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ABSTRACT

DESIGN OF A CELLULAR NEURAL NETWORK EMULATOR AND ITS
IMPLEMENTATION ON AN FPGA DEVICE

Nerhun YILDIZ

Department of Elektronics and Communication Engineering

Ph.D. Thesis

Supervisor: Prof. Dr. Vedat TAVSANOGLU

It is well known that technology affect our everyday lives and change them significantly
from the beginning of humanity. As the technology grows more rapidly in the last few
decades, the changes also started to occur more frequently. For example, a few centuries
ago, a person could experience at most one significant leap of change in his or her life; but
today, a senior may have experienced the leaps caused by the inventions of the television,
transistors, satellites, computers, cellular phones, other portable electronics, etc.

The rapid change of the technology also create trends of new research topics, like image
processing, which was nothing more than a television or camera engineers or academics
specialty just 20 years ago. Furthermore, the processing was limited by preserving, trans-
mitting and receiving images with minimum noise and distortion. With the introduction of
digital cameras, countless new ideas of image processing emerged, e.g., image enhance-
ment, image compression, automated target recognition and tracking, biometric recogni-
tion, etc. There are two main difficulties in the application of these ideas: (1) new image
processing algorithms should be developed and implemented within tight time frames
and (2) fast and parallel processors are required to match the computation intensity of the
real—time image processing.

On the other hand, a Cellular Neural Network (CNN) is a multi—-dimensional signal pro-
cessing paradigm, whose analog and digital 2-D implementations can be used in image
processing. The main advantage of any CNN implementation is that, many image pro-
cessing algorithms can be implemented on the same structure, solving the first problem
mentioned above. On the other hand, analog CNN implementations are known to op-
erate at speeds up to 10 kilo—frames/s for grayscale images with resolutions lower then
176 x 144, which seems to solve the second problem. However, this is not the case for

Xiv



high-resolution and medium frame—rate images like full-HD 1080p@60 (1920 x 1080
resolution, 60 Hz frame rate), where the performance of the analog implementations drop
below the real-time limits. Then again, the digital implementations of CNN does not have
the intrinsic parallel connectivity of their analog counterparts, consequently, none of the
digital CNN implementations are reported to operate for full-HD 1080p @60.

In this thesis, an improved real-time digital CNN architecture capable of processing full—
HD 1080p@60 video images is proposed, described in VHDL and realized on two dif-
ferent FPGA devices. The architecture is designed to have superior properties over its
predecessors. First, the architecture is highly scalable, which is proven by implementing
the same design on a high—end and a low—cost FPGA device. Second, most parts of the
structure are designed to be reconfigurable and flexible, e.g., the size of the CNN tem-
plates, fixed—point bit—widths of all signals, the number of iterations, etc. Third, most
parameters like template coefficients, bias, boundary conditions and bypass modes are
programmable at runtime. The architecture proposed in this thesis is the only CNN im-
plementation reported in the literature that assemble all of these features together.

Keywords: cellular neural networks, image processing, field—programmable gate-arrays,
real—time systems

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATRAL AND APPLIED SCIENCES

XV



OZET

BiR HUCRESEL SINIiR AGI EMULATORUNUN TASARLANMASI VE FPGA
UZERINDE GERCEKLENMESI

Nerhun YILDIZ

Elektronik ve Haberlesme Miihendisligi Anabilim Dali

Doktora Tezi

Tez danigmani: Prof. Dr. Vedat TAVSANOGLU

Insanligin bagindan itibaren giinliik hayatimizi etkileyen ve degistiren en 6nemli etkenler-
den birinin teknoloji oldugu siiphesiz bir gercektir. Teknolojideki gelismenin son birkag
on yil icinde iyice hizlanmasiyla bu degisimlerin siklig1 da artmistir. Ornegin birkag
yiizy1l Once yasamig bir insanin hayati boyunca gozlemleyebilece8i degisim sayist en
fazla bir iken, giliniimiizde yasayan yas: ilerlemis bir bireyin hayati televizyon, tran-
sistor, uydu, bilgisayar, cep telefonu ve diger taginabilir elektronik cihazlar gibi teknolojik
geligimler ile defalarca etkilenmistir.

Teknolojideki bu hizli gelisim ayn1 zamanda arastirma konularinda da yeni e8ilimlerin or-
taya ¢cikmasina neden olmaktadir. Egilimin arttig1 bu konulardan biri de goriintii islemedir.
Bundan 20 y1l 6ncesine kadar uzmanli81 goriintii isleme olan kisiler yalmizca televizyon ve
video kamera tasarim miihendisleri ile konuyla ilgilenen akademisyenlerdi. Ayrica done-
min goriintii isleme konularinin neredeyse tamami goriintiiniin kalite kayb1 veya bozulma
olmadan saklanmasi ve iletilmesi ile sinirliydi. Sayisal kameralarin ortaya ¢ikip yaygin-
lagsmasiyla beraber goriintii iyilestirmeden goriintii sikistirmaya, otomatik hedef takibi ve
tanimadan biyometrik tanima sistemlerine kadar bir¢cok yeni goriintii isleme fikri ortaya
cikmaya bagladi. Ancak bu fikirlerin hayata gecirilmesinde iki temel problem ortaya c¢ikti:
(1) Yeni algoritmalarin sinirli zamanda gelistirilmesi ve sistem olarak gerceklenmesi ile
(2) hesaplamalarin ger¢ek zamanli olarak yapilabilmesi i¢in hizli ve paralel islem yapma
yetenegi olan donanimlarin gerekmesi.

Ote yandan Hiicresel Sinir Aglar1 (Cellular Neural Networks — CNN) ¢ok boyutlu ortam-
lar izerinde islem yapma yetenegi olan bir yapi olarak ortaya atilmistir ve iki boyutlu ana-
log ve sayisal gergeklemeleri goriintii islemede kullanilabilmektedir. Herhangi bir CNN
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gerceklemesinin en biiylik avantaji, ayn1 yapi iizerinde bir¢ok farkli algoritmanin gercek-
lenebilmesi sayesinde yukarida bahsedilen ilk probleme ¢oziim olusturmasidir. Ayrica
analog CNN gerceklemelerinin 176 x 144 veya daha diisiik ¢oziiniirliikteki gri seviyeli
goriintiiler icin 10 kilo ¢erceve/s islem hizina ulasabilmesi dolayisiyla ikinci problemin
coziimiine de aday oldugu bir gergektir. Ancak full-HD 1080p@60 (1920 x 1080 ¢oziiniir-
liikk, 60 Hz cerceve hizi1) gibi yiiksek ¢oziiniirliige ve orta seviyede cerceve hizina sahip
goriintiiler s0z konusu oldugunda analog yapilarin hiz1 gercek zamanlh gercekleme siniri-
nin altina diigsmektedir. Sayisal CNN gerceklemeleri ise analog yapilardaki dogal paralel
hesap 0zelliine sahip olmadiklarindan dolay: full-HD 1080p @60 icin calisan bir gercek-
leme literatiirde yer almamaktadir.

Bu tezde full-HD 1080p @60 video goriintiilerini isleyebilen gelismis bir ger¢cek zamanl
sayisal CNN mimarisi 6nerilmis, VHDL dilinde kodlanmis ve iki farkli FPGA iizerinde
gerceklenmigtir. Tasarlanan mimarinin onceki tasarimlara gore bazi tistiinliikleri vardir.
Bu 0zelliklerden ilki ayn1 yapinin biri yiiksek performansh ve digeri diisiik maliyetli olan
iki farkli FPGA iizerinde gergceklenmesi ile kanitlanan mimarinin 6lgeklenebilirligidir.
Ikinci olarak yapinin esnekligi ve yeniden uyarlanabilmesi siralanabilir. Bu sayede CNN
sablonlarinin boyu, tiim sinyallerin sabit noktal1 aritmetikteki bit genislikleri ve iterasyon
say1s1 gibi ozellikler sentezleme 6ncesinde uyarlanabilmektedir. Uciincii olarak sablon
katsayilari, esik degeri, sinir kosullar1 ve baypas modu gibi bir¢cok parametrenin ¢calisma
esnasinda degistirilebilmesini saglayan programlanabilirlik 6zelligi verilebilir. Bu tez
kapsaminda 6nerilmis olan CNN mimarisi literatiirde tiim bu 6zellikleri bir araya getirdigi
bildirilmis olan tek CNN yapisidir.

Anahtar Kelimeler: Hiicresel sinir aglari, goriintii isleme, alanda programlanabilir kap1
dizileri, gercek zamanl sistemler

YILDIZ TEKNIK UNIVERSITESI FEN BILIMLERI ENSTITUSU
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CHAPTER 1

INTRODUCTION
1.1 Literature Review

Cellular Neural Networks (CNN) is a parallel computing paradigm [1] having many ap-
plications like image processing, artificial vision, solving partial differential equations,
etc. A p—dimensional g-layer CNN structure consists of a p—dimensional spatial grid of
neural cells and each cell contains ¢ memory nodes and g inputs. The spatio—temporal
dynamics of the system are tuned for specific tasks by defining local spatial synaptic in-
terconnections between the neural cells. Generally, a 2-D 1-layer CNN structure with
space invariant neural weights [2] is used in image processing applications, which is the

focus of this thesis.

A Continuous—Time CNN (CT CNN) implementation [3, 4] has many advantages: it is
fully parallel by its nature, its convergence rate is considerably faster then that of a digital
implementation, it is easier to merge the architecture with an imaging sensor and obtain a
focal plane processor to directly process the captured data as a pre—processor or artificial
retina, etc. However, the highest implemented number of cells in a CT CNN processor is
176 x 144, to date, hence even a low-resolution input comparable to QVGA (320 x 240)
may only be processed by tiling, i.e., dividing the image to smaller overlapped ‘tiles’” and
process them individually [5]. Consequently, I/O bandwidth limit of a CT CNN proces-
sor makes it impossible to process a video stream like Full-HD 1080p@60 (1920 1080

resolution at 60 Hz frame rate) in real-time.

