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Ā discrete–time A template
B̄ discrete–time B template
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ABSTRACT

DESIGN OF A CELLULAR NEURAL NETWORK EMULATOR AND ITS
IMPLEMENTATION ON AN FPGA DEVICE

Nerhun YILDIZ

Department of Elektronics and Communication Engineering

Ph.D. Thesis

Supervisor: Prof. Dr. Vedat TAVŞANOĞLU

It is well known that technology affect our everyday lives and change them significantly
from the beginning of humanity. As the technology grows more rapidly in the last few
decades, the changes also started to occur more frequently. For example, a few centuries
ago, a person could experience at most one significant leap of change in his or her life; but
today, a senior may have experienced the leaps caused by the inventions of the television,
transistors, satellites, computers, cellular phones, other portable electronics, etc.

The rapid change of the technology also create trends of new research topics, like image
processing, which was nothing more than a television or camera engineers or academics
specialty just 20 years ago. Furthermore, the processing was limited by preserving, trans-
mitting and receiving images with minimum noise and distortion. With the introduction of
digital cameras, countless new ideas of image processing emerged, e.g., image enhance-
ment, image compression, automated target recognition and tracking, biometric recogni-
tion, etc. There are two main difficulties in the application of these ideas: (1) new image
processing algorithms should be developed and implemented within tight time frames
and (2) fast and parallel processors are required to match the computation intensity of the
real–time image processing.

On the other hand, a Cellular Neural Network (CNN) is a multi–dimensional signal pro-
cessing paradigm, whose analog and digital 2–D implementations can be used in image
processing. The main advantage of any CNN implementation is that, many image pro-
cessing algorithms can be implemented on the same structure, solving the first problem
mentioned above. On the other hand, analog CNN implementations are known to op-
erate at speeds up to 10 kilo–frames/s for grayscale images with resolutions lower then
176× 144, which seems to solve the second problem. However, this is not the case for
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high–resolution and medium frame–rate images like full–HD 1080p@60 (1920× 1080
resolution, 60 Hz frame rate), where the performance of the analog implementations drop
below the real–time limits. Then again, the digital implementations of CNN does not have
the intrinsic parallel connectivity of their analog counterparts, consequently, none of the
digital CNN implementations are reported to operate for full–HD 1080p@60.

In this thesis, an improved real–time digital CNN architecture capable of processing full–
HD 1080p@60 video images is proposed, described in VHDL and realized on two dif-
ferent FPGA devices. The architecture is designed to have superior properties over its
predecessors. First, the architecture is highly scalable, which is proven by implementing
the same design on a high–end and a low–cost FPGA device. Second, most parts of the
structure are designed to be reconfigurable and flexible, e.g., the size of the CNN tem-
plates, fixed–point bit–widths of all signals, the number of iterations, etc. Third, most
parameters like template coefficients, bias, boundary conditions and bypass modes are
programmable at runtime. The architecture proposed in this thesis is the only CNN im-
plementation reported in the literature that assemble all of these features together.

Keywords: cellular neural networks, image processing, field–programmable gate-arrays,
real–time systems

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATRAL AND APPLIED SCIENCES
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ÖZET

BİR HÜCRESEL SİNİR AĞI EMÜLATÖRÜNÜN TASARLANMASI VE FPGA
ÜZERİNDE GERÇEKLENMESİ

Nerhun YILDIZ

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Doktora Tezi

Tez danışmanı: Prof. Dr. Vedat TAVŞANOĞLU

İnsanlığın başından itibaren günlük hayatımızı etkileyen ve değiştiren en önemli etkenler-
den birinin teknoloji olduğu şüphesiz bir gerçektir. Teknolojideki gelişmenin son birkaç
on yıl içinde iyice hızlanmasıyla bu değişimlerin sıklığı da artmıştır. Örneğin birkaç
yüzyıl önce yaşamış bir insanın hayatı boyunca gözlemleyebileceği değişim sayısı en
fazla bir iken, günümüzde yaşayan yaşı ilerlemiş bir bireyin hayatı televizyon, tran-
sistör, uydu, bilgisayar, cep telefonu ve diğer taşınabilir elektronik cihazlar gibi teknolojik
gelişimler ile defalarca etkilenmiştir.

Teknolojideki bu hızlı gelişim aynı zamanda araştırma konularında da yeni eğilimlerin or-
taya çıkmasına neden olmaktadır. Eğilimin arttığı bu konulardan biri de görüntü işlemedir.
Bundan 20 yıl öncesine kadar uzmanlığı görüntü işleme olan kişiler yalnızca televizyon ve
video kamera tasarım mühendisleri ile konuyla ilgilenen akademisyenlerdi. Ayrıca döne-
min görüntü işleme konularının neredeyse tamamı görüntünün kalite kaybı veya bozulma
olmadan saklanması ve iletilmesi ile sınırlıydı. Sayısal kameraların ortaya çıkıp yaygın-
laşmasıyla beraber görüntü iyileştirmeden görüntü sıkıştırmaya, otomatik hedef takibi ve
tanımadan biyometrik tanıma sistemlerine kadar birçok yeni görüntü işleme fikri ortaya
çıkmaya başladı. Ancak bu fikirlerin hayata geçirilmesinde iki temel problem ortaya çıktı:
(1) Yeni algoritmaların sınırlı zamanda geliştirilmesi ve sistem olarak gerçeklenmesi ile
(2) hesaplamaların gerçek zamanlı olarak yapılabilmesi için hızlı ve paralel işlem yapma
yeteneği olan donanımların gerekmesi.

Öte yandan Hücresel Sinir Ağları (Cellular Neural Networks – CNN) çok boyutlu ortam-
lar üzerinde işlem yapma yeteneği olan bir yapı olarak ortaya atılmıştır ve iki boyutlu ana-
log ve sayısal gerçeklemeleri görüntü işlemede kullanılabilmektedir. Herhangi bir CNN
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gerçeklemesinin en büyük avantajı, aynı yapı üzerinde birçok farklı algoritmanın gerçek-
lenebilmesi sayesinde yukarıda bahsedilen ilk probleme çözüm oluşturmasıdır. Ayrıca
analog CNN gerçeklemelerinin 176× 144 veya daha düşük çözünürlükteki gri seviyeli
görüntüler için 10 kilo çerçeve/s işlem hızına ulaşabilmesi dolayısıyla ikinci problemin
çözümüne de aday olduğu bir gerçektir. Ancak full–HD 1080p@60 (1920×1080 çözünür-
lük, 60 Hz çerçeve hızı) gibi yüksek çözünürlüğe ve orta seviyede çerçeve hızına sahip
görüntüler söz konusu olduğunda analog yapıların hızı gerçek zamanlı gerçekleme sınırı-
nın altına düşmektedir. Sayısal CNN gerçeklemeleri ise analog yapılardaki doğal paralel
hesap özelliğine sahip olmadıklarından dolayı full–HD 1080p@60 için çalışan bir gerçek-
leme literatürde yer almamaktadır.

Bu tezde full–HD 1080p@60 video görüntülerini işleyebilen gelişmiş bir gerçek zamanlı
sayısal CNN mimarisi önerilmiş, VHDL dilinde kodlanmış ve iki farklı FPGA üzerinde
gerçeklenmiştir. Tasarlanan mimarinin önceki tasarımlara göre bazı üstünlükleri vardır.
Bu özelliklerden ilki aynı yapının biri yüksek performanslı ve diğeri düşük maliyetli olan
iki farklı FPGA üzerinde gerçeklenmesi ile kanıtlanan mimarinin ölçeklenebilirliğidir.
İkinci olarak yapının esnekliği ve yeniden uyarlanabilmesi sıralanabilir. Bu sayede CNN
şablonlarının boyu, tüm sinyallerin sabit noktalı aritmetikteki bit genişlikleri ve iterasyon
sayısı gibi özellikler sentezleme öncesinde uyarlanabilmektedir. Üçüncü olarak şablon
katsayıları, eşik değeri, sınır koşulları ve baypas modu gibi birçok parametrenin çalışma
esnasında değiştirilebilmesini sağlayan programlanabilirlik özelliği verilebilir. Bu tez
kapsamında önerilmiş olan CNN mimarisi literatürde tüm bu özellikleri bir araya getirdiği
bildirilmiş olan tek CNN yapısıdır.

Anahtar Kelimeler: Hücresel sinir ağları, görüntü işleme, alanda programlanabilir kapı
dizileri, gerçek zamanlı sistemler

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Cellular Neural Networks (CNN) is a parallel computing paradigm [1] having many ap-

plications like image processing, artificial vision, solving partial differential equations,

etc. A p–dimensional q–layer CNN structure consists of a p–dimensional spatial grid of

neural cells and each cell contains q memory nodes and q inputs. The spatio–temporal

dynamics of the system are tuned for specific tasks by defining local spatial synaptic in-

terconnections between the neural cells. Generally, a 2–D 1–layer CNN structure with

space invariant neural weights [2] is used in image processing applications, which is the

focus of this thesis.

A Continuous–Time CNN (CT CNN) implementation [3, 4] has many advantages: it is

fully parallel by its nature, its convergence rate is considerably faster then that of a digital

implementation, it is easier to merge the architecture with an imaging sensor and obtain a

focal plane processor to directly process the captured data as a pre–processor or artificial

retina, etc. However, the highest implemented number of cells in a CT CNN processor is

176×144, to date, hence even a low–resolution input comparable to QVGA (320×240)

may only be processed by tiling, i.e., dividing the image to smaller overlapped ‘tiles’ and

process them individually [5]. Consequently, I/O bandwidth limit of a CT CNN proces-

sor makes it impossible to process a video stream like Full–HD 1080p@60 (1920×1080

resolution at 60 Hz frame rate) in real–time.

For a Discrete–Time CNN (DT CNN) implementation, first, a difference equation is ob-

tained by discretization of the differential equation of a CT CNN. Then the difference
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equation may be solved on a software platform like a PC, DSP or GPU; or a custom

hardware can be implemented as an ASIC or on an FPGA device. Software solutions are

easier to design and modify while hardware implementations provide several orders of

magnitude higher performance.

Using an FPGA device for a DT CNN implementation is preferable in most cases: it has

very flexible parallel structures, its processing speed is second only to an ASIC implemen-

tation and it is cheaper than an ASIC solution. Consequently, the most notable DT CNN

implementations [6, 7, 8] are implemented on FPGA devices, while [9] is implemented

as ASIC. An alternative FPGA architecture of DT CNN was proposed in [10], which is

named as Real–Time CNN Processor (RTCNNP, RTCNNP–v1). The architecture pro-

posed in this thesis is a second–generation RTCNNP design called RTCNNP–v2 [11],

[12]. Note that, in order to avoid confusion, the generic names of the proposed architec-

tures, RTCNNP–v1 and RTCNNP–v2, are later renamed as Steadfast–1 and Steadfast–2,

respectively.

This is also worth stressing out that, this research was supported by The Scientific and

Technological Research Council of Turkey (TÜBİTAK), under project number 108E023,

and a total number of four PhD theses are introduced from the project. The first thesis [13]

is the foundation of the others, including this one, in which the Steadfast–1 architecture

was proposed. In the second thesis, a CNN based Gabor–type filter implementation is

reported [14, 15]. Third, in this thesis, the Steadfast–2 architecture is proposed, which

also is the backbone of the second and fourth theses. Also note that, many common blocks

of Steadfast–2 and the Gabor–type CNN implementation proposed in [14] are designed as

a team by the author of these theses. Finally, using the architecture proposed in this thesis

to realize 2– or multi–layer CNN structures is the topic of the fourth thesis [16], which is

still an ongoing work and expected to be finished soon.

Also note that, FPGA implementations of DT CNN are not limited to the ones referred

in this thesis, however, the other structures reported in the literature are not designed

to be general–purpose single–layer 2-D CNN emulators. For example, the architecture

proposed in [17] is a class of DT CNN implementation, which is tailored for a specific task

2



of active wave computing. These class of application–specific FPGA implementations are

beyond the scoop of this thesis.

