T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

SÜREKSİZ SINIR ŞARTLARI ETKİSİNDEKİ KATMANLI KOMPOZİT KABUKLARIN YÜKSEK MERTEBELİ KAYMA DEFORMASYON TEORİSİ İLE ANALİZİ

VEYSEL ALANKAYA

DOKTORA TEZİ GEMİ İNŞAATI VE GEMİ MAKİNELERİ MÜHENDİSLİĞİ ANABİLİM DALI GEMİ İNŞAATI VE GEMİ MAKİNELERİ MÜHENDİSLİĞİ PROGRAMI

> DANIŞMAN DOÇ. DR. FUAT ALARÇİN

> > **İSTANBUL, 2011**

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

SÜREKSİZ SINIR ŞARTLARI ETKİSİNDEKİ KATMANLI KOMPOZİT KABUKLARIN YÜKSEK MERTEBELİ KAYMA DEFORMASYON TEORİSİ İLE ANALİZİ

Veysel ALANKAYA tarafından hazırlanan tez çalışması 12.07.2011 tarihinde aşağıdaki jüri tarafından Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Gemi İnşaatı ve Gemi Makineleri Mühendisliği Anabilim Dalı'nda **DOKTORA TEZİ** olarak kabul edilmiştir.

Tez Danışmanı

Doç. Dr. Fuat ARARÇİN Yıldız Teknik Üniversitesi

Jüri Üyeleri

Doç. Dr. Fuat ALARÇİN Yıldız Teknik Üniversitesi

Prof. Dr. Ahmet Dursun ALKAN Yıldız Teknik Üniversitesi

Prof. Dr. Abdi KÜKNER İstanbul Teknik Üniversitesi

Prof. Dr. Zahit MECİTOĞLU İstanbul Teknik Üniversitesi

Yrd. Doç. Dr. Muharrem BOĞOÇLU Yıldız Teknik Üniversitesi Kompozit laminelerin davranışlarının anlaşılabilmesi amacıyla süregelen çalışmalar içerisinde; sınır şartlarının gerçek çalışma şartlarına mümkün olduğu kadar yaklaştırılabilmesi amacıyla birçok çalışma yapılmıştır. Bu çalışmanın amacı da, farklı sınır şartları etkisindeki kompozit laminenin; gerek çözüm hassasiyeti, gerekse ihtiyaç duyulan matematik işlem sayısı açısından optimum noktada olduğu kabul edilen Üçüncü Mertebeden Kayma Deformasyon Teorisi kullanılarak incelenmesidir.

Sınır şartlarının neden olduğu süreksizlikler ve çözüm yöntemi detaylı olarak anlatılarak, geliştirilen matematik model tüm aşamaları ile gösterilmiştir. Elde edilen sayısal sonuçlar bilgisayar destekli ticari bir yazılım yardımıyla kontrol edilmiş ve çözüm hassasiyeti farklı malzeme modelleri için detaylı olarak sunulmuştur.

Tez çalışmamın her aşamasında bana yardımcı olan ve yol gösteren tez danışmanım Sayın Doç. Dr. Fuat Alarçin'e, matematik modelin oluşturulması ve bilgisayar programının hazırlanması sırasındaki destekleri için Sayın Dr. Ahmet Sinan Öktem'e teşekkürü bir borç bilirim.

Bu çalışma biricik oğlum Batuhan Alankaya'ya ithaf edilmiştir.

Temmuz, 2011

Veysel ALANKAYA

İÇİNDEKİLER

	Sayfa
SİMGE LİSTESİ	vii
KISALTMA LİSTESİ	ix
ŞEKİL LİSTESİ	x
ÇİZELGE LİSTESİ	. xii
ÖZET	. xiv
ABSTRACT	xvi
BÖLÜM 1	
GiRiŞ	1
1.1 Literatür Özeti	2
1.2 Tezin Amacı	5
1.3 Orjinal Katkı	. 6
BÖLÜM 2	
YÖNTEM	. 8
2.1 Temel kavramlar	8
2.1.1 Gerilme	8
2.1.2 Sekil Değiştirme	9
2.1.3 Hooke Kanunları	. 10
2.1.4 Malzeme Tipleri	11
2.1.4.1 Anizotropik Malzeme	11
2.1.4.2 Monoklinik Malzeme	. 11
2.1.4.3 Ortotropik Malzeme	. 11

		2.1.4.4	Enine (Transversely) İzotropik Malzeme	12
		2.1.4.5	İzotropik Malzeme	12
	2.1.5	Temel O	rtotropik Malzeme Tanımları	12
		2.1.5.1	Ortotropik Malzemelerde Esneklik Matrisi	12
		2.1.5.2	Gerilme-Şekil Değiştirme İlişkisi	13
2.2	Lamina	asyon Teo	orileri	18
	2.2.1	Klasik La	mine Plak Teorisi (KLPT)	19
	2.2.2	Birinci N	1ertebeden Kayma Deformasyon Teorisi (BMKDT)	21
	2.2.3	Üçüncü	Mertebeden Kayma Deformasyon Teorisi (ÜMKDT)	24
		2.2.3.1	Yer Değiştirme Denklemleri	24
		2.2.3.2	Denge Denklemlerinin Türetilmesi	25
2.3	ÜMKD	T İçin Yer	Değişimleri ve Şekil Değişimlerinin Tanımlanması	29
2.4	Asimet	trik –Çapr	az Yerleştirilmiş–Çift Eğrilikli Kabuk İçin Kuvvet ve	
	Mome	ntler		31
	2.4.1	Kuvvet E	Bileşenleri	31
	2.4.2	Egilme v	e Burulma Momenti Bileşenleri	32
	2.4.3	YUKSEK		32
	2.4.4	Enine Ke	esme Kuvveti Bileşenleri	33
2 5	2.4.5	YUKSEK I	viertebell Kayma Bileşenleri	33
2.5	0rtotr	opik, Çapi Nibai De	raz Dizimii Kabuk Denge Denkiemieri	34
	2.3.1	Ninai De		50
BÖLÜM	3			
SINIR ŞA	RTLARI			38
3.1	Kuvvet	t ve Mom	entler	41
3.2	SS1 – S	SS4 Sınır Ş	artları	43
3.3	Fourie	r Çözüm I	Fonksiyonları	45
3.4	Düzen	lenmiş De	enge Denklemleri	48
3.5	Geome	Sınır Şartı Ətrik Sınır	arı Sartları	50 51
			Şartian	51
BOLOM	4			
SS1-SS4	BASİT N	/IESNETLİ	BİR PLAĞIN STATİK ANALİZİ	52
4.1	Sayısal	l Uygularr	ıa	54
BÖLÜM	5			
SS1-SS5	BASİT N	/IESNETİ (ÇİFT EĞRİLİKLİ BİR KABUĞUN STATİK ANALİZİ	63
5.1	Sayısal	Uygulam	ıa	65
	2.2 2.3 2.4 2.5 BÖLÜM SINIR ŞA 3.1 3.2 3.3 3.4 3.5 3.6 BÖLÜM SS1-SS4 4.1 BÖLÜM SS1-SS5 5.1	2.1.5 2.2 Lamina 2.2.1 2.2.2 2.2.3 2.3 2.3 2.3 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.5 0rtotr 2.5.1 BÖLÜM 3 SINIR ŞARTLARI 3.1 Kuvvet 3.2 SS1 – S 3.3 Fourie 3.4 Düzen 3.5 Doğal 3.5 Doğal 3.6 Geome BÖLÜM 4 SS1-SS4 BASİT N 4.1 Sayısal BÖLÜM 5 SS1-SS5 BASİT N 5.1 Sayısal	2.1.4.4 2.1.4.5 2.1.5 Temel O 2.1.5.1 2.1.5.2 2.2 Laminasyon Teo 2.2.1 Klasik La 2.2.2 Birinci M 2.2.3 Üçüncü 2.2.3.1 2.2.3.2 2.3 ÜMKDT İçin Yer 2.4 Asimetrik –Çapr Momentler 2.4.1 Kuvvet E 2.4.2 Eğilme v 2.4.3 Yüksek M 2.4.4 Enine Ke 2.4.5 Yüksek M 2.4.5 Yüksek M 2.5 Ortotropik, Çap 2.5.1 Nihai De BÖLÜM 3 SINIR ŞARTLARI 3.1 Kuvvet ve Mom 3.2 SS1 – SS4 Sınır Ş 3.3 Fourier Çözüm M 3.4 Düzenlenmiş De 3.5 Doğal Sınır Şartl 3.6 Geometrik Sınır BÖLÜM 4 SS1-SS4 BASİT MESNETLİ 4.1 Sayısal Uygulam BÖLÜM 5	 2.1.4.4 Enine (Transversely) İzotropik Malzeme

BÖLÜM 6

SONUÇLAR VE ÖNERİLER	74
6.1 Sonuçlar 6.2 Öneriler	77 79
KAYNAKLAR	81
EK-A	
KATSAYI TANIMLAMALARI	85
ÖZGEÇMİŞ	88

SIMGE LISTESI

- a Plak veya kabuğun x₁ eksenindeki uzunluğu
- b Plak veya kabuğun x₂ eksenindeki uzunluğu
- E Elastisite modülü
- G Kayma modülü
- h Lamine plak ve kabuk kalınlığı
- *I* Kütle atalet momenti
- M₁ Transforme edilmiş plak veya kabukta x₁ ekseni yönünde oluşan moment
- M₂ Transforme edilmiş plak veya kabukta x₂ ekseni yönünde oluşan moment
- M_6 Transforme edilmiş plak veya kabukta x_1 x_2 düzleminde oluşan moment
- M_{xx} Plak veya kabukta *x* ekseni yönünde oluşan moment
- M_{yy} Plak veya kabukta y ekseni yönünde oluşan moment
- M_{xy} Plak veya kabukta x y düzleminde oluşan moment
- N₁ Transforme edilmiş plak veya kabukta x₁ ekseni yönünde oluşan kuvvet
- N₂ Transforme edilmiş plak veya kabukta x₂ ekseni yönünde oluşan kuvvet
- N_6 Transforme edilmiş plak veya kabukta x_1 x_2 düzleminde oluşan kesme kuvveti
- N_{xx} Plak veya kabukta x ekseni yönünde oluşan kuvvet
- N_{yy} Plak veya kabukta y ekseni yönünde oluşan kuvvet
- N_{xy} Plak veya kabukta x y düzleminde oluşan kuvvet
- Q₁ Plak veya kabukta x₁ ekseni üzerindeki kenarda oluşan reaksiyon kuvveti
- Q₂ Plak veya kabukta x₂ ekseni üzerindeki kenarda oluşan reaksiyon kuvveti
- R₁ Çift eğrilikli kabuğun x₁ eksenindeki eğrilik yarıçapı
- R₂ Çift eğrilikli kabuğun x₂ eksenindeki eğrilik yarıçapı
- ε_{xx} Plak veya kabukta x_1 ekseni yönündeki birim şekil değişimi
- ϵ_{yy} Plak veya kabukta x_2 ekseni yönündeki birim şekil değişimi
- ϵ_{zz} Plak veya kabukta x_3 ekseni yönündeki birim şekil değişimi
- ϵ_1 Transforme edilmiş plak veya kabukta x_1 ekseni yönündeki birim şekil değişimi
- ε₂ Transforme edilmiş plak veya kabukta x₂ ekseni yönündeki birim şekil değişimi
- ϵ_3 Transforme edilmiş plak veya kabukta x_3 ekseni yönündeki birim şekil değişimi
- ho_0 Lamine plak veya kabuğun malzeme yoğunluğu
- Ω_0 Plak veya kabuğun kalınlık yönündeki deforme olmamış simetri düzlemi
- γ_{xy} Plak veya kabukta x_1 x_2 düzleminde oluşan birim şekil değişimi
- γ_{xz} Plak veya kabukta x_1 x_3 düzleminde oluşan birim şekil değişimi
- γ_{yz} Plak veya kabukta x_2 x_3 düzleminde oluşan birim şekil değişimi
- σ_{xx} Plak veya kabukta x_1 ekseni yönündeki normal gerilme
- σ_{yy} Plak veya kabukta x_2 ekseni yönündeki normal gerilme

σ_{zz}	Plak veya kabukta x₃ ekseni yönündeki normal gerilme
σ_{11}	Transforme edilmiş plak veya kabukta x1 ekseni yönündeki normal gerilme
σ22	Transforme edilmiş plak veya kabukta x2 ekseni yönündeki normal gerilme
σ_{33}	Transforme edilmiş plak veya kabukta x ₃ ekseni yönündeki normal gerilme
τ_{xy}	Plak veya kabukta x ₁ - x ₂ düzleminde oluşan kayma gerilmesi
τ_{xz}	Plak veya kabukta x1- x3 düzleminde oluşan kayma gerilmesi
τ_{yz}	Plak veya kabukta x ₂ - x ₃ düzleminde oluşan kayma gerilmesi
τ_{12}	Transforme edilmiş plak veya kabukta x_1 - x_2 düzleminde oluşan kayma
	gerilmesi
τ_{31}	Transforme edilmiş plak veya kabukta x ₁ - x ₃ düzleminde oluşan kayma gerilmesi
τ_{23}	Transforme edilmiş plak veya kabukta x ₂ - x ₃ düzleminde oluşan kayma gerilmesi
$\phi_{_1}$	x_1 eksenli dönme (phi)
ϕ_2	x ₂ eksenli dönme (phi)
u	<i>x</i> ₁ ekseni yönündeki yer değiştirme
uo	Plak veya kabuk simetri düzleminin x_1 ekseni yönündeki yer değiştirme
u ₁	Transforme edilmiş laminanın x ₁ ekseni yönündeki yer değiştirme
U ₂	Transforme edilmiş laminanın x ₂ ekseni yönündeki yer değiştirme
U ₃	Transforme edilmiş laminanın x₃ ekseni yönündeki yer değiştirme
Umn	Fourier serilerinde x1 ekseni yönündeki yer değiştirme genlik değeri
V	x ₂ ekseni yönündeki yer değiştirme
Vo	Plak veya kabuk simetri düzleminin x ₂ ekseni yönündeki yer değiştirme
Vmn	Fourier serilerinde x ₂ ekseni yönündeki yer değiştirme genlik değeri
W	x₃ ekseni yönündeki yer değiştirme
Wo	Plak veya kabuk simetri düzleminin x ₃ ekseni yönündeki yer değiştirme
Wmn	Fourier serilerinde x₃ ekseni yönündeki yer değiştirme genlik değeri
x ₁	Transforme edilmiş plak ve kabuk için elyaf yönündeki eksen
X ₂	Transforme edilmiş plak ve kabuk için elyaf yönüne dik eksen
X ₃	Transforme edilmiş plak ve kabuk için kalınlık yönündeki eksen
Xmn	Fourier serilerinde x ₁ ekseni merkezli dönme hareketi genlik değeri
Ymn	Fourier serilerinde x ₂ ekseni merkezli dönme hareketi genlik değeri
ν	Poisson oranı
∂	Kısmi türev operatörü
Γ	Plak veya kabuğun alt ve üst yüzeyleri
,1	x ₁ eksenine göre kısmi türev alt indisi
,2	x_2 eksenine göre kısmi türev alt indisi
,3	x_3 eksenine göre kısmi türev alt indisi

KISALTMA LİSTESİ

KLT	Klasik Laminasyon Teorisi
	Classic Lamination Theory (CLT)
KLPT	Klasik Lamine Plak Teorisi
	Classic Laminated Plate Theory (CLPT)
BMKDT	Birinci Mertebe Kayma Deformasyon Teorisi
	First Order Shear Deformation Theory (FSDT)
ÜMKDT	Üçüncü Mertebe Kayma Deformasyon Teorisi
	Third Order Shear Deformation Theory (TSDT)
YMKDT	Yüksek Mertebe Kayma Deformasyon Teorisi
	Higher Order Shear Deformation Thoery (HSDT)
SEM	Sonlu Elemanlar Metodu
	Finite Element Method (FEM)
SS	Basit Mesnet
	Simply Supported
С	Ankastre Mesnet
	Clamped

ŞEKİL LİSTESİ

		Sayfa
Şekil 2.1	Sonsuz küçük kübik elemandaki gerilmeler	8
Şekil 2.2	Çok küçük bir hacimde x-y düzleminde normal ve kayma şekil	
	değiştirmeleri	9
Şekil 2.3	Açılı tabakalarda global ve lokal eksen takımları	15
Sekil 2.4	KLPT deformasyon yaklaşımı	19
Sekil 2.5	BMKDT deformasyon yaklaşımı	21
Sekil 2.6	ÜMKDT deformasyon yaklaşımı	24
Şekil 3.1	Basit mesnet çeşitleri	39
Şekil 3.2	Ankastre mesnet çeşitleri	40
Şekil 3.3	Çift eğrilikli kabuk geometrisi	41
Şekil 3.4	Çift eğrilikli bir kabuğun kenarlarında oluşan kuvvet ve momentler	42
Şekil 3.5	SS1-SS4 sınır şartları etkisindeki bir plağın kenarlarında oluşan kuvvet ve	
-	momentler	45
Şekil 4.1	Plak çözümü için yakınsaklık kontrolü	56
Şekil 4.2	Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}]$ diziliminde kalın (<i>a/h=10</i>) plak	
	üzerinde x ₁ ekseninde oluşan yer değişimi ve dönmeler	60
Şekil 4.3	Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın (<i>a/h=10</i>) plak	_
<u> </u>	üzerinde x_1 ekseninde oluşan yer değişimi ve dönmeler	61
Şekil 4.4	Malzeme I ozelliklerine sahip $[0^{\circ}/90^{\circ}]$ diziliminde kalin $(a/h=10)$ plak	61
Sokil 1 5	Malzeme Lözelliklerine sahin $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın $(a/b-10)$ plak	01
Şekii 4.5	üzerinde x_2 ekseninde olusan ver değisimi ve dönmeler	62
Sekil 5.1	Cift eğrilikli kabuk icin cözümü yakınsaklık kontrolü	66
Sekil 5.2	Malzeme L özelliklerine sahip $[0^{\circ}/90^{\circ}]$ diziliminde kalın ($a/h=10$) kabuk	
J 0 0	$(R/a=10)$ üzerinde x_1 ekseninde oluşan yer değişimi ve dönmeler	71
Şekil 5.3	Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın ($a/h=10$)	
	kabuk (R/a=10) üzerinde x_1 ekseninde oluşan yer değişimi ve dönmeler	71
Şekil 5.4	Malzeme I özelliklerine sahip [0°/90°] diziliminde kalın (a/h=10) kabuk	
	(R/a=10) üzerinde x ₂ ekseninde oluşan yer değişimi ve dönmeler	72
Şekil 5.5	Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın $(a/h=10)$	
	kabuk ($R/a=10$) üzerinde x_2 ekseninde oluşan yer değişimi ve dönmeler	72

Şekil 6.1	Plak için ANSYS™ ağ geometrisi	75
Şekil 6.2	SHELL 181 eleman geometrisi	75
Şekil 6.3	Hazırlanan MATLAB™ kodunun akış şeması	76

ÇİZELGE LİSTESİ

		Sayfa
Çizelge 3.1	Hareket kısıtlarına bağlı olarak oluşacak kuvvet ve momentler	43
Çizelge 3.2	SS1 basit mesnet etkisinde oluşacak kuvvet ve momentler	44
Çizelge 3.3	SS4 basit mesnet etkisinde oluşacak kuvvet ve momentler	44
Çizelge 4.1	Malzeme Özellikleri	55
Çizelge 4.2	Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki asimetrik [0°/90°] dizilimli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler	56
Çizelge 4.3	Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/0°] dizilimli plak merkezindeki boyutsuzlaştırılmış	
Çizelge 4.4	deformasyon ve momentler Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli plak merkezindeki boyutsuzlaştırılmış	57
Çizelge 4.5	deformasyon ve momentler Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki asimetrik [0°/90°] dizilimli plak merkezindeki boyutsuzlastırılmış deformasyon	57
Çizelge 4.6	ve momentler Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik	58
	deformasyon ve momentler	58
Çizelge 4.7	Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli plak merkezindeki boyutsuzlaştırılmış	
Cizelge 5 1	deformasyon ve momentier Malzeme Özellikleri	59 66
Çizelge 5.2	Malzeme Ozeniklerine sahip, düzgün yayılı yük altındaki asimetrik [0°/90°] dizilimli çift eğrilikli plak merkezindeki boyutsuzlaştırılmış	00
Çizelge 5.3	deformasyon ve momentler Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/0°] dizilimli cift eğrilikli plak merkezindeki boyutsuzlastırılmıs	67
Çizelge 5.4	deformasyon ve momentler Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli çift eğrilikli plak merkezindeki	67
	boyutsuzlaştırılmış deformasyon ve momentler	68

Çizelge 5.5	Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki asimetrik [0º/90º] dizilimli çift eğrilikli plak merkezindeki boyutsuzlaştırılmış	
	deformasyon ve momentler	68
Çizelge 5.6	Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik	
	[0°/90°/0°] dizilimli çift eğrilikli plak merkezindeki	
	boyutsuzlaştırılmış deformasyon ve momentler	69
Çizelge 5.7	Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik	
	[0°/90°/90°/0°] dizilimli çift eğrilikli plak merkezindeki	
	boyutsuzlaştırılmış deformasyon ve momentler	69
Çizelge 5.7	[0°/90°/0°] dizilimli çift eğrilikli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli çift eğrilikli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler	69 69

SÜREKSİZ SINIR ŞARTLARI ETKİSİNDEKİ KATMANLI KOMPOZİT KABUKLARIN YÜKSEK MERTEBELİ KAYMA DEFORMASYON TEORİSİ İLE ANALİZİ

Veysel ALANKAYA

Gemi İnşaatı ve Gemi Makineleri Mühendisliği Anabilim Dalı Doktora Tezi

Tez Danışmanı: Doç. Dr. Fuat ALARÇİN

Modern kompozitler, yüksek performanslı yapıların tasarımında bir devrim yaratmışlardır. Yüksek dayanımları, çevresel şartlara karşı üstün performansları, ihtiyaca yönelik tasarlanabilmeleri gibi özellikleri, alışılagelmiş malzemelere karşı sağladıkları avantajları, havacılık, denizcilik, uzay, otomotiv, kimya endüstrileri ve sağlık ve spor gereçleri ile ilgili uygulamalarda onları oldukça çekici kılmaktadır. Özellikle askeri gemilerde günümüzde yapılan bazı uygulamalar; kompozit yapıların bakım ve yakıt harcamalarını azaltarak, operasyon performanslarını artırmak amacıyla kullanıldıklarını göstermektedir.