For a Discrete-Time CNN (DT CNN) implementation, first, a difference equation is ob-
tained by discretization of the differential equation of a CT CNN. Then the difference

1



equation may be solved on a software platform like a PC, DSP or GPU; or a custom
hardware can be implemented as an ASIC or on an FPGA device. Software solutions are
easier to design and modify while hardware implementations provide several orders of

magnitude higher performance.

Using an FPGA device for a DT CNN implementation is preferable in most cases: it has
very flexible parallel structures, its processing speed is second only to an ASIC implemen-
tation and it is cheaper than an ASIC solution. Consequently, the most notable DT CNN
implementations [6, 7, 8] are implemented on FPGA devices, while [9] is implemented
as ASIC. An alternative FPGA architecture of DT CNN was proposed in [10], which is
named as Real-Time CNN Processor (RTCNNP, RTCNNP-v1). The architecture pro-
posed in this thesis is a second—generation RTCNNP design called RTCNNP-v2 [11],
[12]. Note that, in order to avoid confusion, the generic names of the proposed architec-
tures, RTCNNP-v1 and RTCNNP-v2, are later renamed as Steadfast—1 and Steadfast—2,

respectively.

This is also worth stressing out that, this research was supported by The Scientific and
Technological Research Council of Turkey (TUBITAK), under project number 108E023,
and a total number of four PhD theses are introduced from the project. The first thesis [13]
is the foundation of the others, including this one, in which the Steadfast—I architecture
was proposed. In the second thesis, a CNN based Gabor—type filter implementation is
reported [14, 15]. Third, in this thesis, the Steadfast—2 architecture is proposed, which
also is the backbone of the second and fourth theses. Also note that, many common blocks
of Steadfast—2 and the Gabor-type CNN implementation proposed in [14] are designed as
a team by the author of these theses. Finally, using the architecture proposed in this thesis
to realize 2— or multi—layer CNN structures is the topic of the fourth thesis [16], which is

still an ongoing work and expected to be finished soon.

Also note that, FPGA implementations of DT CNN are not limited to the ones referred
in this thesis, however, the other structures reported in the literature are not designed
to be general-purpose single—layer 2-D CNN emulators. For example, the architecture
proposed in [17] is a class of DT CNN implementation, which is tailored for a specific task

2



of active wave computing. These class of application—specific FPGA implementations are

beyond the scoop of this thesis.

1.2 Aim of Thesis

A 2-D CNN structure is considerably suitable for image processing applications, as many
image processing algorithms can be implemented on the same structure, eliminating the
need to use mixed structures and continuously changing them for the needs of new ap-
plications. However, as mentioned in Section 1.1, the main bottleneck of CT CNN im-
plementations reported in the literature is that, tiling should be used in order to process
even the most basic resolutions like QVGA (320 x 240), hence they are not suitable for
high-resolution real-time processing. On the other hand, even if some DT CNN imple-
mentations partly overcome this problem and has the ability to be used for resolutions
up to VGA@60 (640 x 480 resolution, 60 Hz frame rate), they are still insufficient for
modern resolutions like Full-HD 1080p @460, let alone for the military or aerospace ap-

plications where resolutions of the images are even higher.

Aim of this work is to design a real-time DT CNN implementation supporting not only
higher frame-rates, but also higher resolutions, including Full-HD 1080p@60. Conse-
quently, it will be possible to use CNN in image processing applications of most modern

systems.

1.3 Original Contribution

As mentioned in Section 1.1, the Steadfast—1 [13] structure (RTCNNP-v1) is the basis
of the architecture proposed in this thesis. However, Steadfast—1 is a static design, fixed
to VGA @60 resolution and frame rate, with only pre-synthesis configurable template
coefficients and bias. Furthermore, adding or changing any part of the design leads to
a redesign process of the central processing unit, which makes the design inflexible, not

reconfigurable and not reusable, ultimately making the design impractical.

The most original contribution of this thesis is the introduction of a local control structure

for the pipelined CNN emulator arrays, hence making the new design almost infinitely

3



flexible, reconfigurable and reusable. The local control structure makes it possible to
design a pre—synthesis configurable architecture and easily describe it in VHDL. The
second originality is the runtime programmability of the new architecture. The template
coefficients, bias value and many other parameters are designed to be programmable,

which makes the design practical to be used in image processing applications.

Finally, two prototypes are introduced on both a high—end and a low—cost FPGA device,
capable of processing Full-HD 1080p @60 images at real-time, which makes the system
the fastest CNN implementation, to date. Furthermore, processing speed of the high—end
prototype is limited by the DVI I/O interface hardware, and the FPGA implementation is

in fact faster by a factor of 2.5-3.



CHAPTER 2

THE CELLULAR NEURAL NETWORK STRUCTURE

In the most general case, a CNN structure is a p—dimensional g—layer spatial grid of neural
cells, with each cell containing ¢ memory nodes, each memory node having an input, and
has space—variant local interconnections between cells. However, mostly m—neighborhood
one—layer space—invariant continuous—space CNN structures are used in image process-
ing applications, which is the focus of this thesis. A representation of a 2-D CNN grid
and its local interconnections are given in Figure 2.1, where it is assumed that only the
immediate neighbors are connected with each other, which is called a one—neighborhood

CNN.

2.1 Mathematical Model of a Continuous-Time One-Layer Space-Invariant CNN

The Chua—Yang CNN model of an m—neighborhood one—layer space—invariant continuous
time CNN with 7 x J rectangular array of C(i, j) cells is completely described in [2] by
the cell state and output equation pair

Xij(t) = —xij(1) + Z artYivk j+1(t) + brattiti j+l)+Z, 2.1)
kl=—m

vij(t) = f(xi;(t)) = 0.5 (|xij(£) + 1] — |xi;(6) — 1]) , (2.2)

where (i, j), i€ {1,2,...1}, j€{1,2,...J} are the spatial Cartesian coordinates, x;;(¢) is the
cell state at time 7, u;; is the constant—valued cell input, ay; and by, k,I € {—m,...0,...m},

m € N are the constant—valued feedback and input coefficients, respectively, z is the
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Figure 2.1 A 32 x 32 spatial grid of a CNN, a 7 x 7 section of the grid and its spatial
interconnections

threshold value and y;; is the cell output (Fig. 2.2a). Eq. (2.1) can be written as
%j(t) = —xij(t) +A®Y;i(t) + B Ujj +z, (2.3)

where ® is a convolution—like operator called template—dot—product, A and B are the
feedback and feed—forward templates, Y;;(t) and U;; are the translated masked output

and input, respectively. Form =1

a1-1 a0 a-ii b-1-1 b0 b-11
A= |ay_y ap ao | B=|by_y bo bo |
ai—1 awp  an bi-1 b bn
Xicj1(t)  xim1(t)  xio1jr(2) Wisij—1 Uim1j Ui—1jt+1
Xij(t): xij—1(1) x;j(1) xije1(t) | Uij= Uij—1 Uij Uij+1
Xip1j-1(t) xip1j(t)  xip1j41(t) Wirlj—1 Wirlj Uitlj+1

A 3-D block diagram of a one-neighborhood CT CNN with 3 x 3 templates is given in
Fig. 2.2b.
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(a) 2-D block diagram of a CNN

(b) 3-D block diagram of a one—neighborhood CNN

Figure 2.2 Block diagrams of a CNN structure

2.2 Mathematical Model of a Discrete-Time One-Layer Space-Invariant CNN

The mathematical model of a Discrete—Time CNN (DT CNN) is obtained by sampling

(2.3) and (2.2) in the time domain by

%ij(1)] g, = %ij(nTy) = xij(n)
% (1)), = %ij(nTy) £ %ij(n)

Yij(O)],_y. = ij(nT5) £ yij(n)

and applying Forward—Euler approximation

Xij(n) ~ x,-j(n + 1])}—)6,']'(1’1)

(2.4)



to the time—derivative in (2.3), which yields the cell state and output equation pair.

xij(n+1) =x;j(n) + T;( —xij(n) +A®Y;j(n) + B&U;j+z2), (2.5)

yij(n) = f(xij(n)) =0.5 (‘x,-j(n) + 1‘ — }xij(n) — 1|) ) (2.6)

2.3 Mathematical Model of the Full Signal Range Model of a DT CNN

Although it is possible to implement (2.5) directly, Full Signal Range (FSR) model of
DT CNN is easier to implement. The FSR model is originally proposed for analog CNN
implementations, as in [18], where it is stated that any voltage in a chip does not exceed
the rail voltages, hence the implemented CNN differs from the original Chua—Yang CNN
model. In other words, physical voltage of a state node does not exceed =1V, remaining
in the full signal range. Consequently, all CT CNN implementations actually use the FSR
model of CNN, and all CNN templates defined in the literature are designed work on both

models.