1.2 Aim of Thesis

A 2–D CNN structure is considerably suitable for image processing applications, as many

image processing algorithms can be implemented on the same structure, eliminating the

need to use mixed structures and continuously changing them for the needs of new ap-

plications. However, as mentioned in Section 1.1, the main bottleneck of CT CNN im-

plementations reported in the literature is that, tiling should be used in order to process

even the most basic resolutions like QVGA (320× 240), hence they are not suitable for

high–resolution real–time processing. On the other hand, even if some DT CNN imple-

mentations partly overcome this problem and has the ability to be used for resolutions

up to VGA@60 (640× 480 resolution, 60 Hz frame rate), they are still insufficient for

modern resolutions like Full–HD 1080p@60, let alone for the military or aerospace ap-

plications where resolutions of the images are even higher.

Aim of this work is to design a real–time DT CNN implementation supporting not only

higher frame–rates, but also higher resolutions, including Full–HD 1080p@60. Conse-

quently, it will be possible to use CNN in image processing applications of most modern

systems.

1.3 Original Contribution

As mentioned in Section 1.1, the Steadfast–1 [13] structure (RTCNNP–v1) is the basis

of the architecture proposed in this thesis. However, Steadfast–1 is a static design, fixed

to VGA@60 resolution and frame rate, with only pre–synthesis configurable template

coefficients and bias. Furthermore, adding or changing any part of the design leads to

a redesign process of the central processing unit, which makes the design inflexible, not

reconfigurable and not reusable, ultimately making the design impractical.

The most original contribution of this thesis is the introduction of a local control structure

for the pipelined CNN emulator arrays, hence making the new design almost infinitely

3



flexible, reconfigurable and reusable. The local control structure makes it possible to

design a pre–synthesis configurable architecture and easily describe it in VHDL. The

second originality is the runtime programmability of the new architecture. The template

coefficients, bias value and many other parameters are designed to be programmable,

which makes the design practical to be used in image processing applications.

Finally, two prototypes are introduced on both a high–end and a low–cost FPGA device,

capable of processing Full–HD 1080p@60 images at real–time, which makes the system

the fastest CNN implementation, to date. Furthermore, processing speed of the high–end

prototype is limited by the DVI I/O interface hardware, and the FPGA implementation is

in fact faster by a factor of 2.5–3.
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CHAPTER 2

THE CELLULAR NEURAL NETWORK STRUCTURE

In the most general case, a CNN structure is a p–dimensional q–layer spatial grid of neural

cells, with each cell containing q memory nodes, each memory node having an input, and

has space–variant local interconnections between cells. However, mostly m–neighborhood

one–layer space–invariant continuous–space CNN structures are used in image process-

ing applications, which is the focus of this thesis. A representation of a 2–D CNN grid

and its local interconnections are given in Figure 2.1, where it is assumed that only the

immediate neighbors are connected with each other, which is called a one–neighborhood

CNN.

2.1 Mathematical Model of a Continuous–Time One–Layer Space–Invariant CNN

The Chua–Yang CNN model of an m–neighborhood one–layer space–invariant continuous–

time CNN with I× J rectangular array of C(i, j) cells is completely described in [2] by

the cell state and output equation pair

ẋi j(t) =−xi j(t)+
m

∑
k,l=−m

(
aklyi+k j+l(t)+bklui+k j+l

)
+ z, (2.1)

yi j(t) = f (xi j(t)) = 0.5
(∣∣xi j(t)+1

∣∣− ∣∣xi j(t)−1
∣∣) , (2.2)

where (i, j), i∈{1,2, ...I}, j∈{1,2, ...J} are the spatial Cartesian coordinates, xi j(t) is the

cell state at time t, ui j is the constant–valued cell input, akl and bkl , k, l ∈ {−m, ...0, ...m},

m ∈ N are the constant–valued feedback and input coefficients, respectively, z is the
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Figure 2.1 A 32×32 spatial grid of a CNN, a 7×7 section of the grid and its spatial
interconnections

threshold value and yi j is the cell output (Fig. 2.2a). Eq. (2.1) can be written as

ẋi j(t) =−xi j(t)+A~Yi j(t)+B~Ui j + z, (2.3)

where ~ is a convolution–like operator called template–dot–product, A and B are the

feedback and feed–forward templates, Yi j(t) and Ui j are the translated masked output

and input, respectively. For m = 1

A =


a−1−1 a−10 a−11

a0−1 a00 a01

a1−1 a10 a11

, B =


b−1−1 b−10 b−11

b0−1 b00 b01

b1−1 b10 b11

,

Xi j(t) =


xi−1 j−1(t) xi−1 j(t) xi−1 j+1(t)

xi j−1(t) xi j(t) xi j+1(t)

xi+1 j−1(t) xi+1 j(t) xi+1 j+1(t)

, Ui j =


ui−1 j−1 ui−1 j ui−1 j+1

ui j−1 ui j ui j+1

ui+1 j−1 ui+1 j ui+1 j+1

.

A 3–D block diagram of a one–neighborhood CT CNN with 3× 3 templates is given in

Fig. 2.2b.
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(a) 2–D block diagram of a CNN

(b) 3–D block diagram of a one–neighborhood CNN

Figure 2.2 Block diagrams of a CNN structure

2.2 Mathematical Model of a Discrete–Time One–Layer Space–Invariant CNN

The mathematical model of a Discrete–Time CNN (DT CNN) is obtained by sampling

(2.3) and (2.2) in the time domain by

xi j(t)
]

t=nTs
= xi j(nTs), xi j(n)

ẋi j(t)
]

t=nTs
= ẋi j(nTs), ẋi j(n)

yi j(t)
]

t=nTs
= yi j(nTs), yi j(n)

and applying Forward–Euler approximation

ẋi j(n)∼=
xi j(n+1)− xi j(n)

Ts
(2.4)
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to the time–derivative in (2.3), which yields the cell state and output equation pair.

xi j(n+1) = xi j(n)+Ts
(
− xi j(n)+A~Yi j(n)+B~Ui j + z

)
, (2.5)

yi j(n) = f (xi j(n)) = 0.5
(∣∣xi j(n)+1

∣∣− ∣∣xi j(n)−1
∣∣) . (2.6)

2.3 Mathematical Model of the Full Signal Range Model of a DT CNN

Although it is possible to implement (2.5) directly, Full Signal Range (FSR) model of

DT CNN is easier to implement. The FSR model is originally proposed for analog CNN

implementations, as in [18], where it is stated that any voltage in a chip does not exceed

the rail voltages, hence the implemented CNN differs from the original Chua–Yang CNN

model. In other words, physical voltage of a state node does not exceed ±1V , remaining

in the full signal range. Consequently, all CT CNN implementations actually use the FSR

model of CNN, and all CNN templates defined in the literature are designed work on both

models.

Designers of most DT CNN implementations are inspired by the idea and applied the

FSR model to a DT CNN, however, the method of obtaining the FSR model of a DT

CNN is not clearly described in the literature. The new model is obtained by changing

the difference equation given in (2.5) by defining

yi j(n), xi j(n) (2.7)

and modifying (2.6) to

yi j(n+1), f (xi j(n+1)). (2.8)

Note that, the operation is actually not about arranging a mathematical equation, but defin-

ing a new discrete–time model over the old one by modifying one section of a difference

equation pair while keeping the other part as it is. Combining (2.7), (2.8) and (2.5), cell

state equation of the FSR model of a DT CNN is obtained as

xi j(n+1) = (1−Ts)yi j(n)+TsA~Yi j(n)+TsB~Ui j +Tsz,
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which can be written as

xi j(n+1) = Ā~Yi j(n)+ B̄~Ui j + z̄, (2.9)

where new template coefficients and threshold are defined by

ākl =

 (1−Ts)+Tsakl k, l = 0,

Tsakl otherwise,

b̄kl = Tsbkl

z̄ = Tsz.

Combining (2.9) and (2.8), output equation of the FSR model of DT CNN is obtained as

yi j(n+1) = f
(
Ā~Yi j(n)+ B̄~Ui j + z̄

)
. (2.10)

In a digital implementation, it is seen from (2.10) that it is no longer necessary to store

xi j(n) as opposed to (2.5), as all information regarding xi j(n) is transferred to yi j(n).

On the other hand, yi j(n) can be represented with less bits in fixed–point arithmetic, as

|yi j(n)| ≤ 1, hence integer part of yi j(n) consist of only a sign bit, which means less

memory. In other words, the idea is to let xi j(n+ 1) to grow during the computation

process, then pass the final value from a saturator to obtain yi j(n+ 1), and finally store

only yi j(n+1) for the next iteration while wiping xi j(n+1).

Note that, the expression ‘FSR model of DT CNN’ henceforth shortly referred to as

‘DT CNN’, as other mathematical models of DT CNN are beyond the scope of this the-

sis.
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CHAPTER 3

CELLULAR NEURAL NETWORK IMPLEMENTATIONS

Implementing or using a Continuous–Time CNN (CT CNN) architecture over a traditional

image processing structure has many advantages:

• CNN is a highly regular structure which makes it easier to implement;

• the spatio–temporal dynamics of CNN is well defined with a mathematical model,

as opposed to many image processing algorithms based on empirical results;

• several image processing tasks can be realized on the same CNN structure by simply

changing the templates, bias, initial conditions and boundary conditions;

• and the computation is carried out very fast due to the parallel structure of CNN.

However, a considerable implementation difficulty is introduced as the input image gets

larger, and implementing a larger grid is either impossible or not feasible after a certain

point. Consequently, grid size of the largest CT CNN implementation is 176× 144, to

date. On the other hand, none of the general–purpose Discrete–Time CNN (DT CNN)

implementations are reported to be capable of working on images larger than 640× 480

resolution with 60 Hz frame rate, in real time, except for the previous publications of this

thesis [11, 12], which proves the added value of this thesis.

In this chapter, the most notable general–purpose CT CNN and DT CNN implementations

of the literature are summarized and their implementation methods are discussed.
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3.1 Continuous–Time CNN Implementations

Continuous–time implementation of a 2–D CNN is relatively straightforward: the 2–D

grid of a CNN is directly transferred to an analog chip. A 32× 32 CNN grid is given

in Figure 2.1, where each cell contains a capacitive (analog) memory node and spatial

interconnections. Circuit model of a C(i, j) cell and simplified block diagram of a CT

CNN implementation are given in Figure 3.1 and 3.2, respectively.

3.1.1 CT CNN Implementation Examples

The most notable CT CNN implementations are ACE16K [3] and Eye–RIS [4], whose

grid sizes are 128× 128 and 176× 144, respectively. Both implementations are CNN

Universal Machines (CNN–UM), that is, they are designed to be stored programmable

array computers for implementing sequences of template operations with local analog

and logic memory [2]. In other words, they are implemented not only to compute a

single CNN equation, but also store/reload their outputs as intermediate results to realize

complex tasks. For example, an enhanced edge detection algorithm can be implemented

by: saving an input, applying dilation operation to the input and saving the result, applying

erosion operation to the input and saving the result, carry out an XOR operation between

two results and relay the final result to the output.

3.1.2 Processing Large Images with Smaller Grids

Implementing a CT CNN grid larger than 176×144 is not feasible, hence larger images

are processed with a method called tiling, i.e., dividing the image to smaller pieces called

tiles, whose sizes are the same or smaller than that of the grid, and processing them

individually. Some possible tiling schemes are given in Figure 3.3. The tiles should be

overlapped to eliminate boundary effects: overlapping one–pixel may be sufficient for a

class of DT CNN implementation, but at least a few pixels should be overlapped for CT

CNN. Note that, the amount of overlapping depends on the CNN templates that will be

realized on an implementation, hence it may be necessary to be excess if the template

relates pixels farther apart.
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Fig. 2.25. Cell realization of a standard CNN cell C(i, j). All diamond-shape symbols denote a

voltage-controlled current source which injects a current proportional to the indicated controlling

voltage ukl or ykl , weighted by bkl or akl , respectively, except for the rightmost diamond f (xi j ) in

the internal core which is a nonlinear voltage controlled current source, resulting in an output

voltage yi j = f (xi j ).

