaced by
surface electric (J') and magnetic (M"') currents. At any point outside the surface, the

total fields are E and H . The total fields are zero under the surface

=0 (4.4)

(H‘+HQH) =0 (4.5)

Sq

Then, the internal equivalence principle is applied in Figure 4.4 to the problem shown in

Figure 4.2. Therefore, the whole space parameters are chosen as (g, 44,0,). The

surface is replaced by (-J') and (-M"') currents.
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Figure 4. 3 External equivalence applied to the problem in Figure 4.2

The total fields are zero at any point external to S,
(E)
(Hin)

=0 (4.6)

S

=0 (4.7)

Sd

E 1,04 - -
—J —M
______ - — —— —— ——— — — ———

Figure 4. 4. Internal equivalence applied to the problem in Figure 4.2

Now, with the knowledge of scattered E-fields on the surface when there is not any
object, the original problem in Figure 4.1 can be solved. Initially, the external
equivalence principle is applied in Figure 4.5. The total field outside the surface is the

sum of the incident and scattered field
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E=E +E° (4.8)
H=H'+H" (4.9)
and the scattered E-field is

ext qext (4.10)

. (4.11)

x A, (4.12)

Sq (4.13)

Eor My ~
Jdp |\/|dIO
E=0 S
€01 My 5

Figure 4. 5 The external equivalence principle applied to the problem in Figure 4.1

Then, the field caused by perturbation currents becomes

(E%)

_(-E,-E)

s; ext

. (4.14)
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Now, equation (4.4) is used in equation (4.14), then the value of the perturbation field

on S, becomes

EeF:('[ (jdp ! M dp )

-0 (4.15)

Sq

Then, the internal equivalence principle is applied in Figure 4.6 to the problem shown in
Figure 4.1. There is no incident wave, and the total fields under the surface contain just
the scattered fields

E=E° (4.16)

H=H° (4.17)

&1 4,0, \

Figure 4. 6 The internal equivalence principle applied to the problem in Figure 4.1

The scattered E-field is expressed
ES=E' +E° +E' (4.18)

int int

The total E-field is zero outside S,

si (_Ei:ﬂ)

After equation (4.6) is used in equation (4.19), the scattered E-field on S; becomes

E’P

int

(3r-0)

. = (jc)

(4.19)

Sd
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Er (-38,-M¢)[s, +ET(J,)|s, =0 (4.20)

Sd

The total field is also zero inside S,

S (_Eilﬂt)

E! on S is the E-field value on the object points when the object is absent. Therefore,

E’P

int

(-3r-0)

+E’ (jc)

. . (4.21)
this E-field can be obtained analytically in a closed form as
E’i|m -7 Eoejkl(xsin¢[+ycos¢\) (422)
The transmission coefficient is indicated by T

21, COS ¢

_ (4.23)
77, COS @, +17, COS ¢,
Here, ¢ is the transmission angle and defined by Snell's law;
¢ =sin‘l[ botly cosﬁj (4.24)
Eath

In other words, there are three equations (4.15), (4.20) and (4.21) to be solved by using

MoM and three unknown currents to calculate the scattered field.

The E-field is expressed in terms of electric and magnetic potential functions, and
equations (4.15), (4.20) and (4.21) can be rewritten as;

—ijfxt(Jdp)—gi[vXﬁext(mdp)l =0, S; (4.25)
—joA™ (<37) - joA" (J"C)—gi[w Fr(-hp)] =0, s (4.26)

~JoA™ (-37) - oA (3,) [ V< Fm (-8 ] =

Cu z

_[Ei'ml’ S, (4.27)

Three equations (4.25)-(4.27) are solved numerically using MoM for three unknown
surface currents (J”,MP,J ). The currents on the surfaces of S, and S, are

approximated by linear segments
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J.(B)=23 1R (7)) (4.28)
3PP =22 10R (5') (4.29)

M{(7') ZT K'P*(p (4.30)
Equations (4.25)-(4.27) can be rewritten using equations (4.28)-(4.30)

31 RO (5= 7 o

oG (5 ) (4.31)
Ty S HP (k,|p— 7' MAPZP gy, s;
Zl cI ) p=A|
a"‘lZlde@) A'|)dr' - ”MZPJ H? (k|- p5'[)dl
TG o (4.32)
ZK [H® (|55 )#dIEO, 3
1 Gy
wj‘lzlde@)(M A'[)dr - a”‘lZlCIH@(M A'|)dr’
T ) (C“ ) (4.33)
K [ H2 (k = ni'—_'ody= .S
Zl C_[I ( | '0 ) |/—5_—~y |nt

Then, pulse weighting functions are used to transform these EFIEs to linear equations.

These linear equations are solved to obtain the unknown currents, and the far scattered

field can be computed using only J” and M?.

4.3 Scattering from a Dielectric Cylindrical Object Buried in a Medium with a

Flat Surface

4.3.1 Theory

A dielectric object is located under the flat surface as shown in Figure 4.7. The
unknown currents are the equivalent perturbation currents on the surface and the

induced currents on the object. These currents are obtained by using the surface
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Figure 4. 7 The geometry of the problem
equivalence principle.
The original problem in Figure 4.7 can be solved with the knowledge of E' explained

in Chapter 4.2.1. Initially, the external equivalence principle is applied in Figure 4.8.