Designers of most DT CNN implementations are inspired by the idea and applied the
FSR model to a DT CNN, however, the method of obtaining the FSR model of a DT
CNN is not clearly described in the literature. The new model is obtained by changing

the difference equation given in (2.5) by defining

yij(n) é x,'j(n) (27)
and modifying (2.6) to
yij(n+1) = flxi(n+1)). (2.8)

Note that, the operation is actually not about arranging a mathematical equation, but defin-
ing a new discrete—time model over the old one by modifying one section of a difference
equation pair while keeping the other part as it is. Combining (2.7), (2.8) and (2.5), cell

state equation of the FSR model of a DT CNN is obtained as

xij(n+1) = (1-Ty)y;j(n) + TA®Y;;(n) + TB® U;j + Tyz,



which can be written as
xij(n+1)=A®Y;j(n)+B® U, +7, (2.9)
where new template coefficients and threshold are defined by

(I_Tv)+Tvak1 kal:()a

agl =
Tyay; otherwise,
b = Tsby
Z - TYZ-

Combining (2.9) and (2.8), output equation of the FSR model of DT CNN is obtained as

yijin+1)=f(A®Y;j(n)+B®U;;+7). (2.10)

In a digital implementation, it is seen from (2.10) that it is no longer necessary to store
xij(n) as opposed to (2.5), as all information regarding x;;(n) is transferred to y;;(n).
On the other hand, y;;(n) can be represented with less bits in fixed—point arithmetic, as
lvij(n)] < 1, hence integer part of y;;(n) consist of only a sign bit, which means less
memory. In other words, the idea is to let x;;(n+ 1) to grow during the computation
process, then pass the final value from a saturator to obtain y;j(n+ 1), and finally store

only y;j(n+ 1) for the next iteration while wiping x;;(n+1).

Note that, the expression ‘FSR model of DT CNN’ henceforth shortly referred to as
‘DT CNN’, as other mathematical models of DT CNN are beyond the scope of this the-

Sis.



CHAPTER 3

CELLULAR NEURAL NETWORK IMPLEMENTATIONS

Implementing or using a Continuous—Time CNN (CT CNN) architecture over a traditional

image processing structure has many advantages:

o CNN is a highly regular structure which makes it easier to implement;

o the spatio—temporal dynamics of CNN is well defined with a mathematical model,

as opposed to many image processing algorithms based on empirical results;

o several image processing tasks can be realized on the same CNN structure by simply

changing the templates, bias, initial conditions and boundary conditions;

o and the computation is carried out very fast due to the parallel structure of CNN.

However, a considerable implementation difficulty is introduced as the input image gets
larger, and implementing a larger grid is either impossible or not feasible after a certain
point. Consequently, grid size of the largest CT CNN implementation is 176 x 144, to
date. On the other hand, none of the general-purpose Discrete—-Time CNN (DT CNN)
implementations are reported to be capable of working on images larger than 640 x 480
resolution with 60 Hz frame rate, in real time, except for the previous publications of this

thesis [11, 12], which proves the added value of this thesis.

In this chapter, the most notable general-purpose CT CNN and DT CNN implementations

of the literature are summarized and their implementation methods are discussed.
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3.1 Continuous-Time CNN Implementations

Continuous—time implementation of a 2-D CNN is relatively straightforward: the 2-D
grid of a CNN is directly transferred to an analog chip. A 32 x 32 CNN grid is given
in Figure 2.1, where each cell contains a capacitive (analog) memory node and spatial
interconnections. Circuit model of a C(i, j) cell and simplified block diagram of a CT

CNN implementation are given in Figure 3.1 and 3.2, respectively.

3.1.1 CT CNN Implementation Examples

The most notable CT CNN implementations are ACE16K [3] and Eye—RIS [4], whose
grid sizes are 128 x 128 and 176 x 144, respectively. Both implementations are CNN
Universal Machines (CNN-UM), that is, they are designed to be stored programmable
array computers for implementing sequences of template operations with local analog
and logic memory [2]. In other words, they are implemented not only to compute a
single CNN equation, but also store/reload their outputs as intermediate results to realize
complex tasks. For example, an enhanced edge detection algorithm can be implemented
by: saving an input, applying dilation operation to the input and saving the result, applying
erosion operation to the input and saving the result, carry out an XOR operation between

two results and relay the final result to the output.

3.1.2 Processing Large Images with Smaller Grids

Implementing a CT CNN grid larger than 176 x 144 is not feasible, hence larger images
are processed with a method called tiling, i.e., dividing the image to smaller pieces called
tiles, whose sizes are the same or smaller than that of the grid, and processing them
individually. Some possible tiling schemes are given in Figure 3.3. The tiles should be
overlapped to eliminate boundary effects: overlapping one—pixel may be sufficient for a
class of DT CNN implementation, but at least a few pixels should be overlapped for CT
CNN. Note that, the amount of overlapping depends on the CNN templates that will be
realized on an implementation, hence it may be necessary to be excess if the template

relates pixels farther apart.
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Figure 3.2 Block diagram of a CT CNN implementation
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Figure 3.3 Tiling schemes

For example, two CNN simulations are carried out on a PC with grid sizes of 176 x 144
and 320 x 240, where templates of a Gauss—type CNN low—pass filter are chosen, and a
320 x 240 image is processed with and without tiling (Figure 3.4). The original image
and the expected result of the Gauss—type filter are given in Figure 3.4a and 3.4b, while
the results for insufficient and sufficient overlapping are obtained as in Figure 3.4c and

3.4d, respectively.

However, while partial or excessive overlapping schemes are suitable for many CNN
templates, some may be impossible to realize by tiling. For example, global connectivity
detection [19] templates are designed to delete open and one—pixel wide curves as seen
in Figure 3.5a and 3.5b, yet even a properly overlapped tiling scheme with 22 x 22 tiles

gives a different result (Figure 3.5¢).
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(b) Full-frame output of a CNN Gauss filter

(c) Tiled output with one—pixel overlapping (d) Tiled output with partial/excess
overlapping

Figure 3.4 A tiling example that shows the input and results of a CNN Gauss filter
simulated for three different tiling schemes: full-frame, one—pixel overlapped and
partially overlapped

Uik O D
Crm L >y

(a) A 36 x 36 test image (b) Intended output (c) Tiled output with a
proper overlapping

Figure 3.5 Another tiling example for global connectivity detection templates, where
tiling is failed
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In short, a CT CNN implementation has some shortcomings. First, grid size is limited
by some feasibility issues of the analog IC technology. Moreover, tiling is not always
reliable for some CNN templates, hence these networks can only be simulated or emu-
lated on a digital platform for large images. Second, bit depth of a CT CNN is limited to
7 bits due to the electrical noise and crosstalk of an analog implementation. Consequently,
even obtaining a regular 256 level gray—scale result is not possible with CT CNN. Finally,
as opposed to a digital implementation, modifying an analog IC design is a very com-
prehensive work, which can almost be considered as a new project. As a result, digital

implementations of CNN are preferable in most cases.

3.2 Discrete-Time CNN Implementations

A CT CNN implementation is a fully—parallel analog processor array by its nature. On
the other hand, the difference equation (2.10) can only be solved by multiple iterations.
Consequently, fully—parallel implementation method described in Section 3.1 is not appli-
cable to a DT CNN. Note that, it is still possible to implement a fully parallel iterator with
dedicated memory and computation resources assigned to each cell, however a tremen-

dous amount of computation resources are required for such a design.

The most basic digital implementation of a CNN is a simulation on a processor—based
platform like a PC. Considering that template—dot—product operator is actually a convolu-
tion—like operator, calculating one iteration of (2.10) means computing two convolutions
and summing the results and the bias. The computation can be carried out by raster
scanning the input and output images (matrices) U and Y, respectively, i.e., scanning the
matrices in the order given in Figure 3.6, and computing outputs of each cell one by one.
The result of an iteration is computed at the end of the raster scan and the operation is
repeated N times, which is the number of Euler iterations desired. The processing work—

flow can be summarized like the following:

1. set line and column indexes to the first cell,

2. read inputs and outputs from the cells being in m—neighborhood of the given cell,
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3. perform the template—dot—product and addition operations,
4. save the result,
5. if not the last cell, set indexes to the next cell; else, set indexes to the first cell for

the next iteration,

6. go to step 2.

Note that, computing all iterations in a loop is extremely time consuming, and parallel or
pipelined processors should be used for most real-time image processing tasks. Conse-
quently, the computation process should be divided to sub—processes in order to make it

suitable for multiple processors.

3.2.1 Hardware Implementation Methods of DT CNN

The processing work—flow can directly be implemented on a digital hardware like an
FPGA (Figure 3.7a). Note that, even if a tiling scheme is used, then just the intermediate
results are tiled instead of the final results, which only corresponds to change the compu-
tation order. Consequently, full-frame processing or tiling does not affect the final result
in any way, which is not the case of an analog implementation (Figure 3.7b and 3.7c).

However, new problems are introduced with a digital implementation of CNN:

Problem 1: Arises when too much I/O access is required from/to external hardware
or RAM to read/write intermediate computation results.
Problem 2: Resources of the hardware may be insufficient for the implementation

of multiple processors,
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(a) A DT CNN implementation with a single iteration unit

(b) Full-frame processing result (c) Tiled output with one—pixel overlapping

Figure 3.7 Block diagrams of a DT CNN implementation with a single iteration unit, and
simulation results of the implementation

Problem 3: Caused when the input pixel rate is higher than the maximum operating

frequency of the hardware resources.

The first and third problems are solved by using multiple processors and dividing the com-
putation in temporal and spatial domains, respectively, while processors are distributed

among many hardware units to solve the second problem.

3.2.1.1 Dividing the Computation in the Temporal Domain

The first problem concerns memory bandwidth of the external RAM unit: performing
N iterations means accessing the same memory locations N times to read and N times
to write, 2N in total, as opposed to only 2 of an analog design. The solution is to use
a pipelined processor array instead of a single iterator, which corresponds dividing the
spatio—temporal computation flow in the temporal domain, hence the bandwidth require-
ment is divided by the number of iteration units. For example, if 2 and 4 processors are
pipelined, the required bandwidth will be N and N /2, respectively, as opposed to 2N of
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Figure 3.8 Pipelining in a DT CNN implementation: dividing the workload in time
domain
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Figure 3.9 A fully—pipelined DT CNN implementation

the single processor scheme (Figure 3.8).