Figure 3.1 Analog circuit model of a CT CNN cell [2]

Figure 3.2 Block diagram of a CT CNN implementation
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(a) No tilling (b) One–pixel overlapping, only suitable for a
pipelined DT CNN implementation

(c) Partial overlapping, suitable for most CNN
implementations

(d) Excess overlapping, rarely required

Figure 3.3 Tiling schemes

For example, two CNN simulations are carried out on a PC with grid sizes of 176×144

and 320× 240, where templates of a Gauss–type CNN low–pass filter are chosen, and a

320× 240 image is processed with and without tiling (Figure 3.4). The original image

and the expected result of the Gauss–type filter are given in Figure 3.4a and 3.4b, while

the results for insufficient and sufficient overlapping are obtained as in Figure 3.4c and

3.4d, respectively.

However, while partial or excessive overlapping schemes are suitable for many CNN

templates, some may be impossible to realize by tiling. For example, global connectivity

detection [19] templates are designed to delete open and one–pixel wide curves as seen

in Figure 3.5a and 3.5b, yet even a properly overlapped tiling scheme with 22× 22 tiles

gives a different result (Figure 3.5c).
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(a) A 320×240 test image (b) Full–frame output of a CNN Gauss filter

(c) Tiled output with one–pixel overlapping (d) Tiled output with partial/excess
overlapping

Figure 3.4 A tiling example that shows the input and results of a CNN Gauss filter
simulated for three different tiling schemes: full–frame, one–pixel overlapped and

partially overlapped

(a) A 36×36 test image (b) Intended output (c) Tiled output with a
proper overlapping

Figure 3.5 Another tiling example for global connectivity detection templates, where
tiling is failed
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In short, a CT CNN implementation has some shortcomings. First, grid size is limited

by some feasibility issues of the analog IC technology. Moreover, tiling is not always

reliable for some CNN templates, hence these networks can only be simulated or emu-

lated on a digital platform for large images. Second, bit depth of a CT CNN is limited to

7 bits due to the electrical noise and crosstalk of an analog implementation. Consequently,

even obtaining a regular 256 level gray–scale result is not possible with CT CNN. Finally,

as opposed to a digital implementation, modifying an analog IC design is a very com-

prehensive work, which can almost be considered as a new project. As a result, digital

implementations of CNN are preferable in most cases.

3.2 Discrete–Time CNN Implementations

A CT CNN implementation is a fully–parallel analog processor array by its nature. On

the other hand, the difference equation (2.10) can only be solved by multiple iterations.

Consequently, fully–parallel implementation method described in Section 3.1 is not appli-

cable to a DT CNN. Note that, it is still possible to implement a fully parallel iterator with

dedicated memory and computation resources assigned to each cell, however a tremen-

dous amount of computation resources are required for such a design.

The most basic digital implementation of a CNN is a simulation on a processor–based

platform like a PC. Considering that template–dot–product operator is actually a convolu-

tion–like operator, calculating one iteration of (2.10) means computing two convolutions

and summing the results and the bias. The computation can be carried out by raster

scanning the input and output images (matrices) U and Y, respectively, i.e., scanning the

matrices in the order given in Figure 3.6, and computing outputs of each cell one by one.

The result of an iteration is computed at the end of the raster scan and the operation is

repeated N times, which is the number of Euler iterations desired. The processing work–

flow can be summarized like the following:

1. set line and column indexes to the first cell,

2. read inputs and outputs from the cells being in m–neighborhood of the given cell,
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Figure 3.6 Row–wise packing scheme of raster scanning

3. perform the template–dot–product and addition operations,

4. save the result,

5. if not the last cell, set indexes to the next cell; else, set indexes to the first cell for

the next iteration,

6. go to step 2.

Note that, computing all iterations in a loop is extremely time consuming, and parallel or

pipelined processors should be used for most real–time image processing tasks. Conse-

quently, the computation process should be divided to sub–processes in order to make it

suitable for multiple processors.

3.2.1 Hardware Implementation Methods of DT CNN

The processing work–flow can directly be implemented on a digital hardware like an

FPGA (Figure 3.7a). Note that, even if a tiling scheme is used, then just the intermediate

results are tiled instead of the final results, which only corresponds to change the compu-

tation order. Consequently, full-frame processing or tiling does not affect the final result

in any way, which is not the case of an analog implementation (Figure 3.7b and 3.7c).

However, new problems are introduced with a digital implementation of CNN:

Problem 1: Arises when too much I/O access is required from/to external hardware

or RAM to read/write intermediate computation results.

Problem 2: Resources of the hardware may be insufficient for the implementation

of multiple processors,
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(a) A DT CNN implementation with a single iteration unit

(b) Full–frame processing result (c) Tiled output with one–pixel overlapping

Figure 3.7 Block diagrams of a DT CNN implementation with a single iteration unit, and
simulation results of the implementation

Problem 3: Caused when the input pixel rate is higher than the maximum operating

frequency of the hardware resources.

The first and third problems are solved by using multiple processors and dividing the com-

putation in temporal and spatial domains, respectively, while processors are distributed

among many hardware units to solve the second problem.

3.2.1.1 Dividing the Computation in the Temporal Domain

The first problem concerns memory bandwidth of the external RAM unit: performing

N iterations means accessing the same memory locations N times to read and N times

to write, 2N in total, as opposed to only 2 of an analog design. The solution is to use

a pipelined processor array instead of a single iterator, which corresponds dividing the

spatio–temporal computation flow in the temporal domain, hence the bandwidth require-

ment is divided by the number of iteration units. For example, if 2 and 4 processors are

pipelined, the required bandwidth will be N and N/2, respectively, as opposed to 2N of
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(a) A DT CNN implementation with two pipelined iteration units

(b) A DT CNN implementation with two pipelined iteration units

Figure 3.8 Pipelining in a DT CNN implementation: dividing the workload in time
domain

Figure 3.9 A fully–pipelined DT CNN implementation

the single processor scheme (Figure 3.8).

The ultimate solution to the first problem is to make the design fully–pipelined, i.e.,

adding as much iteration units as the processing requires, which is called unrolling the

iterations. In other words, a processor array containing N processors can be implemented

on hardware to completely eliminate excess memory accesses as given in Figure 3.9,

where the output of the last iteration unit is the final result. Fully–pipelining solves the

memory bandwidth problem while introducing the second problem: what if the hardware

resources are not sufficient to implement N processors?

The second problem is solved by using multiple digital hardware units, e.g., using multi-

ple FPGA devices to implement a longer pipeline (Figure 3.10). Note that, the bandwidth
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Figure 3.10 A fully–pipelined DT CNN implementation with multiple hardware units

of the intermediate data flow between hardware units may be slightly higher than that

of the main input, because in fixed point arithmetic the intermediate result should gener-

ally be represented with higher number of bits then the input for accuracy. However, in

most cases it is trivial to customize the intermediate bandwidth, hence it is not a serious

problem.

3.2.1.2 Dividing the Computation in a Spatial Domain

The third and the final problem rises when the input data rate is faster than the upper fre-

quency limit of the internal resources of the digital hardware. For example, the pixel rate

of a 4K@60 (3840×2160 resolution at 60 Hz frame rate) video signal is approximately

594 MHz, which is above or too close to the maximum operating frequency of any state of

the art FPGA device, including the high–end products. Moreover, this problem can not be

solved by pipelining, as we can show by analogy that the problem is not about the length

of the pipeline, but the cross–section of it. In this case, adding a second pipeline parallel

to the first one solves the problem, hence the solution is parallelism (Figure 3.11). There

are several methods to make the computation parallel, however, considering that images

are packed row–wise (Figure 3.6) in most cases, the best way is to divide the image to

vertical stripes and process each stripe with a separate pipeline (Figure 3.12). Note that,

with this method, the computation workload is divided along a spatial domain instead of

the time domain.

The stripes should overlap with each other one pixel on both edges in order to avoid

boundary effects. However, it is not sufficient to overlap only the input stripes, but inter-

mediate results of all iterations should also be overlapped. Consequently, each iteration
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Figure 3.11 A fully–pipelined DT CNN implementation with parallel iteration arrays,
where solutions of all three basic digital implementation problems are covered

unit should communicate with its spatial neighbor in order to send and receive the bound-

ary values.

It is also worth noting that, there are many possible configurations of pipelining and

parallelization while implementing the discussed methods of dividing the computation

workload in the temporal and a spatial domain, respectively. A few practical examples

are given below, where it is assumed that we have an FPGA device that is capable of

holding up to 100 iteration units (processors), and each processor has an upper operating

frequency of 300 MHz.

Example 1 How to process a 1080p@60 video signal for 250 iterations? The pixel fre-

quency of a 1080p@60 video signal is 148.5 MHz, which is lower than 300 MHz, the

maximum operating frequency of a processor, hence parallel processing is not required.

However, at least d250/100e = 3 FPGA devices should be used to implement 250 itera-

tions (Figure 3.13a).

Example 2 How to process a 4K@60 video signal for 40 iterations? The pixel fre-

quency of a 4K@60 video signal is 594 MHz, higher than 300 MHz, consequently, at
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Figure 3.12 A parallelization scheme suitable for the processing of a row–wise packed
image

least d594/300e = 2 stripes are required. In this case, 2× 40 = 80 pipelined processors

are necessary, which means using a single FPGA device is sufficient (Figure 3.13b).

Example 3 How to process a 8K@60 video signal for 40 iterations? The pixel frequency

of a 8K@60 video signal is 2.37 GHz, hence at least d2370/300e= 8 stripes are required.

As each stripe requires 40 pipelined processors, at least d8×40/100e= 4 FPGA devices

should be used. Although there are many possible configurations, a possible solution

is to divide the number of processors equally between four FPGA devices a given in

Figure 3.13c.

3.2.2 DT CNN Implementation Examples

There are many DT CNN implementations of CNN, however, most of them are experi-

mental and far from being usable in image processing tasks. Consequently, only the most

notable DT CNN implementations are summarized in this section.

3.2.2.1 Implementation of Zarandy et al. (CASTLE)

The first notable DT CNN implementation is CASTLE [9], an ASIC implementation,

where both partial pipelining and parallelization schemes are used. In this design, a K×L
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(a) A solution of example 1

(b) A solution of example 2

(c) A solution of example 3

Figure 3.13 Possible hardware solutions of the examples

processor matrix can be implemented, where K is the number of iterations unrolled and

L is the number of vertical stripes that the input image, consequently the cell array, is

divided to (Figure 3.14). The pipelining scheme used in CASTLE is not full, i.e., iteration

loop is not fully–unrolled, hence one intermediate iteration result out of K iterations are

saved/loaded to/from an external memory unit.

Internal structure of a CASTLE processor is given in (Figure 3.15). The processor has
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three front input buses for the states xi j(n), constants gi j and template select words T si j.

gi j is the part of (2.10) which is constant through the Euler iterations:

gi j = B̄~Ui j + z̄ (3.1)

which is computed once for every pixel of each input image and carried as a constant

through all Euler iterations. Consequently, it is sufficient for each processor to perform

one template–dot–product operator for each iteration instead of two. Template select

word is an indicator that is used to select one of the 16 templates stored in the template

memory, which can be used to implement space–variant templates. The I/O busses LBUS

and RBUS are used to communicate with the neighboring processors to give and take the

boundary values.