The total field outside the surface is the sum of the incident, and scattered field

E=E'+E° (4.34)
H=H'+H® (4.35)

and the scattered E-field is

E*=E,, +EL, (4.36)
The total field is zero just inside the surface S,
(B =-E), (4.37)
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Eor My ~
Jdp |\/|0|IO
E=0 S
€01 Hy 5

Figure 4. 8 The external equivalence principle applied to the problem in Figure 4.7

Then, the field caused by perturbation currents becomes
(Eeit )

Now, equation (4.4) is used in equation (4.38), then the value of the perturbation field

_(-E,-E)

ext

. . (4.38)

on S, becomes

EL (J0.MJ)|, =0 (4.39)

Then, the internal equivalence principle is applied in Figure 4.9 to the problem shown in
Figure 4.7. There is no incident wave, and the total fields under the surface contain just

the scattered fields

E=E° (4.40)

H=H° (4.41)
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~JP —MY
———————— — —.—— — —a— —p
] s,
M EH
J t E:o\)
&1y 1,0, \H=0 |
\_ —

Figure 4. 9 The internal equivalence principle applied to the problem in Figure 4.7

The scattered E-field is expressed;

ES=E' +E" +E' (4.42)

int int

The total E-field is zero outside S,

Er (-30.,-M{)|,, +ET (I M,) (4.43)

int

sq :(_Eilm)

After equation (4.6) is used in equation (4.43), the scattered E-field on S; becomes,

Sd Sd

Eiit (_jdp’_Mdp) =0 (4-44)

L +ET(3.M,)

Sd

The total field is also zero inside S, ,

s (_Eilnt)

Figure 4.10 shows the equivalence principle for the points inside of the cylinder applied

En (=30, -M¢)|s. +E7 (3. M) . (4.45)

to the problem in Figure 4.7. The whole space parameters are chosen as (gz,uz,az).

The total field is zeroon S/
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-3 =M, )|, =0 (4.46)

c

S

Here, int means internal to the cylinder.

Il
o O

—

/ L m
Il

M,
W AN
\\52’/12’0_2 /

\ =
-

Figure 4. 10 The equivalence principle for the points inside of the cylinder applied to
the problem in Figure 4.7

In other words, there are four equations (4.39), (4.44), (4.45) and (4.46) to be solved by

using MoM and four unknown currents to calculate the scattered field.

The E-field is expressed in terms of electric and magnetic potential functions, and
equations (4.39), (4.44), (4.45) and (4.46) can be rewritten as;

~ o (jdp)_g_lo[w Fer (Mi2)] =0, s (4.47)
oA (=32 - ,-a,A;m(jc)_giﬂ[vXﬁim (-¥i2)] =0, s; (4.48)
oA (<37) - o (31)- [V Fn (hig)] [EL], s (449)
oA (-3, )-gicz[m <E™ (N, )] =0, 5 (4.50)

Four equations (4.47)-(4.50) are solved numerically using MoM for four unknown
surface currents (JP,M?,J,M_). The currents on the surfaces of S, and S, are

dr“e?

approximated by linear segments

41



3B )= 1R (7)) (4.50)

32 (5) =22 1R (5) (4.52)
N (5)=D KPS (7') (4.53)
M. (5) =Y &K:P: (7)) (4.54)

Equations (4.47)-(4.50) can be rewritten using equations (4.51)-(4.54)

a)ﬂozldJ‘H(z)

p'l)dr

(5-5) (4.55)
OZK IH(Z)( |*—/3'|)i|ﬁ_—;d"=0' Sa
P51 [ (k15— 7 o= 2 X1 THE (]~ 5o
o G % 5 (4.56)
oS [ wlp-p ) P ar o, s;
4 = Cqi |,0 |
“’Z‘lzlde@ k|p—p'|)dl' - ”MZPJH(Z) (k|p—p5'[)dr
oG L (4.57)
SRk [ (s )%dv B S
a’ﬂzzch‘H(z) -_—»r)dlr
i 458
_J_NZ J.H(Z) k |—- ——/ ( )dll 0’ g+ ( )
4 i=1 Cei |/_j /_j ¢

Then, pulse weighting functions are used to transform these EFIEs to linear equations.

These linear equations are solved to obtain the unknown currents, and the far scattered

field can be computed using only J” and M?.
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4.4 Numerical Results

If it is not indicated otherwise; for all MoM solutions, the value of 20 ppw is used to
represent the currents on the object and the surface. The object is chosen to be a

cylinder with circular cross-section of radius r, (Figure 4.11).

4
Eo 1 Hy i ﬁd
D — 1 — SR S— >
gl’ll'll’o-l L Sd

Figure 4. 11 The geometry used for the numerical results

The perturbation currents' behaviours are investigated in Figure 4.12 and 4.13 to
validate the assumption that the equivalent currents on the surface will be affected only
in a finite portion of the surface near the object. As expected, when the object is buried
deeper, the perturbation currents spread along the surface. Therefore, it is important to

select the truncation width (wl) carefully.

To investigate the effect of the conductivity of the half-space, different conductivities
are used and shown in Figure 4.14 and 4.15. It is seen that the amplitude of the

perturbation currents decreases when the loss of the ground increases.