The ultimate solution to the first problem is to make the design fully—pipelined, i.e.,
adding as much iteration units as the processing requires, which is called unrolling the
iterations. In other words, a processor array containing N processors can be implemented
on hardware to completely eliminate excess memory accesses as given in Figure 3.9,
where the output of the last iteration unit is the final result. Fully—pipelining solves the
memory bandwidth problem while introducing the second problem: what if the hardware

resources are not sufficient to implement N processors?

The second problem is solved by using multiple digital hardware units, e.g., using multi-

ple FPGA devices to implement a longer pipeline (Figure 3.10). Note that, the bandwidth
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Figure 3.10 A fully—pipelined DT CNN implementation with multiple hardware units

of the intermediate data flow between hardware units may be slightly higher than that
of the main input, because in fixed point arithmetic the intermediate result should gener-
ally be represented with higher number of bits then the input for accuracy. However, in
most cases it is trivial to customize the intermediate bandwidth, hence it is not a serious

problem.

3.2.1.2 Dividing the Computation in a Spatial Domain

The third and the final problem rises when the input data rate is faster than the upper fre-
quency limit of the internal resources of the digital hardware. For example, the pixel rate
of a 4K@60 (3840 x 2160 resolution at 60 Hz frame rate) video signal is approximately
594 MHz, which is above or too close to the maximum operating frequency of any state of
the art FPGA device, including the high—end products. Moreover, this problem can not be
solved by pipelining, as we can show by analogy that the problem is not about the length
of the pipeline, but the cross—section of it. In this case, adding a second pipeline parallel
to the first one solves the problem, hence the solution is parallelism (Figure 3.11). There
are several methods to make the computation parallel, however, considering that images
are packed row—wise (Figure 3.6) in most cases, the best way is to divide the image to
vertical stripes and process each stripe with a separate pipeline (Figure 3.12). Note that,
with this method, the computation workload is divided along a spatial domain instead of

the time domain.

The stripes should overlap with each other one pixel on both edges in order to avoid
boundary effects. However, it is not sufficient to overlap only the input stripes, but inter-

mediate results of all iterations should also be overlapped. Consequently, each iteration
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Figure 3.11 A fully—pipelined DT CNN implementation with parallel iteration arrays,
where solutions of all three basic digital implementation problems are covered

unit should communicate with its spatial neighbor in order to send and receive the bound-

ary values.

It is also worth noting that, there are many possible configurations of pipelining and
parallelization while implementing the discussed methods of dividing the computation
workload in the temporal and a spatial domain, respectively. A few practical examples
are given below, where it is assumed that we have an FPGA device that is capable of
holding up to 100 iteration units (processors), and each processor has an upper operating

frequency of 300 MHz.

Example 1 How to process a 1080p @60 video signal for 250 iterations? The pixel fre-
quency of a 1080p@60 video signal is 148.5 MHz, which is lower than 300 MHz, the
maximum operating frequency of a processor, hence parallel processing is not required.
However, at least [250/100| = 3 FPGA devices should be used to implement 250 itera-

tions (Figure 3.13a).

Example 2 How to process a 4AK@60 video signal for 40 iterations? The pixel fre-
quency of a 4K@60 video signal is 594 MHz, higher than 300 MHz, consequently, at
20
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Figure 3.12 A parallelization scheme suitable for the processing of a row—wise packed
image
least [594/300] = 2 stripes are required. In this case, 2 x 40 = 80 pipelined processors

are necessary, which means using a single FPGA device is sufficient (Figure 3.13b).

Example 3 How to process a 8K@60 video signal for 40 iterations? The pixel frequency
of a 8K@60 video signal is 2.37 GHz, hence at least [2370/300] = 8 stripes are required.
As each stripe requires 40 pipelined processors, at least [8 x 40/100] = 4 FPGA devices
should be used. Although there are many possible configurations, a possible solution
is to divide the number of processors equally between four FPGA devices a given in

Figure 3.13c.

3.2.2 DT CNN Implementation Examples

There are many DT CNN implementations of CNN, however, most of them are experi-
mental and far from being usable in image processing tasks. Consequently, only the most

notable DT CNN implementations are summarized in this section.

3.2.2.1 Implementation of Zarandy et al. (CASTLE)

The first notable DT CNN implementation is CASTLE [9], an ASIC implementation,

where both partial pipelining and parallelization schemes are used. In this design, a K x L
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Figure 3.13 Possible hardware solutions of the examples

(c) A solution of example 3

processor matrix can be implemented, where K is the number of iterations unrolled and

L is the number of vertical stripes that the input image, consequently the cell array, is

divided to (Figure 3.14). The pipelining scheme used in CASTLE is not full, i.e., iteration

loop is not fully—unrolled, hence one intermediate iteration result out of K iterations are

saved/loaded to/from an external memory unit.

Internal structure of a CASTLE processor is given in (Figure 3.15). The processor has
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three front input buses for the states x;;(n), constants g;; and template select words T's;;.

gij 1s the part of (2.10) which is constant through the Euler iterations:
gij=B®U;j+z 3.1)

which is computed once for every pixel of each input image and carried as a constant
through all Euler iterations. Consequently, it is sufficient for each processor to perform
one template—dot—product operator for each iteration instead of two. Template select
word is an indicator that is used to select one of the 16 templates stored in the template
memory, which can be used to implement space—variant templates. The I/O busses LBUS
and RBUS are used to communicate with the neighboring processors to give and take the

boundary values.

A CASTLE processor stores a three line belt of the input state as shown in Figure 3.16, as
states from one upper and one lower lines are required for the computation of a template—
dot—product operation, for one neighborhood CNN (m = 1). Contents of each line buffer

is copied to the next one at the end of each line.

Arithmetic unit of CASTLE is given in Figure 3.17, which is designed to perform a 3 x 3
template—dot—product operation in three clock cycles. Three states and template coeffi-
cients, S and 7, respectively, are selected from the internal buffers of the processors at
each clock cycle and multiplied by each other. Consequently, nine multiplications of a

3 x 3 template are carried out in three clock cycles. ACC/ACT registers are master/slave
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Figure 3.14 Processor organization of the CASTLE architecture [6]
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Figure 3.16 Memory belt stored in a CASTLE processor [6]

registers used to supply either the constant g, or intermediate result of the same addi-
tion operation computed at a previous clock cycle to the adder tree. Finally, the result is

shifted, rounded and relayed to the output.

CASTLE has a considerably fixed architecture, as it is targeted for ASIC implementations.
Only 3 x 3 templates are implemented with limited space—invariance support; although a
CASTLE architecture with 5 x 5 templates is proposed in [20], but is not reported as im-
plemented. Direct implementation of a multi—layer CNN is also not possible on CASTLE.
Furthermore, precision of its arithmetic operations are programmable to 1, 6 or 12 bits of

resolution, which is not sufficient for many CNN implementations [6].

3.2.2.2 Implementation of Nagy and Szolgay (Falcon)

Falcon [6] is an improved CASTLE architecture, implemented on an FPGA device. The

processor organizations of Falcon and CASTLE are the same, hence again, a K x L proces-
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Figure 3.18 Block diagram of a Falcon processor [6]

sor matrix is implemented (Figure 3.14). Falcon has a very flexible computation structure,
as opposed to CASTLE, which can be configured to realize multi—layer or space—variant
CNN structures. As a result, it is considerably easy to configure Falcon to solve partial

differential equations, or use it as a CNN-UM.

Block diagram of a Falcon processor unit is given in Figure 3.18, which is an improvement
over the original CASTLE processor. First, a new left to right I/O bus is added to increase
the control over the boundary conditions. Second, line buffers of the memory unit are
replaced with shift registers as shown in Figure 3.19, which saves time by eliminating the
process of copying contents of each line buffer to the next one. The multiplexed design
makes it possible to implement zero—flux boundary conditions. Third, a more complex
mixer unit is used to select the necessary states from line buffers and boundaries and relay
them to an arithmetic unit (Figure 3.20). Finally, a pipelined Falcon arithmetic unit is

designed as shown in Figure 3.21.
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Figure 3.20 Block diagram of the mixer unit of a Falcon processor [6]

It is also proposed in [6] to modify the architecture of a Falcon processor to support
m = 2 and m = 3 neighborhoods; 5 x 5 and 7 x 7 templates, respectively; however, it is

not reported to be implemented as a working prototype as of to date.

The bird’s—eye view of the implemented Falcon emulated CNN system is given in Fig-
ure 3.22, which is a CNN-UM implementation running by a host computer. The image
I/O and control signals are merged in a host bus. A host interface control unit is re-
sponsible to control the main control unit and write/read the input and output to/from the

external memory.

The most recent and the most capable Falcon implementations are reported in [21] and
[22]. The architecture reported in [21] include a modified Falcon processor and the whole
system is capable of processing full-HD 1080p@50 (1920 x 1080 resolution, 50 Hz frame

rate) image streams in real—time and give a collision detection output. However, only the
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pre—processor part of the system performs at the given resolution and frame rate, and
the Falcon core only processes a 128 x 128 part of the image. On the other hand, only
frame rates are discussed in the second paper reported in [22], which lacks the information
about the resolution. In short, none of the Falcon implementations are reported to operate

at higher resolutions and frame rates than VGA @60 (640 x 480 resolution at 60 Hz frame

rate).

3.2.2.3 Implementation of Malki and Spaanenburg

Malki and Spaanenburg proposed two main DT CNN implementations, where (3.1) is
computed like in the case of CASTLE and Falcon, then multiple iterations are carried
out. The first architecture reported in [23] has a similar approach with Falcon, with a
different architecture. However, the reported pixel throughput of 180 Mpix/s is given as
a simulation result, which is also a unrealistic estimation for a Virtex II 6000 FPGA kit;
consequently, it is not clear that whether it is implemented as a working prototype, or
not. Moreover, as it is stated in Section 3.2.2.2, MAC per second is a better criteria for

performance comparison, which is not used in [23], either.