A CASTLE processor stores a three line belt of the input state as shown in Figure 3.16, as

states from one upper and one lower lines are required for the computation of a template–

dot–product operation, for one neighborhood CNN (m = 1). Contents of each line buffer

is copied to the next one at the end of each line.

Arithmetic unit of CASTLE is given in Figure 3.17, which is designed to perform a 3×3

template–dot–product operation in three clock cycles. Three states and template coeffi-

cients, S and T , respectively, are selected from the internal buffers of the processors at

each clock cycle and multiplied by each other. Consequently, nine multiplications of a

3×3 template are carried out in three clock cycles. ACC/ACT registers are master/slave

2.1. The CASTLE architecture 24
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Figure 2.1: The CASTLE array

Figure 2.2: The belt stored from the image

columns of processors. Each line of processors do one iteration and sends the results
to the processors one line below. The processors can communicate via dedicated lines
between the columns. The operation of the processors is controlled by the global con-
trol unit. The processors require a non-overlapping two-phase clock (ph1 and ph2)
for synchronization.

To solve equation (2.4a), in the nearest neighbor case, 9 state, 9 template and 1
constant values should be loaded. The large number of input parameters does not
allow us to provide them from external memory in real time. On the other hand the
whole image can not be stored on the chip because huge area is required to implement
such a large memory. The small number of templates makes it possible to store them
on chip but still 10 values should be loaded for each cell. The solution of this problem
is to store a 3-pixel height belt from the image on the chip as shown in Figure 2.2.
This solution reduces the I/O requirements of the processor to load one state, one
constant and one template select values and to save the computed cell value. The
values stored in the belt are required in the computation of the cells in the subsequent
two lines. The currently processed cell and its neighborhood can be represented by a
window of 3×3 elements which is continuously moving right.

Figure 3.14 Processor organization of the CASTLE architecture [6]
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Figure 2.3: Structure of one CASTLE processor core

The main parts of one CASTLE processor core are the register array, the template
memory, the control unit and the arithmetic unit. The register array stores the state
values, the constant values and the template select bits. These values can be loaded
via IBUS1, IBUS2 and IBUS3 respectively. The template select bits are associated
with every cell, which makes it possible to use space variant templates. Template
values are stored in the template memory, which can store 16 different templates.
The template values can be loaded into the template memories via template input
bus (TBUS). Four independent buses are available for inter-processor communication;
these are the LBUSIN, RBUSIN, LBUSOUT and RBUSOUT buses. The operation of
the processor is controlled by the control unit. The different operating modes can be
set via the command bus (CBUS). The three main operating modes are corresponding
to the accuracy of the computation: these are the 1 bit logical mode, the 6-bit
resolution mode and the 12-bit resolution mode. By decreasing the accuracy the
operating speed of the processor can be significantly increased and accuracy can be
traded for performance.

The structure of the arithmetic unit, which contains 3 multipliers to multiply the
state and template values, 3 adders to sum the partial products and two registers
to store temporary results, is shown in Figure 2.4. The ACC and ACT registers
are master-slave registers where ACC is the master and ACT is the slave. By using

Figure 3.15 Block diagram of a CASTLE processor [6]
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Figure 2.1: The CASTLE array

Figure 2.2: The belt stored from the image

columns of processors. Each line of processors do one iteration and sends the results
to the processors one line below. The processors can communicate via dedicated lines
between the columns. The operation of the processors is controlled by the global con-
trol unit. The processors require a non-overlapping two-phase clock (ph1 and ph2)
for synchronization.

To solve equation (2.4a), in the nearest neighbor case, 9 state, 9 template and 1
constant values should be loaded. The large number of input parameters does not
allow us to provide them from external memory in real time. On the other hand the
whole image can not be stored on the chip because huge area is required to implement
such a large memory. The small number of templates makes it possible to store them
on chip but still 10 values should be loaded for each cell. The solution of this problem
is to store a 3-pixel height belt from the image on the chip as shown in Figure 2.2.
This solution reduces the I/O requirements of the processor to load one state, one
constant and one template select values and to save the computed cell value. The
values stored in the belt are required in the computation of the cells in the subsequent
two lines. The currently processed cell and its neighborhood can be represented by a
window of 3×3 elements which is continuously moving right.

Figure 3.16 Memory belt stored in a CASTLE processor [6]

registers used to supply either the constant g, or intermediate result of the same addi-

tion operation computed at a previous clock cycle to the adder tree. Finally, the result is

shifted, rounded and relayed to the output.

CASTLE has a considerably fixed architecture, as it is targeted for ASIC implementations.

Only 3×3 templates are implemented with limited space–invariance support; although a

CASTLE architecture with 5×5 templates is proposed in [20], but is not reported as im-

plemented. Direct implementation of a multi–layer CNN is also not possible on CASTLE.

Furthermore, precision of its arithmetic operations are programmable to 1, 6 or 12 bits of

resolution, which is not sufficient for many CNN implementations [6].

3.2.2.2 Implementation of Nagy and Szolgay (Falcon)

Falcon [6] is an improved CASTLE architecture, implemented on an FPGA device. The

processor organizations of Falcon and CASTLE are the same, hence again, a K×L proces-
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Figure 2.4: Structure of the arithmetic unit

3 multipliers the template operation can be performed in a row-wise order in four
steps. This gives a reasonable balance in implementation between area and processing
performance. In the first step the g value is loaded into the ACT register. In the next
cycle the first row of state and template values is multiplied and the partial results
with the contents of the ACT register are summed and stored in the ACC/ACT
register. In the following two cycles the next two template lines are processed and
the final result is stored in the ACC register. After shifting, rounding and limiting the
results in the [-1,+1] interval the updated cell value along with the g and template
select values are sent to the next processor a row below.

To understand the differences between the CASTLE and the Falcon architecture
the detailed data-flow of the CASTLE architecture will be presented here. The struc-
ture of the register array is shown in Figure 2.5. The three main lines in the state
memory are named ARL 1, ARL 2 and ARL 3. These are 40 element wide vectors in-
dexed from 1 to 40. The CASTLE architecture uses an additional line named ARL 0
to store the incoming values. This line is not used in the computation and employed
as a temporary storage. Two additional columns are also added to the memory to
store values from the neighboring processors or to store the doubled first and last
column of the cell array if the processor does not have neighbor at that side. These
six registers are called ARL x 0 and ARL x M where x is the number of the corre-
sponding line. While processing the cell array the sliding window around the actually
processed cell is fixed at the beginning of the cell memory and the cell values are

Figure 3.17 Arithmetic unit of a CASTLE processor [6]
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line vertical shift cycles of the CASTLE architecture also can be eliminated. The
area requirement of the main memory is reduced and the control unit is simplified by
using this structure. The size of the required memory unit for one processor can be
computed by the following expression:

w(3 · sw + 2(cw + tsw)) (3.6)

3.1.2 The Mixer unit

The structure of the mixer unit is shown in Figure 3.3. This unit contains one parallel
in serial out shift register, two shift registers to store the window around the currently
processed cell and two additional shift registers which are used to store data from

Figure 3.18 Block diagram of a Falcon processor [6]

sor matrix is implemented (Figure 3.14). Falcon has a very flexible computation structure,

as opposed to CASTLE, which can be configured to realize multi–layer or space–variant

CNN structures. As a result, it is considerably easy to configure Falcon to solve partial

differential equations, or use it as a CNN–UM.

Block diagram of a Falcon processor unit is given in Figure 3.18, which is an improvement

over the original CASTLE processor. First, a new left to right I/O bus is added to increase

the control over the boundary conditions. Second, line buffers of the memory unit are

replaced with shift registers as shown in Figure 3.19, which saves time by eliminating the

process of copying contents of each line buffer to the next one. The multiplexed design

makes it possible to implement zero–flux boundary conditions. Third, a more complex

mixer unit is used to select the necessary states from line buffers and boundaries and relay

them to an arithmetic unit (Figure 3.20). Finally, a pipelined Falcon arithmetic unit is

designed as shown in Figure 3.21.
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line vertical shift cycles of the CASTLE architecture also can be eliminated. The
area requirement of the main memory is reduced and the control unit is simplified by
using this structure. The size of the required memory unit for one processor can be
computed by the following expression:

w(3 · sw + 2(cw + tsw)) (3.6)

3.1.2 The Mixer unit

The structure of the mixer unit is shown in Figure 3.3. This unit contains one parallel
in serial out shift register, two shift registers to store the window around the currently
processed cell and two additional shift registers which are used to store data from

Figure 3.19 Block diagram of the memory unit of a Falcon processor [6]

3.1. Nearest neighborhood sized templates on the Falcon architecture 35

StateIn(3)�

StateIn(2)�

StateIn(1)�

RightIn�
LeftIn�

S�1� S�2� S�3�

LeftNew�

Le
ft
R
eg

s�

R
ig
ht
R
eg

s�

Mix3�
Mix2�Mix1�

Figure 3.3: Structure of the mixer unit

the left and right neighbor of the processor. The three Mix registers are connected
serially and its outputs are also connected to the Sx inputs of the arithmetic unit.
Communication between the neighboring processors is carried out through the Leftin,
LeftNew and RigthIn inputs and the LeftRightOut output. The RightIn and LeftIn
inputs of the processor are connected to the corresponding LeftRightOut output of
the neighboring processors. Internally the LeftRightOut output is connected to the
last register of Mix3. The LeftNew input is an auxiliary bus, which is connected to
the StateIn input of the memory unit of the processor on the left side.

To describe the operation of the mixer unit a simple numbered image, which is
shown in Figure 3.4, is used. The test image is 48 cell wide and partitioned between
three processors so each processor works with a 16 cell wide slice. Pixels assigned to
the left and right processor are labeled by L and R respectively. The data flow of
the mixer unit is shown in Figure 3.5. During normal operation when inter-processor
communication is not occurred three clock cycles are required to provide all three
lines of the window around the currently processed cell to the arithmetic unit (Step
9-12 in Figure 3.5). In the first cycle (Step 9) the new column of pixels is loaded from
the main memory to the Mix3 registers via the StateIn buses and the last value from
the previous column is shifted into the Mix2 registers. In the following two cycles
the values in the Mix3 registers are shifted down and loaded into the Mix2 registers
while the contents of the Mix2 registers are loaded into Mix1. During these three
clock cycles (Step 10-12) all lines of the window appear at the outputs of the mixer

Figure 3.20 Block diagram of the mixer unit of a Falcon processor [6]

It is also proposed in [6] to modify the architecture of a Falcon processor to support

m = 2 and m = 3 neighborhoods; 5× 5 and 7× 7 templates, respectively; however, it is

not reported to be implemented as a working prototype as of to date.

The bird’s–eye view of the implemented Falcon emulated CNN system is given in Fig-

ure 3.22, which is a CNN–UM implementation running by a host computer. The image

I/O and control signals are merged in a host bus. A host interface control unit is re-

sponsible to control the main control unit and write/read the input and output to/from the

external memory.

The most recent and the most capable Falcon implementations are reported in [21] and

[22]. The architecture reported in [21] include a modified Falcon processor and the whole

system is capable of processing full–HD 1080p@50 (1920×1080 resolution, 50 Hz frame

rate) image streams in real–time and give a collision detection output. However, only the
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The configurable multipliers in the CASTLE architecture are 12 bit wide in the 6

and 1 bit precision modes the faster operation is achieved by simply disabling those

parts of the multipliers which are not required in the computation. This means that in

6 bit mode half of the arithmetic unit is disabled while the 1 bit mode uses a separate

”arithmetic” unit. The Falcon architecture is implemented on programmable devices

so it is possible to design the arithmetic unit more efficiently by utilizing only the

required amount of resources. Area requirements of the arithmetic unit with different

state and template accuracy are shown in Figure 3.8.

We used the pipelined multiplier IP core from the Xilinx CoreGenerator in the

arithmetic unit. These multipliers are optimized for Virtex FPGAs and also pre-

placed to make placing and routing easier. The multiplier employs a tree structure to

sum the partial products and the pipeline registers are placed between the tree levels.