After establishing the validity of our assumption, it is also necessary to determine

accuracy of the method. This can be done by choosing the space parameters under the

flat surface as (&, 4, ). Thus, the scattered field is expected to behave like a PEC or

dielectric cylinder. The scattered E-field is first solved by perturbation method, and then

by analytical method. Then, these two results are compared in Figure 4.16 and 4.17.
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Figure 4. 12 Perturbation (a) electric currents normalized with 0.0016 A/m and (b)
magnetic currents normalized with 0.2968 V/m on the flat surface above the PEC object

forf=1GHz, ¢ =¢, =90", r, =4, /3 m, x./r, =0.0, ¢ =15¢, FIm, g = 14, H/mand
0,=0.0 Sm™*
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Figure 4. 13 Perturbation (a) electric currents normalized with 0.00073 A/m and (b)
magnetic currents normalized with 0.16 VV/m on the flat surface above the dielectric

object for f=1 GHz,¢ =¢. =90", r,=4,/3 m, x./r, =0.0, & =15¢, FIm, ¢, =4¢,
FIm, 1, = 1, = 4, Himand o, =, =0.0 Sm™
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Figure 4. 14 Perturbation (a) electric currents normalized with 0.0014 A/m and (b)
magnetic currents normalized with 0.2627 V/m on the flat surface above the PEC object

forf=1GHz, ¢ =¢, =90", r,=4,/3m, h. =4, m, x./r, =0.0, ¢ =15¢, F/m, and
=ty H/m
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Figure 4. 15 Perturbation (a) electric currents normalized with 0.00051 A/m and (b)
magnetic currents normalized with 0.12 VV/m on the flat surface above the dielectric

object for f=1 GHz, ¢ =¢, =90", r,=4,/3 m, h, =4, m, x./r, =0.0, ¢ =15¢, F/m,
& =4, Fim,and 1 = p, = 4y H/m
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Figure 4. 16 Scattered field from the PEC object (a) normalized amplitude and (b) phase
for r, =0.01m, ¢ =¢, =90", h./r,=1.0, x./r, =0.0, wl/r, =500, ¢ =¢, F/m,
0,=0.0 Sm™and g = 1, H/m
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Figure 4. 17 Scattered field from the dielectric object (a) normalized amplitude and (b)
phase for r, =0.01m, ¢ =¢. =90, h./r, =1.0, x./r, =0.0, wl/r, =500, & =¢, F/m,
g, =4g, FIm, 0,=0,=0.0 Sm™*and 1 = u, = 1, H/m
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The root-mean square error (Eg,,s) between the perturbation method and the analytical

solution is calculated by using

(5.34)

where E* and E” show analytical and perturbation solutions; respectively. Then, the
RMS error is calculated and shown in Figure 4.18. It is seen that the solution becomes

more accurate for increasing truncation width and ppw.

-1 .5 T T T T
........ 20 ppw
X |
S
n
i
[a
LL]
L1
I= e e R S
_3? i i i i .
00 200 300 400 500 600

wl/h,

Figure 4. 18 The approximation difference of the method applied to the PEC object for
f=1GHz, ¢ =¢,=90", 1, =0.01m, h /r,=1.0, x,/1,=0.0, & =¢, F/m, 0,=0.0
Sm™and g = 4, HIm
To validate the perturbation method for lossy half-space, the solution for the PEC object
buried under a flat surface is compared to the results in [9] including Green's function

approach. The comparison is shown in Figure 4.19. Increasing truncation width makes

the solution to converge the result of Green's function approach.
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Figure 4. 19 Scattered amplitude from a PEC cylindrical scatterer with circular cross-
section for f=30 MHz, r, =0.3 m, h, =1.7m, x,/r,=0.0, & =15¢, F/m, 14 = 14,
H/m, ¢ =60, and o, =0.01 Sm™

After determining the method's accuracy, the PEC object is chosen as a cylinder with
elliptical cross-section in Figure 4.20. The effect of the incident angle is noticeable on

the scattered amplitude in Figure 4.21. There is a reduction of the magnitude of the
scattered field as the incident angle deviates from 90°. Also, if the object depth h,

increases, the scattered field magnitude reduces as shown in Figure 4.22.

Figure 4. 20 A cylindrical object with elliptical cross-section
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Figure 4. 21 Relative scattered amplitude from a PEC cylindrical object with elliptical
cross-section for f=1 GHz, r, =0.2 m, , =0.1 m, h./r, =10, x,/r,=0.0, & =15¢,
F/m, 1, = 14, H/mand o, =0.01 Sm™
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Figure 4. 22 Relative scattered amplitude from a PEC cylindrical object with elliptical
cross-section for f=1 GHz, ¢ =90, r, =0.2 m, r, =0.1m, x, /1, =0.0, & =15¢,
F/m, 1, = 14, H/mand o, =0.01 Sm™

In Figure 4.23, the object is chosen as a cylinder having different dielectric constant.

The scattered energy is concentrated around a scattering angle of 90" even for very

small incident angle. It is also observed that the difference between the dielectric
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constant (&, is the relative dielectric constant of the object) of the cylinder and the

medium is effective on the scattered field amplitude.