The second implementation is based on packet switching instead of pure pipelining [7].

In this method, the cell grid is divided to five types of cells; A, B, C, D and E; and the cells

27



Host
Computer

[

' Host Bus
FPGA Board
v FPGA
e Main
IS Host -« Control
o =) Interface .
3] c Unit
> £ 2 A
5 2 5 v i
g R i <> E - .é % FIFO i»»
= E i 5‘2 Falcon
o e ™EZ® FIFO Processor
= E 2 ‘g Array
= 4 © { FIFO }¢

Figure 3.22 CNN UM implementation of a Falcon processor array [6]

EIC/B/A/ID|E|C|B
B/A|D|E|C|B|A|D
DIEIC|B/AID|E|C
C/B/A|ID/E|C|B|A
A/ D EIC/B/AID|E
EIC/B/A|ID|E|C|B

Figure 3.23 The knight—placement of the neighboring cells [23]

that have a knight jump distance with one another is labeled as the same type (Figure 3.23).
On the other hand, each cell is designed to have two operating modes: computation and
communication. At any given time, only one type of cell group is activated for processing,
while the others are set to communicate with the active cells to supply the data needed
for computation. Communication is carried out by message packets containing data and
row/column addresses. This method is reported to give more flexibility over the first

method proposed by Malki and Spaanenbug, however, throughput is 50 times lower than

that of the first design.
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Figure 3.24 Processor array proposed by Martinez—Alvarez et al. [8]

3.2.2.4 Implementation of Martinez—Alvarez et al.

Martinez—Alvarez et al. have a DT CNN implementation reported in [8]. They have fully
unrolled all Euler iterations, in other words, designed a fully pipelined architecture as
described for Figure 3.9. Block diagram of their processor array and signal flow graph
of a processor are given in Figure 3.24. The main difference of this design is that, each
processor computes (3.1) instead of getting the result from a preprocessor, which doubles
the number of multiplication and addition operations compared to the other implementa-
tions. In the original design, only one multiplier is implemented for the arithmetic part
of the processor, responsible to calculate all multiplication results of two template—dot—
product operations. Time sharing is used in the computation, which is carried out in 18
clock cycles, as there are 18 coefficients. The internal structure of the processors are also
designed to be fully pipelined to avoid any wait cycles, which means that the processing

clock frequency should be 18 times the pixel clock frequency.

Martinez—Alvarez et al. also proposed a class of multi-FPGA implementation of DT
CNN, similar to the one given in Figure 3.10 [24]. It is also worth noting that the em-
ulator is the first DT CNN implementation that is reported to be capable of processing
VGA @60 video images in real-time. However, the fixed architecture of the design makes
it difficult to modify the architecture to support higher resolutions at the same frame rate.

Consequently, the frame rate should be lowered to increase the resolution, keeping the
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Figure 3.25 Block diagram of a Steadfast—1 prototype [13]

pixel rate below the maximum operating frequency of processors, hence the the highest

resolution and frame rate are reported as 1024 x 1024 @22, to date.

3.2.2.5 Implementation of Kayaer and Tavsanoglu (Steadfast—1)

Kayaer and Tavsanoglu have proposed a modified DT CNN structure in [10, 13], which
was first called as Real-Time Cellular Neural Network Processor (RTCNNP, RTCNNP-
vl), which is later renamed as Steadfast—I. Steadfast—I is the first DT CNN architec-
ture reported to be implemented with only internal Block RAM (BRAM) resources of an
FPGA device, which eliminates the memory bandwidth problems as discussed in Sec-
tion 3.2.1.1. Also note that, the architecture proposed in this thesis is an improvement

over Steadfast—1.

The topmost block diagram of Steadfast—1I is given in Figure 3.25. Input of the system
is a VGA @60 video stream taken from a PC or a progressive camera, which is captured
by a video ADC and directly relayed to an FPGA device in real-time, processed on the
FPGA device, and the final result is relayed to a video sink like a PC monitor. Note that,
only progressive video streams are supported in order to avoid deinterlacing algorithms,

using external memory.

Block diagram of the FPGA implementation is given in Figure 3.26. The Video Input
block is responsible to acquire the video signal from a VGA standard video interface. The
Video Input and Address & Control blocks are cross—coupled to form a central control
unit, i.e., all addresses of the internal buffers and control signals of all sub-blocks are
generated by these two blocks. I>C is also a class of control block, which configures
video ADC and DAC units to VGA resolution at power—up. BPU is the first type of
processor proposed for Steadfast—I, the others being APU(1) and APU(n > 2). BPU
calculates (3.1), the part of the cell-state equation whose value is constant through the
Euler iterations (g;;), and passes its results to APU(1). APU(1) takes this result, computes
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Figure 3.26 Block diagram of the Steadfast—1I architecture [13]

the first iteration and passes both the first iteration result and its corresponding constant
value g;; to APU(2). The second APU calculates the second iteration and passes the result
along with the corresponding constant value to the third APU. The processing continues
in the same manner until the last processor, APU(N), which produces the final result and
passes the value to the Video Output block. Video Output is responsible to restructure the
data as a VGA video stream and generate the control signals required for the standard

visual interface.

The internal structure of BPU is given in Figure 3.27. Three lines of the input image are
buffered in three BRAM memory units. At the beginning of a new frame, 1st, 2nd and
3rd lines are stored in the 1st, 2nd and 3rd BRAM units, and pixel values are written/read
to/from the B and A ports of the BRAM units, respectively. BPU starts processing after
capturing the first two lines and third pixel of the 3rd line. The data of the 1st line is not
needed for computation after the 3rd line is captured, hence it is overwritten by the data
of the 4th line. Every new image line is written over the oldest one and data-handling
process continues in this manner. Consequently, BRAMI stores the 1st, 4th, 7th... lines,
BRAM2 stores the 2nd, 5th, 8th... lines and BRAM3 stores the 3rd, 6th, 9th... lines
during the process. This memory management structure eliminates the need of moving

data between line buffers, but it is more difficult to control.

The coefficients of a B template are held by three DIROM memory units. Each DIROM
hold a vertically shifted version of the B template, as given in Table 3.1, to solve some of

the complications introduced by the complex line buffering structure. There are three dif-

ferent rotation possibilities of the line indexes stored in BRAM1, BRAM2 and BRAM3:
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Figure 3.27 Block diagram of BPU of Steadfast—1 [13]

i—1,iandi+1;i+1,i—1andi;ori,i—1 and i+ 1, respectively, as described above. In
other words, all possible rotated versions of the template is stored in the template memory

to match the line rotations in the BRAM units.

All multipliers and adders are registered to form a pipeline. Three multipliers and three
adders are used for nine multiplication and nine addition operations with time division
multiplexing, hence the clock rates of all memory units and registers should be three

times the pixel rate.

Combining (3.1) and (2.10), the output equation of each iteration is obtained as

yij(n+1) = f(A®Y;j(n)+gij). (3.2)

Table 3.1 Template memory organization of BPU of Steadfast—1 [13]

Address | 0 1 2 3 4 5 6 7 8 9 10 | 11
DIROMLI |b.ya | bag [ bas | — | bya| bro| bz | — [Bo1| boo | o1 | —
DIROM2 | bo.1 | boo | bo1r | — |baa|bao|bas| — |bya| bio| bia | —
DIROM3 | by | bio | bas | — [ Bo.1| boo | Dox | — |baa|bao|bas| —
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Figure 3.28 Block diagram of APU(1) of Steadfast—1 [13]

Note that, there are one template-dot-product and one addition operations in both (3.2)
and (3.1), hence the structures of an APU and a BPU are fairly similar. Structure of the
first APU is given in Figure 3.28. The only difference of the APU(1) from the BPU is an
extra output multiplexer, which is used to mix the constant values calculated by the BPU

and the first iteration results calculated by the APU(1) to the same bus.

The APU(n) blocks for n > 2 (APU(n > 2)) are rather complicated compared to the BPU
and APU(1) (Figure 3.29). Although arithmetic parts of all processors are the same,
memory organization of an APU(n > 2) is completely different from the others: some
parts of each BRAM unit is used to store the iteration results relayed from the previous
APU, while the other parts are configured to store the BPU results, as BPU result should
also be buffered and delayed for synchronization. This complex memory structure is

controlled by the central control logic.

A snapshot of the memory management and data flow of the first four consequent APU
processors is given in Figure 3.30, where numbers are the line indexes, the numbers en-

closed in rectangular frames are the indexes of the lines stored in BRAMs, the numbers
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Figure 3.29 Block diagram of an APU(n) for n > 2 of Steadfast—1 [13]

enclosed in circles are the indexes of the lines that are currently processed, and the wide
arrows show the data transfers between the consequent APU processors. It is seen from
the figure that, BRAM line indexes, hence template rotations differ among consequent
APU processors, where three different rotations are possible. Rotations of the APU(m)

and APU(n) are the same if

mod3(m—n) =0,

e.g., Ist, 4th, 7th; 2nd, Sth, 8th; and 3rd, 6th, 9th APU processors have the same template
rotations. Two Most Significant Bits (MSBs) of the A template addresses (DiROM ad-
dresses) determine the rotation. Address & Control block produces one of these template

address out of three, and the other two addresses are derived from it.