It means that the latency of the multiplier depends on the width of its narrower input.

The size of the arithmetic unit is mainly determined by the area requirements of the

three multipliers. If the template precision is held constant and the state precision is

increased the area required to implement the arithmetic unit is increased linearly.

The Xilinx CoreGenerator also makes it possible to utilize the on-chip dedicated

multiplier resources on the Virtex-II FPGAs. If the precision is larger than 18 bits,

several dedicated multipliers and additional adders are required to compute and sum

the partial products of the multiplication. In this case the Xilinx CoreGenerator

Figure 3.21 Block diagram of the arithmetic unit of a Falcon processor [6]

pre–processor part of the system performs at the given resolution and frame rate, and

the Falcon core only processes a 128× 128 part of the image. On the other hand, only

frame rates are discussed in the second paper reported in [22], which lacks the information

about the resolution. In short, none of the Falcon implementations are reported to operate

at higher resolutions and frame rates than VGA@60 (640×480 resolution at 60 Hz frame

rate).

3.2.2.3 Implementation of Malki and Spaanenburg

Malki and Spaanenburg proposed two main DT CNN implementations, where (3.1) is

computed like in the case of CASTLE and Falcon, then multiple iterations are carried

out. The first architecture reported in [23] has a similar approach with Falcon, with a

different architecture. However, the reported pixel throughput of 180 Mpix/s is given as

a simulation result, which is also a unrealistic estimation for a Virtex II 6000 FPGA kit;

consequently, it is not clear that whether it is implemented as a working prototype, or

not. Moreover, as it is stated in Section 3.2.2.2, MAC per second is a better criteria for

performance comparison, which is not used in [23], either.

The second implementation is based on packet switching instead of pure pipelining [7].

In this method, the cell grid is divided to five types of cells; A, B, C, D and E; and the cells
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3.6 Implementation of a real emulated digital CNN

system

Emulated digital architectures described in the previous sections are very powerful

alternatives for CNN emulation. However the simple control unit of the Falcon archi-

tecture is designed to control the computation of one Forward-Euler iteration. To use

the Falcon architecture in real applications several interfaces are required to connect

the processors to the outside world. One possible setup is shown in Figure 3.32.

The FPGA board is connected to the host system via the host bus. This bus can

be a PCI bus, a USB connection or a parallel port interface. To handle information

arriving from the host system a Host Interface is required. This block is responsible to

write initial data to the memory of the FPGA board and read back the results. The

on-board memory is accessed through the Memory Arbitration and Memory Interface

units. The former is responsible for sharing the memory bus between the different

elements inside the FPGA and the later is responsible for handling of the physical

control signals of the memory and provides a transparent interface for the Memory

Arbitration unit. This layered approach makes it possible to change the memory type

without affecting the operation of the other parts of the system.

Operation of the Falcon processor array is controlled by the Main Control Unit

which is responsible to control the template loading sequence and the computation of

arbitrary number of Forward-Euler iterations. Therefore this unit should contain a
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Figure 3.32: Block diagram of a real emulated digital CNN system

Figure 3.22 CNN UM implementation of a Falcon processor array [6]

Figure 3.23 The knight–placement of the neighboring cells [23]

that have a knight jump distance with one another is labeled as the same type (Figure 3.23).

On the other hand, each cell is designed to have two operating modes: computation and

communication. At any given time, only one type of cell group is activated for processing,

while the others are set to communicate with the active cells to supply the data needed

for computation. Communication is carried out by message packets containing data and

row/column addresses. This method is reported to give more flexibility over the first

method proposed by Malki and Spaanenbug, however, throughput is 50 times lower than

that of the first design.
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reconfigurable devices. Examples of these reconfigurable supercomputers are the
SRC-7, the SGI Altix 350 and the Cray XD1[12,13,14]. These platforms have the
potential to exploit coarse-grained parallelism, as well as fine-grained (known
as instruction-level) parallelism, showing orders of magnitude improvement in
performance, power and cost over conventional high performance computers
(HPCs)[16,17,18,19,20].
In our case, the development platform DS1002 from DRC Computer Corpo-

ration was used to benchmark the proposed CNN architecture. This is a single
server system that includes a standard PC workstation enhanced with a DRC
Reconfigurable Processor Unit (RPUTM). The DS1002 is a 2-way system with an
AMD OpteronTMModel 275 on one socket and a RPU110-L200 on the other. The
RPU includes a Virtex-4 LX200, 2GB of DDR2 RAM and 128MB of low latency
RLDRAM. Communication between the main processor and the FPGA board
is carried out by 3 HyperTransportTM(HT) links. The current HT interface is
limited to 8bits × 400MHz (double data rate) providing a theoretical through-
put of 800MB/s per direction, or agregated 1.6GB/s, for a total bandwidth of
9.6GB/s.
The testbed designed for the CNN implementation is shown in Figure 4. Every

cell stage has been implemented as a single process. Producer and consumer
processes were merged in a single process to maximize efficiency, as it just has to
read image data, send pixels to the hardware processes, receive processed pixels
and write images back to disk. Images were sized 640× 480 pixels, coded 8 bits
grey-scale.
The whole system was coded using standard ANSI C syntax and specific func-

tions from the ImpulseC API for process intercommunication. Different versions
of the cell, with 1, 2, 4, 8 y 16 cascaded stages (processes), were implemented to
observe the effect on the precision and the processing speed.
The entire system was compiled using the standard gcc compiler[21] to ex-

ecutable software for both a conventional Windows XPTM-based PC, and the
Linux-based DS1002 (Kubuntu 6.06 LTS). Subsequently, the system was sepa-
rated in software and hardware processes. The Producer-Consumer was

Figure 3.24 Processor array proposed by Martínez–Alvarez et al. [8]

3.2.2.4 Implementation of Martínez–Alvarez et al.

Martínez–Alvarez et al. have a DT CNN implementation reported in [8]. They have fully

unrolled all Euler iterations, in other words, designed a fully pipelined architecture as

described for Figure 3.9. Block diagram of their processor array and signal flow graph

of a processor are given in Figure 3.24. The main difference of this design is that, each

processor computes (3.1) instead of getting the result from a preprocessor, which doubles

the number of multiplication and addition operations compared to the other implementa-

tions. In the original design, only one multiplier is implemented for the arithmetic part

of the processor, responsible to calculate all multiplication results of two template–dot–

product operations. Time sharing is used in the computation, which is carried out in 18

clock cycles, as there are 18 coefficients. The internal structure of the processors are also

designed to be fully pipelined to avoid any wait cycles, which means that the processing

clock frequency should be 18 times the pixel clock frequency.

Martínez–Alvarez et al. also proposed a class of multi–FPGA implementation of DT

CNN, similar to the one given in Figure 3.10 [24]. It is also worth noting that the em-

ulator is the first DT CNN implementation that is reported to be capable of processing

VGA@60 video images in real–time. However, the fixed architecture of the design makes

it difficult to modify the architecture to support higher resolutions at the same frame rate.

Consequently, the frame rate should be lowered to increase the resolution, keeping the
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Figure 3.25 Block diagram of a Steadfast–1 prototype [13]

pixel rate below the maximum operating frequency of processors, hence the the highest

resolution and frame rate are reported as 1024×1024@22, to date.

3.2.2.5 Implementation of Kayaer and Tavsanoglu (Steadfast–1)

Kayaer and Tavsanoglu have proposed a modified DT CNN structure in [10, 13], which

was first called as Real–Time Cellular Neural Network Processor (RTCNNP, RTCNNP–

v1), which is later renamed as Steadfast–1. Steadfast–1 is the first DT CNN architec-

ture reported to be implemented with only internal Block RAM (BRAM) resources of an

FPGA device, which eliminates the memory bandwidth problems as discussed in Sec-

tion 3.2.1.1. Also note that, the architecture proposed in this thesis is an improvement

over Steadfast–1.

The topmost block diagram of Steadfast–1 is given in Figure 3.25. Input of the system

is a VGA@60 video stream taken from a PC or a progressive camera, which is captured

by a video ADC and directly relayed to an FPGA device in real–time, processed on the

FPGA device, and the final result is relayed to a video sink like a PC monitor. Note that,

only progressive video streams are supported in order to avoid deinterlacing algorithms,

using external memory.

Block diagram of the FPGA implementation is given in Figure 3.26. The Video Input

block is responsible to acquire the video signal from a VGA standard video interface. The

Video Input and Address & Control blocks are cross–coupled to form a central control

unit, i.e., all addresses of the internal buffers and control signals of all sub–blocks are

generated by these two blocks. I2C is also a class of control block, which configures

video ADC and DAC units to VGA resolution at power–up. BPU is the first type of

processor proposed for Steadfast–1, the others being APU(1) and APU(n ≥ 2). BPU

calculates (3.1), the part of the cell–state equation whose value is constant through the

Euler iterations (gi j), and passes its results to APU(1). APU(1) takes this result, computes
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Figure 3.26 Block diagram of the Steadfast–1 architecture [13]

the first iteration and passes both the first iteration result and its corresponding constant

value gi j to APU(2). The second APU calculates the second iteration and passes the result

along with the corresponding constant value to the third APU. The processing continues

in the same manner until the last processor, APU(N), which produces the final result and

passes the value to the Video Output block. Video Output is responsible to restructure the

data as a VGA video stream and generate the control signals required for the standard

visual interface.

The internal structure of BPU is given in Figure 3.27. Three lines of the input image are

buffered in three BRAM memory units. At the beginning of a new frame, 1st, 2nd and

3rd lines are stored in the 1st, 2nd and 3rd BRAM units, and pixel values are written/read

to/from the B and A ports of the BRAM units, respectively. BPU starts processing after

capturing the first two lines and third pixel of the 3rd line. The data of the 1st line is not

needed for computation after the 3rd line is captured, hence it is overwritten by the data

of the 4th line. Every new image line is written over the oldest one and data-handling

process continues in this manner. Consequently, BRAM1 stores the 1st, 4th, 7th... lines,

BRAM2 stores the 2nd, 5th, 8th... lines and BRAM3 stores the 3rd, 6th, 9th... lines

during the process. This memory management structure eliminates the need of moving

data between line buffers, but it is more difficult to control.

The coefficients of a B template are held by three DiROM memory units. Each DiROM

hold a vertically shifted version of the B template, as given in Table 3.1, to solve some of

the complications introduced by the complex line buffering structure. There are three dif-

ferent rotation possibilities of the line indexes stored in BRAM1, BRAM2 and BRAM3:
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Figure 3.27 Block diagram of BPU of Steadfast–1 [13]

i−1, i and i+1; i+1, i−1 and i; or i, i−1 and i+1, respectively, as described above. In

other words, all possible rotated versions of the template is stored in the template memory

to match the line rotations in the BRAM units.

All multipliers and adders are registered to form a pipeline. Three multipliers and three

adders are used for nine multiplication and nine addition operations with time division

multiplexing, hence the clock rates of all memory units and registers should be three

times the pixel rate.

Combining (3.1) and (2.10), the output equation of each iteration is obtained as

yi j(n+1) = f
(
Ā~Yi j(n)+gi j

)
. (3.2)

Table 3.1 Template memory organization of BPU of Steadfast–1 [13]
Çizelge 5.1 B şablonu değerlerinin DiROM’lardaki yerleşimi. 