Relative Scattered Amplitude

50 100 150
Scattering Angle

Figure 4. 23 Scattered amplitude from a dielectric cylindrical scatterer with circular
cross-section for r, =0.01 m, h, =0.01m, x_/r, =0.0, & =15¢, FIm, 1, = 1, = 1,

H/m, ¢ =30°, 6, =0.01 Sm™and &, =0.0 Sm™
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CHAPTER 5

COMPUTATION OF TM, SCATTERING FROM AN OBJECT
BURIED IN A MEDIUM WITH A PERIODIC SURFACE BY A

PERTURBATION METHOD

5.1 Introduction

In this chapter, electromagnetic scattering from a cylindrical object of arbitrary cross-
section buried in a lossy dielectric half-space having a periodic surface (Figure 5.1) is
investigated by the perturbation method. The surface equivalence principle and the
perturbation method are employed to form a set of EFIEs for the currents on the object
and the portion of the surface most strongly interacting with the object. Then, MoM is

used to solve the EFIEs in the frequency domain to obtain the scattered electric.

5.2 Theory

The electric field value on the object points when the object is absent (E,, on S_) is

int

calculated by using the transmission coefficient for the flat surface problem. But for a

rough surface, this electric field can be obtained by an integral equation formulation

[30, 31]. Continuity of tangential E and H on the surface lead to

EzZ = Ezl = Ez (51)
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Region 1

Region 3
82 ! IUZ ! 62

Figure 5. 1 Geometry of cylindrical object buried inside a lossy half-space with periodic
surface

OE,, w0k, m OF,

(5.2)
g py 0Ny 4y ONy

For calculating the field in Region 2, Region 1 is replaced with the equivalent
polarization currents Je(;’:jm(go—gcl)ﬁl in a medium having wave number k.
Applying 2-D Green’s theorem, the field in Region 2 includes just scattered field
- =/ aG ﬁ!ﬁ’ = =/ aEZ ﬁ' !
£ (7)--| {Eﬂ(p )PP) 6, (5,5 )M}dl 53)
d

’
C ar-]d

p

where C is the surface contour in its first period, and the periodic Green’s function

0 e_ ]ﬁn (X_X,)e_ jqzn(y—y’)

G, (/5’:5,):_2:\, z q (5.4)
p N=-o 2n

where w, is the length of one period, B =pg+2nz/w,, o’ =k’-pg;

L=k ssing.

, and
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For the field in Region 1, Region 2 is replaced with the equivalent polarization currents
J? = jo(e,-&)E, in a medium having wave number k,. The field in Region 1
includes both scattered field and the incident field

- i(= =1 aG _.’ o' - = aEZ o' i
£,(5)=E (5)+ | [Ezmp)%—q(p,p )M}dl 55)

!
K n on;

p

o~

After using equations (5.1) and (5.2) in equation (5.3) and (5.5)

oG, (5,5 o B (A)] .
Ezm):—J[Exﬁ)%—ez(p,p')ﬁﬁ}dl 59)
- oG, (p, p' _ _.OE (P ,
£, (5)=E (5)+ | {Ezm%—qmp’) amdl 67

Ez(ﬁ) _ -1 aGZ(ﬁ'ﬁ’)_ - = /ul aEz(ﬁ!) ’

5 =PV Cj {Ez( ) o G, (5, )—ﬂ0 b dl (5.8)
EZ o i = =1 aC;l _>’ o' - =7 aEZ o' '

;” ) (p)+pv J [Ez (n)%—el(p,p)ﬁﬁ}dl (5.9)

where PV indicates principal value sense integration at field points p'= p. Equation

(5.8) and (5.9) is a pair of integral equations. These equations can be solved numerically
by MoM to calculate the unknown field and its normal derivative. Then, the field in

Region 2 is obtained by

E,,(P)=-] [Ez(/“?’)M—Gz(ﬁ,ﬁ')ﬂaEZ(’3 ')}dl’ (5.10)

where E,, is equal toE, .

There are four equations that are mentioned in equations (4.47)-(4.50) to be solved by

using MoM and four unknown currents to calculate the scattered field.
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5.3 Numerical Results

For simplicity, the boundary interface y(x) defined by
y(x)=h, cos(27x/w,) (5.11)

where h and w, are the height and width of one period of the surface. The object is

chosen to be a dielectric cylinder with circular cross-section of radius r, as shown in

Figure 5.2.

H"

Figure 5. 2 The geometry used for the numerical results

The perturbation currents' behaviours are investigated in Figure 5.3 to validate the
assumption that the equivalent current on the surface will be affected only in a finite
portion of the surface near the object. As expected, when the object is buried deeper, the
perturbation currents spread along the surface. Also, because of the conductivity of the
half-space, the interactions between the cylinder and the periodic surface reduce.

Therefore, the amplitudes of the perturbation currents decrease.