3.3 Conclusion

CT CNN implementations are quite promising at low—resolution focal—plane (near sensor)
processing, however, resolution limit of these designs makes them impractical for many
modern image processing applications. On the other hand, many DT CNN architectures
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are proposed in the literature, but none of them are reported to be capable of processing
Full-HD 1080p@60 or faster video signals in real-time. Note that, it can be speculated
that it is possible to implement an older design to a Stratix IV FPGA device and achieve
a high performance, however, it would require quite an effort and would become obsolete
again in a few years. A real solution of this problem is to propose a new architecture with

the design considerations of flexibility, modularity and reconfigurability issues.
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CHAPTER 4

THE PROPOSED ARCHITECTURE: STEADFAST-2

In this chapter, a flexible, modular and reconfigurable DT CNN architecture is proposed.
Although most of the methods, schemes and aspects of the proposed architecture are
similar to those discused in Chapter 3, the architecture is completely optimized for the
practicality and feasibility of the design, which makes it possible to describe in VHDL
and implement on any FPGA device with the highest flexiblity, modularity and reconfig-

urablity reported, to date.

4.1 Dividing the Computation Process to Multiple Processes

A CNN structure can be simulated or emulated by computing (2.10) on a software or hard-
ware platform, respectively. Considering the high speed aim of this work, it is obvious that
a hardware implementation with parallel processing elements is required. However, even
if analog structures naturally benefit from parallelization, the converse is true for their dig-
ital counterparts. Many difficulties emerge during the design processes of a multi—core
digital structure, e.g., controlling multiple input/output signals of different processors,
sharing common resources like RAM units, implementing multiple number of iterations,
generating boundary conditions for neighboring computation processes, regulating order

of the computation, designing a suitable control logic, etc.

Fortunately, cellular structure of CNN is highly regular and continuous, which may be
exploited by designing a fully pipelined processor chain. Although pipelined architectures
have some latency issues, their throughputs are the same as their input data rates, provided
that their input data streams are continuous and regular. In other words, the inability to
create a parallel DT CNN structure is compansated by pipelining.
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In order to optimize for speed, (2.10) is rewritten as

B—Process
— e

yij(n+1) Zf(A®Yij<n>+B®Uu+Z> (4.1)

J/

-~

A-Process
where computation is divided to A and B processes. The second template—dot—product

operation and addition parts of (4.1)
gl’j:B®Uij+Z (42)

is called the B—process, which does not depend on the discrete—time variable n. By ex-
ploiting this property, it is possible to calculate g;; only once for each input pixel, and use

the same result as a constant through all Euler iterations. Now (4.1) can be rewritten as
vij(n+1)=f(A®Y;;(n)+g;), (4.3)

which is similarly called as the A—Process.

Considering (4.2) and (4.3), computation flow of the DT CNN can be written as

constant calculation : gij=B®U;j+z (4.4a)
Ist iteration : yii(1)=f ([1 ®Y;;(0) +gij) (4.4b)
2nd iteration : yij(2) = f(A®Y;;(1) +gij) (4.4¢)
nth iteration : yij(n)=f (A ®Y;j(n—1)+ gij) (4.4d)
Nth iteration : yij(N)= f(A®Y;;(N—1) +gij) (4.4e)

where N is the total number of Euler iterations desired. Constant calculation is an inde-
pendent process, while any iteration depends on the results of the Constant calculation
and the previous iteration. The computation flow is suitable for a fully pipelined architec-
ture, as it is a feed—forward process chain. It is obvious that computation of y;;(1) is not

possible before g;; is computed, but it is possible to compute y;_¢ j_(;(l), first iteration
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result of a previous pixel. Similarly, y; ¢ j_»¢(2) can be computed while y;_¢ ;_¢(1)
is still being computed, and so on. The values of the spatial shifts, & and {, depend on
the implementation method, as well as the exact geometry of templates, the input image
and blanking areas discussed in Section 4.2.2. Moreover, the uniform spatial shift is dis-
torted at the boundaries, hence it is considerably difficult to give a general mathematical
expressions of & and {. In any case, the local control structure proposed in Section 4.2.3
intrinsically regulates the timings and creates a full-pipeline, completely eliminating the

need of calculating the exact values of £ and (.

In short, each process given in (4.4) can be assigned to a different processor to form a fully
pipelined processor chain, maximizing the speed. Consequently, the number of processors
is the same as the number of Euler iterations required for the computation, which depends
on the values of the templates, threshold, input image, boundary conditions and initial

values of the states.

4.2 Architecture of the Steadfast-2

The system is designed to capture a progressive video stream, process it with CNN and
convert the result back to a progressive video stream (Figure 4.1a). DVI input and output
has been used in prototypes, however, the I/O blocks can be redesigned to support any
progressive video stream, such as VGA, DVI, HDMI, DisplayPort, LVDS or any simi-
lar progressive video source/sink, or any custom PCI, PCle, USB or FireWire interface.
Interlaced video streams are not accepted as interlacing has small use in modern digi-
tal systems, except for broadcasting, not to mention the intensive memory requirements
of the deinterlacing algorithms. Similarly, output of the system is also designed to be

progressive only.

A block diagram of the FPGA implementation is given in Figure 4.1b. The Video Input
block is designed to monitor the DVI control signals in order to determine the resolution
and frame rate. This block also converts the standard DVI control signals Async, vsync and
data enable to their customized counterparts hframe and vframe. The generated control

signals are passed to the CNN emulator block along with the red, green and blue (RGB)
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Figure 4.1 Simplified block diagrams of the system, top block of the FPGA
implementation and CNN Emulator block

pixel data.

Video output block takes the resolution and polarity information from the video input
block and use this information to convert custom control signals hframe and vframe to
standard video synchronization signals. These signals are passed to the transmitter hard-

ware along with the CNN emulation results taken from the CNN emulator block.

4.2.1 CNN Emulator Block

A block diagram of the CNN emulator unit is given in Figure 4.1c. The emulation is

carried out by a chain of processors. The architecture of the system is designed to be fully
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pipelined, i.e., in each clock cycle a new input pixel is captured while the computation
result of a previous pixel is relayed to the output. Internal buffering structure of each
processor eliminates the need of wait cycles. As a result, the system is real-time, and

throughput of the system is the same as the input pixel rate.

The first block of the processor chain converts RGB input signal to gray—scale, as almost
all CNN applications work on gray—scale or black and white (BW) images. Note that it
is also trivial to reconfigure the design for independent RGB color channel processing by
using three parallel CNN emulator arrays or use one array and multiplex it between the

color channels.

The second block is a programmable gray—scale to black and white (BW) converter, which
is implemented using three different methods: thresholding, histogram stretching and
CNN. The block is designed to also have a programmable bypass mode to relay the gray—
scale input pixel to the next block, which is used when a gray—scale CNN emulation is

desired.

The third block is the B—Processing Unit (BPU), which calculates (4.4a). Using one BPU
is sufficient as B—process is the same for all Euler iterations. The BPU block also passes
the original input image U to the first APU through a second output port, which may be

used as the initial value Y(0).

The fourth block is the first A—Processing Unit (APU), which is used to calculate (4.4b).
The intermediate constant and initial value matrices, G and Y(0), respectively, are used
to calculate the first Euler iteration result Y(1). Also note that the A— and B—processes
are very similar as seen from (4.4), except for an f(-) function, which makes it possible

to design as single processor which is programmable as APU or BPU.

The first APU is followed by a number of consequent APU blocks, each responsible
for calculating one Euler iteration. Hence, the total number of APU blocks is the same
as the number of Euler iterations desired. Dividing Euler iterations among many APU
blocks, combined with the fully pipelined architecture makes the design comparable to a

parallel processing system. Each APU block is also responsible to pass its constant input
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G to the next APU, as all APU blocks use the same constant as seen in (4.4b)—(4.4e).
Consequently, G is stored and used by each APU, and passed through the APU blocks,

without being subject to any changes.

Finally, output of the last APU is passed through a programmable contrast stretcher block,
which is usually kept in bypass mode, and enabled only to increase contrast of the output
image for observation. The block has manual and automatic modes. In the manual mode,
constant minimum and maximum pixel values are used for stretching, while these values
are calculated dynamically in the automatic mode. The pixel intensities smaller and larger
than the minimum and maximum values are saturated to O and 255, respectively, while

the ones in between are stretched linearly:

(

0, Yin < Cmin

Yin — Cmin
Your = 255 % y Cmin < Yin < Cmax
Cmax — Cmin

255, Yin > Cmax

\
where, ¢;,in and ¢4y are the minimum and maximum threshold values, respectively. Out-
put of this block is the final emulation result, which is routed to all color channels of the

video output block, from which a gray—scale output image is obtained.

4.2.2 Basic Processing Unit

As stated before, (4.2) and (4.3) are very similar, each calculating one template—dot—
product and one addition operations, and their only difference is an output function f(-).
Consequently, instead of designing two different computation blocks, one programmable
basic processing unit called x—Processing Unit (xPU) is designed and used as either BPU

or APU (Figure 4.2).

The type of an xPU block can be changed at runtime to BPU or APU by either a hardware
or software interface. The APU/BPU port is designed to make the block configurable by
another hardware, while a serial programming interface is used to program xPU via an

external software running on a PC, microcontroller, etc.

The xPU block has four data I/O ports: data input (data_in, dj,), constant input (const_in,
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Figure 4.2 Simplified block diagram the xPU

¢in), data output (data_out, doy) and constant output (const_out, coy). In the processing
work—flow, first, a few lines of the row—wise packed data taken from d;, and cj, are un-
packed in the data and constant RAM units, respectively. Then, template—dot—product
operation is carried out between the template and some of the data buffered in data RAM,
and then a constant value taken from the constant RAM is added to the result. Finally, the

result is multiplexed to outputs, depending on the xPU type, BPU or APU:

d; for BPU,
dout = _

T ® Dj,, + cin for APU,

T ® D;, + cin for BPU,
Cout =

din for APU.

Here, T is a template and Dj, is the data corresponding to the template.