Lamine kompozitler, iki ve daha fazla malzeme tabakasının yeni bir malzeme oluşturmak amacıyla birleştirilmesi ile elde edilirler. Laminenin özellikleri talep edilen tasarlanabilmektedir. uvgulamava vönelik olarak Ancak, eğilme cekme deformasyonlarının birleşimi, laminasyon asimetrisi, katmanlar arasındaki özellik farklılıkları gibi nedenlerle ortaya çıkan lamineler arası veya enine kayma gerilmeleri nedeniyle kompozit laminelerin analizlerinde bir takım ilave güçlükler bulunmaktadır. Tanımlanmış sınır şartlarının çözüm metoduna dahil edilmesi de ayrı problemlere neden olmaktadır. Bununla beraber, tüm avantajları ve tasarım gereksinimleri kompozit lamineler ile oluşturulmuş yapıların davranışlarının derinlemesine incelenmesine neden olmuştur.

Bu çalışmada; çapraz dizilime sahip plak ve kabukların, süreksiz sınır şartları etkisindeki statik analizi için yüksek mertebeli deformasyon teorisine dayanan yeni bir analitik çözüm sunulmuştur. Kenarlarda tanımlanmış olan basit mesnetlerin neden olduğu süreksizliklerin etkisindeki yüksek mertebeli kısmi diferansiyel denklemlerden oluşan lineer denklem sistemi çiftli Fourier serileri kullanılarak çözülmüştür. Elde edilen

sonuçlar, çözülmemiş sınır koşulları için veri sağlayacaktır. Ayrıca erken tasarım aşamasında ve sonlu elemanlar / sınır elemanlar gibi sayısal sonuçların doğrulanması için kriter karşılaştırma sağlamaktadır. Analitik sonuçlar düzgün yayılı yük altında ticari bir sonlu elemanlar yazılımı kullanılarak elde edilen sonuçlar ile karşılaştırılmıştır. Elde edilen sonuçların, sonlu elemanlar metodu ile elde edilen sonuçlar ile yakın değerlerde olduğu belirlenmiştir. Çalışmada sunulan sonuçlar laminasyon, malzeme özelliği, kalınlık etkilerinin yanı sıra bunların etkileşimlerini içermektedir.

Anahtar Kelimeler: Çapraz dizilimli plak; Fourier analizi; yüksek mertebeli deformasyon teorisi, karışık basit mesnetli kabuk.

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ABSTRACT

BOUNDARY DISCONTINUOUS ANALYSIS OF LAMINATED COMPOSITE SHELLS BY HIGHER ORDER SHEAR DEFORMATION THEORY

Veysel ALANKAYA

Department of Naval Architecture and Marine Engineering PhD. Thesis

Advisor: Assoc. Prof. Dr. Fuat ALARÇİN

Modern composites have created a revolution in high performance structures. Their advantages relative to conventional materials such as high strength to weight and stiffness to weight ratios, superior resistance to environmental conditions, design flexibility also known as tailoring the material for desired application, make them attractive for a wide range of applications in marine, chemical, aerospace, automotive industries and for the applications related to medical and sporting goods. Especially, the recent development in the military ships shows that composite structures can be used to increase the operational performance to reduce maintenance and fuel consumption costs.

Laminated composite structures are made up of two or more layers of materials bonded together to form a new material. The properties of the laminate can be tailored for a desired application. However, the analysis of composite laminates brings additional difficulties to the analyst such as the inter-laminar or transverse shear stress due to mismatch of material properties among layers, bending-stretching coupling due to asymmetry of lamination, and in-plane orthotropy. Extra complexities arise by the necessity of the satisfaction of the prescribed boundary conditions. Therefore all these advancements and design requirements place a premium on an in-depth understanding of the response characteristics of such structural components.

In this study; a new higher order theory based analytical solution to the static analysis of general cross-ply plates is presented. The boundary-discontinuous generalized double Fourier series approach is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The present results will provide data for the unsolved boundary conditions

and provide benchmark comparisons for early design stages and verifications of numerical results such as finite element and boundary element. Analytical results are compared with finite element counterparts using commercially available software under uniformly distributed load. Present results are in good agreement with the finite element counterparts. Important numerical results presented include sensitivity of the predicted response quantities of interest to lamination, material property, thickness effects as well as their interactions.

Key words: Cross-ply plates; boundary discontinuous Fourier analysis; higher order theory; mixed simply supported shell

YILDIZ TECHNICAL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

BÖLÜM 1

GİRİŞ

İki ve daha fazla malzemenin birleşimi ile elde edilen Kompozit Malzemelerin, ihtiyaca yönelik olarak tasarlanabilmesi ve mukavemet / ağırlık oranında çeliğe göre çok daha yüksek seviyelere ulaşılabilmesi nedeniyle, özellikle son yarım yüzyılda bu konudaki çalışmalarda ciddi bir artış gözlenmiştir.

Teknolojik gelişmeler paralelinde; insanoğlunun uzay çalışmaları, seyahat araçlarında daha az yakıtla daha uzun mesafeler kat edilmesine yönelik çalışmalar, savaş alanlarında yüzyıllardır bitmeyen üstünlük mücadelesi, insanlığa daha çok konfor sağlanmasına yönelik talepler gibi nedenler malzeme bilimini sürekli olarak yeni malzeme modelleri geliştirmeye zorlamaktadır. Mühendislik bilimleri ise bu malzemeleri anlamaya, kullanım özelliklerini tanımlamaya ve uygulamaya yönelik çalışmalar yapmaktadır. Kompozit malzemelerin ticari alanda gelişiminde özellikle havacılık sektörünün etkisi oldukça büyüktür. Havacılık sektöründeki gelişmenin başlıca sebebi olarak daha çok yolcu taşımaya yönelik hafif ve yüksek mukavemet özeliklerinde malzeme ihtiyacı gösterilebilir. Bunun yanı sıra yanmazlık gibi özel isteklerin de sağlanabilmesi bu malzeme türleri için oldukça geniş bir kullanım alanı sağlamıştır.

Denizcilik sektörünün kompozit malzemelerle tanışması ise İkinci Dünya Savaşı sonrasında inşa edilen küçük tekneler ve personel taşıma botları ile olmuştur. Malzemenin getirdiği mukavemet avantajlarının yanında, seri üretim maliyetini ve bakım giderlerini azaltması denizcilik sektöründe tercih edilmesinin temel sebepleridir. Bu nedenlerle özellikle ağırlık limitlerinin tekne tasarımcılarını zorladığı yat sektöründe

giderek artan kullanım alanına kavuşan kompozit malzemeler, konfora yönelik son kat uygulamalarının getirdiği avantajları ile ahşap ve çelikten fazla tercih edilir haldedir. Askeri alanlardaki kullanımı ise Mouritz vd. [1] tarafından da ifade edildiği gibi tekne inşasının yanında pervane, şaft ve çeşitli donatım malzemeleri imalatları ile giderek artmaktadır.

Kompozit malzemelerin ticari ve askeri uygulamalarda tercih edilmesinin tek ve en önemli nedeninin; belirli tasarım isterlerini karşılayabilmek için kat açısı, birleştirici türü, imalat yöntemi, yapısal ve malzeme özelliklerinin isteğe göre belirlenebilmesinin sağladığı tasarım esnekliği olduğu Kabir vd. [2] tarafından belirtilmiştir.

1.1 Literatür Özeti

Kabuk kalınlığının boyuna oranına göre, kabukların ince veya kalın olarak iki farklı teoride incelenmesi gerekmektedir. İnce kabukların analizi Kirchoff-Love hipotezine dayanır ki; kabuk kalınlıklarının diğer parametreler ile karşılaştırıldığında çok küçük olduğu ve kayma gerilmelerinin de diğer gerilmeler yanında çok küçük olduğu kabul edilerek, kalınlık boyunca kayma deformasyonları ihmal edilir.

Yapılan kabullere göre yürütülen araştırma verileri incelendiğinde hem dönme atalet etkisinin, hem de kayma deformasyon etkisinin kalın kabuklarda dikkate alınması gerektiği belirlenmiştir. Kalın kabuklarda kayma deformasyonlarının ve dönme atalet etkisinin ihmal edilmesi mümkün değildir ki; bu noktada Reissner-Mindlin hipotezi kullanılmaktadır.

Silindirik/cift eğrilikli, anizotropik, lamine bir kabukta gerilme dağılımının belirlenmesine bağlı problemler birçok araştırmacının ilgisini çekmiştir. Genellikle, bu tür lamine kompozit yapılar, sonlu elemanlar yöntemi, sınır eleman yöntemi, son zamanlarda geliştirilmiş ve ağ kullanılmayan (meshless) Petrov-Galerkin yöntemi gibi yaklaşık sayısal tekniklerle analiz edilmektedir. Kullanılan yönteme bağlı olarak doğruluk ancak belli problemler için analitik sonuçlarla karşılaştırılarak belirlenebilmektedir. Çift eğrilikli lamine kabukların analitik çözümü sırasında; laminasyondaki asimetri, enine kayma deformasyonu etkisi ve anizotropi gibi birçok

sorun çözülmelidir. Bunlara ilave olarak; gerçek sınır şartlarının, Navier veya Levy tipi geleneksel analitik yöntemlerle tanımlanamaması da ilave zorluklara sebep olmaktadır.

Başlangıçta kullanılan Klasik Laminasyon Teorisi (KLT); kayma deformasyonlarının etkisini ihmal ederek, simetri hattında oluşan deformasyonun sabit kalarak, kalınlık boyunca değişmediği kabulüne dayanmaktadır. Daha sonra geliştirilen Birinci Mertebe Kayma Deformasyon Teorisi (BMKDT) ise; kayma deformasyonunun, laminenin kalınlığı boyunca sabit olarak etki ettiğini kabul etmektedir. BMKDT'de, kalınlık eksenine bağlı olarak, lineer etkiyen bir kayma yer değiştirmesi olduğu kabul edilir ki laminenin alt ve üst yüzeylerindeki sınır şartları göz ardı edilmiş olur. Bu sorunun giderilmesi amacıyla; düzlem içi yer değiştirmelerin kalınlık koordinatı boyunca güç serileri kullanılarak açılabileceğini ilk öneren kişi Basset [3] olmuştur. Ardından, Yüksek Mertebe Kayma Deformasyon Teorisi (YMKDT) gibi yüzeye paralel yer değiştirmelerin ikinci, üçüncü veya daha yüksek mertebeli değişkenler ile ifade edildiği, daha hassas sonuçlar veren teoriler üzerinde çalışılmıştır.

Lamine plak ve kabuklardaki kayma deformasyon teorileri ve hesaplama modellerine yönelik birçok çalışma Noor ve Burton [4], Kant ve Swaminathan [5] tarafından yayınlanmıştır. Özellikle 1989 sonrasında Noor ve Burton [6] ve Qatu [7] tarafından lamine kompozit kabukların dinamik davranışı konusunda detaylı çalışmalar yapılmıştır.

Ankastre bir izotropik plak probleminin çözümü için çift Fourier serileri yaklaşımı ilk olarak Green [8] tarafından kullanılmıştır. Green ve Hearmon [9] bu yaklaşımı basit mesnetli simetrik lamine, ince plaklar için geliştirmişlerdir.

Lamine kompozit plaklar üzerine yapılan çalışmalarda genellikle Klasik Laminasyon Teorisi (KLT) veya Birinci Mertebe Kayma Deformasyon Teorisi (BMKDT) kullanılmıştır. Jones [10], Whitney [11], Kabir vd. [2] ve Chaudhuri vd. [12] tarafından çift Fourier serileri kullanılarak ince, lamine, anizotropik plağın analitik çözümü kullanılarak sınır değer problemleri çözülmüştür.

Chaudhuri ve Kabir [13-17], Chaudhuri ve Kabir [18,19] ve Kabir [20] farklı sınır değer problemlerinin çözümünde çift Fourier serilerini BMKDT ile incelemişlerdir. Kalın

plakların analizinde, BMKDT'nin KLT'ye oranla daha iyi sonuçlar verdiği doğrulanmıştır. Ancak BMKDT kullanılması durumunda, kayma şekil değişimlerinin plak kalınlığı boyunca düzgün dağılmış olduğu kabul edilerek, bir düzeltme faktörü kullanılmakta ve bu yöntemde, alt ve üst sınır yüzeylerindeki denge şartları göz ardı edilmektedir. Yüksek Mertebe Kayma Deformasyon Teorisi'nde ise kesme kuvvetlerinin kabuk kalınlığı boyunca parabolik olarak dağılımı esas alınmış, ortotropik elastik kabuklar için Reddy ve Liu [21] tarafından geliştirilmiştir.

İkinci ve daha yüksek mertebe kayma deformasyon teorilerinde, plak kalınlığı boyunca yer değiştirme bileşenlerinin ifadesinde yüksek seviyeli polinomlar kullanılmaktadır. Ayrıca teoride kullanılan mertebe arttıkça, bilinmeyen sayısı ve ihtiyaç duyulan matematik gücü de artmaktadır. Bununla beraber; Üçüncü Mertebe Kayma Deformasyon Teorisi (ÜMKDT) gerek sonuç hassasiyeti, gerekse ihtiyaç duyulan matematik gücü olarak optimum noktadadır. Ancak, literatürde birçok üçüncü seviye plak teorisi de bulunmaktadır. Bu teoriler Reddy [22] tarafından detaylı olarak anlatılmıştır.

Whitney [23] bu teoriyi, çapraz ve açılı katlara sahip lamineler için ankastre sınır şartları altında uygulamıştır. Whitney [11,24] aynı zamanda ankastre izotropik plakların titreşim ve burkulma çözümlerinde de aynı teoriyi uygulamıştır. Whitney ve Leissa [25], farklı sınır şartları için asimetrik çapraz ve açılı katlara sahip plakların statik ve dinamik davranışına yönelik tam sonuçların belirlenmesinde çift Fourier serileri formunda yer değişimleri kabulünü kullanmışlardır. Whitney ve Pagano [26] BMKDT içinde çift Fourier serilerini kullanmışlar ve SS3 sınır şartları altında çapraz katlı bir lamine plak için doğru sonuçları elde etmişlerdir.

Librescu ve Khdeir [27], farklı sınır şartlarına sahip, iki farklı kenarın SS3 sınır şartında olduğu Levy tipi çözüm yaklaşımını uygulayarak çapraz katlı kabuklar için YMKDT analitik çözümlerini yayınlamışlardır. Chaudhuri ve Kabir [28-31]; Chaudhuri [32] tarafından geliştirilmiş ikinci mertebe kısmi diferansiyel denklemlerin çözümüne dayalı süreksiz çift Fourier serileri yaklaşımıyla kesin sonuçlar elde etmişlerdir.

Çapraz ve farklı açılarda dizilimlere sahip, ince ve kalın lamine plak ve kabukların SS1, SS2, SS4 ve C4 tipi sınır şartları için çözümlerinde, çoğunlukla KLT ve BMKDT teorileri kullanılmaktadır. SS3 sınır şartları altındaki çapraz katlı lamanine kabuklar için, Shu [33] geleneksel Navier yaklaşımını kullanarak kapalı çözüm formu elde etmiştir. Bu yaklaşımda tüm kenarlar SS3 sınır şartları altındadır. Benzer çalışmalar Reddy [22] tarafından da yayınlanmıştır.

Tüm kenarların SS2 sınır şartları altında olduğu ince silindirik panellerin farklı dizilimdeki laminasyonlar ile serbest titreşim davranışlarına yönelik çalışmalar Kabir [34] tarafından incelenmiştir.

Levy tipi çözümlerde sınır koşullarının tanımlanmasında çift Fourier serilerinin kullanımının, kabuğun denge denklemlerine etkileri ve oluşan süreksizliklerin giderilmesine yönelik yapılan çalışmaların Chaudhuri [35] tarafından yayınlanması ile bu konudaki çalışmalarda son yıllarda artış gözlenmiştir. Özellikle karşılıklı kenarların farklı mesnetlere sahip olması durumunda meydana gelen süreksizlikler Öktem ve Chaudhuri [36-43] tarafından incelenmiştir. Yapılan çalışmalarda; yer değişimleri için kabul edilen çift Fourier serilerinin, sınır şartları altındaki süreksizliklerinin belirlenmesinin ardından, Lebesque entegral teorisi kullanılarak tamamlayıcı Fourier katsayıları tanımlanmıştır. Chaudhuri [35] tarafından belirtildiği gibi, sınır Fourier katsayıları, problemin çözümünde tamamlayıcı olarak etki etmektedir. Bu prosedür tanımlı sınır sabitlerini eşitlikler olarak, tamamlayıcı sınır sabitlerini ise eşitsizlikler halinde düzenlemektedir.

1.2 Tezin Amacı

Tabakalı kompozit uygulamalarının sağladığı tasarım esnekliği ve gemi bordalarının posta ve tulaniler arasında oluşturduğu çift eğrilikli yapı bu çalışmanın çıkış noktasını oluşturmaktadır. Bu çalışmada; çift eğrilikli, çapraz katlı, simetrik dizilimli lamine kabukların literatürde bulunmayan sınır şartları altındaki süreksizliklerinin giderilmesi ve çift Fourier serileri ile ifade edilmesine yönelik analitik ve sayısal incelemeler yapılacaktır.