Address 0 1 2 3 4 5 6 7 8 9 10 11 

DiROM1 b-1,-1 b-1,0 b-1,1 ─ 

 

 

b1,-1 b1,0 b1,1 ─ 

 

 

b0,-1 b0,0 b0,1 ─ 

 

 

DiROM2 b0,-1 b0,0 b0,1 ─ 

 

b-1,-1 b-1,0 b-1,1 ─ 

 

b1,-1 b1,0 b1,1 ─ 

 
DiROM3 b1,-1 b1,0 b1,1 ─ 

 

b0,-1 b0,0 b0,1 ─ 

 

b-1,-1 b-1,0 b-1,1 ─ 
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Figure 3.28 Block diagram of APU(1) of Steadfast–1 [13]

Note that, there are one template-dot-product and one addition operations in both (3.2)

and (3.1), hence the structures of an APU and a BPU are fairly similar. Structure of the

first APU is given in Figure 3.28. The only difference of the APU(1) from the BPU is an

extra output multiplexer, which is used to mix the constant values calculated by the BPU

and the first iteration results calculated by the APU(1) to the same bus.

The APU(n) blocks for n≥ 2 (APU(n≥ 2)) are rather complicated compared to the BPU

and APU(1) (Figure 3.29). Although arithmetic parts of all processors are the same,

memory organization of an APU(n ≥ 2) is completely different from the others: some

parts of each BRAM unit is used to store the iteration results relayed from the previous

APU, while the other parts are configured to store the BPU results, as BPU result should

also be buffered and delayed for synchronization. This complex memory structure is

controlled by the central control logic.

A snapshot of the memory management and data flow of the first four consequent APU

processors is given in Figure 3.30, where numbers are the line indexes, the numbers en-

closed in rectangular frames are the indexes of the lines stored in BRAMs, the numbers
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Figure 3.29 Block diagram of an APU(n) for n≥ 2 of Steadfast–1 [13]

enclosed in circles are the indexes of the lines that are currently processed, and the wide

arrows show the data transfers between the consequent APU processors. It is seen from

the figure that, BRAM line indexes, hence template rotations differ among consequent

APU processors, where three different rotations are possible. Rotations of the APU(m)

and APU(n) are the same if

mod3(m−n) = 0,

e.g., 1st, 4th, 7th; 2nd, 5th, 8th; and 3rd, 6th, 9th APU processors have the same template

rotations. Two Most Significant Bits (MSBs) of the A template addresses (DiROM ad-

dresses) determine the rotation. Address & Control block produces one of these template

address out of three, and the other two addresses are derived from it.

3.3 Conclusion

CT CNN implementations are quite promising at low–resolution focal–plane (near sensor)

processing, however, resolution limit of these designs makes them impractical for many

modern image processing applications. On the other hand, many DT CNN architectures
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Figure 3.30 Line–flippings of four consequent APU blocks of Steadfast–1 [13]

are proposed in the literature, but none of them are reported to be capable of processing

Full–HD 1080p@60 or faster video signals in real–time. Note that, it can be speculated

that it is possible to implement an older design to a Stratix IV FPGA device and achieve

a high performance, however, it would require quite an effort and would become obsolete

again in a few years. A real solution of this problem is to propose a new architecture with

the design considerations of flexibility, modularity and reconfigurability issues.
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CHAPTER 4

THE PROPOSED ARCHITECTURE: STEADFAST–2

In this chapter, a flexible, modular and reconfigurable DT CNN architecture is proposed.

Although most of the methods, schemes and aspects of the proposed architecture are

similar to those discused in Chapter 3, the architecture is completely optimized for the

practicality and feasibility of the design, which makes it possible to describe in VHDL

and implement on any FPGA device with the highest flexiblity, modularity and reconfig-

urablity reported, to date.

4.1 Dividing the Computation Process to Multiple Processes

A CNN structure can be simulated or emulated by computing (2.10) on a software or hard-

ware platform, respectively. Considering the high speed aim of this work, it is obvious that

a hardware implementation with parallel processing elements is required. However, even

if analog structures naturally benefit from parallelization, the converse is true for their dig-

ital counterparts. Many difficulties emerge during the design processes of a multi–core

digital structure, e.g., controlling multiple input/output signals of different processors,

sharing common resources like RAM units, implementing multiple number of iterations,

generating boundary conditions for neighboring computation processes, regulating order

of the computation, designing a suitable control logic, etc.

Fortunately, cellular structure of CNN is highly regular and continuous, which may be

exploited by designing a fully pipelined processor chain. Although pipelined architectures

have some latency issues, their throughputs are the same as their input data rates, provided

that their input data streams are continuous and regular. In other words, the inability to

create a parallel DT CNN structure is compansated by pipelining.
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In order to optimize for speed, (2.10) is rewritten as

yi j(n+1) =

B–Process

f
(

Ā~Yi j(n)+
︷ ︸︸ ︷
B̄~Ui j + z̄

)
︸ ︷︷ ︸

A–Process

(4.1)

where computation is divided to A and B processes. The second template–dot–product

operation and addition parts of (4.1)

gi j = B̄~Ui j + z̄ (4.2)

is called the B–process, which does not depend on the discrete–time variable n. By ex-

ploiting this property, it is possible to calculate gi j only once for each input pixel, and use

the same result as a constant through all Euler iterations. Now (4.1) can be rewritten as

yi j(n+1) = f
(
Ā~Yi j(n)+gi j

)
, (4.3)

which is similarly called as the A–Process.

Considering (4.2) and (4.3), computation flow of the DT CNN can be written as

constant calculation : gi j = B̄~Ui j + z̄ (4.4a)

1st iteration : yi j(1) = f
(
Ā~Yi j(0)+gi j

)
(4.4b)

2nd iteration : yi j(2) = f
(
Ā~Yi j(1)+gi j

)
(4.4c)

...
... :

...
...

...

nth iteration : yi j(n) = f
(
Ā~Yi j(n−1)+gi j

)
(4.4d)

...
... :

...
...

...

Nth iteration : yi j(N) = f
(
Ā~Yi j(N−1)+gi j

)
(4.4e)

where N is the total number of Euler iterations desired. Constant calculation is an inde-

pendent process, while any iteration depends on the results of the Constant calculation

and the previous iteration. The computation flow is suitable for a fully pipelined architec-

ture, as it is a feed–forward process chain. It is obvious that computation of yi j(1) is not

possible before gi j is computed, but it is possible to compute yi−ξ , j−ζ (1), first iteration
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result of a previous pixel. Similarly, yi−2ξ , j−2ζ (2) can be computed while yi−ξ , j−ζ (1)

is still being computed, and so on. The values of the spatial shifts, ξ and ζ , depend on

the implementation method, as well as the exact geometry of templates, the input image

and blanking areas discussed in Section 4.2.2. Moreover, the uniform spatial shift is dis-

torted at the boundaries, hence it is considerably difficult to give a general mathematical

expressions of ξ and ζ . In any case, the local control structure proposed in Section 4.2.3

intrinsically regulates the timings and creates a full–pipeline, completely eliminating the

need of calculating the exact values of ξ and ζ .

In short, each process given in (4.4) can be assigned to a different processor to form a fully

pipelined processor chain, maximizing the speed. Consequently, the number of processors

is the same as the number of Euler iterations required for the computation, which depends

on the values of the templates, threshold, input image, boundary conditions and initial

values of the states.

4.2 Architecture of the Steadfast–2

The system is designed to capture a progressive video stream, process it with CNN and

convert the result back to a progressive video stream (Figure 4.1a). DVI input and output

has been used in prototypes, however, the I/O blocks can be redesigned to support any

progressive video stream, such as VGA, DVI, HDMI, DisplayPort, LVDS or any simi-

lar progressive video source/sink, or any custom PCI, PCIe, USB or FireWire interface.

Interlaced video streams are not accepted as interlacing has small use in modern digi-

tal systems, except for broadcasting, not to mention the intensive memory requirements

of the deinterlacing algorithms. Similarly, output of the system is also designed to be

progressive only.

A block diagram of the FPGA implementation is given in Figure 4.1b. The Video Input

block is designed to monitor the DVI control signals in order to determine the resolution

and frame rate. This block also converts the standard DVI control signals hsync, vsync and

data enable to their customized counterparts hframe and vframe. The generated control

signals are passed to the CNN emulator block along with the red, green and blue (RGB)
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(a) Block diagram of the system

(b) Block diagram of the Steadfast–2 implementation

(c) Block diagram of the CNN Emulator block

Figure 4.1 Simplified block diagrams of the system, top block of the FPGA
implementation and CNN Emulator block

pixel data.

Video output block takes the resolution and polarity information from the video input

block and use this information to convert custom control signals hframe and vframe to

standard video synchronization signals. These signals are passed to the transmitter hard-

ware along with the CNN emulation results taken from the CNN emulator block.

4.2.1 CNN Emulator Block

A block diagram of the CNN emulator unit is given in Figure 4.1c. The emulation is

carried out by a chain of processors. The architecture of the system is designed to be fully
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pipelined, i.e., in each clock cycle a new input pixel is captured while the computation

result of a previous pixel is relayed to the output. Internal buffering structure of each

processor eliminates the need of wait cycles. As a result, the system is real–time, and

throughput of the system is the same as the input pixel rate.

The first block of the processor chain converts RGB input signal to gray–scale, as almost

all CNN applications work on gray–scale or black and white (BW) images. Note that it

is also trivial to reconfigure the design for independent RGB color channel processing by

using three parallel CNN emulator arrays or use one array and multiplex it between the

color channels.

The second block is a programmable gray–scale to black and white (BW) converter, which

is implemented using three different methods: thresholding, histogram stretching and

CNN. The block is designed to also have a programmable bypass mode to relay the gray–

scale input pixel to the next block, which is used when a gray–scale CNN emulation is

desired.

The third block is the B–Processing Unit (BPU), which calculates (4.4a). Using one BPU

is sufficient as B–process is the same for all Euler iterations. The BPU block also passes

the original input image U to the first APU through a second output port, which may be

used as the initial value Y(0).

The fourth block is the first A–Processing Unit (APU), which is used to calculate (4.4b).

The intermediate constant and initial value matrices, G and Y(0), respectively, are used

to calculate the first Euler iteration result Y(1). Also note that the A– and B–processes

are very similar as seen from (4.4), except for an f (·) function, which makes it possible

to design as single processor which is programmable as APU or BPU.

The first APU is followed by a number of consequent APU blocks, each responsible

for calculating one Euler iteration. Hence, the total number of APU blocks is the same

as the number of Euler iterations desired. Dividing Euler iterations among many APU

blocks, combined with the fully pipelined architecture makes the design comparable to a

parallel processing system. Each APU block is also responsible to pass its constant input
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G to the next APU, as all APU blocks use the same constant as seen in (4.4b)–(4.4e).

Consequently, G is stored and used by each APU, and passed through the APU blocks,

without being subject to any changes.

Finally, output of the last APU is passed through a programmable contrast stretcher block,

which is usually kept in bypass mode, and enabled only to increase contrast of the output

image for observation. The block has manual and automatic modes. In the manual mode,

constant minimum and maximum pixel values are used for stretching, while these values

are calculated dynamically in the automatic mode. The pixel intensities smaller and larger

than the minimum and maximum values are saturated to 0 and 255, respectively, while

the ones in between are stretched linearly:

yout =


0, yin < cmin

255∗ yin− cmin

cmax− cmin
, cmin < yin < cmax

255, yin > cmax

where, cmin and cmax are the minimum and maximum threshold values, respectively. Out-

put of this block is the final emulation result, which is routed to all color channels of the

video output block, from which a gray–scale output image is obtained.

4.2.2 Basic Processing Unit

As stated before, (4.2) and (4.3) are very similar, each calculating one template–dot–

product and one addition operations, and their only difference is an output function f (·).

Consequently, instead of designing two different computation blocks, one programmable

basic processing unit called x–Processing Unit (xPU) is designed and used as either BPU

or APU (Figure 4.2).

The type of an xPU block can be changed at runtime to BPU or APU by either a hardware

or software interface. The APU/BPU port is designed to make the block configurable by

another hardware, while a serial programming interface is used to program xPU via an

external software running on a PC, microcontroller, etc.