In other words, input image U is the data of BPU while threshold 7 is its constant. On the
other hand, for APU(n), output of the previous APU is its data while output of BPU is its

constant.

An xPU has three clock inputs: pixel, processing and auxiliary clocks. The pixel clock is
synchronized with the input pixels, as its name implies, while auxiliary clock is used for
asynchronous tasks like serial programming. The processing clock is an integer multiple
of the pixel clock, which is used to carry out multiplication and addition operations. In

other words, arithmetic operations may be carried out using time—division multiplexing,
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from which the number of multipliers, one of the most valuable resources of an FPGA
device, may be reduced. The reduction ratio is equal to the rounded up result of the total
number of elements of a template divided by a clock multiplier. For example, considering
3 x 3 templates, by using processing clocks one, two, three, five and nine times as fast as
the pixel clock, the number of multipliers used by an xPU will be [9/1] =9, [9/2] =5,
[9/3] =3, [9/5] =2 and [9/9] = 1, respectively. Consequently, the number of multi-
pliers may be reduced by increasing processing clock rate, as long as the resources of the

FPGA device used for the implementation supports that clock rate.

The processor architecture supports non—square templates and does not have any restric-
tions on the template size, although there are not many ongoing research on either of these

topics.

An xPU is programmable to perform either the zero—flux (Neumann) or fixed boundary
conditions. The fixed value is also programmable, from which zero boundary condition
may be obtained. Toroidal boundary condition is not implemented for resource optimiza-
tion, as an extra line buffer should be used in each xPU for its implementation. However,
note that it is trivial to implement it when needed, as the architecture is designed to be

extremely flexible.

template—dot—product operation requires data from 2m + 1 consequent lines of cells to
be buffered into a data RAM, which is organized as line buffers [25]. There are two
schemes to implement a data RAM: buffering 2m + 1 lines of data directly, or optimizing
data RAM and buffering data from 2m lines and 2m + 1 cells. In other words, there is
no need to store data of a whole line after the optimization. For m = 1, a snapshot of the
non—optimized and optimized data memory structures of three consecutive APU units are
given in Figure 4.3. The non—optimized memory structure is easier to control as the cells
at the same column are being processed by different processors. On the other hand, the
optimized memory structure consumes less memory in exchange for control complexity,
as different control signal should be generated for each processor. In this design, opti-
mized data RAM structure is preferred, whose control difficulties are eliminated by using
a local control structure, which was converse in Steadfast—1.
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Figure 4.3 Memory usage of consequent APUs (light gray), and pixels that are being
processed (dark gray)

Constant inputs of an xPU should also be buffered in a constant RAM for synchronization.
Buffering constants of m cell lines and m + 1 additional cells is sufficient, as constants are
not used in any template—dot—product operation, hence neighboring constants are non

required for the computation.

Complexity of the control unit is reduced by assigning a dedicated address counter to each
data and constant RAM unit. As a result, it is possible to control these RAM structures

with only clock enable and reset signals.

4.2.3 Local Control Structure

Designing a central control structure is one of the most challenging parts of such a com-
plex design. Furthermore, almost any change or optimization in the design leads to a
redesign process of the control logic. The first generation of the proposed structure,
Steadfast—1, has a complex central control structure, making the design too volatile to
improve upon, which was the main reason that a new architecture with local control units

is proposed.

In this design, the need of a central control unit is completely eliminated by the introduc-
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tion of local control units. All main blocks in the processing chain should have a local
control unit, including video input, RGB to gray—scale converter, gray—scale to BW con-
verter, xPU, histogram stretcher and video output blocks. A local control unit basically
has two responsibilities: decoding horizontal and vertical frame synchronization signals,
hframe_in and vframe_in, respectively, and generating hframe_out and vframe_out con-
trol signals for the next unit. In other words, each unit is controlled by the previous unit

and control the next unit.

Almost all video display interfaces add a blanking area around visible video frames as
seen in Figure 4.4a, from which a 1-D video stream is obtained by row—wise packing all
2-D video frames and joining them end to end (Figure 4.4c). Note that, the blanking area

causes long and short pauses between frames and lines, respectively.

The video display interfaces also define synchronization signals Async and vsync, which
act as horizontal and vertical blanking area triggers, respectively. However, pinpointing
beginning of a visible area using only Async and vsync control signals require a complex
control unit, hence digital interfaces like DVI and HDMI also define a visible area indica-
tion signal called data enable. There is also the signal polarity issue of Async and vsync,

which may be active high or low, independent from each other, depending only on the
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video display interface standard.

Instead of being dependent to a video display interface, simplified custom control signals
called hframe and vframe are defined for the implementation. The blanking area given in
Figure 4.4a can be segmented into nine regions by extending the edges of the visible area
(Figure4.4b). The horizontal control signal hframe is defined to be high in the middle of
two vertical lines, while vertical control signal vframe is defined to be high between two
horizontal lines. Consequently, visible area is located when both control signals are high.
Moreover, hframe and vframe control signals identify three regions of the blanking area:
left/right, top/bottom and corners. Furthermore, top, bottom, left and right boundaries
can also be differentiated by using both the current and one clock period delayed values

of hframe and vframe.

The Video Input unit is the first unit of the chain, hence responsible for generating the first
hframe and vframe control signals from video synchronization signals of a standard video
display interface. The next block in the chain uses these signals to control its internal
operation, and delays these signals the same amount of time of its input to output delay
(latency) to control the next block. Note that, delaying for a few lines means delaying for
thousands of clock cycles, hence the delaying process is carried out by some pixel and line
counters and simple registers instead of huge shift registers in order to use less resources.
The same control scheme is carried out by each block in the chain, until Video Output,
which converts the hframe and vframe control signals back to the video synchronization

signals of a standard visual interface.

4.2.4 Serial Programming Interface

This block is used to program coefficients of the processing units or change their oper-
ating modes during runtime. The most challenging part of designing an interface is the
need to read/write from/to many sources while preventing data collisions, hence most
of the standard serial programming interfaces are either designed to be end to end, or
use high—-impedance data lines that are not suitable for an FPGA design. Consequently,

a packet—based custom communication interface is designed, capable of addressing and
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programming each block in the chain independently.

External serial interface is designed to be RS232 in the prototype, although, any serial
communication interface may be implemented by redesigning the UART Serial Interface

block seen in Figure 4.1b.

Block diagram of a serial communication interface is given in Figure 4.5, which is a type
of micro serial transceiver. Each local control unit of each block in the processing chain
include a serial communication interface. The serial input sdata_out of each block is

connected to the sdata_in of the next block to form a seial communication loop inside the

FPGA device.

Any coefficients and other configurations of a block in the processing chain is addressed
within a memory map as given in Figure 4.6. Up to 2!! coefficients and 2!" configuration
words can be addressed by the serial communication interface. Note that, the word length
is designed to be variable to support many different processors in the same chain. For
example, the first xPU (BPU), the remaining APU units and the histogram stretching

blocks all can be configured with different data word lengths without any conflicts.

The serial data packet carries the following information: a start bit, a processor ID, an
internal memory address, a read/write flag, the total length of the message and a data
(Figure 4.7). Consequently, first, each processor that needs programming should be as-
signed with a unique processor ID. Second, all registers that need to be written to or read
from the interface should be in the addressable coefficients or Special Functions Reg-
ister (SFR) space given in Figure 4.6. Note that, a total number of 2! = 4096 unique
blocks can be addressed; and the maximum addressable packet length is 2°> = 32, hence a

maximum data word length of 224 bits are supported by the interface.
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Figure 4.7 Structure of a serial packet

Serial programming work—flow starts with the preparation of a serial data packet by an ex-
ternal programmer. The external data packet is designed to be a second layer data packet,
which also includes some redundancies and a checksum. The UART Serial Interface
block receives this data packet, unpacks the second layer, check the data for corruptions,
and relays the first layer data packet to the first processor in the chain. The first processor
checks the processor ID, performs the read/write operation if the message is addressed
to it, skips otherwise. In any case, the serial packet is transferred to the next processor:
if a read operation is performed, the data part of the packet is updated by the processor,
else the received data is relayed as it is. Note that, multiple processors of the same type
may be assigned the same processor ID and programmed with a single data packet. Each
processor in the chain carries out the same operation until the data packet is transferred
back to the UART Serial Interface block. The UART block repacks the data in a second

layer packet and sends it to the external programmer.
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4.3 Reconfigurable and Programmable Features of the System

As well known, flexibility, scalability, reusability and practicality issues of any digital
hardware design lies within its reconfigurability and programmability properties. The
Steadfast—1 structure proposed in [10] lack these properties, which is one of the main rea-
sons that the improved Steadfast—2 architecture is proposed. Many features of Steadfast—2

are designed to be either pre—synthesis configurable or runtime programmable.

4.3.1 Reconfigurable Features

The new architecture is designed to have many parameters that could be configured before
the synthesis process, making the design flexible, scalable to smaller or larger FPGA
devices and reusable in different implementations with small adjustments. The whole
hardware is described in VHDL, and the re—configurable features are implemented by

using powerful generics and unconstrained port definitions of VHDL.

The most reconfigurable block of the design is the basic processing unit, xPU. The size of
the template, the number of multipliers, the maximum number of visible pixels on a line
that will be supported by the processor and fixed—point bit widths of the template coeffi-
cients, data ports and constant ports are designed to be pre—synthesis configurable. The

whole internal structure of an xPU is automatically generated using these configurations.

Configuring the size of the template of an xPU affects: the number of line buffers of
both data and constant RAM units, the number and topology of the the registers used to
generate the boundary conditions, and the numbers of multiplication and addition blocks.
The processing clock multiplier constant also affect the number of multipliers and adders,
along with the total number of entries in a template, from which a multiplication layer

and an adder tree are generated automatically during synthesis.