Karşılıklı kenarlarda SS1 ve SS4 sınır şartlarının neden olduğu süreksizlikler ve bu süreksizliklerin giderilmesi için yapılacak işlemler; çapraz katlı, simetrik ve asimetrik, lamine plak ve çift eğrilikli kabuk için incelenecektir. Bahse konu sınır şartlarının neden olduğu süreksizlikler belirlenecek ve bunlar Chaudhuri [35] tarafından detaylandırılan Lebesque entegral teoremi ile sürekli hale getirileceklerdir. Ardından geometrik ve doğal sınır şartları belirlenerek, bu sınır şartları altında analitik çözümler gerçekleştirilecektir.

Analitik denklem sisteminin belirlenmesinin ardından, farklı malzeme tipleri için yukarıda belirtilen sınır şartları altındaki plak ve çift eğrilikli kabuk modellenecek ve yazılan MATLAB[™] kodu ile sayısal sonuçlar elde edilecektir. Sonuçların karşılaştırılabilmesi ve hata oranlarının belirlenebilmesi için ticari bir sonlu elemanlar programı kullanılacaktır.

Bu çalışmanın sonucunda, literatürde bulunmayan yukarıda tanımlanmış sınır şartları altındaki çapraz katlı ve simetrik/asimetrik dizilmiş bir kompozit lamine plağın ve çift eğrilikli kabuğun, düzenli basınç yükü altındaki çökme miktarı belirlenecektir. Literatürde bulunmayan bahse konu süreksiz sınır şartlarına ait çözümlerin analitik olarak tanımlanması ve sayısal sonuçlarının yayınlanması ile henüz çözülmemiş bu problemin hem plak, hem de çift eğrilikli kabuk için çözülerek literatüre kazandırılması hedeflenmektedir.

1.3 Orjinal Katkı

Bu çalışmada, henüz literatürde bulunmayan ve hem Levy hem de Navier çözüm teknikleri ile tam olarak çözülemeyen bir sınır şartının süreksizliklerinin giderilerek, yüksek mertebeli deformasyon teorisi kullanılarak analitik çözümü yapılacaktır. Yapılan literatür incelemesinde SS1-SS4 sınır şartlarının birlikte olduğu durum için süreksizliğin giderilmesine yönelik çalışma yapılmadığı tespit edilmiştir.

Bu tez çalışmasının orijinal katkısı ise; henüz literatürde bulunmayan bu sınır şartının mevcut deformasyon teorisi kullanılarak matematik modelinin oluşturulması ve analitik çözümün sağlanmasıdır. Matematik model sonucunda elde edilen denklem sistemi

bilgisayar yardımıyla çözülerek sayısal uygulama yapılmış ve aynı malzeme modeli ticari bir sonlu elemanlar programında da hesaplanarak yapılan çalışmanın doğruluğu kontrol edilmiştir.

BÖLÜM 2

YÖNTEM

2.1 Temel Kavramlar

2.1.1 Gerilme

Kütlesel kuvvetler, yüzey kuvvetleri ve yapıya etkiyen dış kuvvetler sebebiyle, yapı içinde birim alana düşen yükün yoğunluğunu gerilme olarak tanımlamak mümkündür. Bu gerilmelerin yapı içerisinde neden olduğu kuvvetlerin belirlenmesi, yapısal tasarım açısından gereklidir.

Şekil 2.1 Sonsuz küçük kübik elemandaki gerilmeler.

Sonsuz küçük kübik bir eleman üzerinde oluşacak gerilmeler Şekil 2.1'de gösterilmiştir. Birbirine dik yönlerde oluşan kayma gerilmelerinin birbirlerine eşit olması nedeniyle kübik eleman üzerinde yüzeylere dik yönde $\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ normal gerilmeler ve yüzeylere paralel $\tau_{xy}, \tau_{yz}, \tau_{zx}$ kayma gerilmeleri oluşmaktadır.

2.1.2 Şekil Değiştirme

Yapıya etkiyen kuvvetlerin neden olduğu gerilmeler yapı içerisinde şekil ve boyut değişimlerine yani deformasyona neden olurlar. Şekil 2.1'de gösterilen kübik eleman deformasyona uğramış halde iki boyutlu olarak incelendiğinde; kuvvet vektörleri, kenar uzunlukları ve kesit formunun değişimine bağlı olarak Şekil 2.2'de gösterilen forma ulaşıldığı varsayılır. Kübik eleman üzerindeki kuvvetler, ABCD noktalarının yer değiştirerek, A'B'C'D' noktalarına deforme olmasına sebep olmaktadır. Buradaki yer değiştirme miktarları (x,y,z) koordinat sisteminde tanımlanırsa, herhangi bir nokta için;

u = u(x, y, z); x doğrultusundaki yer değiştirme

v = v(x, y, z); y doğrultusundaki yer değiştirme

w = w(x, y, z); z doğrultusundaki yer değiştirme olarak ifade edilebilir. (2.1)

Eksenler üzerinde tanımlanmış yer değişimleri kullanılarak, şekil değişimlerinin küçük olduğu durumda, sonsuz küçük kübik elemanın birim şekil değişimleri şu şekilde bulunabilir.

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} \qquad \varepsilon_{yy} = \frac{\partial v}{\partial y} \qquad \varepsilon_{zz} = \frac{\partial w}{\partial z}$$

$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \qquad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \qquad \gamma_{zx} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \qquad (2.2)$$

2.1.3 Hooke Kanunları

Mühendislikte kullanılan malzemelerin birçoğu izotroptur ve tasarım yükleri altında lineer elastik davranış gösterir. Bu malzemelerin gerilme-şekil değiştirme ilişkileri aşağıdaki denklemlerde görülmektedir.

$$\sigma_{ii} = E\varepsilon_{ii} \qquad \sigma_{ij} = E\varepsilon_{ij} \qquad i, j = x, y, z \qquad (2.3)$$

Bu denklemler İngiliz Matematikçi Robert Hooke (1635-1703) tarafından ifade edilen ve Hooke kanunu olarak bilinen bağıntılardır. Sistemde meydana gelen her etki sisteme verilen küçük bir yükten dolayı oluşan deformasyonlarla doğrusal olarak ilişkilidir. Hooke kanunu olarak anılan ifadeler aşağıda gösterilmiştir.

$$\varepsilon_{xx} = \frac{1}{E} \Big(\sigma_{xx} - \nu \big(\sigma_{yy} + \sigma_{zz} \big) \Big) \qquad \gamma_{xy} = \frac{1}{G} \tau_{xy}$$

$$\varepsilon_{yy} = \frac{1}{E} \Big(\sigma_{yy} - \nu \big(\sigma_{xx} + \sigma_{zz} \big) \Big) \qquad \gamma_{xz} = \frac{1}{G} \tau_{xz}$$

$$\varepsilon_{zz} = \frac{1}{E} \Big(\sigma_{zz} - \nu \big(\sigma_{xx} + \sigma_{yy} \big) \Big) \qquad \gamma_{yz} = \frac{1}{G} \tau_{yz} \qquad (2.4)$$

$$G = \frac{E}{2(1+\nu)} \tag{2.5}$$

Burada v Poisson oranıdır. Kayma modülü G ise, elastik sabit E ve poisson oranı v'nün bir fonksiyonudur.

2.1.4 Malzeme Tipleri

Üç boyutlu gerilme durumunda, lineer izotropik bir malzeme için, x-y-z ortogonal sistemindeki bir noktada, Hooke kanunlarıyla elde edilen gerilme şekil değiştirme ilişkisi matris formunda aşağıdaki gibi verilebilir.

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{bmatrix}$$
(2.6)

2.1.4.1 Anizotropik Malzeme

Anizotropik malzemelerin davranışlarının modellenebilmesi için birbirinden bağımsız 21 adet farklı elastik sabitin belirlenmesi gerekmektedir. Eğer malzeme homojen değilse, bu sabitler noktadan noktaya değişiklik gösterebilirler.

2.1.4.2 Monoklinik Malzeme

Eğer malzemenin, bir tane malzeme simetri düzlemi varsa bu tip malzemelere monoklinik malzemeler denir. Simetri düzlemine dik olan doğrultu, "temel doğrultu" olarak adlandırılır. Bu tip malzemeler 13 adet bağımsız elastik sabite sahiptir.

2.1.4.3 Ortotropik Malzeme

Eğer malzeme, karşılıklı olarak birbirine dik üç adet malzeme simetri düzlemine sahipse bu tip malzemelere ortotropik malzeme denir. Bu tip malzemeler 9 adet bağımsız elastik sabite sahiptir.

2.1.4.4 Enine (Transversely) İzotropik Malzeme

Ortotropik elemanın düzlemlerinin birinde, bir malzeme izotropi düzlemi varsa bu tip malzemelere enine (transversely) izotropik malzemeler denir. Bu tip malzemeler beş adet bağımsız elastik sabite sahiptir.

2.1.4.5 İzotropik Malzeme

Eğer ortotropik bir elemanda bütün yüzeyler özdeşse, bu tip malzemelere izotropik malzemeler denir. İzotropik malzemeler iki adet bağımsız elastik sabite sahiptir.

2.1.5 Temel Ortotropik Malzeme Tanımları

2.1.5.1 Ortotropik Malzemelerde Esneklik Matrisi

Ortotropik bir malzeme için esneklik matrisi aşağıdaki gibidir;

$$[S] = \begin{pmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{pmatrix}$$

$$(2.7)$$

Yukarıdaki matris diyagonale göre simetriktir. Ortotropik malzeme için esneklik matrisinin elemanları aşağıda görülmektedir.

$$S_{11} = \frac{1}{E_x} \qquad S_{22} = \frac{1}{E_y} \qquad S_{33} = \frac{1}{E_z}$$

$$S_{12} = S_{21} = -\frac{V_{xy}}{E_x} \qquad S_{13} = S_{31} = -\frac{V_{xz}}{E_x} \qquad S_{23} = S_{32} = -\frac{V_{yz}}{E_y}$$

$$S_{44} = \frac{1}{G_{yz}} \qquad S_{55} = \frac{1}{G_{zx}} \qquad S_{66} = \frac{1}{G_{xy}}$$

$$S_{14} = S_{41} = S_{15} = S_{51} = S_{16} = S_{61} = S_{24} = S_{42} = S_{25} = S_{52} = S_{52} = S_{62} = 0$$

$$S_{34} = S_{43} = S_{35} = S_{53} = S_{36} = S_{63} = S_{45} = S_{46} = S_{64} = S_{56} = S_{65} = 0$$
(2.8)

2.1.5.2 Gerilme-Şekil Değiştirme İlişkisi

Plak ve kabuklar elyafların dizilişine bağlı olarak farklı tipte ortotropiye sahip olabilirler. Bu sebeple tabakalı kompozit malzemelerde gerilme-şekil değiştirme ifadeleri yazılırken bazı temel kabuller göz önüne alınır. Malzeme içerisinde yer alan elyaflar birbirlerine paralel olarak dizilmişlerdir. Elyaflar doğrusal bir düzlem üzerinde devam etmeyebilir, özellikle kabuk elemanlarda bu durum görülür. Her bir tabakadaki elyaflar farklı açılarla dizilim yapabilirler. Makroskopik aşamada her bir tabakanın homojen ve ortotrop olduğu dikkate alınacaktır. Bazı durumlarda genel koordinat sistemi ile elyafların doğrultusunun birbirine paralel olması mümkün olmayabilir. Bu durumda dönüşüm işlemleri ile gerilme-şekil değiştirme ifadesi genel halde yazılacaktır. Ortotropik bir tabaka için gerilme-şekil değiştirme ilişkisi tabakaların elyaf doğrultuları dikkate alınarak üç boyutlu olarak aşağıdaki gibi yazılabilir.

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} & 0 & 0 & 0 \\ Q_{12} & Q_{22} & Q_{23} & 0 & 0 & 0 \\ Q_{13} & Q_{23} & Q_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & Q_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & Q_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xy} \end{bmatrix}$$
(2.9)

Yukarıdaki denklemde Q_{ij} terimleri indirgenmiş katılık (rijitlik) katsayıları olarak tanımlanır. Gerilme-şekil değiştirme ilişkisi esneklik matrisi açısından da aşağıdaki gibi yazılabilir.

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{zx} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{13} & S_{23} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{xy} \end{bmatrix}$$
(2.10)

İndirgenmiş katılık (rijitlik) katsayıları ile esneklik katsayıları arasındaki bağlantı aşağıdaki gibidir.

$$[Q] = [S]^{-1}$$
(2.11)

Burada Q matrisi elemanlarını aşağıdaki gibi tanımlamak mümkündür.

$$S = S_{11}S_{22}S_{33} - S_{11}S_{23}^{2} - S_{22}S_{13}^{2} - S_{33}S_{12}^{2} + 2S_{12}S_{23}S_{13}$$

$$Q_{11} = \frac{S_{22}S_{33} - S_{23}^{2}}{S}, \quad Q_{12} = -\frac{S_{13}S_{23} - S_{12}S_{33}}{S}, \quad Q_{22} = \frac{S_{33}S_{11} - S_{13}^{2}}{S}, \quad Q_{13} = \frac{S_{12}S_{23} - S_{13}S_{22}}{S}$$

$$Q_{33} = \frac{S_{22}S_{11} - S_{12}^{2}}{S}, \quad Q_{23} = \frac{S_{12}S_{13} - S_{23}S_{11}}{S}, \quad Q_{44} = \frac{1}{S_{44}}, \quad Q_{55} = \frac{1}{S_{55}}, \quad Q_{66} = \frac{1}{S_{66}}$$
(2.12)

(2.8)'de verilen ifadeler, (2.12)'deki yerlerine yazılırsa (2.13) denklemleri elde edilir.

$$\Delta = \frac{1 - v_{xy}v_{yx} - v_{yz}v_{zy} - v_{zx}v_{xz} - 2v_{yx}v_{zy}v_{xz}}{E_x E_y E_z}$$

$$Q_{11} = \frac{1 - v_{yz}v_{zy}}{E_y E_z \Delta}, \qquad Q_{12} = \frac{v_{xy} + v_{zy}v_{xz}}{E_x E_z \Delta}, \qquad Q_{13} = \frac{v_{xz} + v_{xy}v_{yz}}{E_x E_y \Delta}, \qquad Q_{22} = \frac{1 - v_{xz}v_{zx}}{E_x E_z \Delta}$$

$$Q_{23} = \frac{v_{yz} + v_{yx}v_{xz}}{E_x E_y \Delta}, \qquad Q_{33} = \frac{1 - v_{xy}v_{yx}}{E_x E_y \Delta}, \qquad Q_{44} = G_{yz} \qquad Q_{55} = G_{xz} \qquad Q_{66} = G_{xy}$$
(2.13)

Burada E_{x} , E_{y} ve E_{z} elastisite modülleri, G_{xy} , G_{yz} ve G_{xz} kayma rijitlik modülleri ve v_{xy} , v_{yx} , v_{xz} , v_{zx} , v_{yz} , v_{zy} , ise Poisson oranlarıdır. Böylece her bir tabaka için, eksenlere bağlı olarak 12 adet bağımsız malzeme sabiti tanımlanmış olmaktadır.

Laminasyon sırasında ihtiyaç duyulan mukavemet özelliklerine ulaşabilmek amacıyla farklı açılarda dizilimlere sahip tabakaların kullanılması tercih edilmektedir. Ancak bu durum, farklı eksen sistemlerine sahip tabakaların bir bütün olarak aynı eksen sistemi üzerine yerleştirilmesi ihtiyacına neden olmaktadır.

Açılı tabakalar için verilen koordinat sistemi Şekil 2.3'de görülmektedir. 1-2 koordinat sistemi, lokal eksen veya malzeme ekseni olarak adlandırılır. 1 doğrultusu elyaflara paraleldir ve 2 doğrultusu elyaflara diktir. x-y koordinat sistemi ise global koordinat

sistemi olarak isimlendirilir. İki koordinat sistemi arasında θ açısı kadar fark bulunmaktadır ve lokal eksen takımı ile ifade edilen birim şekil değişimi ifadeleri, global eksen sistemine dönüştürülmelidir.

Şekil 2.3 Açılı tabakalarda global ve lokal eksen takımları.

σ_{xx}		σ_{l}	
$\sigma_{_{yy}}$		$\sigma_{_2}$	
σ_{zz}	$= [T]^{-1}$	$\sigma_{_3}$	
$ au_{yz}$	-[*]	$ au_{23}$	
$ au_{xz}$		$ au_{31}$	
$[\tau_{xy}]$		$\lfloor au_{12} \rfloor$	

(2.14)

[*T*] Transformasyon matrisi olarak adlandırılır ve aşağıdaki şekilde tanımlanır.

$$[T] = \begin{bmatrix} c^2 & s^2 & 0 & 0 & 0 & 2sc \\ s^2 & c^2 & 0 & 0 & 0 & -2sc \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & c & -s & 0 \\ 0 & 0 & 0 & s & c & 0 \\ -sc & sc & 0 & 0 & 0 & c^2 - s^2 \end{bmatrix}$$
(2.15)

Burada $c = \cos(\theta)$ ve $s = \sin(\theta)$ ifade etmektedir. Lokal eksendeki gerilme-şekil değiştirme ilişkisi kullanılarak, gerilme bileşenleri global eksen sisteminde aşağıdaki şekilde ifade edilebilir.

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^{-1} \begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{bmatrix}$$
(2.16)

Global ve lokal eksenler arasındaki birim şekil değişimi bağıntıları transformasyon matrisi kullanılarak sağlanmış olur.

$\left[\mathcal{E}_{1} \right]$		$\left[\mathcal{E}_{xx} \right]$
\mathcal{E}_2		\mathcal{E}_{yy}
E3		\mathcal{E}_{zz}
$\frac{\gamma_{23}}{2}$	= [T]	$\frac{\gamma_{yz}}{2}$
$\frac{\gamma_{31}}{2}$		$\frac{\gamma_{zx}}{2}$
$\left\lfloor \frac{\gamma_{12}}{2} \right\rfloor$		$\left\lfloor \frac{\gamma_{xy}}{2} \right\rfloor$

edilebilir.

Global eksen sisteminde oluşacak birim şekil değişimleri aşağıdaki şekilde ifade

$$\begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xz} \\ \gamma_{xy} \end{bmatrix}$$
(2.18)

Burada [R] (Reuter) matrisi aşağıdaki şekilde tanımlanır.

(2.17)

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$
(2.19)

Global eksen sistemindeki gerilmelerin birim şekil değişimlerine etkisini aşağıdaki şekilde tanımlamak mümkündür.

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}^{-1} \begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{bmatrix}$$
(2.20)

En genel haliyle katları oluşturan tabakaların kendi eksen sistemlerindeki malzeme özellikleri ve açıları transforme edilerek global eksen sistemi üzerinde gerilmelerin birim şekil değişimleri cinsinden ifadesi Denklem (2.21)'de verilmiştir.