The xPU block has four data I/O ports: data input (data_in, din), constant input (const_in,
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Figure 4.2 Simplified block diagram the xPU

cin), data output (data_out, dout) and constant output (const_out, cout). In the processing

work–flow, first, a few lines of the row–wise packed data taken from din and cin are un-

packed in the data and constant RAM units, respectively. Then, template–dot–product

operation is carried out between the template and some of the data buffered in data RAM,

and then a constant value taken from the constant RAM is added to the result. Finally, the

result is multiplexed to outputs, depending on the xPU type, BPU or APU:

dout =

 din for BPU,

T̄~Din + cin for APU,

cout =

 T̄~Din + cin for BPU,

din for APU.

Here, T̄ is a template and Din is the data corresponding to the template.

In other words, input image U is the data of BPU while threshold z̄ is its constant. On the

other hand, for APU(n), output of the previous APU is its data while output of BPU is its

constant.

An xPU has three clock inputs: pixel, processing and auxiliary clocks. The pixel clock is

synchronized with the input pixels, as its name implies, while auxiliary clock is used for

asynchronous tasks like serial programming. The processing clock is an integer multiple

of the pixel clock, which is used to carry out multiplication and addition operations. In

other words, arithmetic operations may be carried out using time–division multiplexing,
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from which the number of multipliers, one of the most valuable resources of an FPGA

device, may be reduced. The reduction ratio is equal to the rounded up result of the total

number of elements of a template divided by a clock multiplier. For example, considering

3×3 templates, by using processing clocks one, two, three, five and nine times as fast as

the pixel clock, the number of multipliers used by an xPU will be d9/1e= 9, d9/2e= 5,

d9/3e = 3, d9/5e = 2 and d9/9e = 1, respectively. Consequently, the number of multi-

pliers may be reduced by increasing processing clock rate, as long as the resources of the

FPGA device used for the implementation supports that clock rate.

The processor architecture supports non–square templates and does not have any restric-

tions on the template size, although there are not many ongoing research on either of these

topics.

An xPU is programmable to perform either the zero–flux (Neumann) or fixed boundary

conditions. The fixed value is also programmable, from which zero boundary condition

may be obtained. Toroidal boundary condition is not implemented for resource optimiza-

tion, as an extra line buffer should be used in each xPU for its implementation. However,

note that it is trivial to implement it when needed, as the architecture is designed to be

extremely flexible.

template–dot–product operation requires data from 2m+ 1 consequent lines of cells to

be buffered into a data RAM, which is organized as line buffers [25]. There are two

schemes to implement a data RAM: buffering 2m+1 lines of data directly, or optimizing

data RAM and buffering data from 2m lines and 2m+ 1 cells. In other words, there is

no need to store data of a whole line after the optimization. For m = 1, a snapshot of the

non–optimized and optimized data memory structures of three consecutive APU units are

given in Figure 4.3. The non–optimized memory structure is easier to control as the cells

at the same column are being processed by different processors. On the other hand, the

optimized memory structure consumes less memory in exchange for control complexity,

as different control signal should be generated for each processor. In this design, opti-

mized data RAM structure is preferred, whose control difficulties are eliminated by using

a local control structure, which was converse in Steadfast–1.
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Figure 4.3 Memory usage of consequent APUs (light gray), and pixels that are being
processed (dark gray)

Constant inputs of an xPU should also be buffered in a constant RAM for synchronization.

Buffering constants of m cell lines and m+1 additional cells is sufficient, as constants are

not used in any template–dot–product operation, hence neighboring constants are non

required for the computation.

Complexity of the control unit is reduced by assigning a dedicated address counter to each

data and constant RAM unit. As a result, it is possible to control these RAM structures

with only clock enable and reset signals.

4.2.3 Local Control Structure

Designing a central control structure is one of the most challenging parts of such a com-

plex design. Furthermore, almost any change or optimization in the design leads to a

redesign process of the control logic. The first generation of the proposed structure,

Steadfast–1, has a complex central control structure, making the design too volatile to

improve upon, which was the main reason that a new architecture with local control units

is proposed.

In this design, the need of a central control unit is completely eliminated by the introduc-
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(a) Visible and blanking areas of a video frame (b) Video frame segments and the
corresponding states of the control signal

(c) Packed video signal

Figure 4.4 Video frame structure defined by video display interfaces and its packing
scheme

tion of local control units. All main blocks in the processing chain should have a local

control unit, including video input, RGB to gray–scale converter, gray–scale to BW con-

verter, xPU, histogram stretcher and video output blocks. A local control unit basically

has two responsibilities: decoding horizontal and vertical frame synchronization signals,

hframe_in and vframe_in, respectively, and generating hframe_out and vframe_out con-

trol signals for the next unit. In other words, each unit is controlled by the previous unit

and control the next unit.

Almost all video display interfaces add a blanking area around visible video frames as

seen in Figure 4.4a, from which a 1–D video stream is obtained by row–wise packing all

2–D video frames and joining them end to end (Figure 4.4c). Note that, the blanking area

causes long and short pauses between frames and lines, respectively.

The video display interfaces also define synchronization signals hsync and vsync, which

act as horizontal and vertical blanking area triggers, respectively. However, pinpointing

beginning of a visible area using only hsync and vsync control signals require a complex

control unit, hence digital interfaces like DVI and HDMI also define a visible area indica-

tion signal called data enable. There is also the signal polarity issue of hsync and vsync,

which may be active high or low, independent from each other, depending only on the
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video display interface standard.

Instead of being dependent to a video display interface, simplified custom control signals

called hframe and vframe are defined for the implementation. The blanking area given in

Figure 4.4a can be segmented into nine regions by extending the edges of the visible area

(Figure4.4b). The horizontal control signal hframe is defined to be high in the middle of

two vertical lines, while vertical control signal vframe is defined to be high between two

horizontal lines. Consequently, visible area is located when both control signals are high.

Moreover, hframe and vframe control signals identify three regions of the blanking area:

left/right, top/bottom and corners. Furthermore, top, bottom, left and right boundaries

can also be differentiated by using both the current and one clock period delayed values

of hframe and vframe.

The Video Input unit is the first unit of the chain, hence responsible for generating the first

hframe and vframe control signals from video synchronization signals of a standard video

display interface. The next block in the chain uses these signals to control its internal

operation, and delays these signals the same amount of time of its input to output delay

(latency) to control the next block. Note that, delaying for a few lines means delaying for

thousands of clock cycles, hence the delaying process is carried out by some pixel and line

counters and simple registers instead of huge shift registers in order to use less resources.

The same control scheme is carried out by each block in the chain, until Video Output,

which converts the hframe and vframe control signals back to the video synchronization

signals of a standard visual interface.

4.2.4 Serial Programming Interface

This block is used to program coefficients of the processing units or change their oper-

ating modes during runtime. The most challenging part of designing an interface is the

need to read/write from/to many sources while preventing data collisions, hence most

of the standard serial programming interfaces are either designed to be end to end, or

use high–impedance data lines that are not suitable for an FPGA design. Consequently,

a packet–based custom communication interface is designed, capable of addressing and
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Figure 4.5 Block diagram of a serial communication interface

programming each block in the chain independently.

External serial interface is designed to be RS232 in the prototype, although, any serial

communication interface may be implemented by redesigning the UART Serial Interface

block seen in Figure 4.1b.

Block diagram of a serial communication interface is given in Figure 4.5, which is a type

of micro serial transceiver. Each local control unit of each block in the processing chain

include a serial communication interface. The serial input sdata_out of each block is

connected to the sdata_in of the next block to form a seial communication loop inside the

FPGA device.

Any coefficients and other configurations of a block in the processing chain is addressed

within a memory map as given in Figure 4.6. Up to 211 coefficients and 211 configuration

words can be addressed by the serial communication interface. Note that, the word length

is designed to be variable to support many different processors in the same chain. For

example, the first xPU (BPU), the remaining APU units and the histogram stretching

blocks all can be configured with different data word lengths without any conflicts.

The serial data packet carries the following information: a start bit, a processor ID, an

internal memory address, a read/write flag, the total length of the message and a data

(Figure 4.7). Consequently, first, each processor that needs programming should be as-

signed with a unique processor ID. Second, all registers that need to be written to or read

from the interface should be in the addressable coefficients or Special Functions Reg-

ister (SFR) space given in Figure 4.6. Note that, a total number of 212 = 4096 unique

blocks can be addressed; and the maximum addressable packet length is 25 = 32, hence a

maximum data word length of 224 bits are supported by the interface.

47



Figure 4.6 Memory map of a block with a serial communication interface

Figure 4.7 Structure of a serial packet

Serial programming work–flow starts with the preparation of a serial data packet by an ex-

ternal programmer. The external data packet is designed to be a second layer data packet,

which also includes some redundancies and a checksum. The UART Serial Interface

block receives this data packet, unpacks the second layer, check the data for corruptions,

and relays the first layer data packet to the first processor in the chain. The first processor

checks the processor ID, performs the read/write operation if the message is addressed

to it, skips otherwise. In any case, the serial packet is transferred to the next processor:

if a read operation is performed, the data part of the packet is updated by the processor,

else the received data is relayed as it is. Note that, multiple processors of the same type

may be assigned the same processor ID and programmed with a single data packet. Each

processor in the chain carries out the same operation until the data packet is transferred

back to the UART Serial Interface block. The UART block repacks the data in a second

layer packet and sends it to the external programmer.
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4.3 Reconfigurable and Programmable Features of the System

As well known, flexibility, scalability, reusability and practicality issues of any digital

hardware design lies within its reconfigurability and programmability properties. The

Steadfast–1 structure proposed in [10] lack these properties, which is one of the main rea-

sons that the improved Steadfast–2 architecture is proposed. Many features of Steadfast–2

are designed to be either pre–synthesis configurable or runtime programmable.

4.3.1 Reconfigurable Features

The new architecture is designed to have many parameters that could be configured before

the synthesis process, making the design flexible, scalable to smaller or larger FPGA

devices and reusable in different implementations with small adjustments. The whole

hardware is described in VHDL, and the re–configurable features are implemented by

using powerful generics and unconstrained port definitions of VHDL.

The most reconfigurable block of the design is the basic processing unit, xPU. The size of

the template, the number of multipliers, the maximum number of visible pixels on a line

that will be supported by the processor and fixed–point bit widths of the template coeffi-

cients, data ports and constant ports are designed to be pre–synthesis configurable. The

whole internal structure of an xPU is automatically generated using these configurations.

Configuring the size of the template of an xPU affects: the number of line buffers of

both data and constant RAM units, the number and topology of the the registers used to

generate the boundary conditions, and the numbers of multiplication and addition blocks.

The processing clock multiplier constant also affect the number of multipliers and adders,

along with the total number of entries in a template, from which a multiplication layer

and an adder tree are generated automatically during synthesis.

The maximum number of visible pixels that is allowed on a video line is another scaling

parameter of an xPU. Assigning a large value to this parameter like 2048 ensures that the

processor functions properly for any common resolution, including Full–HD 1080p.

The saturation function at the output of an xPU may be disabled by a generic, which is
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needed for an ongoing work, realizing a multi–layer DT CNN emulator structure. Details

of this structure is beyond the scope of this thesis.

There are some other configurable parameters in the system aside from the ones men-

tioned for an xPU. The first one of these parameters is the number of xPU blocks in a

processing chain. Second, weights of the RGB to gray–scale converter block are de-

signed to have configurable bit widths, although its contribution to resource optimization

is insignificant. Finally, each programmable block has assigned a unique ID that is used

during serial programming. Other re–configurable parameters are either insignificant, or

only used in test/demo settings, hence they also are beyond the scope of this thesis.

4.3.2 Programmable Features

The Steadfast–1 structure is a static design, requiring a re–synthesis process to change

its CNN templates. Therefore, flexibility and practicality of the design are improved

almost infinitely by making Steadfast–2 programmable. Many features of the system are

programmable at runtime through a serial inteface, without the need to reconfigure the

FPGA device.