The maximum number of visible pixels that is allowed on a video line is another scaling
parameter of an XPU. Assigning a large value to this parameter like 2048 ensures that the

processor functions properly for any common resolution, including Full-HD 1080p.
The saturation function at the output of an xPU may be disabled by a generic, which is
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needed for an ongoing work, realizing a multi-layer DT CNN emulator structure. Details

of this structure is beyond the scope of this thesis.

There are some other configurable parameters in the system aside from the ones men-
tioned for an xPU. The first one of these parameters is the number of xPU blocks in a
processing chain. Second, weights of the RGB to gray—scale converter block are de-
signed to have configurable bit widths, although its contribution to resource optimization
is insignificant. Finally, each programmable block has assigned a unique ID that is used
during serial programming. Other re—configurable parameters are either insignificant, or

only used in test/demo settings, hence they also are beyond the scope of this thesis.

4.3.2 Programmable Features

The Steadfast—1 structure is a static design, requiring a re—synthesis process to change
its CNN templates. Therefore, flexibility and practicality of the design are improved
almost infinitely by making Steadfast—2 programmable. Many features of the system are

programmable at runtime through a serial inteface, without the need to reconfigure the

FPGA device.

The xPU block has many programmable features. First and the most obvious, template
coefficients and the threshold constant may be programmed via a serial programming in-
terface. Second, xPU type flag may be programmed as BPU or APU. Note that, threshold
value and xPU type information may also be taken externally from the c;, and APU/BPU
ports, respectively, hence another programmable flag called xPU mode sets xPU state to
serial or external port programming. Third, boundary mode is programmable to fixed
or zero—flux boundary conditions. Finally, fixed boundary value is also programmable

through the same interface.

The gray—scale to BW conversion block is also programmable, as some CNN templates
work on gray—scale inputs while others need BW input images. Consequently, the block

is programmed to pass either the converted or the original data to its output.

Finally, histogram stretcher block is programmable in three modes: manual, automatic
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and bypass. In manual mode, minimum and maximum threshold values are also pro-
grammed through the serial interface. In automatic mode, histogram of the previous
frame is used to calculate the thresholds automatically, where a programmable percentage
of data is considered noise at low and high intensities and ignored during the histogram

calculation.
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CHAPTER 5

IMPLEMENTATION RESULTS AND COMPARISONS

A comparison of the first and second generation Steadfast structures is given in Table 5.1.
First, the comparison clearly show the flexibility and reconfigurability properties of the
new design, as the old structure is stuck to VGA @60 (640 x 480 resolution at 60 Hz frame
rate), a single resolution, frame rate and processing clock multiplier. All configurations
given in Table 5.1 are tested on an Altera Stratix IV GX 230 FPGA device up to 150 Euler

iterations.

Then, the architecture is scaled down to an Altera Cyclone III C 25 FPGA device by
reducing the number of iterations to 8 and implementing only table entries with processing
frequencies smaller than 300 MHz, which proves that the architecture is highly scalable.
It also worth noting that, the actual number of multipliers used by an xPU implemented
on a Stratix IV FPGA device should be even, hence one should be added to the odd entries
in Table 5.1 for Statix IV devices, which is caused by the dual packed multiplier design
of the FPGA device. Consequently, care should be taken when making estimations or

comparisons for different FPGA vendors and/or families.

Both prototypes are tested at Full-HD 1080p @60 (1920 x 1080 resolution at 60 Hz frame
rate) with a pixel clock frequency of 148.5 MHz and a visible pixel rate of 124.4 Mpix/s,
in real-time. On the other hand, maximum number of implemented iterations is 150 for a
Stratix IV device, which means that 338.2 giga (338.2 x 10%) multiplication and addition
operations are carried out per second. Moreover, the pixel rate is limited by DVI /O chips,
hence 2.5 to 3 times higher pixel rates are easily achievable on a Stratix IV FPGA device

with a suitable interface, and even higher rates may be achieved with further optimization.
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Table 5.1 Resource usage of an xPU for old and new Steadfast structures form =1 (3 x 3
templates). The numbers at the left and right sides of a ’/’ are given for Steadfast—1 and
2, respectively, and the symbol -’ is used to indicate not implementable’.

Steadfast—1/Steadfast—2
Resolution Frame Pixel | Processing  Processing Number  Number of
Rate Rate Clock Clock Rate of 9 Kbit 18x18
(Hz) (MHz) | Multiplier (MHz) memories multipliers
1 25.175 -/4 -/9
2 50.350 -/4 -/5
640 x 480 60 25.175 3 75.525 6/4 3/3
5 125.875 -/4 -/2
9 226.575 -/4 -/1
3 222.750 -/8 -/3
1280 x 720 60 74.250
5 371.250 -/8 -/2
2 297.000 -/8 -/5
1920 x 1080 60  148.500
3 445.500 -/8 -/3

It is also worth to state that, this is the fastest CNN implementation reported to date. Al-
though analog CNN implementations makes the processing faster, video I/0 bandwidths
and implementable CNN grid sizes are their primary bottlenecks. On the other hand,
the I/0O bandwidth problem exist for any CNN emulator using external SRAM or DRAM,
including any CNN Universal Machine (CNN-UM) implementation. The proposed archi-
tecture specifically address the I/O bandwidth problems by introducing a fully pipelined
architecture. Furthermore, the structure is designed to be extremely scalable in order to
be suitable for any FPGA device, including FPGA devices yet to be developed, hence,
performance of the proposed architecture is expected to improve indefinitely with the de-
velopment of the digital IC technology. Even with the current prototype, the pixel rate
ratio of 1080p@60 and VGA @60 is 6.75, which means that the proposed architecture is

successfully implemented with a speedup factor of 6.75.

Finally, due to the fully pipelined feed—forward architecture of the design and the pro-
posed local control structure, any number of FPGA devices may be connected end to end
to overcome the iteration limit of a single FPGA device. In other words, the design is fully

modular as it is, and the workload may be divided to many FPGA devices without any
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improvements or optimization. Furthermore, the FPGA vendors and/or families are not
have to be the same, which is tested by connecting the low—cost and high—end prototypes
end to end. Consequently, mixed hardware can be used for applications where multiple

FPGA devices should be used, eliminating the need of symmetric hardware extension.
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CHAPTER 6

RESULTS AND DISCUSSION

In this thesis a new DT CNN structure is proposed, which is capable of processing full—
HD 1080p@60 images in real-time. The design is generically called as RTCNNP-v2
at first, then given the codename Steadfast—2. The proposed architecture is the only DT
CNN implementation which is reported to be tested on high-resolution images at a pixel
rate of 124.4 Mpix/s, not to mention that the limitation is caused by the I/O bandwidth
limit of the DVI daughter cards and not the FPGA implementation itself. Considering
the tested processor clock rates up to 450 MHz, it is predicted that a pixel rate about
300 Mpix/s or more can be achieved with a faster video interface, without any changes to

the architecture itself.

The original contribution of this thesis is that, the necessity of a global control logic is
completely eliminated by designing a new local control structure. In this context, a local
control block is embedded in each block in the processing chain, where each block is
given the responsibility to control the next block in the chain. In other words, each block
gets external control signals from the previous block along with the data to be processed,
generate its internal control signals and processes the data, and relay the processed data
along with the external control signals generated for the next block. A horizontal and
a vertical synchronization signals are used as control signals, which was inspired from

standard visual interfaces, but modified to be more suitable for an FPGA implementation.

The local control structure makes the design highly flexible, reconfigurable and reusable,
which was proven in a research project, where the proposed infrastructure is used in two

more PhD theses, [14] and [16]. In the former, the template—dot—product operator is
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replaced by a Gabor computation unit, which was also reported in [15]. In the latter, the
proposed xPU blocks are configured in different topologies, without being subject to any

changes, and a multi—layer CNN emulator has been realized.

The second originality of the proposed architecture is the addition of some programmable
features to the design, which was the one of the main missing features of the Steadfast—1
(RTCNNP-v1) architecture. These features make the design practical for an industrial
application, as they enable to change the image processing task at runtime. Note that,
the originality is not universal, as many other DT CNN implementations are reported to

support programmability for a long time.

The third originality is the scalability of the new design, which was proved by imple-
menting the same VHDL source codes on two different Altera FPGA devices: a high—end
Stratix IV 230 GX and a low—cost Cyclone III C 25. Note that, none of the Altera prim-
itives or cores are used in the design for portability, hence the same design expected to
work on any FPGA device of any vendor. However, also note that, it is not possible yet
to imply a PLL in VHDL, hence one exception of the previous statement is the usage of
a PLL primitive of Altera. Consequently, the whole design can be transferred to another
FPGA vendor or model by simply creating a new project, importing the VHDL source
codes, defining a PLL primitive for that FPGA model, defining physical pin locations and

recompiling the design.

Finally, some features of a third generation Steadfast—3 can be proposed for future work.
First, the workload of Steadfast-2 is divided to multiple processes only in the time do-
main, hence it can also be divided in the spatial domain in the next design for more
flexibility, which enables processing of 4K@60 or 8K@60 video streams in real-time.
Second, even if the main speed advantage of the design comes from not using external
memory, designing an external memory controller with limited memory access will widen
the application range of the implementation. Third, memory coding technique of the pro-
posed architecture introduces some jitter which limits the maximum frequency or size of
the implementation, which can be corrected on a future design. Fifth, computation part
of xPU can be modified to support space—variant templates to widen the range of appli-
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cations. Finally, an optional soft processor core can be implemented on the FPGA device
to add some more flexibility to the design. The processor can either manage menial tasks
like providing a USB interface, or perform slow processes like database access, decision

making, etc.
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