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{13} & 0 & 0 & 0 \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{23} & 0 & 0 & 0 \\ \overline{Q}_{13} & \overline{Q}_{23} & \overline{Q}_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & \overline{Q}_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \overline{Q}_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{bmatrix}$$
(2.21)

Burada $\left[\overline{Q}\right]$, ortotropik malzeme için, laminasyonu oluşturan her tabakanın transformasyona uğramış rijitlik matrisi olarak adlandırılır ve matris elemanları aşağıda görülmektedir.

$$\overline{Q}_{11} = Q_{11}\cos^4\theta + Q_{22}\sin^4\theta + 2(Q_{12} + 2Q_{66})\sin^2\theta\cos^2\theta$$
$$\overline{Q}_{12} = (Q_{11} + Q_{22} - 4Q_{66})\sin^2\theta\cos^2\theta + Q_{12}(\cos^4\theta + \sin^4\theta)$$
$$\overline{Q}_{13} = Q_{13}\cos^2\theta + Q_{23}\sin^2\theta$$

$$\begin{aligned} \bar{Q}_{22} &= Q_{11}\sin^4\theta + 2(Q_{12} + 2Q_{66})\sin^2\theta\cos^2\theta + Q_{22}\cos^4\theta \\ \bar{Q}_{23} &= Q_{23}\cos^2\theta + Q_{13}\sin^2\theta \\ \bar{Q}_{33} &= Q_{33} \\ \bar{Q}_{44} &= Q_{44}\cos^2\theta + Q_{55}\sin^2\theta \\ \bar{Q}_{55} &= Q_{44}\sin^2\theta + Q_{55}\cos^2\theta \\ \bar{Q}_{55} &= (Q_{11} - 2Q_{12} + Q_{22})\cos^2\theta\sin^2\theta + Q_{66}(\cos^2\theta - \sin^2\theta) \end{aligned}$$
(2.22)

Böylece malzeme özellikleri ve kat açılarına bağlı olarak hazırlanmış katılık matrisi tanımlanmış olur.

2.2 Laminasyon Teorileri

Laminasyonu meydana getiren tabakalar, homojen izotrop fiber takviyeler ile fiber malzemelerin etrafını saran, fiberlerin belirli bir dağılım ve düzen içerisinde bulunmalarına olanak sağlayan, homojen izotrop matris malzemelerin belirli oranlarda bir araya getirilmesiyle meydana gelmektedir. Fiber ve matris malzemelerinin birleşimi ile elde edilen kompozit tabakanın rijitliği, tabaka üzerindeki herhangi bir noktanın fiber eleman üzerinde, matris eleman üzerinde veya fiber-matris birleşim bölgesinde olmasına bağlı olarak noktadan noktaya çeşitlilik gösterebilmektedir. Bu çeşitlilik sebebiyle, lamine tabakalı kompozitlerin makromekanik analizi yapılırken ortalama malzeme özellikleri temel alınır ve aşağıdaki kısıtlar kabul edilir.

- Yapının mükemmel olarak birleştirilmiş katlardan oluştuğu kabul edilmiştir.
 Lamine katlar arasında boşluk bulunmamakta ve yapı bir bütün olarak davranmaktadır,
- Her katın malzemesi lineer elastik ve malzemenin 3 simetri hattı mevcuttur,
- Her kat sabit kalınlıktadır,
- Şekil değiştirmeler ve yer değiştirmeler küçüktür,
- Laminanın taban ve üst yüzeylerindeki enine kayma gerilmeleri sıfırdır.

Lamine kompozitlerin davranışını anlamaya yönelik birçok çalışma yapılmış ve bu çalışmalar ışığında çeşitli teoriler geliştirilmiştir. Bundan sonraki kısımlarda bu teorilerden bahsedilecektir.

2.2.1 Klasik Lamine Plak Teorisi (KLPT)

Klasik laminasyon teorisi, klasik plak teorisinin kompozit laminelere uygulanmış halidir. Klasik laminasyon teorisi Kirchoff hipotezi varsayımlarına dayanır. Bu hipoteze göre;

- Deformasyon öncesinde orta düzeye dik olan düz hatlar deformasyon sonrasında da düz kalır,
- Enine normaller uzamazlar,
- Enine normaller deformasyon sonrasında da orta yüzeye dik kalacak şekilde dönerler.

İlk iki varsayım, enine yer değiştirmelerin kalınlık koordinat sisteminden bağımsız olduğunu ve enine normal uzamanın sıfır olduğunu ($\varepsilon_{zz} = 0$) gösterir. Üçüncü varsayım, enine kayma şekil değiştirmelerinin sıfır olduğu sonucunu verir $\gamma_{xz} = 0$, $\gamma_{yz} = 0$.

Sekil 2.4 KLPT deformasyon yaklaşımı [22].
Klasik laminasyon teorisi yer değişimleri;

$$u(x, y, z, t) = u_{\circ}(x, y, t) - z \frac{\partial w_{0}}{\partial x}$$

$$v(x, y, z, t) = v_{\circ}(x, y, t) - z \frac{\partial w_{0}}{\partial y}$$

$$w(x, y, z, t) = w_{\circ}(x, y, t)$$
(2.23)

Orta yüzey yer değişimleri $(u_{\circ}, v_{\circ}, w_{\circ})$ bilindiği takdirde, 3 boyutlu süreklilik içindeki herhangi bir noktanın (x, y, z) yer değişimi belirlenebilir. Tüm uzama bileşenleri lamine kalınlığı boyunca lineer olarak değişir ve malzeme değişimlerinden bağımsızdır. KLPT denge denklemleri aşağıda olduğu gibidir [22].

•
$$\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = I_0 \frac{\partial^2 u_0}{\partial t^2} - I_1 \frac{\partial^3 w_0}{\partial x \partial t^2}$$

•
$$\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{yy}}{\partial y} = I_0 \frac{\partial^2 v_0}{\partial t^2} - I_1 \frac{\partial^3 w_0}{\partial y \partial t^2}$$

•
$$\frac{\partial^2 M_{xx}}{\partial x^2} + 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_{yy}}{\partial y^2} + N(w_0) + q = I_0 \frac{\partial^2 w_0}{\partial t^2} + I_1 \left(\frac{\partial^3 u_0}{\partial x \partial t^2} + \frac{\partial^3 v_0}{\partial y \partial t^2} \right) - I_2 \left(\frac{\partial^4 w_0}{\partial x^2 \partial t^2} + \frac{\partial^4 w_0}{\partial y^2 \partial t^2} \right)$$
(2.24)

Kuvvet ve moment bileşenlerinin kısmi türevleri denge denklemlerinde yerlerine yazılır ve statik durum için denklemler sıfıra eşitlenirse, en genel haliyle KLPT denge denklemleri elde edilir.

•
$$\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = A_{11} \frac{\partial^2 u_0}{\partial x^2} + \left(\frac{1}{2}A_{11} - B_{11}\right) \frac{\partial^3 w_0}{\partial x^3} + \left(A_{12} + A_{66}\right) \frac{\partial^2 v_0}{\partial y \partial x} + \left(\frac{1}{2}A_{12} - B_{12} - 2B_{66}\right) \frac{\partial^3 w_0}{\partial y^2 \partial x} + 2A_{16} \frac{\partial^2 u_0}{\partial y \partial x} + A_{16} \frac{\partial^2 v_0}{\partial x^2 \partial y} + A_{16} \frac{\partial^2 v_0}{\partial x^2 \partial y} + A_{16} \frac{\partial^2 v_0}{\partial y^2} + \left(A_{16} - 3B_{16} + \frac{1}{2}A_{16}\right) \frac{\partial^3 w_0}{\partial x^2 \partial y} + A_{26} \frac{\partial^2 v_0}{\partial y^2} + \left(\frac{1}{2}A_{26} - B_{26}\right) \frac{\partial^3 w_0}{\partial y^3} = 0$$

•
$$\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{yy}}{\partial y} = A_{16} \frac{\partial^2 u_0}{\partial x^2} + \left(A_{66} - 2B_{66} \frac{1}{2}A_{12} - B_{12}\right) \frac{\partial^3 w_0}{\partial x^2 \partial y} + \left(\frac{1}{2}A_{16} - B_{16}\right) \frac{\partial^3 w_0}{\partial x^3} + 2A_{26} \frac{\partial^2 v_0}{\partial x \partial y} + \left(\frac{1}{2}A_{26} - 3B_{26} + A_{26}\right) \frac{\partial^3 w_0}{\partial y^2 \partial x} + \left(A_{66} + A_{12}\right) \frac{\partial^2 u_0}{\partial y \partial x} + A_{66} \frac{\partial^2 v_0}{\partial x^2} + A_{22} \frac{\partial^2 v_0}{\partial y^2} + \left(\frac{1}{2}A_{12} - B_{22}\right) \frac{\partial^3 w_0}{\partial y^3} + A_{26} \frac{\partial^2 u_0}{\partial y^2} = 0$$

•
$$\frac{\partial^{2}M_{xx}}{\partial x^{2}} + 2\frac{\partial^{2}M_{yy}}{\partial x\partial y} + \frac{\partial^{2}M_{yy}}{\partial y^{2}} + N(w_{0}) + q = B_{11}\frac{\partial^{3}u_{0}}{\partial x^{3}} + \left(\frac{1}{2}B_{11} - D_{11}\right)\frac{\partial^{4}w_{0}}{\partial x^{4}} + \left(B_{12} + 2B_{66}\right)\frac{\partial^{3}v_{0}}{\partial x^{2}\partial y} \\ + \left(B_{12} - 2D_{12} + 2B_{66} - 4D_{66}\right)\frac{\partial^{4}w_{0}}{\partial x^{2}\partial y^{2}} + 3B_{16}\frac{\partial^{3}u_{0}}{\partial x^{2}\partial y} \\ + B_{16}\frac{\partial^{3}v_{0}}{\partial x^{3}} + \left(B_{16} - 2D_{16}\right)\frac{\partial^{4}w_{0}}{\partial x^{3}\partial y} + \left(B_{12} + 2B_{66}\right)\frac{\partial^{3}u_{0}}{\partial y^{2}\partial x} \\ + B_{22}\frac{\partial^{3}v_{0}}{\partial y^{3}} + \left(\frac{1}{2}B_{22} - D_{22}\right)\frac{\partial^{4}w_{0}}{\partial y^{4}} + B_{26}\frac{\partial^{3}u_{0}}{\partial y^{3}} + 3B_{26}\frac{\partial^{3}v_{0}}{\partial y^{2}\partial x} \\ + \left(2B_{26} - 4D_{26}\right)\frac{\partial^{4}w_{0}}{\partial x\partial y^{3}} + \left(B_{16} - 2D_{16}\right)\frac{\partial^{4}w_{0}}{\partial x^{3}\partial y} + N(w_{0}) + q = 0$$
(2.25)

Bu şekilde temel KLPT denklemleri malzeme özelliklerine bağlı olarak oluşturulmuş olur.

2.2.2 Birinci Mertebe Kayma Deformasyon Teorisi (BMKDT)

KLPT'den farklı olarak, deformasyon sonrasında enine normalleri orta yüzeye dik kalmazlar ve enine kayma kuvvetleri etkisindeki yer değişimleri teoriye dahil edilirler. Bunun için de w'nin kalınlık koordinatı z'nin bir fonksiyonu olmadığı kabul edilir.

Sekil 2.5 BMKDT deformasyon yaklaşımı [22].

Birinci mertebe kayma deformasyon teorisi için yer değiştirme denklemleri;

$$u(x, y, z, t) = u_0(x, y, t) + z \mathscr{I}_x(x, y, t)$$

$$v(x, y, z, t) = v_0(x, y, t) + z \mathscr{I}_x(x, y, t)$$

$$w(x, y, z, t) = w_0(x, y, t)$$
(2.26)

Enine kayma etkisindeki yer değişimleri, lamine kalınlığı boyunca sabit gibi düşünülerek, Kayma Düzeltme Katsayısı ile hesaplamalara dahil edilmiştir. BMKDT denge denklemleri aşağıda verilmiştir [22].

•
$$\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = I_0 \frac{\partial^2 u_0}{\partial t^2} + I_1 \frac{\partial^2 \phi_x}{\partial t^2}$$

•
$$\frac{\partial N_{yy}}{\partial y} + \frac{\partial N_{xy}}{\partial x} = I_0 \frac{\partial^2 v_0}{\partial t^2} + I_1 \frac{\partial^2 \phi_y}{\partial t^2}$$

•
$$\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + N(w_0) + q = I_0 \frac{\partial^2 w_0}{\partial t^2}$$

•
$$\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} - Q_x = I_2 \frac{\partial^2 \phi_x}{\partial t^2} + I_1 \frac{\partial^2 u_0}{\partial t^2}$$

•
$$\frac{\partial M_{yy}}{\partial y} + \frac{\partial M_{xy}}{\partial x} - Q_y = I_2 \frac{\partial^2 \phi_y}{\partial t^2} + I_1 \frac{\partial^2 v_0}{\partial t^2}$$
(2.27)

Kuvvet ve moment bileşenlerinin kısmi türevleri denge denklemlerinde yerlerine yazılır ve statik durum için denklemler sıfıra eşitlenirse, en genel haliyle BMKDT denge denklemleri elde edilir.

•
$$\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial y} = A_{11} \frac{\partial^2 u_0}{\partial x^2} + \frac{1}{2} A_{11} \frac{\partial^3 w_0}{\partial x^3} + (A_{12} + A_{66}) \frac{\partial^2 v_0}{\partial x \partial y} + (\frac{1}{2} A_{12} + A_{66}) \frac{\partial^3 w_0}{\partial y^2 \partial x} + 2A_{16} \frac{\partial^2 u_0}{\partial x \partial y} + A_{16} \frac{\partial^2 v_0}{\partial x^2} + \frac{1}{2} A_{16} \frac{\partial^3 w_0}{\partial x^2 \partial y} + A_{26} \frac{\partial^2 v_0}{\partial y^2} + \frac{1}{2} A_{26} \frac{\partial^3 w_0}{\partial y^3} + A_{66} \frac{\partial^2 u_0}{\partial y^2} + B_{11} \frac{\partial^2 \phi_x}{\partial x^2} + (B_{12} + B_{66}) \frac{\partial^2 \phi_y}{\partial x \partial y} + 2B_{16} \frac{\partial^2 \phi_x}{\partial x \partial y} + B_{16} \frac{\partial^2 \phi_y}{\partial x^2} + B_{26} \frac{\partial^2 \phi_y}{\partial y^2} + B_{66} \frac{\partial^2 \phi_x}{\partial y^2} = 0$$

•
$$\frac{\partial N_{yy}}{\partial y} + \frac{\partial N_{xy}}{\partial x} = (A_{12} + A_{66}) \frac{\partial^2 u_0}{\partial x \partial y} + (\frac{1}{2}A_{12} + A_{66}) \frac{\partial^3 w_0}{\partial x^2 \partial y} + A_{22} \frac{\partial^2 v_0}{\partial y^2} + \frac{1}{2}A_{22} \frac{\partial^3 w_0}{\partial y^3} + A_{26} \frac{\partial^2 u_0}{\partial y^2} + 2A_{26} \frac{\partial^2 v_0}{\partial x \partial y} + \frac{3}{2}A_{26} \frac{\partial^3 w_0}{\partial x \partial y^2} + A_{16} \frac{\partial^2 u_0}{\partial x^2} + \frac{1}{2}A_{16} \frac{\partial^3 w_0}{\partial x^3} + A_{66} \frac{\partial^2 v_0}{\partial x^2} + (B_{12} + B_{66}) \frac{\partial^2 \phi_x}{\partial x \partial y} + B_{22} \frac{\partial^2 \phi_y}{\partial y^2} + B_{26} \frac{\partial^2 \phi_x}{\partial y^2} + 2B_{26} \frac{\partial^2 \phi_y}{\partial x \partial y} + B_{16} \frac{\partial^2 \phi_x}{\partial x^2} + B_{66} \frac{\partial^2 \phi_y}{\partial x^2} = 0$$

•
$$\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + \frac{\partial}{\partial x} \left(N_{xx} \frac{\partial w_0}{\partial x} + N_{xy} \frac{\partial w_0}{\partial y} \right) + \frac{\partial}{\partial y} \left(N_{xy} \frac{\partial w_0}{\partial x} + N_{yy} \frac{\partial w_0}{\partial y} \right) + q = 2KA_{45} \frac{\partial^2 w_0}{\partial x \partial y} \\ + KA_{45} \frac{\partial \phi_y}{\partial x} + KA_{55} \frac{\partial^2 w_0}{\partial x^2} + KA_{55} \frac{\partial \phi_x}{\partial x} + KA_{44} \frac{\partial^2 w_0}{\partial y^2} + KA_{44} \frac{\partial \phi_y}{\partial y} \\ + KA_{45} \frac{\partial \phi_x}{\partial y} + \frac{\partial}{\partial x} \left(N_{xx} \frac{\partial w_0}{\partial x} + N_{xy} \frac{\partial w_0}{\partial y} \right) + \frac{\partial}{\partial y} \left(N_{xy} \frac{\partial w_0}{\partial x} + N_{yy} \frac{\partial w_0}{\partial y} \right) + q = 0$$

•
$$\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} - Q_x = B_{11} \frac{\partial^2 u_0}{\partial x^2} + \frac{1}{2} B_{11} \frac{\partial^3 w_0}{\partial x^3} + (B_{12} + B_{66}) \frac{\partial^2 v_0}{\partial x \partial y} + \left(\frac{1}{2} B_{12} + B_{66}\right) \frac{\partial^3 w_0}{\partial x \partial y^2} + 2B_{16} \frac{\partial^2 u_0}{\partial x \partial y} + B_{16} \frac{\partial^2 v_0}{\partial x^2} + 1\frac{1}{2} B_{16} \frac{\partial^3 w_0}{\partial x^2 \partial y} + B_{26} \frac{\partial^2 v_0}{\partial y^2} + \frac{1}{2} B_{26} \frac{\partial^3 w_0}{\partial y^3} + B_{66} \frac{\partial^2 u_0}{\partial y^2} + D_{11} \frac{\partial^2 \phi_x}{\partial x^2} + (D_{12} + D_{66}) \frac{\partial^2 \phi_y}{\partial x \partial y} + 2D_{16} \frac{\partial^2 \phi_x}{\partial x \partial y} + D_{16} \frac{\partial^2 \phi_y}{\partial x^2} + D_{26} \frac{\partial^2 \phi_y}{\partial y^2} + D_{66} \frac{\partial^2 \phi_x}{\partial y^2} - KA_{45} \left(\frac{\partial w_0}{\partial y} + \phi_y\right) - KA_{55} \left(\frac{\partial w_0}{\partial x} + \phi_x\right) = 0$$

•
$$\frac{\partial M_{yy}}{\partial y} + \frac{\partial M_{xy}}{\partial x} - Q_{y} = \left(B_{12} + B_{66}\right) \frac{\partial^{2} u_{0}}{\partial x \partial y} + \left(\frac{1}{2}B_{12} + B_{66}\right) \frac{\partial^{3} w_{0}}{\partial x^{2} \partial y} + B_{22} \frac{\partial^{2} v_{0}}{\partial y^{2}} + \frac{1}{2}B_{22} \frac{\partial^{3} w_{0}}{\partial y^{3}} + B_{26} \frac{\partial^{2} u_{0}}{\partial y^{2}} + 2B_{26} \frac{\partial^{2} v_{0}}{\partial x \partial y} + 1\frac{1}{2}B_{26} \frac{\partial^{3} w_{0}}{\partial x \partial y^{2}} + B_{16} \frac{\partial^{2} u_{0}}{\partial x^{2}} + \frac{1}{2}B_{16} \frac{\partial^{3} w_{0}}{\partial x^{3}} + B_{66} \frac{\partial^{2} v_{0}}{\partial x^{2}} + \left(D_{12} + D_{66}\right) \frac{\partial^{2} \phi_{x}}{\partial x \partial y} + D_{22} \frac{\partial^{2} \phi_{y}}{\partial y^{2}} + D_{26} \frac{\partial^{2} \phi_{x}}{\partial y^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + 2D_{26} \frac{\partial^{2} \phi_{y}}{\partial x \partial y} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x^{2}} + D_{26} \frac{\partial^{2} \phi_{y}}{\partial x$$

Bu şekilde temel BMKDT denklemleri malzeme özelliklerine bağlı olarak oluşturulmuş olur.