To determine the accuracy of the method, the space parameters under the surface are

chosen as (&, 4, ). Thus, the scattered field is expected to behave like a dielectric

cylinder. The scattered E-field is first solved by perturbation method, and then by

analytical method. Then, these two results are compared in Figure 5.4.
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Figure 5. 3 Perturbation (a) electric currents normalized with 0.0045 A/m and (b)
magnetic currents normalized with 0.91 VV/m on the surface for f =1 GHz,

¢ =¢,=90", r,=2,/3 m, wl/r, =40, w, =24,/3 m, h /w, =0.25, x./r, =0.0,
g =15¢, FIm, &, =2.25¢, FIm, 4, = 1, = 4, HIm, ¢, =0.001 Sm™ and &, =0.0 Sm™
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Figure 5. 4 Scattered field (a) normalized amplitude and (b) phase for ¢ =4, =90,
r,=01m, w,=02m, h /w =025, x./r,=00, h /r,=5.0, wl/r, =50, & =¢,
FIm, &, =4&, FIm, u = 1, = 4, Him, and o, =0, =0.0 Sm*
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The RMS error is calculated for different number of point per wavelength (ppw), and
shown in Figure 5.5. It is seen that the solution becomes more accurate for increasing
truncation width and ppw. The convergence of the method with respect to ppw is

similar to typical integral equations based approaches [32].

In| Eqys (%) ]

Figure 5. 5 The approximation difference for f =1 GHz, ¢ =¢, =90", r, =4,/3 m,
w, =21,/3m, h /w, =025, x./r,=1.0, h. /1, =5.0, & =¢, FIm, &, =45, FIm,
1 = 1, =ty Him, and o, =5, =0.0 Sm™
Also, the results of the proposed method are compared with another method by
considering a dielectric circular cylinder buried beneath a sinusoidal slightly rough

surface. Then, the parameters are chosen as exactly the same with those given in [17].
The surface represents by y(x):hp cos(27zx/wp). Figure 5.6-5.13 demonstrate the
effect of a sinusoidal surface for f =400 MHz, ¢ =30", h =0.00644,, X /1, =0.0,
h,=1.34,, wl/h,=10, ¢,=(4-j0.0))¢, F/Im, ¢,=2.25¢, FIm, g =u, =, HIm,
and o, =0.0 Sm™. Obviously, radar cross section (RCS) of these examples in Figure
5.6-5.13 matches those given in [17].

The period of the surface is varied from 0.254, to 24, in Figure 5.6-5.9. The scattering
pattern for w, =0.254, is almost identical to that of a flat surface as seen in Figure 5.6.
In Figure 5.7 and 5.8, the scattering pattern is significantly changed for w, =0.44, and

w, =0.64,. In Figure 5.9, the scattering pattern once again approaches that of a flat

60



surface for w, =24,. So, the scattering pattern is only significantly affected by a range

of surface frequencies.

A~
m
©
N~
f \
--=-- Flat Surface
— Sinusoidal Surface
4% 50 100 150 200

¢, (degree)

Figure 5. 6 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r, =0.164, m, w, =0.254,m
The simulations are repeated for various size of the buried object in Figure 5.10-5.13
and it is shown that surface roughness outside a limited range of frequencies does not

affected the scattering pattern of a larger buried object.
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Figure 5. 7 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r, =0.164, m, w, =0.44,m
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Figure 5. 8 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r,=0.164, m, w, =0.64,m
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Figure 5. 9 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r, =0.164, m, w, =24,m
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Figure 5. 10 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r, =1.04, m, w, =0.254,m
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Figure 5. 11 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r, =1.04, m, w, =0.44,m
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Figure 5. 12 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r,=1.04, m, w, =0.64,m
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Figure 5. 13 Scattered amplitude from a cylindrical scatterer with circular cross-section
for r,=1.04, m, w, =2.04,m
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The root-mean square error for a lossy media is calculated by using the convergence

value of the scattered field ( E[") for a very large truncation width

(5.12)

Then, the RMS error is calculated and shown in Figure 5.14. It is seen that the solution

becomes more accurate for increasing truncation width.

Figure 5. 14 The approximation difference for f =400 MHz, ¢ =307, r, =0.164, m,
w, =0.64, m, h, =0.00644,, x./r,=0.0, h, =0.174;, wl/h =10, &, =(4- j0.0))¢,
FIm, &,=2.25¢, FIm, 14, = 1, = 1, H/m, and o, =0.0 Sm™

Figure 5.15 shows the influence of the target size and location on the electromagnetic
scattering. When the object is shifted in x-direction to the right, the object gets closer to
the periodic surface. As expected, the scattered field amplitude increases. If the object is
buried deeper, the field propagates more distance in lossy media. As a result,
attenuation of the field increases. In addition, the size of the object gets smaller, RCS

reduces. Therefore, the amplitude of the scattered field decreases.
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Figure 5. 15 Relative scattered amplitude from a cylindrical scatterer with circular
cross-section for f =100 MHz, ¢ =20, w, =2/k, m, h; =0.2/k,, wl/h, =10, F/m,

g =4e, FIm, &, =8 FIm, g, = 11, = u; H/m, o, =0.001 Sm*and &, =0.0 Sm™
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CHAPTER 6

TIME DOMAIN ANALYSIS

6.1 Introduction

The perturbation method to calculate scattered fields from a buried object is outlined in
Chapter 4 and Chapter 5. This method can be useful for ground-penetrating radar
applications. In order to investigate the usage of this method, the analysis of transient
scattering for TM, polarization from a cylindrical object buried in a lossy medium is
considered in this chapter. The possible paths traveled by the reflected waves and the

multiple reflections are identified by using timing analysis.