The xPU block has many programmable features. First and the most obvious, template

coefficients and the threshold constant may be programmed via a serial programming in-

terface. Second, xPU type flag may be programmed as BPU or APU. Note that, threshold

value and xPU type information may also be taken externally from the cin and APU/BPU

ports, respectively, hence another programmable flag called xPU mode sets xPU state to

serial or external port programming. Third, boundary mode is programmable to fixed

or zero–flux boundary conditions. Finally, fixed boundary value is also programmable

through the same interface.

The gray–scale to BW conversion block is also programmable, as some CNN templates

work on gray–scale inputs while others need BW input images. Consequently, the block

is programmed to pass either the converted or the original data to its output.

Finally, histogram stretcher block is programmable in three modes: manual, automatic
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and bypass. In manual mode, minimum and maximum threshold values are also pro-

grammed through the serial interface. In automatic mode, histogram of the previous

frame is used to calculate the thresholds automatically, where a programmable percentage

of data is considered noise at low and high intensities and ignored during the histogram

calculation.
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CHAPTER 5

IMPLEMENTATION RESULTS AND COMPARISONS

A comparison of the first and second generation Steadfast structures is given in Table 5.1.

First, the comparison clearly show the flexibility and reconfigurability properties of the

new design, as the old structure is stuck to VGA@60 (640×480 resolution at 60 Hz frame

rate), a single resolution, frame rate and processing clock multiplier. All configurations

given in Table 5.1 are tested on an Altera Stratix IV GX 230 FPGA device up to 150 Euler

iterations.

Then, the architecture is scaled down to an Altera Cyclone III C 25 FPGA device by

reducing the number of iterations to 8 and implementing only table entries with processing

frequencies smaller than 300 MHz, which proves that the architecture is highly scalable.

It also worth noting that, the actual number of multipliers used by an xPU implemented

on a Stratix IV FPGA device should be even, hence one should be added to the odd entries

in Table 5.1 for Statix IV devices, which is caused by the dual packed multiplier design

of the FPGA device. Consequently, care should be taken when making estimations or

comparisons for different FPGA vendors and/or families.

Both prototypes are tested at Full–HD 1080p@60 (1920×1080 resolution at 60 Hz frame

rate) with a pixel clock frequency of 148.5 MHz and a visible pixel rate of 124.4 Mpix/s,

in real–time. On the other hand, maximum number of implemented iterations is 150 for a

Stratix IV device, which means that 338.2 giga (338.2×109) multiplication and addition

operations are carried out per second. Moreover, the pixel rate is limited by DVI I/O chips,

hence 2.5 to 3 times higher pixel rates are easily achievable on a Stratix IV FPGA device

with a suitable interface, and even higher rates may be achieved with further optimization.
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Table 5.1 Resource usage of an xPU for old and new Steadfast structures for m = 1 (3×3
templates). The numbers at the left and right sides of a ’/’ are given for Steadfast–1 and

2, respectively, and the symbol ’–’ is used to indicate ’not implementable’.

Steadfast–1/Steadfast–2

Resolution Frame
Rate
(Hz)

Pixel
Rate

(MHz)

Processing
Clock

Multiplier

Processing
Clock Rate

(MHz)

Number
of 9 Kbit
memories

Number of
18×18

multipliers

640×480 60 25.175

1 25.175 – / 4 – / 9

2 50.350 – / 4 – / 5

3 75.525 6 / 4 3 / 3

5 125.875 – / 4 – / 2

9 226.575 – / 4 – / 1

1280×720 60 74.250
3 222.750 – / 8 – / 3

5 371.250 – / 8 – / 2

1920×1080 60 148.500
2 297.000 – / 8 – / 5

3 445.500 – / 8 – / 3

It is also worth to state that, this is the fastest CNN implementation reported to date. Al-

though analog CNN implementations makes the processing faster, video I/O bandwidths

and implementable CNN grid sizes are their primary bottlenecks. On the other hand,

the I/O bandwidth problem exist for any CNN emulator using external SRAM or DRAM,

including any CNN Universal Machine (CNN–UM) implementation. The proposed archi-

tecture specifically address the I/O bandwidth problems by introducing a fully pipelined

architecture. Furthermore, the structure is designed to be extremely scalable in order to

be suitable for any FPGA device, including FPGA devices yet to be developed, hence,

performance of the proposed architecture is expected to improve indefinitely with the de-

velopment of the digital IC technology. Even with the current prototype, the pixel rate

ratio of 1080p@60 and VGA@60 is 6.75, which means that the proposed architecture is

successfully implemented with a speedup factor of 6.75.

Finally, due to the fully pipelined feed–forward architecture of the design and the pro-

posed local control structure, any number of FPGA devices may be connected end to end

to overcome the iteration limit of a single FPGA device. In other words, the design is fully

modular as it is, and the workload may be divided to many FPGA devices without any
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improvements or optimization. Furthermore, the FPGA vendors and/or families are not

have to be the same, which is tested by connecting the low–cost and high–end prototypes

end to end. Consequently, mixed hardware can be used for applications where multiple

FPGA devices should be used, eliminating the need of symmetric hardware extension.
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CHAPTER 6

RESULTS AND DISCUSSION

In this thesis a new DT CNN structure is proposed, which is capable of processing full–

HD 1080p@60 images in real–time. The design is generically called as RTCNNP–v2

at first, then given the codename Steadfast–2. The proposed architecture is the only DT

CNN implementation which is reported to be tested on high–resolution images at a pixel

rate of 124.4 Mpix/s, not to mention that the limitation is caused by the I/O bandwidth

limit of the DVI daughter cards and not the FPGA implementation itself. Considering

the tested processor clock rates up to 450 MHz, it is predicted that a pixel rate about

300 Mpix/s or more can be achieved with a faster video interface, without any changes to

the architecture itself.

The original contribution of this thesis is that, the necessity of a global control logic is

completely eliminated by designing a new local control structure. In this context, a local

control block is embedded in each block in the processing chain, where each block is

given the responsibility to control the next block in the chain. In other words, each block

gets external control signals from the previous block along with the data to be processed,

generate its internal control signals and processes the data, and relay the processed data

along with the external control signals generated for the next block. A horizontal and

a vertical synchronization signals are used as control signals, which was inspired from

standard visual interfaces, but modified to be more suitable for an FPGA implementation.

The local control structure makes the design highly flexible, reconfigurable and reusable,

which was proven in a research project, where the proposed infrastructure is used in two

more PhD theses, [14] and [16]. In the former, the template–dot–product operator is
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replaced by a Gabor computation unit, which was also reported in [15]. In the latter, the

proposed xPU blocks are configured in different topologies, without being subject to any

changes, and a multi–layer CNN emulator has been realized.

The second originality of the proposed architecture is the addition of some programmable

features to the design, which was the one of the main missing features of the Steadfast–1

(RTCNNP–v1) architecture. These features make the design practical for an industrial

application, as they enable to change the image processing task at runtime. Note that,

the originality is not universal, as many other DT CNN implementations are reported to

support programmability for a long time.

The third originality is the scalability of the new design, which was proved by imple-

menting the same VHDL source codes on two different Altera FPGA devices: a high–end

Stratix IV 230 GX and a low–cost Cyclone III C 25. Note that, none of the Altera prim-

itives or cores are used in the design for portability, hence the same design expected to

work on any FPGA device of any vendor. However, also note that, it is not possible yet

to imply a PLL in VHDL, hence one exception of the previous statement is the usage of

a PLL primitive of Altera. Consequently, the whole design can be transferred to another

FPGA vendor or model by simply creating a new project, importing the VHDL source

codes, defining a PLL primitive for that FPGA model, defining physical pin locations and

recompiling the design.

Finally, some features of a third generation Steadfast–3 can be proposed for future work.

First, the workload of Steadfast–2 is divided to multiple processes only in the time do-

main, hence it can also be divided in the spatial domain in the next design for more

flexibility, which enables processing of 4K@60 or 8K@60 video streams in real–time.

Second, even if the main speed advantage of the design comes from not using external

memory, designing an external memory controller with limited memory access will widen

the application range of the implementation. Third, memory coding technique of the pro-

posed architecture introduces some jitter which limits the maximum frequency or size of

the implementation, which can be corrected on a future design. Fifth, computation part

of xPU can be modified to support space–variant templates to widen the range of appli-
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cations. Finally, an optional soft processor core can be implemented on the FPGA device

to add some more flexibility to the design. The processor can either manage menial tasks

like providing a USB interface, or perform slow processes like database access, decision

making, etc.

57



BIBLIOGRAPHY

[1] Chua, L. and Yang, L., (1988). “Cellular Neural Networks: Theory”, Circuits
and Systems, IEEE Transactions on, 35: 1257-1272.

[2] Chua, L. and Roska, T., (2002). Cellular Neural Networks and Visual Comput-
ing: Foundations and Applications, Cambridge University Press.

[3] Rodriguez-Vazquez, A., Linan-Cembrano, G., Carranza, L., Roca-Moreno, E.,
Carmona-Galan, R., Jimenez-Garrido, F., Dominguez-Castro, R. and Meana, S.,
(2004). “ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips
toward VSoCs”, Circuits and Systems I: Regular Papers, IEEE Transactions on,
51: 851-863.

[4] Alba, L., Castro, R. D., Jimenez-Garrido, F., Espejo, S., Morillas, S., Listan,
J., Utrera, C., Garcia, A., Pardo, M. D., Romay, R., Mendoza, C., Jimenez, A.
and Rodriguez-Vazquez, A., (2009). New Visual Sensors and Processors, vol. 1,
Springer Berlin Heidelberg.

[5] Linan, G., Dominguez-Castro, R., Espejo, S. and Rodriguez-Vazquez, A.,
(2001). “ACE16k: A Programmable Focal Plane Vision Processor with 128 x
128 Resolution”, 2001 European Conference on Circuit Theory and Design (EC-
CTD), August 2001.

[6] Nagy, Z. and Szolgay, P., (2003). “Configurable Multilayer CNN-UM Emulator
on FPGA”, Circuits and Systems I: Fundamental Theory and Applications, IEEE
Transactions on, 50: 774-778.

[7] Malki, S., (2008). On Hardware Implementation of Discrete-Time Cellular Neu-
ral Networks, Ph.D. thesis, Lunds University, Sweden.

[8] Martinez, J. J., Toledo, F. J., Fernandez, E. and Ferrandez, J. M., (2008). “A
Retinomorphic Architecture Based on Discrete-Time Cellular Neural Networks
Using Reconfigurable Computing”, Neurocomputing, 71: 766-775.

[9] Zarandy, A., Keresztes, P., Roska, T. and Szolgay, P., (1998). “CASTLE: an
Emulated Digital CNN Architecture Design Issues, New Results”, Electronics,
Circuits and Systems, 1998 IEEE International Conference on, September 1998.

[10] Kayaer, K. and Tavsanoglu, V., (2008). “A New Approach to Emulate CNN on
FPGAs for Real Time Video Processing”, Cellular Neural Networks and Their
Applications, 2008. CNNA 2008. 11th International Workshop on, July 2008.

58



[11] Yildiz, N., Cesur, E. and Tavsanoglu, V., (2010). “A New Control Structure for
the Pipelined CNN Processor Arrays”, Cellular Nanoscale Networks and Their
Applications (CNNA), 2010 12th International Workshop on, February 2010.

[12] Cesur, E., Yildiz, N. and Tavsanoglu, V., (2010). “Architecture of The Next Gen-
eration Real Time CNN Processor: RTCNNP-v2”, Nonlinear Theory and its
Applications (NOLTA), 2010 International Symposium on, September 2010.

[13] Kayaer, K., (2008). Gerçek Zamanlı Video İşleyen Yeni Bir Hücresel Sinir Ağı
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