2.2.3 Üçüncü Mertebe Kayma Deformasyon Teorisi (ÜMKDT)

KLPT ve BMKDT en basit katmanlı plak teorisi olarak kabul edilir ve bu teoriler birçok plağın kinematik davranışını yeterli derecede açıklar. Üçüncü Mertebe Kayma Deformasyon Teorisi (ÜMKDT) kinematik davranışları daha iyi gösterebilmekte, kayma düzeltme katsayısına gerek duyulmamakta ve plaklar arası gerilme dağılımını daha hassas verebilmektedir. Benzer şekilde, daha yüksek mertebeli deformasyon teorileri kullanılarak deformasyon hesaplamalarının daha detaylı olarak yapılması mümkündür. Ancak kullanılacak deformasyon teorisinin mertebesinin artırılmasının neden olduğu işlem sayısı ve sonuç hassasiyeti incelendiğinde, ÜMKDT'nin optimum çözüm tekniği olduğu belirlenmiştir.

2.2.3.1 Yer Değiştirme Denklemleri

Üçüncü Mertebe Kayma Deformasyon Teorisinin geliştirilmesi, klasik ve birinci mertebe plak teorisi ile aynı varsayımlara dayanmaktadır. Ancak bu teoride, yer değiştirmelerin kalınlık koordinatlarının kübik fonksiyonları olarak genişletilmesiyle, deformasyon sonrası enine normallerin, normallikleri ve doğrultuları konusundaki varsayımlar daha genişletilmiştir.

Sekil 2.6 ÜMKDT deformasyon yaklaşımı [22].

Üçüncü mertebe kayma deformasyon teorisi için yer değiştirme denklemleri Reddy [22] tarafından aşağıda verildiği şekilde tanımlanmıştır;

$$u(x, y, z, t) = u_0(x, y, t) + z\phi_x(x, y, t) - \frac{4}{3h^2}z^3\left(\phi_x + \frac{\partial w_0}{\partial x}\right)$$

$$v(x, y, z, t) = v_0(x, y, t) + z\phi_y(x, y, t) - \frac{4}{3h^2}z^3\left(\phi_y + \frac{\partial w_0}{\partial y}\right)$$

$$w(x, y, z, t) = w_0(x, y, t)$$
(2.29)

2.2.3.2 Denge Denklemlerinin Türetilmesi

Hamilton prensibi kullanılarak, enerji denklemlerine gerçek yer değiştirmeleri uygulanır ve elde edilen denklem sıfıra eşitlenerek denge denklemlerine ulaşılabilir. En genel haliyle Hamilton prensibi;

$$\int_{0}^{T} \left(\partial U + \partial W - \partial K\right) dt = 0$$
(2.30)

Hamilton prensibindeki şekil değiştirme enerjisi, dış kuvvetlerin yaptığı iş ve kinetik enerji ifadelerinin açık halleri aşağıda verilmiştir [22].

$$\begin{split} \delta U &= \int_{\Omega_0} \left\{ \int_{-\frac{h}{2}}^{\frac{h}{2}} \left[\sigma_{xx} \left(\delta \varepsilon^{(0)}_{xx} + z \delta \varepsilon^{(1)}_{xx} - c_1 z^3 \delta \varepsilon^{(3)}_{xx} \right) + \sigma_{yy} \left(\delta \varepsilon^{(0)}_{yy} + z \delta \varepsilon^{(1)}_{yy} - c_1 z^3 \delta \varepsilon^{(3)}_{yy} \right) \right. \\ &+ \sigma_{xy} \left(\delta \gamma^0_{xy} + z \delta \gamma^1_{xy} - c_1 z^3 \delta \gamma^{(3)}_{xy} \right) + \sigma_{xz} \left(\delta \gamma^0_{xz} + z^2 \delta \gamma^2_{xz} \right) + \sigma_{yz} \left(\delta \gamma^0_{yz} + z^2 \delta \gamma^2_{yz} \right) \right] dz \right\} dx dy \\ \delta U &= \int_{\Omega_0} \left(N_{xx} \delta \varepsilon^{(0)}_{xx} + M_{xx} \delta \varepsilon^{(1)}_{xx} - c_1 P_{xx} \delta \varepsilon^{(3)}_{xx} + N_{yy} \delta \varepsilon^{(0)}_{yy} + M_{yy} \delta \varepsilon^{(1)}_{yy} - c_1 P_{yy} \delta \varepsilon^{(3)}_{yy} + N_{xy} \delta \gamma^{(0)}_{xy} \right. \\ \left. M_{xy} \delta \gamma^{(1)}_{xy} - c_1 P_{xy} \delta \gamma^{(3)}_{xy} + Q_x \delta \gamma^{(0)}_{xz} - c_2 R_x \delta \gamma^{(0)}_{xz} + Q_y \delta \gamma^{(0)}_{yz} - c_2 R_y \delta \gamma^{(0)}_{yz} \right) dx dy \end{split}$$

$$c_1 = \frac{4}{3h^2}$$
 $c_2 = 3c_1$ (2.31)

Dış kuvvetler tarafından yapılan iş [22];

$$\delta V = -\int_{\Omega_0} \left[q_b(x, y) \delta w\left(x, y, -\frac{h}{2}\right) + q_t(x, y) \delta w\left(x, y, \frac{h}{2}\right) \right] dx dy - \int_{\Gamma} \int_{-\frac{h}{2}}^{\frac{h}{2}} \left[\hat{\sigma}_{nn} \left(\delta u_n + z \delta \phi_n - c_1 z^3 \delta \varphi_n \right) \right] dx dy$$

$$+\widehat{\sigma}_{ns}\left(\delta u_{s}+z\delta\phi_{s}-c_{1}z^{3}\delta\varphi_{ns}\right)+\widehat{\sigma}_{nz}\delta w_{0}\left]dzd_{\Gamma}$$
(2.32)

Kinetik enerji [22];

$$\delta K = \int_{\Omega_0}^{\frac{h}{2}} P_0 \Big[\Big(\dot{u}_0 + z\dot{\phi}_x - c_1 z^3 \dot{\phi}_x \Big) \Big(\delta \dot{u}_0 + z \delta \dot{\phi}_x - c_1 z^3 \delta \dot{\phi}_x \Big) + \Big(\dot{v}_0 + z \dot{\phi}_y - c_1 z^3 \dot{\phi}_y \Big) \Big(\delta \dot{v}_0 + z \delta \dot{\phi}_y - c_1 z^3 \delta \dot{\phi}_y \Big) + \dot{w}_0 \delta \dot{w}_0 \Big] dv$$

$$\delta K = \int_{\Omega_0} \Big[\Big(I_0 \dot{u}_0 + I_1 \dot{\phi}_x - c_1 I_3 \dot{\phi}_x \Big) \delta \dot{u}_0 + \Big(I_1 \dot{u}_0 + I_2 \dot{\phi}_x - c_1 I_4 \dot{\phi}_x \Big) \delta \dot{\phi}_x - c_1 \Big(I_3 \dot{u}_0 + I_4 \dot{\phi}_x - c_1 I_6 \dot{\phi}_x \Big) \delta \dot{\phi}_x$$

$$+ \Big(I_0 \dot{v}_0 + I_1 \dot{\phi}_y - c_1 I_3 \dot{\phi}_y \Big) \delta \dot{v}_0 + \Big(I_1 \dot{v}_0 + I_2 \dot{\phi}_y - c_1 I_4 \dot{\phi}_y \Big) \delta \dot{\phi}_y - c_1 \Big(I_3 \dot{u}_0 + I_4 \dot{\phi}_y - c_1 I_6 \dot{\phi}_y \Big) \delta \dot{\phi}_y \Big] dx dy$$

$$(2.33)$$

Burada, Ω_0 plağın orta düzlemini göstermektedir. Kinetik enerji denkleminin çift eğrilikli kabuk için uyarlanması durumunda;

$$\delta K = \int_{\Omega_0} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho_0 \left[\left[\left(1 + \frac{z}{R_1} \right) \dot{u}_0 + z \dot{\phi}_x - \frac{4}{3h^2} z^3 \dot{\phi}_x \right] \left[\left(1 + \frac{z}{R_1} \right) \delta \dot{u}_0 + z \delta \dot{\phi}_x - \frac{4}{3h^2} z^3 \delta \dot{\phi}_x \right] + \left[\left(1 + \frac{z}{R_2} \right) \dot{v}_0 + z \dot{\phi}_y - \frac{4}{3h^2} z^3 \dot{\phi}_y \right] \right] \cdot \left[\left(1 + \frac{z}{R_2} \right) \delta \dot{v}_0 + z \delta \dot{\phi}_y - \frac{4}{3h^2} z^3 \delta \dot{\phi}_y \right] + \dot{w}_0 \delta \dot{w}_0 \right] dv$$

$$(2.34)$$

$$\dot{\phi}_{x} = \dot{\phi}_{x} + \frac{\partial \dot{w}_{0}}{\partial x} \qquad \dot{\phi}_{y} = \dot{\phi}_{y} + \frac{\partial \dot{w}_{0}}{\partial y}$$

$$\delta \dot{\phi}_{x} = \delta \dot{\phi}_{x} + \frac{\partial \delta \dot{w}_{0}}{\partial x} \qquad \delta \dot{\phi}_{y} = \delta \dot{\phi}_{y} + \frac{\partial \delta \dot{w}_{0}}{\partial y}$$
(2.35)

Denklem (2.35) deki dönme değişimi ifadeleri (2.34) de yerlerine yazılırsa;

$$\begin{split} \delta K &= -\int_{0}^{t} \int_{-\frac{h}{2}}^{\frac{h}{2}} 2 \left\{ \rho_{0} \int_{\Omega}^{k} \left[\left(\left(1 + \frac{z}{R_{1}} \right) \dot{u}_{0} + z \dot{\phi}_{x} - \frac{4}{3h^{2}} z^{3} \left(\dot{\phi}_{x} + \frac{\partial \dot{w}_{0}}{\partial x} \right) \right) \left(\left(1 + \frac{z}{R_{1}} \right) \delta \dot{u}_{0} + z \delta \dot{\phi}_{x} - \frac{4}{3h^{2}} z^{3} \left(\delta \dot{\phi}_{x} + \frac{\partial \delta \dot{w}_{0}}{\partial x} \right) \right) \right. \\ & \left. + \left(\left(1 + \frac{z}{R_{2}} \right) \dot{v}_{0} + z \dot{\phi}_{y} - \frac{4}{3h^{2}} z^{3} \left(\dot{\phi}_{y} + \frac{\partial \dot{w}_{0}}{\partial y} \right) \right) \left(\left(1 + \frac{z}{R_{2}} \right) \delta \dot{v}_{0} + z \delta \dot{\phi}_{y} - \frac{4}{3h^{2}} z^{3} \left(\delta \dot{\phi}_{y} + \frac{\partial \delta \dot{w}_{0}}{\partial y} \right) \right) + \dot{w}_{0} \delta \dot{w}_{0} \right] dx dy \right\} dt \end{split}$$

ve işlemlere devam edilirse;

$$\begin{split} \delta K &= -\int_{0}^{t} \int_{-\frac{h}{2}}^{\frac{h}{2}} 2 \left\{ \rho_{0} \int_{\Omega}^{k} \left[\left(\dot{u}_{0} + \frac{z}{R_{1}} \dot{u}_{0} + z \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \frac{\partial \dot{w}_{0}}{\partial x} \right) \left(\delta \dot{u}_{0} + \frac{z}{R_{1}} \delta \dot{u}_{0} + z \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \frac{\partial \delta \dot{w}_{0}}{\partial x} \right) \right. \\ &+ \left(\dot{v}_{0} + \frac{z}{R_{2}} \dot{v}_{0} + z \dot{\phi}_{y} - \frac{4z^{3}}{3h^{2}} \dot{\phi}_{y} - \frac{4z^{3}}{3h^{2}} \frac{\partial \dot{w}_{0}}{\partial y} \right) \left(\delta \dot{v}_{0} + \frac{z}{R_{2}} \delta \dot{v}_{0} + z \delta \dot{\phi}_{y} - \frac{4z^{3}}{3h^{2}} \frac{\partial \delta \dot{w}_{0}}{\partial y} \right) + \dot{w}_{0} \delta \dot{w}_{0} \right] dx dy \right\} dt \end{split}$$

$$\delta K = -\int_{0}^{t} \int_{-\frac{h}{2}}^{\frac{h}{2}} 2 \left\{ \rho_{0} \int_{\Omega}^{k} \left(\dot{u}_{0} \delta \dot{u}_{0} + \frac{z}{R_{1}} \dot{u}_{0} \delta \dot{u}_{0} + z \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \frac{\partial \delta \dot{w}_{0}}{\partial x} + \frac{z}{R_{1}} \dot{u}_{0} \delta \dot{u}_{0} + \frac{z^{2}}{R_{1}^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{y} + \frac{z}{R_{1}} \dot{u}_{0} \delta \dot{u}_{0} + \frac{z^{2}}{R_{1}^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{y} + \frac{z}{R_{1}} \dot{u}_{0} \delta \dot{u}_{0} + \frac{z^{2}}{R_{1}^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{y} + \frac{z}{R_{1}} \dot{u}_{0} \delta \dot{u}_{0} + \frac{z^{2}}{R_{1}^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{x} - \frac{4z^{3}}{3h^{2}} \dot{u}_{0} \delta \dot{\phi}_{y} + \frac{z}{R_{1}} \dot{u}_{$$

$$-\frac{4z^{4}}{3R_{1}h^{2}}\dot{u}_{0}\delta\dot{\phi}_{x} - \frac{4z^{4}}{3R_{1}h^{2}}\dot{u}_{0}\frac{\partial\delta\dot{w}_{0}}{\partial x} + z\dot{\phi}_{x}\delta\dot{u}_{0} + \frac{z^{2}}{R_{1}}\dot{\phi}_{x}\delta\dot{u}_{0} + z^{2}\dot{\phi}_{x}\delta\dot{\phi}_{x} - \frac{4z^{4}}{3h^{2}}\dot{\phi}_{x}\delta\phi_{x} -$$

$$-\frac{4z^{3}}{3h^{2}}\dot{v_{0}}\frac{\partial\delta\dot{w_{0}}}{\partial y} + \frac{z}{R_{2}}\dot{v_{0}}\delta\dot{v_{0}} + \frac{z^{2}}{R_{2}^{2}}\dot{v_{0}}\delta\dot{v_{0}} + \frac{z^{2}}{R_{2}}\dot{v_{0}}\delta\dot{\phi_{y}} - \frac{4z^{4}}{3R_{2}h^{2}}\dot{v_{0}}\delta\dot{\phi_{y}} - \frac{4z^{4}}{3R_{2}h^{2}}\dot{v_{0}}\frac{\partial\delta\dot{w_{0}}}{\partial y} + z\dot{\phi_{y}}\delta\dot{v_{0}} + \frac{z^{2}}{R_{2}}\dot{\phi_{y}}\delta\dot{\phi_{y}} - \frac{4z^{4}}{3h^{2}}\dot{\phi_{y}}\delta\dot{\phi_{y}} - \frac{4z$$

$$+\frac{16z^{6}}{9h^{4}}\dot{\phi}_{y}\frac{\partial\delta\dot{w}_{0}}{\partial y}-\frac{4z^{3}}{3h^{2}}\delta\dot{v}_{0}\frac{\partial\dot{w}_{0}}{\partial y}-\frac{4z^{4}}{3R_{2}h^{2}}\delta\dot{v}_{0}\frac{\partial\dot{w}_{0}}{\partial y}-\frac{4z^{4}}{3h^{2}}\delta\dot{\phi}_{y}\frac{\partial\dot{w}_{0}}{\partial y}+\frac{16z^{6}}{9h^{4}}\delta\dot{\phi}_{y}\frac{\partial\dot{w}_{0}}{\partial y}+\frac{16z^{6}}{9h^{4}}\frac{\partial\dot{w}_{0}}{\partial y}\frac{\partial\delta\dot{w}_{0}}{\partial y}$$
$$+\dot{w}_{0}\delta\dot{w}_{0})dxdy\}dt$$
(2.37)

denklemi elde edilir. Bu denklemi düzenlediğimizde;

$$\begin{split} \delta K &= -\int_{0}^{t} \int_{-\frac{h}{2}}^{\frac{h}{2}} 2\rho_{0} \left\{ \int_{\Omega}^{k} \left(\dot{u}_{0} \delta \dot{u}_{0} \left(1 + \frac{2z}{R_{1}} + \frac{z^{2}}{R_{1}^{2}} \right) + \dot{u}_{0} \delta \dot{\phi}_{x} \left(z + \frac{z^{2}}{R_{1}} - \frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{1}h^{2}} \right) + \dot{u}_{0} \frac{\partial \delta \dot{w}_{0}}{\partial x} \left(-\frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{1}h^{2}} \right) \right. \\ &+ \dot{\phi}_{x} \delta \dot{u}_{0} \left(z + \frac{z^{2}}{R_{1}} - \frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{1}h^{2}} \right) + \dot{\phi}_{x} \delta \dot{\phi}_{x} \left(z^{2} - \frac{8z^{4}}{3h^{2}} + \frac{16z^{6}}{9h^{4}} \right) + \dot{\phi}_{x} \frac{\partial \delta \dot{w}_{0}}{\partial x} \left(-\frac{4z^{4}}{3h^{2}} + \frac{16z^{6}}{9h^{4}} \right) \\ &+ \delta \dot{u}_{0} \frac{\partial \dot{w}_{0}}{\partial x} \left(-\frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{1}h^{2}} \right) + \delta \phi_{x} \frac{\partial \ddot{w}_{0}}{\partial x} \left(-\frac{4z^{4}}{3h^{2}} - \frac{16z^{6}}{9h^{4}} \right) + \dot{v}_{0} \delta \dot{v}_{0} \left(1 + \frac{2z}{R_{2}} + \frac{z^{2}}{R_{2}^{2}} \right) + \dot{v}_{0} \delta \dot{\phi}_{y} \left(z + \frac{z^{2}}{R_{2}} - \frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3h^{2}} - \frac{4z^{4}}{3R_{2}h^{2}} \right) \\ &+ \dot{v}_{0} \frac{\partial \delta \dot{w}_{0}}{\partial y} \left(-\frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{2}h^{2}} \right) + \phi_{y} \delta \dot{v}_{0} \left(z + \frac{z^{2}}{R_{2}} - \frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{2}h^{2}} \right) + \dot{\phi}_{y} \delta \dot{\phi}_{y} \left(z^{2} - \frac{8z^{4}}{3h^{2}} + \frac{16z^{6}}{9h^{4}} \right) \\ &+ \dot{\phi}_{y} \frac{\partial \delta \dot{w}_{0}}{\partial y} \left(-\frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{2}h^{2}} \right) + \phi_{y} \delta \dot{v}_{0} \left(z + \frac{z^{2}}{R_{2}} - \frac{4z^{3}}{3h^{2}} - \frac{4z^{4}}{3R_{2}h^{2}} \right) + \dot{\phi}_{y} \delta \dot{\phi}_{y} \left(z^{2} - \frac{8z^{4}}{3h^{2}} + \frac{16z^{6}}{9h^{4}} \right) \\ &+ \dot{\phi}_{y} \frac{\partial \delta \dot{w}_{0}}{\partial y} \left(-\frac{4z^{4}}{3h^{2}} - \frac{16z^{6}}{9h^{4}} \right) + \delta \dot{v}_{0} \frac{\partial \dot{w}_{0}}{\partial y} \left(-\frac{4z^{4}}{3h^{2}} - \frac{16z^{6}}{9h^{4}} \right) + \delta \dot{\phi}_{y} \frac{\partial \dot{w}_{0}}{\partial y} \left(-\frac{4z^{4}}{3h^{2}} - \frac{16z^{6}}{9h^{4}} \right) \\ &+ \dot{\phi}_{y} \frac{\partial \delta \dot{w}_{0}}{\partial y} \left(-\frac{4z^{4}}{3h^{2}} - \frac{16z^{6}}{9h^{4}} \right) + \delta \dot{v}_{0} \frac{\partial \dot{w}_{0}}{\partial y} \left(-\frac{4z^{4}}{3h^{2}} - \frac{16z^{6}}{9h^{4}} \right) + \delta \dot{\phi}_{y} \frac{\partial \delta \dot{w}_{0}}{\partial y} \left(-\frac{4z^{4}}{3h^{2}} - \frac{16z^{6}}{9h^{4}} \right) \\ &+ \dot{\phi}_{y} \frac{\partial \delta \dot{w}_{0}}{\partial y} \left(\frac{\partial \delta \dot{w}_{0}}{\partial y} + \dot{w}_{0} \delta \dot{w}_{0} \right) \right] dx dy \right\} dt$$

Nihai kinetik enerji denklemi aşağıdaki şekilde yazılabilir;

$$\delta K = -\int_{0}^{T} 2\int_{\Omega}^{k} \left\{ \delta \dot{u}_{0} \left(\overline{I_{1}} \dot{u}_{0} + \overline{I_{2}} \dot{\phi}_{x} - \overline{I_{3}} \frac{\partial \dot{w}_{0}}{\partial x} \right) + \delta \dot{v}_{0} \left(\overline{I_{1}} \dot{v}_{0} + \overline{I_{2}} \dot{\phi}_{y} - \overline{I_{3}} \frac{\partial w_{0}}{\partial y} \right) + \delta \phi_{x} \left(\overline{I_{2}} \dot{u}_{0} + \overline{I_{4}} \dot{\phi}_{x} - \overline{I_{5}} \frac{\partial w_{0}}{\partial x} \right) \right\}$$
$$+ \delta \phi_{y} \left(\overline{I_{2}} \dot{v}_{0} + \overline{I_{4}} \dot{\phi}_{y} - \overline{I_{5}} \frac{\partial \dot{w}_{0}}{\partial y} \right) + \delta \dot{w} \left(\overline{I_{3}} \frac{\partial \dot{u}_{0}}{\partial x} + \overline{I_{5}} \frac{\partial \dot{\phi}_{x}}{\partial x} + \overline{I_{3}} \frac{\partial \dot{v}_{0}}{\partial y} + \overline{I_{5}} \frac{\partial \dot{\phi}_{y}}{\partial y} - I_{7} \frac{\partial^{2} \dot{w}_{0}}{\partial x^{2}} - I_{7} \frac{\partial^{2} \dot{w}_{0}}{\partial y^{2}} - I_{1} \dot{w}_{0} \right) \right\} d_{\Omega} dt$$
$$(2.39)$$

Reddy [22] tarafından, yukarıda verilen enerji denkleminin çözülmesi ile 5 adet denge denklemi tanımlanmıştır.