The incident signal is constructed from a frequency spectrum of 1-30 GHz with 726
data points. This frequency data is weighted using a double Gaussian function with the

values of 7, =0.04x10° and 7, =0.0625x10"° and shown in Figure 6.1a. Then, the

weighted frequency data transformed into time domain using an inverse Fourier

transform. The resulting transient incident TM, signal is shown in Figure 6.1b.
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Figure 6. 1 The incident E-field waveform a) in frequency domain b) in time domain

6.2 Time Domain Results

The backscattered field from a PEC cylinder is shown in both the frequency and time

domains in Figure 6.2. As expected the reflected field has a sign change because of a
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single reflection from a PEC surface seen in time domain result in Figure 6.2b.

The backscattered field from a buried PEC cylinder is shown in both the frequency and
time domains in Figure 6.3. As seen in time domain results in Figure 6.3b, there are two
reflections, one coming from the cylinder (L;) and one coming from the flat surface-
cylinder-flat surface path (L) seen in Figure 6.4. The time passing between these two

reflections is calculated by

(Ln+l - Ln) &1
C

At =

n

(6.1)

where ¢,, is the relative permittivity of the medium and c is the speed of light in space
[33].
In Figure 6.3, L, =4h,, L, =2h, and ¢,, is chosen as 15, so At, is calculated as 2.582

ns. The relative time At, found from Figure 6.3b is 2.594 ns. To investigate the effect of

the burial depth of the cylinder, it is located nearer to the surface than the one in Figure
6.3. Then, the backscattered field is calculated and shown in both the frequency and
time domains in Figure 6.5. It is observed in Figure 6.5b that the time between the
reflections decreases. There are four main reflections following the paths L;, L, L3, and

Ls as shown in Figure 6.4. Here, L =2h., L,=4h, L, =6h, L,=8h_ Therefore,

2h &, . Lo
At = At, = Aty = TN g equal to 0.2582 ns. The relative times At;, At, and At,
c

found from Figure 6.5b are 0.2625 ns, 0.2564 ns and 0.2597 ns, respectively. These are

good agreements.
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Figure 6. 2 TM, backscattered field from a cylindrical PEC object with r, =0.01 m

a) in frequency domain b) in time domain
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Figure 6. 3 TM, backscattered field from a buried cylindrical PEC object for r, =0.01
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To investigate effect of the incidence angle on the scattered field, the incident angle is

chosen as ¢ =20". Then, the backscattered field is calculated and shown in both the

frequency and time domains in Figure 6.6. The time between the two main reflections
can be calculated by

Atn _ (Ln+1._ Ln) én
sin(g,)c

(6.2)

where ¢, is the angle measured from normal of the surface and found ¢ =14". At, is

calculated as 2.661 ns. The relative time At, found from Figure 6.6b is 2.5940 ns.

The effect of the medium loss to the time domain signal is shown in Figure 6.7b. As
expected, as the loss of the medium increases, the amplitude of the scattered field

decreases.
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Figure 6. 4 Expected reflections from a buried cylindrical object

The backscattered field from a dielectric cylinder is calculated and shown in both the
frequency and time domains in Figure 6.8. It is seen in Figure 6.8b that number of the
reflections from the dielectric cylinder increases compared to the PEC cylinder.

Because of the time domain answer of the dielectric cylinder, the backscattered field
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from a buried dielectric cylinder (Figure 6.9b) is much more complicated than the
backscattered field from the buried PEC cylinder. Therefore, time domain analysis
becomes more difficult to identify the possible paths.

The backscattered field from a PEC cylinder under a slightly rough surface is shown in

Figure 6.10 and Figure 6.11. The relative time At; found from Figure 6.10b and Figure

6.11b is 2.6260 ns and 2.8420 ns; respectively. These time values are similar to the ones
in Figure 6.3b and Figure 6.6b, so the beginning of the first group and the last group of
reflections are following the paths of L; and L, respectively. These groups of reflections
contain some reflections caused by the surface roughness. However, their paths are
difficult to identify.
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Figure 6. 5 TM, backscattered field from a buried cylindrical PEC object for r, =0.01
m, h, =0.01m, x./r,=0.0, & =15¢, F/m, 1, = 1, HIm, ¢ =¢, =90, and
o, =0.001 Sm a) in frequency domain, b) in time domain
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Figure 6. 6 TM, backscattered field from a buried cylindrical PEC object for r, =0.01
m,h,=0.1m, x,/r,=0.0, & =15¢, F/m, s, = 14y HIm, ¢ =g, =20", and o; =0.001
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Figure 6. 7 TM, backscattered field from a buried cylindrical PEC object for r, =0.01
m, h, =0.1m, x./r,=0.0, & =15¢, FIm, 14 = 1, H/m,and ¢ =4, =90" a) in
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Figure 6. 8 TM, backscattered field from a cylindrical dielectric object for r, =0.01 m,
& =4¢g, FIm,and 1 = 1, H/ma) in frequency domain, b) in time domain
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Figure 6. 9 TM, backscattered field from a buried cylindrical dielectric object for
r,=0.01m,h, =0.1m, x,/r,=0.0, & =15¢, FIm, &, =4¢, FIm, o, =0.001 Sm™,
0,=0.0 Sm*, 4, =y, H/m, and $ =4, =90 a) in frequency domain, b) in time
domain
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Figure 6. 10 TM, backscattered field from a buried cylindrical PEC object for r, =0.01
m, h,=01m, x./r,=0.0, g =15¢, FIm, 44 = g, HImM, ¢ =¢, =90", w, =0.1 m,
h, /w, =0.1 a) in frequency domain, b) in time domain
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Figure 6. 11 TM, backscattered field from a buried cylindrical PEC object for r, =0.01
m, h, =0.1m, x./r,=0.0, & =15¢, F/Im, g = g, H/m, ¢ =4 =20", w, =0.1 m,
h, /w, =0.1 a) in frequency domain, b) in time domain
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CHAPTER 7