•
$$\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} = \overline{I}_1 \dot{u}_0 + \overline{I}_2 \dot{\phi}_x - I_3 \frac{\partial \dot{w}_0}{\partial x}$$

•
$$\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} = \overline{I_1} \dot{\psi}_0 + \overline{I_2} \dot{\phi}_y - I_3' \frac{\partial \ddot{w}_0}{\partial x}$$
•
$$\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} - \frac{4}{h^2} \left(\frac{\partial K_x}{\partial x} + \frac{\partial K_y}{\partial y} \right) + \frac{4}{3h^2} \left(\frac{\partial^2 P_x}{\partial x^2} + \frac{\partial^2 P_y}{\partial y^2} + 2 \frac{\partial^2 P_{xy}}{\partial x \partial y} \right)$$
•
$$-\frac{N_x}{R_1} - \frac{N_y}{R_2} = \overline{I_3} \frac{\partial \dot{u}}{\partial x} + \overline{I_5} \frac{\partial \phi_x}{\partial x} + \overline{I_3'} \frac{\partial \dot{v}_0}{\partial y} + \overline{I_5'} \frac{\partial \phi_y}{\partial y} - I_1 \dot{w} - I_7 \frac{\partial^2 \dot{w}}{\partial x^2} - I_7 \frac{\partial^2 \dot{w}}{\partial y^2} - q$$
•
$$\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} - Q_x + \frac{4}{h^2} K_1 - \frac{4}{3h^2} \left(\frac{\partial P_x}{\partial x} + \frac{\partial P_{xy}}{\partial y} \right) = \overline{I_2} \dot{u}_0 + \overline{I_4} \dot{\phi}_x - \overline{I_5} \frac{\partial \dot{w}}{\partial x}$$
•
$$\frac{\partial M_{xy}}{\partial x} + \frac{\partial M_y}{\partial y} - Q_y + \frac{4}{h^2} K_y - \frac{4}{3h^2} \left(\frac{\partial P_{xy}}{\partial x} + \frac{\partial P_y}{\partial y} \right) = \overline{I_2} \dot{v}_0 + \overline{I_4} \dot{\phi}_y - \overline{I_5} \frac{\partial \dot{w}}{\partial y}$$
(2.40)

2.3 ÜMKDT İçin Yer Değiştirmelerinin ve Şekil Değiştirmelerinin Tanımlanması

Bundan sonra yapılacak işlem bir önceki bölümde çıkartılmış olan denge denklemlerinin, ortotropik, çift eğrilikli kabuk için birim şekil değiştirme ifadeleri kullanılarak; plak üzerinde oluşan kuvvet ve moment ifadeleri ile yazılmasıdır. Kuvvet, eğilme - burulma momenti ve yüksek mertebeli kayma terimlerinin matris formunda en genel haliyle yazılışı aşağıda verilmiştir. Bu bölümde; tüm katların açılarına bakılmaksızın transforme edilerek ortak bir koordinat sistemini kullanmaları nedeniyle; *x* ekseni için *1, y* ekseni için *2, z* ekseni için *3 ve xy* düzleminde oluşacak kaymaya bağlı ifadeler için ise *6* alt indisleri kullanılmıştır.

$$\left\{ \begin{cases} N_{1} \\ N_{2} \\ N_{6} \end{cases} \right\} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} E_{11} & E_{12} & E_{16} \\ E_{12} & E_{22} & E_{26} \\ E_{16} & E_{26} & E_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1}^{0} \\ \varepsilon_{2}^{0} \\ \varepsilon_{6}^$$

$$\begin{cases} \left\{ \begin{array}{c} Q_{2} \\ Q_{1} \end{array} \right\} \\ \left\{ \begin{array}{c} K_{2} \\ K_{1} \end{array} \right\} \\ \left\{ \begin{array}{c} K_{2} \\ K_{1} \end{array} \right\} \end{cases} = \begin{bmatrix} \left[\begin{array}{c} A_{44} & A_{45} \\ A_{45} & A_{55} \end{array} \right] & \begin{bmatrix} D_{44} & D_{45} \\ D_{45} & D_{55} \end{array} \right] & \begin{bmatrix} D_{44} & D_{45} \\ D_{45} & D_{55} \end{array} \end{bmatrix} \begin{bmatrix} \varepsilon_{4}^{0} \\ \varepsilon_{5}^{0} \\ \varepsilon_{5}^{0} \\ \kappa_{4}^{1} \\ \kappa_{5}^{1} \end{bmatrix}$$
(2.42)

A,B,D,E,F ve H matrisleri, $\left[\overline{Q}_{i,j}\right]$ indirgenmiş katılık matrisinin, ilgili tabaka kalınlıkları ile çarpılması neticesinde, plağın kalınlığı doğrultusunda integre edilmesi ile oluşmuştur [22].

$$\begin{pmatrix} A_{i,j}, B_{i,j}D_{i,j}E_{i,j}, F_{i,j}H_{i,j} \end{pmatrix} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \overline{Q}_{i,j} \left(1, z, z^{2}, z^{3}, z^{4}, z^{6}\right) dz$$

$$A_{i,j} = \sum_{k=1}^{N} \overline{Q}_{i,j}^{k} \left(z_{k+1} - z_{k}\right) \quad B_{i,j} = \frac{1}{2} \sum_{k=1}^{N} \overline{Q}_{i,j}^{k} \left(z_{k+1}^{2} - z_{k}^{2}\right)$$

$$D_{i,j} = \frac{1}{3} \sum_{k=1}^{N} \overline{Q}_{i,j}^{k} \left(z_{k+1}^{3} - z_{k}^{3}\right) E_{ij} = \frac{1}{4} \sum_{k=1}^{N} \overline{Q}_{ij}^{k} \left[\left(z_{k+1}\right)^{4} - z_{k}^{4}\right]$$

$$F_{ij} = \frac{1}{5} \sum_{k=1}^{N} \overline{Q}_{ij}^{k} \left[\left(z_{k+1}\right)^{5} - z_{k}^{5}\right] \quad H_{ij} = \frac{1}{7} \sum_{k=1}^{N} \overline{Q}_{ij}^{k} \left[\left(z_{k+1}\right)^{7} - z_{k}^{7}\right]$$

$$(2.43)$$

Çift eğrilikli kabuk için ihtiyaç duyulan normal yönlerdeki ve kayma etkisi ile oluşan birim şekil değişimi ifadeleri Reddy [22] tarafından aşağıdaki gibi tanımlanmıştır.

$$\begin{bmatrix} \varepsilon_{1}^{0} \\ \varepsilon_{2}^{0} \\ \varepsilon_{2}^{0} \\ \varepsilon_{6}^{0} \\ \kappa_{1}^{0} \\ \kappa_{1}^{0} \\ \kappa_{1}^{2} \\ \kappa_{6}^{2} \\ \kappa_{1}^{2} \\ \kappa_{6}^{2} \\ \kappa_{1}^{2} \\ \kappa_{6}^{2} \end{bmatrix} = \begin{cases} u_{1,1} + \frac{u_{3}}{R_{1}} \\ u_{2,2} + \frac{u_{3}}{R_{2}} \\ \mu_{1,1} \\ \phi_{2,2} \\ \phi_{1,2} + \phi_{2,1} \\ \phi_{1,2} + \phi_{2,2} \\ \phi_{1,2} + \phi_{2,1} \\ -\frac{4}{3h^{2}} (\phi_{1,1} + u_{3,11}) \\ -\frac{4}{3h^{2}} (\phi_{2,2} + u_{3,22}) \\ -\frac{4}{3h^{2}} (\phi_{2,1} + \phi_{1,2} + 2u_{3,12}) \end{bmatrix}$$

$$(2.44)$$

$$\begin{cases} \mathcal{E}_{4}^{0} \\ \mathcal{E}_{5}^{0} \\ \mathcal{K}_{4}^{1} \\ \mathcal{K}_{5}^{1} \end{cases} = \begin{cases} \phi_{2} + u_{3,2} \\ \phi_{1} + u_{3,1} \\ -\frac{4}{h^{2}} (\phi_{2} + u_{3,2}) \\ -\frac{4}{h^{2}} (\phi_{1} + u_{3,1}) \end{cases}$$
(2.45)

2.4 Asimetrik –Çapraz Yerleştirilmiş–Çift Eğrilikli Kabuk İçin Kuvvet ve Momentler

2.4.1 Kuvvet Bileşenleri

Ortotropik plak kabulü ile Denklem (2.41)'de verilmiş olan kuvvet ifadeleri aşağıdaki şekilde düzenlenebilir.

$$\begin{cases} N_{1} \\ N_{2} \\ N_{6} \end{cases} = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{22} & 0 \\ 0 & 0 & A_{66} \end{bmatrix} \begin{pmatrix} u_{1,1} + \frac{u_{3}}{R_{1}} \\ u_{2,2} + \frac{u_{3}}{R_{2}} \\ u_{2,1} + u_{1,2} \end{pmatrix} + \begin{bmatrix} B_{11} & B_{12} & 0 \\ B_{12} & B_{22} & 0 \\ 0 & 0 & B_{66} \end{bmatrix} \begin{pmatrix} \phi_{1,1} \\ \phi_{2,2} \\ \phi_{1,2} + \phi_{2,1} \end{pmatrix} + \begin{bmatrix} E_{11} & E_{12} & 0 \\ E_{12} & E_{22} & 0 \\ 0 & 0 & E_{66} \end{bmatrix} \begin{pmatrix} \phi_{1,1} + u_{3,11} \\ \phi_{2,2} + u_{3,22} \\ \phi_{2,1} + \phi_{1,2} + 2u_{3,12} \end{pmatrix}$$

$$(2.46)$$

Denklem (2.46)'da kapalı formda verilen kuvvet ifadeleri aşağıdaki şekilde açık olarak yazılabilir;

$$N_{1} = A_{11} \left(u_{1,1} + \frac{u_{3}}{R_{1}} \right) + A_{12} \left(u_{2,2} + \frac{u_{3}}{R_{2}} \right) + B_{11} \phi_{1,1} + B_{12} \phi_{2,2} - \frac{4}{3h^{2}} E_{11} \left(\phi_{1,1} + u_{3,11} \right) - \frac{4}{3h^{2}} E_{12} \left(\phi_{2,2} + u_{3,22} \right)$$

$$N_{2} = A_{12} \left(u_{1,1} + \frac{u_{3}}{R_{1}} \right) + A_{22} \left(u_{2,2} + \frac{u_{3}}{R_{2}} \right) + B_{12} \phi_{1,1} + B_{22} \phi_{2,2} - \frac{4}{3h^{2}} E_{12} \left(\phi_{1,1} + u_{3,11} \right) - \frac{4}{3h^{2}} E_{22} \left(\phi_{2,2} + u_{3,22} \right)$$

$$N_{6} = A_{66} \left(u_{2,1} + u_{1,2} \right) + B_{66} \left(\phi_{1,2} + \phi_{2,1} \right) - \frac{4}{3h^{2}} E_{66} \left(\phi_{2,1} + \phi_{1,2} + 2u_{3,12} \right)$$

$$(2.47)$$

2.4.2 Eğilme ve Burulma Momenti Bileşenleri

Ortotropik plak kabulü ile Denklem (2.41)'de verilmiş olan moment ifadeleri aşağıdaki şekilde düzenlenebilir.

$$\begin{cases}
 M_{1} \\
 M_{2} \\
 M_{6}
 \end{bmatrix} = \begin{bmatrix}
 B_{11} & B_{12} & 0 \\
 B_{12} & B_{22} & 0 \\
 M_{6}
 \end{bmatrix} \begin{pmatrix}
 u_{1,1} + \frac{u_{3}}{R_{1}} \\
 u_{2,2} + \frac{u_{3}}{R_{2}} \\
 u_{2,1} + u_{1,2}
 \end{bmatrix} + \begin{bmatrix}
 D_{11} & D_{12} & 0 \\
 D_{12} & D_{22} & 0 \\
 0 & 0 & D_{66}
 \end{bmatrix} \begin{pmatrix}
 \phi_{1,1} \\
 \phi_{2,2} \\
 \phi_{1,2} + \phi_{2,1}
 \end{pmatrix} + \begin{bmatrix}
 F_{11} & F_{12} & 0 \\
 F_{12} & F_{22} & 0 \\
 0 & 0 & F_{66}
 \end{bmatrix} \begin{pmatrix}
 \phi_{1,1} + u_{3,11} \\
 \phi_{2,2} + u_{3,22} \\
 \phi_{2,1} + \phi_{1,2} + 2u_{3,12}
 \end{pmatrix} \\$$
(2.48)

Denklem (2.48)'da kapalı formda verilen moment ifadeleri aşağıdaki şekilde açık olarak yazılabilir;

$$M_{1} = B_{11} \left(u_{1,1} + \frac{u_{3}}{R_{1}} \right) + B_{12} \left(u_{2,2} + \frac{u_{3}}{R_{2}} \right) + D_{11} \phi_{1,1} + D_{12} \phi_{2,2} - \frac{4}{3h^{2}} F_{11} \left(\phi_{1,1} + u_{3,11} \right) - \frac{4}{3h^{2}} F_{12} \left(\phi_{2,2} + u_{3,22} \right)$$

$$M_{2} = B_{12} \left(u_{1,1} + \frac{u_{3}}{R_{1}} \right) + B_{22} \left(u_{2,2} + \frac{u_{3}}{R_{2}} \right) + D_{12} \phi_{1,1} + D_{22} \phi_{2,2} - \frac{4}{3h^{2}} F_{12} \left(\phi_{1,1} + u_{3,11} \right) - \frac{4}{3h^{2}} F_{22} \left(\phi_{2,2} + u_{3,22} \right)$$

$$M_{6} = B_{66} \left(u_{2,1} + u_{1,2} \right) + D_{66} \left(\phi_{1,2} + \phi_{2,1} \right) - \frac{4}{3h^{2}} F_{66} \left(\phi_{2,1} + \phi_{1,2} + 2u_{3,12} \right)$$

$$(2.49)$$

2.4.3 Yüksek Mertebeli Gerilme Bileşenleri

Ortotropik plak kabulü ile Denklem (2.41)'de verilmiş olan yüksek mertebeli gerilme bileşenleri aşağıdaki şekilde düzenlenebilir.

$$\begin{cases} P_{1} \\ P_{2} \\ P_{6} \end{cases} = \begin{bmatrix} E_{11} & E_{12} & 0 \\ E_{12} & E_{22} & 0 \\ 0 & 0 & E_{66} \end{bmatrix} \begin{bmatrix} u_{1,1} + \frac{u_{3}}{R_{1}} \\ u_{2,2} + \frac{u_{3}}{R_{2}} \\ u_{2,1} + u_{1,2} \end{bmatrix} + \begin{bmatrix} F_{11} & F_{12} & 0 \\ F_{12} & F_{22} & 0 \\ 0 & 0 & F_{66} \end{bmatrix} \begin{bmatrix} \phi_{1,1} \\ \phi_{2,2} \\ \phi_{1,2} + \phi_{2,1} \end{bmatrix} + \begin{bmatrix} H_{11} & H_{12} & 0 \\ H_{12} & H_{22} & 0 \\ 0 & 0 & H_{66} \end{bmatrix} \left(-\frac{4}{3h^{2}} \right) \left\{ \begin{array}{c} \phi_{1,1} + u_{3,11} \\ \phi_{2,2} + u_{3,22} \\ \phi_{2,1} + \phi_{1,2} + 2u_{3,12} \end{bmatrix} \right\}$$

$$(2.50)$$

Denklem (2.50)'de kapalı formda verilen yüksek mertebeli gerilme bileşenleri aşağıdaki şekilde açık olarak yazılabilir;

$$P_{1} = E_{11} \left(u_{1,1} + \frac{u_{3}}{R_{1}} \right) + E_{12} \left(u_{2,2} + \frac{u_{3}}{R_{2}} \right) + F_{11} \phi_{1,1} + F_{12} \phi_{2,2} - \frac{4}{3h^{2}} H_{11} \left(\phi_{1,1} + u_{3,11} \right) - \frac{4}{3h^{2}} H_{12} \left(\phi_{2,2} + u_{3,22} \right)$$

$$P_{2} = E_{12} \left(u_{1,1} + \frac{u_{3}}{R_{1}} \right) + E_{22} \left(u_{2,2} + \frac{u_{3}}{R_{2}} \right) + F_{12} \phi_{1,1} + F_{22} \phi_{2,2} - \frac{4}{3h^{2}} H_{12} \left(\phi_{1,1} + u_{3,11} \right) - \frac{4}{3h^{2}} H_{22} \left(\phi_{2,2} + u_{3,22} \right)$$

$$P_{6} = E_{66} \left(u_{2,1} + u_{1,2} \right) + F_{66} \left(\phi_{1,2} + \phi_{2,1} \right) - \frac{4}{3h^{2}} H_{66} \left(\phi_{2,1} + \phi_{1,2} + 2u_{3,12} \right)$$

$$(2.51)$$

2.4.4 Enine Kesme Kuvveti Bileşenleri

Ortotropik plak kabulü ile Denklem (2.41)'de verilmiş olan enine kesme kuvveti bileşenleri aşağıdaki şekilde düzenlenebilir.

$$\begin{cases} Q_2 \\ Q_1 \end{cases} = \begin{bmatrix} A_{44} & 0 \\ 0 & A_{55} \end{bmatrix} \begin{cases} \phi_2 + u_{3,2} \\ \phi_1 + u_{3,1} \end{cases} + \begin{bmatrix} D_{44} & 0 \\ 0 & D_{55} \end{bmatrix} \begin{pmatrix} -\frac{4}{h^2} \end{pmatrix} \begin{cases} \phi_2 + u_{3,2} \\ \phi_1 + u_{3,1} \end{cases}$$
(2.52)

Denklem (2.52)'de kapalı formda verilen enine kesme kuvveti bileşenleri aşağıdaki şekilde açık olarak yazılabilir;

$$Q_{2} = A_{44} \left(\phi_{2} + u_{3,2} \right) - \frac{4}{h^{2}} D_{44} \left(\phi_{2} + u_{3,2} \right)$$

$$Q_{1} = A_{55} \left(\phi_{1} + u_{3,1} \right) - \frac{4}{h^{2}} D_{55} \left(\phi_{1} + u_{3,1} \right)$$
(2.53)

2.4.5 Yüksek Mertebeli Kayma Bileşenleri

Ortotropik plak kabulü ile Denklem (2.41)'de verilmiş olan yüksek mertebeli kayma bileşenleri aşağıdaki şekilde düzenlenebilir.

$$\begin{cases} K_2 \\ K_1 \end{cases} = \begin{bmatrix} D_{44} & 0 \\ 0 & D_{55} \end{bmatrix} \begin{cases} \phi_2 + u_{3,2} \\ \phi_1 + u_{3,1} \end{cases} + \begin{bmatrix} F_{44} & 0 \\ 0 & F_{55} \end{bmatrix} \begin{pmatrix} -\frac{4}{h^2} \\ \phi_1 + u_{3,1} \end{pmatrix} \begin{cases} \phi_2 + u_{3,2} \\ \phi_1 + u_{3,1} \end{cases}$$
(2.54)

Denklem (2.54)'de kapalı formda verilen yüksek mertebeli kayma bileşenleri aşağıdaki şekilde açık olarak yazılabilir;

$$K_{2} = D_{44} \left(\phi_{2} + u_{3,2} \right) - \frac{4}{h^{2}} F_{44} \left(\phi_{2} + u_{3,2} \right)$$

$$K_{1} = D_{55} \left(\phi_{1} + u_{3,1} \right) - \frac{4}{h^{2}} F_{55} \left(\phi_{1} + u_{3,1} \right)$$
(2.55)

Sonuç olarak, denge denklemleri içerisinde kullanılmasına ihtiyaç duyulan tüm kuvvet ve moment bileşenleri ortotropik plak için belirlenmiş olmaktadır.

2.5 Ortotropik, Çapraz Dizimli Kabuk Denge Denklemleri

Ortotropik, çift eğrilikli kabuğun denge hali için (2.40) denklemleri eksen sistemine bağlı düzeltmeler ve statik durum için aşağıdaki şekilde yeniden yazılabilir:

1. Denklem:
$$\frac{\partial N_1}{\partial x_1} + \frac{\partial N_6}{\partial x_2} = 0$$

Kuvvet bileşenlerinin ihtiyaç duyulan eksen takımlarına göre türevleri alınarak, denge denklemi aşağıdaki gibi oluşturulabilir.

$$A_{11}u_{1,11} + \left(\frac{A_{11}}{R_1} + \frac{A_{12}}{R_2}\right)u_{3,1} + \left(A_{12} + A_{66}\right)u_{2,21} - \frac{4}{3h^2}E_{11}u_{3,111} - \frac{4}{3h^2}\left(E_{12} + 2E_{66}\right)u_{3,221} + A_{66}u_{1,22} + \left(B_{11} - \frac{4}{3h^2}E_{11}\right)\phi_{1,11} + \left(B_{12} - \frac{4}{3h^2}E_{12} + B_{66} - \frac{4}{3h^2}E_{66}\right)\phi_{2,21} + \left(B_{66} - \frac{4}{3h^2}E_{66}\right)\phi_{1,22} = 0$$
(2.56)

2. Denklem:
$$\frac{\partial N_6}{\partial x_1} + \frac{\partial N_2}{\partial x_2} = 0$$

Kuvvet bileşenlerinin ihtiyaç duyulan eksen takımlarına göre türevleri alınarak, denge denklemi aşağıdaki gibi oluşturulabilir.

$$\left(A_{12} + A_{66}\right)u_{1,12} + A_{66}u_{2,11} + \left(\frac{A_{12}}{R_1} + \frac{A_{22}}{R_2}\right)u_{3,2} + A_{22}u_{2,22} - \frac{4}{3h^2}\left(E_{12} + 2E_{66}\right)u_{3,112} - \frac{4}{3h^2}E_{22}u_{3,222} + \left(B_{66} - \frac{4}{3h^2}E_{66}\right)\phi_{2,11} + \left(B_{22} - \frac{4}{3h^2}E_{22}\right)\phi_{2,22} = 0$$

$$\left(2.57\right)$$

3. Denklem:

$$\frac{\partial Q_1}{\partial x} + \frac{\partial Q_2}{\partial y} - \frac{4}{h^2} \left(\frac{\partial K_1}{\partial x_1} + \frac{\partial K_2}{\partial x_2} \right) + \frac{4}{3h^2} \left(\frac{\partial^2 P_1}{\partial x_1^2} + \frac{\partial^2 P_2}{\partial x_2^2} + 2\frac{\partial^2 P_6}{\partial x_1 \partial x_2} \right) - \frac{N_1}{R_1} - \frac{N_2}{R_2} = -q$$

Kuvvet ve moment bileşenlerinin ihtiyaç duyulan eksen takımlarına göre türevleri alınarak, denge denklemi aşağıdaki gibi oluşturulabilir.

$$\begin{split} & \left(A_{55} - \frac{8}{h^2}D_{55} + \frac{16}{h^4}F_{55} + \frac{4}{3h^2}\frac{E_{11}}{R_1} + \frac{4}{3h^2}\frac{E_{12}}{R_2} + \frac{4}{3h^2}\frac{E_{11}}{R_1} + \frac{4}{3h^2}\frac{E_{12}}{R_2}\right)u_{3,11} \\ & + \left(A_{44} - \frac{8}{h^2}D_{44} + \frac{16}{h^4}F_{44} + \frac{4}{3h^2}\frac{E_{12}}{R_1} + \frac{4}{3h^2}\frac{E_{22}}{R_2} + \frac{4}{3h^2}\frac{E_{12}}{R_1} + \frac{4}{3h^2}\frac{E_{22}}{R_2}\right)u_{3,22} \\ & + \left(A_{55} - \frac{8}{h^2}D_{55} + \frac{16}{h^4}F_{55} - \frac{B_{11}}{R_1} + \frac{4}{3h^2}\frac{E_{11}}{R_1} - \frac{B_{12}}{R_2} + \frac{4}{3h^2}\frac{E_{12}}{R_2}\right)\phi_{1,1} + \left(A_{44} - \frac{8}{h^2}D_{44} + \frac{16}{h^4}F_{44} - \frac{B_{12}}{R_1} + \frac{4}{3h^2}\frac{E_{12}}{R_1} - \frac{B_{22}}{R_2} + \frac{4}{3h^2}\frac{E_{22}}{R_2}\right)\phi_{2,2} \\ & + \left(\frac{4}{3h^2}F_{11} - \frac{16}{9h^4}H_{11}\right)\phi_{1,111} + \left(\frac{4}{3h^2}F_{12} - \frac{16}{9h^4}H_{12} + \frac{8}{3h^2}F_{66} - \frac{32}{9h^4}H_{66}\right)\phi_{2,211} \\ & + \left(\frac{8}{3h^2}F_{66} + \frac{4}{3h^2}F_{12} - \frac{16}{9h^4}H_{12} - \frac{32}{9h^4}H_{66}\right)\phi_{1,212} + \left(\frac{4}{3h^2}F_{22} - \frac{16}{9h^4}H_{22}\right)\phi_{2,222} \\ & - \frac{16}{9h^4}H_{11}u_{3,111} + \frac{4}{h^2}E_{11}u_{1,111} + \frac{4}{3h^2}(E_{1,2} + 2E_{66})u_{2,211} - \frac{4}{3h^2}\left(\frac{8}{3h^2}H_{12} + \frac{16}{3h^2}H_{66}\right)u_{3,2211} \\ & + \frac{4}{3h^2}\left(E_{12} + 2E_{66}\right)u_{1,122} + \frac{4}{3h^2}E_{22}u_{2,222} - \frac{16}{9h^4}H_{66}u_{3,2222} - \left(\frac{A_{11}}{R_1} + \frac{A_{12}}{R_2}\right)u_{1,1} - \left(\frac{A_{12}}{R_1} + \frac{A_{22}}{R_2}\right)u_{2,2} \\ & - \frac{1}{R_1}\left(\frac{A_{11}}{R_1} + \frac{A_{12}}{R_2}\right)u_3 - \frac{1}{R_1}\left(\frac{A_{12}}{R_1} + \frac{A_{22}}{R_2}\right)u_3 = -q \\ & (2.58) \end{split}$$

4. Denklem:
$$\frac{\partial M_1}{\partial x_1} + \frac{\partial M_6}{\partial x_2} - Q_1 + \frac{4}{h^2} K_1 - \frac{4}{3h^2} \left(\frac{\partial P_1}{\partial x_1} + \frac{\partial P_6}{\partial x_2} \right) = 0$$

Kuvvet ve moment bileşenlerinin ihtiyaç duyulan eksen takımlarına göre türevleri alınarak, denge denklemi aşağıdaki gibi oluşturulabilir.

$$\left(B_{11} - \frac{4}{3h^2}E_{11}\right)u_{1,11} + \left(\frac{B_{11}}{R_1} + \frac{B_{12}}{R_2} - A_{55} + \frac{8}{h^2}D_{55} - \frac{16}{h^4}F_{55} - \frac{4}{3h^2}\frac{E_{11}}{R_1} - \frac{4}{3h^2}\frac{E_{12}}{R_2}\right)u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{66}\right)u_{2,21}u_{3,1} + \left(B_{12} + B_{66} - \frac{4}{3h^2}E_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^2}E_{12}\right)u_{3,1} + \left(B_{12} + B_{12} - \frac{4}{3h^$$

$$+ \left(B_{66} - \frac{4}{3h^2}E_{66}\right)u_{1,22} + \left(D_{11} - \frac{8}{3h^2}F_{11} + \frac{16}{9h^4}H_{11}\right)\phi_{1,11} + \left(D_{12} - \frac{8}{3h^2}F_{66} + D_{66} - \frac{4}{3h^2}F_{12} + \frac{16}{9h^4}H_{12} + \frac{16}{9h^4}H_{66}\right)\phi_{2,12} \\ - \left(\frac{4}{3h^2}F_{11} - \frac{16}{9h^4}H_{11}\right)u_{3,111} - \left(\frac{4}{3h^2}F_{12} + \frac{8}{3h^2}F_{66} - \frac{16}{9h^4}H_{12} - \frac{32}{9h^4}H_{66}\right)u_{3,122} + \left(D_{66} - \frac{8}{3h^2}F_{66} + \frac{16}{9h^4}H_{66}\right)\phi_{1,22} \\ - \left(A_{55} - \frac{8}{3h^2}D_{55} + \frac{16}{h^4}F_{55}\right)\phi_{1} = 0$$

$$(2.59)$$

5. Denklem:
$$\frac{\partial M_6}{\partial x_1} + \frac{\partial M_2}{\partial x_2} - Q_2 + \frac{4}{h^2} K_2 - \frac{4}{3h^2} \left(\frac{\partial P_6}{\partial x_1} + \frac{\partial P_2}{\partial x_2} \right) = 0$$

Kuvvet ve moment bileşenlerinin ihtiyaç duyulan eksen takımlarına göre türevleri alınarak, denge denklemi aşağıdaki gibi oluşturulabilir.

$$\left(B_{66} - \frac{4}{3h^2}E_{66}\right)u_{2,11} + \left(B_{66} + B_{12} - \frac{4}{3h^2}E_{66} - \frac{4}{3h^2}E_{12}\right)u_{1,12} - \left(\frac{4}{3h^2}F_{22} - \frac{16}{9h^4}H_{22}\right)u_{3,222} + \left(D_{66} - \frac{8}{3h^2}F_{66} + D_{12} - \frac{8}{3h^2}F_{12} + \frac{16}{9h^4}H_{66} + \frac{16}{9h^4}H_{12}\right)\phi_{1,21} + \left(B_{22} - \frac{4}{3h^2}E_{22}\right)u_{2,22} + \left(D_{66} - \frac{8}{3h^2}F_{66} + \frac{16}{9h^4}H_{66}\right)\phi_{2,11} - \left(\frac{8}{3h^2}F_{66} + \frac{4}{3h^2}F_{12} - \frac{32}{9h^4}H_{66} - \frac{16}{9h^4}H_{12}\right)u_{3,112} + \left(\frac{B_{12}}{R_1} + \frac{B_{22}}{R_2} - A_{44} + \frac{8}{h^2}D_{44} - \frac{16}{h^4}F_{44} - \frac{4}{3h^2}\frac{E_{12}}{R_1} - \frac{4}{3h^2}\frac{E_{22}}{R_2}\right)u_{3,2} + \left(D_{22} - \frac{8}{3h^2}F_{22} + \frac{16}{9h^4}H_{22}\right)\phi_{2,22} - \left(A_{44} - \frac{8}{h^2}D_{44} + \frac{16}{h^4}F_{44}\right)\phi_2 = 0$$

$$(2.60)$$

Böylece tüm denge denklemleri malzeme özelliklerini içeren matris elemanları ile ifade edilmiştir.

2.5.1 Nihai Denge Denklemleri

Ek-A'da tanımlanmış katsayı atamaları kullanılarak, ortotropik, çift eğrilikli plağın statik hali için aşağıdaki yüksek mertebeli kısmi diferansiyel denklemler elde edilir.

•
$$A_{11}u_{1,11} + a_1u_{3,1} + f_1u_{2,12} + a_2\phi_{2,12} + f_2\phi_{2,12} - a_4u_{3,111} + f_3u_{3,122} + A_{66}u_{1,22} + a_9\phi_{1,22} = 0$$

•
$$A_{66}u_{2,11} + f_1u_{1,12} + a_9\phi_{2,11} + f_2\phi_{1,12} + f_3u_{3,112} + A_{22}u_{2,22} + a_6u_{3,2} + a_7\phi_{2,22} - a_8u_{3,222} = 0$$

•
$$f_4\phi_{1,1} + f_5\phi_{2,2} + f_6u_{3,11} + f_7u_{3,22} + a_4u_{1,111} + f_8u_{2,112} + f_9\phi_{1,111} + f_{10}\phi_{2,112} - f_{11}u_{3,1111} + f_{12}u_{3,1122} + f_8u_{1,122} + a_8u_{2,222} + f_{10}\phi_{1,122} + f_{13}\phi_{2,222} - f_{14}u_{3,2222} - a_1u_{1,1} - a_6u_{2,2} + f_{15}u_3 = -q_1u_{1,1} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,112} + f_{10}u_{3,111} + f_{1$$

•
$$a_2u_{1,11} + e_1u_{2,12} + e_2u_{3,1} + e_3\phi_{1,11} + e_4\phi_{2,12} + e_5\phi_{1,22} + e_6u_{3,111} + e_7u_{3,122} + a_9u_{1,22} + e_8\phi_1 = 0$$

•
$$a_9u_{2,11} + e_1u_{1,12} + e_5\phi_{2,11} + e_4\phi_{1,12} + e_7u_{3,112} + a_7u_{2,22} + e_{12}u_{3,2} + e_9\phi_{2,22} + e_{10}u_{3,222} + e_{11}\phi_2 = 0$$

Bundan sonraki aşamada artık sadece yukarıda detaylandırılmış beş adet denge denklemini ifade eden denklem (2.61) ile verilmiş yüksek mertebeli kısmi diferansiyel denklemler kullanılacaktır. Elde edilen denge denklemleri, statik durum için bu çalışmada incelenen sınır şartlarına uygun olarak, çift Fourier serileri kullanılarak tekrar oluşturulacaktır.

BÖLÜM 3

SINIR ŞARTLARI

Bu çalışmada, gerçek çalışma koşullarının neden olduğu etkilerin çözüme doğru olarak etkilerinin görülebilmesi amacıyla, süreksiz sınır şartları altındaki bir plağın ve çift eğrilikli kabuğun yayılı yük altındaki davranışı analitik olarak incelenecektir. Ancak inceleme öncesinde, oluşacak süreksizliklerin belirlenebilmesi ve çözüm yönteminin anlaşılabilmesi için kullanılacak sınır şartlarının özelliklerinin ve neden oldukları kuvvet ve moment bileşenlerinin belirlenmesi gereklidir.

Hem basit mesnet, hem de ankastre mesnet çeşitleri teğet yönünde dönmeye izin vermediğinden $\phi_t = 0$, dolayısıyla $M_t \neq 0$ olmaktadır. (Bu gösterimde *t* alt indisi kenarın teğet yönünü ifade etmektedir). Basit mesnetlerin tüm çeşitleri de plağın orta yüzeyi etrafında serbest dönmeye izin verdiğinden $\phi_n \neq 0$, dolayısıyla $M_n = 0$ olmaktadır. (Bu gösterimde *n* alt indisi kenarın normali yönünü ifade etmektedir). Ayrıca hem basit mesnet, hem de ankastre mesnet çeşitlerinde plağın kalınlığı doğrultusunda harekete izin verilmediğinden w = 0 olmaktadır. Basit mesnet çeşitlerinin teknik çizimleri, hareket serbestlikleri ve neden oldukları kuvvetler Şekil 3.1'de gösterilmiştir.

Şekil 3.2'de gösterilen tüm ankastre mesnet çeşitleri de kenarların gerek kendi eksenlerinde, gerekse diğer eksen üzerinde dönmesine izin vermezler. Bu nedenle de $\phi_t=0$, dolayısıyla $M_t \neq 0$ ve $\phi_n = 0$, dolayısıyla $M_n \neq 0$ olmaktadır.

Bu çalışmada kullanılacak çift Fourier serileri yöntemi, yukarıda tanımlanmış tüm mesnet tipleri için çözüm sağlamaya yeterlidir [44]. Serbest (free) ve kayar (roller skating) mesnetler için hareket serbestlikleri ve neden olacakları kuvvet ve momentler Chaudhuri [35] tarafından verilmiştir.

SS1

SS2

SS3

SS4

x_n ve x_t yönlerinde hareket edebilir;

$$u_n \neq 0 \Rightarrow N_n = 0$$
$$u_t \neq 0 \Rightarrow N_t = 0$$

 x_n yönünde hareket edebilir, ancak x_t yönünde hareket edemez;

 $u_n \neq 0 \rightarrow N_n = 0$

 $u_t = 0 \rightarrow N_t \neq 0$

 x_t yönünde hareket edebilir, ancak x_n yönünde hareket edemez;

 $u_n = 0 \rightarrow N_n \neq 0$

 $u_t \neq 0 \rightarrow N_t = 0$

x_n ve *x_t* yönlerinde hareket edemez;

 $u_n = 0 \rightarrow N_n \neq 0$

 $u_t = 0 \rightarrow N_t \neq 0$

Şekil 3.1 Basit mesnet çeşitleri [45].

 x_n ve x_t yönlerinde hareket edebilir;

 $u_n \neq 0 \rightarrow N_n = 0$

 $u_t \neq 0 \rightarrow N_t = 0$

 x_n yönünde hareket edebilir, ancak x_t yönünde hareket edemez;

$$u_n \neq 0 \rightarrow N_n = 0$$

 $u_t = 0 \rightarrow N_t \neq 0$

 x_t yönünde hareket edebilir, ancak x_n yönünde hareket edemez;

 $u_n=0 \rightarrow N_n \neq 0$

 $u_t \neq 0 \rightarrow N_t = 0$

x_n ve *x_t* yönlerinde hareket edemez;

 $u_n=0 \to N_n \neq 0$

 $u_t = 0 \rightarrow N_t \neq 0$

Şekil 3.2 Ankastre mesnet çeşitleri [45].