CONCLUSIONS

In this thesis, a new numerical solution method for the scattering problems related to
cylinder buried in a lossy medium excited by a TM, polarized electromagnetic wave has
been presented. The surface equivalence principle and the perturbation method are
employed to form a set of EFIEs for the currents on the object and the portion of the
surface most strongly interacting with the object, and solved by MoM in frequency
domain. The target is modeled using a two-dimensional cylindrical object, and the

surface is chosen to be flat or sinusoidal.

The surface equivalence principle is used to solve the scattered problem of a cylinder
and a cylinder coated with a material in Chapter 2 and Chapter 3. Then, in Chapter 4
and Chapter 5, the cylindrical target is buried under a surface having a flat and
periodically rough surface. The validity of perturbation assumption is shown by
calculating the perturbation currents on the surface. It is shown that the perturbation
currents on the surface become negligible except within the region of finite extent near
the object for lossy medium. Also, to investigate the accuracy of the method, the
medium parameters are taken to be space parameters. It is seen that the method is very
accurate. This solution method is utilized to study short pulse scattering from objects

buried in a lossy medium with flat and then periodic surface in Chapter 6.

The method yields quite accurate results for rough surfaces since the most appropriate
truncation width is selected. Future study is devoted to extend the method to the buried
3D objects.
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APPENDIX-A

CURVE OF THE MAGNETIC VECTOR POTENTIAL
Rotational of magnetic potential vector is given by the following line integral:
xF (M ) Ujvx( 5') HE (k|- |)) dr’ (App.A.1)

Using a vector identity

V(M (p') HE (k|p-p1))= HE (k|p-51) V<M (7)

B (App.A.2)
+V(HP (k|p-p1)) xM (5)
Because of the magnetic current depends on source coordinate variables
VxM (p')=0 (App.A.3)
The gradient of the zeroth-order Hankel function
)
V(HP (kR)) = ﬁaHO—FEkR) = -RkH.? (kR) (App.A.4)
where
g=tp=r) (App.A5)
p-p
and equation App.A.2 becomes
V(HE® (k|p-p1)) xM (5')=-kM (5')(Rx7)H (klﬁ—ﬁ’ ) (App.A.6)

where 7=2xA , Fixf:f(ﬁ-lfi) R(A-2) and here i-2=0. Equation App.A.6
becomes

V(HE (k5= 51)) xM (5')=2kM (5')(f-R)H? (k| 5~ 51) (App.AT)

Finally, after using equation 2.29 in chapter 2, equation App.A.1:

VX'E(M)—Z—ZN:K DjH(Z) k|p- p|)(n R)dl' (App.A.8)
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APPENDIX-B

CALCULATION OF SELF TERMS

When the integration paths go through the source points, it makes the numerical
integration very difficult to compute. Therefore, the self terms should be approximated
by using the Hankel function terms for small arguments [21]

H? (ku )0 1- J—In(k7/2u j for ku, 0 1 (App.B.1)

where u, represents the position along segment L as shown in Figure App.B.1, and

y =1.781. Evaluation of the integrals containing self terms yields

AyJ2
jHéa(kuL)duL: {1 j—(ln(k‘i/ jlﬂ (App.B.2)

—-Ag/2

Here, the widths of the constant-current strips are represented by A, .

During the integration while 5 — 5", H{® (k |- 5) will vary rapidly when ' gets

close to p. The integration should be carefully evaluated since k |/3—/3’| —0.

lim [ H® (k|5 *'|)@d|'_|gn H® (k|p-p)cos(w')dlI’  (App.B.3)
pop' |p p| pop'

C C

From Figure App.B.2
o

cos(y') = —— (App.B.4)
) Vo7 +5”
For small arguments H,? (k |5 - ,5'|) can be approximated as
@ ~ =\ _ g 2 o2 2]
H (k |p-p1) = H (k 5% +s )D— (App.B.5)
k8% +5"

Substituting (App.B.4) and (App.B.5) into (App.B.3)
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() ' 2]
lim IH ? (k|p—p1)cos(y)dI'0 gl I x/52+s’2 akS? +57

p—p'

ds’

2J lim
72'k 50

(App.B.6)

> Sy N ‘n[>
(S %)
o
m\

c

0 ﬂIimtanl[%/z}

ﬂ'k 50

ol

n2l
k

Segment L,

psi

Figure App.B.1 Evaluation of the self terms
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Figure App. B.2 Evaluation of Principle Value

88



AUTOBIOGRAPHY

PERSONEL INFORMATION
Name Surname : Senem MAKAL

Birthdate and Birthplace :01/01/1983-Tunceli

Foreign Language : English

E-mail : smakal@yildiz.edu.tr

EDUCATION

Degree Department School/University Graduation

Year

M.S Electronics and Yildiz Technical Uni. 2007
Communications
Engineering

B.S Electronics and Y1ldiz Technical Uni. 2005
Communications
Engineering

High School Nevvar Salih 1$g6ren High 2001

School

WORK EXPERINCES

Year Company/Institution Position

2011 TUBITAK Senior Researcher

2005 YTU Research Assistant

89



PUBLICATIONS
Articles

1. Makal, S., and Kizilay, A., (2011). “A Neural-Based Electromagnetic Inverse
Scattering Approach to the Detection of a Conducting Cylinder Coated with a Dielectric
Material”, Turkish Journal of Electrical Engineering & Computer Sciences, accepted for
publication.

2. Makal, S., and Kizilay, A., (2011). “Computation of the Scattered Fields from a
dielectric Object Buried in a Medium with a Periodic Surface by a Decomposition
Method”, IET Microwaves, Antennas & Propagation, 5(14):1703-1709.

3. Makal, S., and Kizilay, A., (2011). “A Decomposition Method for the
Electromagnetic Scattering From a Conductive Object Buried in a Lossy Medium”, The
Applied Computational Electromagnetic Society, 26(4):340-347.

4. Makal, S., Kizilay, A., Durak, L., (2008). “On The Target Classification Through
Wavelet-Compressed Scattered Ultrawide-Band Electric Field Data and ROC
Analysis”, Progress In Electromagnetics Research, 82:419-431.

5. Kuzilay, A., and Makal, S., (2007). “A Neural Network Solution for Identification
and Classification of Cylindrical Targets above Perfectly Conducting Flat Surfaces”,
Journal of Electromagnetic Waves and Applications, 21(14):2147-2156.

Conference Papers

1. Makal, S., and Kizilay, A., (2011). “Calculation of Scattered TM, Waves from a
Dielectric Scatterer Buried Inside a Lossy Ground”, URSI 2011, 13-20 August 2011,
Istanbul, Turkey.

2. Makal, S., and Kizilay, A., (2009). “Neural Network Based Target Recognition”,
Progress In Electromagnetics Research Symposium (PIERS2009), 23-27 March 2009,
Beijing, China.

3. Makal, S., Ozyilmaz, L., Palavaroglu, S., (2008). “Neural Network Based
Determination of Splice Junctions by ROC Analysis”, International Conference on
Computer Systems Science and Engineering (CSSEO08), 24-26 September 2008,
Heidelberg, Germany.

4. Makal, S., Durak, L., Kizilay, A., (2008). “Dalgacik Doniisiimii ve ROC Analizi
Yardimiyla Silindirik Hedeflerin  Siniflandirilmasi1”, Sinyal Isleme ve Iletisim
Uygulamalar1 Kurultay: (STU2008), 19-12 Nisan 2008, Aydn, Tiirkiye.

5. Kizilay, A., and Makal, S., (2007). “A Neural Network Model for Target
Identification of Cylindrical Targets Located above Perfectly Conducting Flat Surface”,
Progress In Electromagnetics Research Symposium (PIERS2007), 27-30 August 2007,
Prague, Czech Republic.

90



6. Kizilay, A., and Makal, S., (2007). “ldentification of Multiple Cylindrical Targets
Located above Perfectly Conducting Flat Surface by Artificial Neural Networks”,
Progress In Electromagnetics Research Symposium (PIERS2007), 27-30 August 2007,
Prague, Czech Republic.

7. Makal, S., and Kizilay, A., (2007). “Classification of Cylindrical Targets above
Perfectly Conducting Flat Surfaces by Multilayer Perceptrons”, International
Symposium on INnovations in Intelligent SysTems and Applications (INISTA 2007),
20-23 June 2007, istanbul, Turkey.

8. Makal, S., and Ozyilmaz, L., (2007). “Determination of Splice Junctions on DNA by
Neural Networks”, International Symposium on INnovations in Intelligent SysTems and
Applications (INISTA 2007), 20-23 June 2007, Istanbul, Turkey.

9. Makal, S., and Kizilay, A., (2007). “ldentification of Targets above Perfectly
Conducting Surfaces by Using Artificial Neural Networks”, Mediterrenean Microwave
Symposium (MMS 2007), 14-16 May 2007, Budapest, Hungary.

10. Makal, S., and Kizilay, A., (2007). “Miikemmel Iletken Diiz Yiizeyler Uzerindeki
Silindirik Hedeflerin Istatistiksel Sinir Aglar1 ile Simiflandirilmas1”, Sinyal Isleme ve
[letisim Uygulamalar1 Kurultay: (STU2007), 11-13 Haziran 2007, Eskisehir, Tiirkiye.

Project

1. Calculation of Scattering Electromagnetic Fields from the Buried Cylindrical Targets
Under the Sinusoidal Surface, Yildiz Technical University Scientific Research Projects
Coordination Department. Project number: 2010-04-03-DOPO01.

AWARDS

1.URSI-Young Scientist Award
2.TUBITAK National Scholarship Programme for M.Sc. Students

3.TUBITAK National Scholarship Programme for Ph.D. Students

91