C2

C1

С3

C4

3.1 Kuvvet ve Momentler

Sınır şartları tarafından engellenen hareketlere bağlı olarak, yapı üzerinde; z kalınlık ekseni doğrultusunda Q_1 ve Q_2 reaksiyon kuvvetleri, x_1 ve x_2 eksenleri doğrultusunda sırasıyla N_1 ve N_2 normal kuvvetleri, kenarların teğetleri doğrultusunda N_6 kuvvetleri, x_1 ve x_2 eksenleri doğrultusunda sırasıyla M_1 ve M_2 momentleri ve kenarların teğetleri doğrultusunda M_6 momentleri oluşmaktadır. Çift eğrilikli bir kabuğun genel geometrisi Şekil 3.3'de ve kenarlarında oluşabilecek kuvvet ve momentler Şekil 3.4'de gösterilmiştir.

Şekil 3.3 Çift eğrilikli kabuk geometrisi

Şekil 3.4 Çift eğrilikli bir kabuğun kenarlarında oluşan kuvvet ve momentler

Yapı üzerinde oluşacak kuvvet ve momentlerin, sınır şartlarının neden olduğu kısıtlara göre belirlemek için sınır şartının etkisindeki kenarlara göre sırasıyla incelemek gereklidir. Buna göre $x_1=0,a$ ve $x_2=0,b$ kenarlarındaki hareket kısıtlarına bağlı olarak oluşacak kuvvet ve momentler Çizelge 3.1'de verilmiştir. Bu Çizelgede her kenar için hareket sınırına bağlı olarak oluşacak kuvvet veya moment, yine o kenar için belirlenerek listelenmiştir. Örneğin; $x_1=0,a$ kenarlarında x_1 ekseni doğrultusunda yer değişimine izin verilmemişse yani $u_1=0$ ise; bu durum kenar üzerinde N_1 kuvvetinin oluşmasına neden olacaktır. Kısaca $x_1=0,a$ kenarlarında $u_1=0$ ise; $N_1 \neq 0$ olacaktır.

Tam tersi durum incelendiğinde; $x_2=0,b$ kenarlarında x_2 ekseni doğrultusunda yer değişimine izin verilmişse yani $u_2 \neq 0$ ise; bu durum kenar üzerinde N_2 kuvvetinin oluşmasına neden olmayacaktır. Kısaca $x_2=0,b$ kenarlarında $u_2 \neq 0$ ise; $N_2 = 0$ olacaktır.

x ₁ = (0,a)	x ₂ = (0,b)
$N_1 = 0$ veya $u_1 = 0$	$N_2 = 0$ veya $u_2 = 0$
$M_1 = 0$ veya $\Phi_1 = 0$	$M_2 = 0$ veya $\Phi_2 = 0$
$P_1 = 0$ veya $\Phi_1 = 0$	$P_2 = 0$ veya $\Phi_2 = 0$
P _{1,1} = 0 veya u ₃ = 0	$P_{2,2} = 0$ veya $u_3 = 0$
P ₁ = 0 veya u _{3,1} = 0	P ₂ = 0 veya u _{3,2} = 0
N ₆ = 0 veya u ₂ = 0	N ₆ = 0 veya u ₁ = 0
$M_6 = 0$ veya $\Phi_2 = 0$	$M_6 = 0$ veya $\Phi_1 = 0$
$P_6 = 0$ veya $\Phi_2 = 0$	$P_6 = 0$ veya $\Phi_1 = 0$
$P_6 = 0$ veya $u_{3,2} = 0$	$P_{6,1} = 0$ veya $u_3 = 0$
$Q_1 = 0$ veya $u_3 = 0$	$Q_2 = 0$ veya $u_3 = 0$
$K_1 = 0$ veya $u_3 = 0$	$K_2 = 0$ veya $u_3 = 0$

Çizelge 3.1 Hareket kısıtlarına bağlı olarak oluşacak kuvvet ve momentler

3.2 SS1 – SS4 Sınır Şartları

Bu çalışmada incelenecek olan SS1 – SS4 sınır şartlarının plak ve çift eğrilikli kabuk kenarlarında neden olacağı kuvvet ve momentler, kenarlara bağlı olarak Çizelge 3.2 ve Çizelge 3.3'de listelenmiştir.

x1=0,a		
$u_1(0,x_2) \neq 0$, $u_1(a,x_2) \neq 0$	$N_1(0,x_2)=0$, $N_1(a,x_2)=0$	
$u_2(0,x_2) \neq 0, u_2(a,x_2) \neq 0$	$N_6(0,x_2)=0$, $N_6(a,x_2)=0$	
$u_3(0,x_2) = 0$, $u_3(a,x_2) = 0$	$Q_1(0,x_2) \neq 0$, $Q_1(a,x_2) \neq 0$	
$\Phi_1(0,x_2)\neq 0\;,\; \Phi_1(a,x_2)\neq 0$	$M_1(0,x_2) = 0$, $M_1(a,x_2) = 0$	
$\Phi_2(0,x_2)=0\;,\; \Phi_2(a,x_2)=0$	$M_6(0,x_2) \neq 0$, $M_6(a,x_2) \neq 0$	

Çizelge 3.2 SS1 basit mesnet etkisinde oluşacak kuvvet ve momentler.

Çizelge 3.3 SS4 basit mesnet etkisinde oluşacak kuvvet ve momentler.

x2=0,b		
$u_1(x_1,0) = 0, u_1(x_1,b) = 0$	$N_6(x_1,0) \neq 0$, $N_6(x_1,b) \neq 0$	
$u_2(x_1,0) = 0, u_2(x_1,b) = 0$	$N_2(x_1,0) \neq 0$, $N_2(x_1,b) \neq 0$	
$u_3(x_1,0) = 0, u_3(x_1,b) = 0$	$Q_2(x_1,0) \neq 0$, $Q_2(x_1,b) \neq 0$	
$\Phi_1(x_1,0) = 0 , \Phi_1(x_1,b) = 0$	$M_6(x_1,0) \neq 0$, $M_6(x_1,b) \neq 0$	
$\Phi_2(x_1,0) \neq 0$, $\Phi_2(x_1,b) \neq 0$	$M_2(x_1,0)=0$, $M_2(x_1,b)=0$	

SS1- SS4 basit mesnetleri altındaki bir plak veya çift eğrilikli kabuk kenarlarında, yukarıda belirtilen yer değişimi ve dönme hareket sınırlarına bağlı olarak, oluşacak kuvvet ve momentler Şekil 3.4'de gösterilmiştir.

Şekil 3.5 SS1-SS4 sınır şartları etkisindeki bir plağın kenarlarında oluşan kuvvet ve momentler.

3.3 Fourier Çözüm Fonksiyonları

Plak üzerindeki yer değişimlerinin belirlenebilmesi için, çift Fourier serileri kullanılarak, her yer değiştirme ve dönmenin ifade edilmesi gerekmektedir. Aşağıda her bir yer değiştirme ve dönme için çift Fourier serileri kullanılarak çözüm fonksiyonları tanımlanmıştır.

$$u_1(x_1, x_2) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} U_{mn} \quad Cos(\alpha x_1) \quad Sin(\beta x_2), \qquad 0 \le x_1 \le a \quad ; \quad 0 \le x_2 \le b$$
(3.1.a)

$$u_2(x_1, x_2) = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} V_{mn} \quad Sin(\alpha x_1) \quad Cos(\beta x_2), \qquad 0 < x_1 < a \ ; \ 0 < x_2 < b$$
(3.1.b)

$$u_{3}(x_{1}, x_{2}) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \quad Sin(\alpha x_{1}) \quad Sin(\beta x_{2}), \qquad 0 \le x_{1} \le a \quad ; \quad 0 \le x_{2} \le b$$
(3.1.c)

$$\phi_1(x_1, x_2) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} X_{mn} \quad Cos(\alpha x_1) \quad Sin(\beta x_2), \qquad 0 \le x_1 \le a \quad ; \quad 0 \le x_2 \le b$$
(3.1.d)

$$\phi_2(x_1, x_2) = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} Y_{mn} \quad Sin(\alpha x_1) \quad Cos(\beta x_2), \qquad 0 \le x_1 \le a \; ; \; 0 \le x_2 \le b$$
(3.1.e)

Burada;

$$\alpha = \frac{m\pi}{a} \qquad ; \qquad \qquad \beta = \frac{n\pi}{b} \tag{3.2}$$

Yukarıda tanımlanmış seriler ile *5mn+2m+2n* adet bilinmeyen Fourier katsayısının hesaplanmasına ihtiyaç vardır. Bundan sonraki adım, Fourier serileri ile tanımlanmış çözüm fonksiyonlarının, ÜMKDT kullanılarak plağın denge durumu için elde edilmiş kısmi diferansiyel denklemlere yerleştirilmesidir. Bu noktada, (3.1) denklemlerinde verilen çözüm fonksiyonlarının, sınır şartlarının neden olduğu süreksizlikleri kapsayacak şekilde türevlerinin alınması gerekmektedir. Kullanılacak teknik Lebesque integrasyon metodu kullanılarak; Green [8,9] ve Hobson [46] tarafından geliştirilmiştir. Tekniğin detaylı matematiksel modelinin oluşturularak, farklı sınır şartları altındaki ilk uygulamaları ise Chaudhuri vd. [47-48] ve Kabir vd. [49-54] tarafından literatüre kazandırılmıştır.

Denklem (3.1) incelendiğinde; u_2 için tanımlanmış çözüm fonksiyonunun $x_1=0,a$ kenarlarında u_2 yer değişimi ifade etmediği görülmektedir. Benzer şekilde, aynı çözüm fonksiyonunun $x_2=0,b$ kenarlarında fiziksel olarak görülmeyecek u_2 yer değişimini varmış gibi ifade ettiği kolaylıkla görülebilecektir. Bu nedenle u_2 yer değişimi için tanımlanmış Fourier serilerinde hem x_1 , hem de x_2 eksenlerine bağlı olarak süreksizlikler oluştuğu söylenebilir. Çözüme denklem (3.1)'de tanımlanmış Fourier fonksiyonları ile devam edilmesi, u_2 yer değişiminin denklemler içinde yanlış ifade edilmesine ve $x_1=0,a$ kenarlarında yokmuş, $x_2=0,b$ kenarlarında ise varmış gibi çözüm yapılmasına neden olacağından, mevcut sınır şartlarına uygun olmayan ve yanlış çözüm verecek bir analitik model belirlenmiş olacaktır. Yapılması gereken işlem; Chaudhuri [35] tarafından detaylandırılmış matematiksel modele bağlı olarak tanımlanacak tamamlayıcı sınır eşitsizlikleri kullanılarak, çözüm fonksiyonlarının sürekli hale gelmesini sağlamak olacaktır. Bu kapsamda; denge denklemlerinde (2.61) kullanılacak u_2 yer değişimine bağlı türev ifadeleri yeniden düzenlenmelidir.

Fourier serileri ile tanımlanmış u_2 yer değişiminin, $x_1=0,a$ kenarlarında oluşacak süreksizlikleri aşağıdaki türev ifadelerinin denge denklemlerine ilave edilmesi ile çözülebilir:

46

$$u_{2,1} = \frac{1}{4}\overline{a_0} + \sum_{m=1}^{\infty} \left\{ \alpha V_{m0} + \frac{1}{2} \left(\overline{a_0} \gamma_m + \overline{b_0} \psi_m \right) \right\} Cos(\alpha x_1) + \frac{1}{2} \sum_{n=1}^{\infty} \overline{a_n} Cos(\beta x_2)$$

$$+ \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\alpha V_{mn} + \overline{a_n} \gamma_m + \overline{b_n} \psi_m \right) Cos(\alpha x_1) Cos(\beta x_2)$$

$$u_{2,11} = - \sum_{m=1}^{\infty} \alpha \left\{ \alpha V_{m0} + \frac{1}{2} \left(\overline{a_0} \gamma_m + \overline{b_0} \psi_m \right) \right\} Sin(\alpha x_1)$$

$$- \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \alpha \left(\alpha V_{mn} + \overline{a_n} \gamma_m + \overline{b_n} \psi_m \right) Sin(\alpha x_1) Cos(\beta x_2)$$

$$(3.4)$$

$$u_{2,12} = -\frac{1}{2} \sum_{n=1}^{\infty} \bar{a}_n \beta Sin(\beta x_2) -\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \beta \left(\alpha V_{mn} + \bar{a}_n \gamma_m + \bar{b}_n \psi_m \right) Cos(\alpha x_1) Sin(\beta x_2)$$
(3.5)

$$u_{2,112} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \alpha \beta \left(\alpha V_{mn} + \bar{a}_n \gamma_m + \bar{b}_n \psi_m \right) Sin(\alpha x_1) Sin(\beta x_2)$$
(3.6)

Benzer şekilde, Fourier serileri ile tanımlanmış u_2 yer değişiminin, $x_2=0,b$ kenarlarında oluşacak süreksizlikleri aşağıdaki türev ifadelerinin denge denklemlerine ilave edilmesi ile çözülebilir:

$$u_{2,2} = -\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \beta V_{mn} Sin(\alpha x_1) Sin(\beta x_2)$$
(3.7)

$$u_{2,22} = -\frac{1}{2} \sum_{m=1}^{\infty} \bar{c}_m Sin(\alpha x_1) + \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \left(-\beta^2 V_{mn} + \bar{c}_m \gamma_n + \bar{d}_m \psi_n \right) Sin(\alpha x_1) Cos(\beta x_2)$$
(3.8)

$$u_{2,222} = -\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \beta \left(-\beta^2 V_{mn} + \overline{c}_m \gamma_n + \overline{d}_m \psi_n \right) Sin(\alpha x_1) Sin(\beta x_2)$$
(3.9)

Burada;

$$\left(\gamma_{n},\psi_{n}\right) = \begin{cases} (0,1), & n = tek, \\ (1,0), & n = cift. \end{cases}$$

$$(3.10)$$

3.4 Düzenlenmiş Denge Denklemleri

Denklem (2.61) ile tanımlanmış denge denklemleri, bu bölümde yer değişimleri için tanımlanmış çift Fourier serilerinin ilgili kısmi türevleri ve u_2 için süreksizliklerin giderilmesiyle tanımlanmış türev ifadeleri kullanılarak düzenlendiğinde aşağıdaki eşitlikler bulunur.

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Cos(\alpha x_{1}) Sin(\beta x_{2}) \begin{cases} -(A_{11}\alpha^{2} + A_{66}\beta^{2})U_{mn} - f_{1}\alpha\beta V_{mn} \\ +(a_{4}\alpha^{3} - f_{3}\alpha\beta^{2} + a_{1}\alpha)W_{mn} \\ -(a_{2}\alpha^{2} + a_{9}\beta^{2})X_{mn} \\ -f_{2}\alpha\beta Y_{mn} - f_{1}\beta(\overline{a_{n}}\gamma_{m} + \overline{b_{n}}\delta_{m}) \end{cases} = 0$$
(3.11)

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Sin(\alpha x_{1}) Cos(\beta x_{2}) \begin{cases} -f_{1} \alpha \beta U_{mn} - (A_{66} \alpha^{2} + A_{22} \beta^{2}) V_{mn} \\ + (a_{6} \beta^{3} + a_{8} \beta^{3} - f_{3} \alpha^{2} \beta) W_{mn} \\ -f_{2} \alpha \beta X_{mn} - (a_{9} \alpha^{2} + a_{7} \beta^{2}) Y_{mn} \\ -f_{2} \alpha \beta X_{mn} - (a_{9} \alpha^{2} + a_{7} \beta^{2}) Y_{mn} \\ -A_{66} (\overline{a_{n}} \gamma_{m} + \overline{b_{n}} \delta_{m}) + A_{22} (\overline{c_{m}} \gamma_{n} + \overline{d_{m}} \delta_{n}) \end{cases} = 0$$
(3.12)

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Sin(\alpha x_{1}) Sin(\beta x_{2}) \begin{cases} (a_{4}\alpha^{3} + f_{8}\alpha\beta^{2} + a_{1}\alpha)U_{mn} \\ + (f_{8}\alpha^{2}\beta + a_{8}\beta^{3} + a_{6}\beta)V_{mn} \\ + (f_{15} - f_{14}\beta^{4} + f_{12}\alpha^{2}\beta^{2} - f_{11}\alpha^{4} \\ - f_{7}\beta^{2} - f_{6}\alpha^{2})W_{mn} \\ + (-f_{4}\alpha + f_{9}\alpha^{3} + f_{10}\alpha\beta^{2})X_{mn} \\ + (-f_{4}\alpha + f_{9}\alpha^{3} + f_{10}\alpha\beta^{2})X_{mn} \\ - (f_{5}\beta - f_{10}\alpha^{2}\beta - f_{13}\beta^{3})Y_{mn} \\ + f_{8}\alpha\beta(\overline{a_{n}}\gamma_{m} + \overline{b_{n}}\delta_{m}) \\ - a_{8}\beta(\overline{c_{m}}\gamma_{n} + \overline{d_{m}}\delta_{n}) \end{cases}$$

$$(3.13)$$

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Cos(\alpha x_{1}) Sin(\beta x_{2}) \begin{cases} -(a_{2}\alpha^{2} + a_{9}\beta^{2})U_{mn} \\ -e_{1}\alpha\beta V_{mn} \\ +(e_{2}\alpha - e_{6}\alpha^{3} - e_{7}\alpha\beta^{2})W_{mn} \\ -(e_{3}\alpha^{2} + e_{5}\beta^{2} - e_{8})X_{mn} \\ -e_{4}\alpha\beta Y_{mn} \\ -e_{1}\beta(\overline{a_{n}}\gamma_{m} + \overline{b_{n}}\delta_{m}) \end{cases} = 0$$
(3.14)

$$\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}Sin(\alpha x_{1})Cos(\beta x_{2}) \begin{cases} -e_{1}\alpha\beta U_{mn} \\ -(a_{9}\alpha^{2}+a_{7}\beta^{2})V_{mn} \\ +(e_{12}\beta-e_{7}\alpha^{2}\beta-e_{10}\beta^{3})W_{mn} \\ -e_{4}\alpha\beta X_{mn} \\ -(e_{5}\alpha^{2}+e_{9}\beta^{2}-e_{11})Y_{mn} \\ -a_{9}\alpha(\overline{a_{n}}\gamma_{m}+\overline{b_{n}}\delta_{m}) \\ +a_{7}(\overline{c_{m}}\gamma_{n}+\overline{d_{m}}\delta_{n}) \end{cases} = 0$$
(3.15)

$$\sum_{n=1}^{\infty} Sin(\beta x_2) \left\{ -\frac{A_{66}}{2} \beta^2 U_{0n} - a_9 \beta^2 X_{0n} - \frac{f_1}{2} \overline{a_n} \beta \right\} = 0$$
(3.16)

$$\sum_{m=1}^{\infty} Sin(\alpha x_1) \left\{ -\frac{A_{66}}{2} \alpha^2 V_{m0} - a_9 \alpha^2 Y_{m0} - \frac{A_{66}}{2} (\overline{a_0} \gamma_m + \overline{b_0} \delta_m) + \frac{A_{22}}{2} \overline{c_m} \right\} = 0$$
(3.17)

$$\sum_{n=1}^{\infty} Sin(\beta x_2) \left\{ -\frac{a_9}{2} \beta^2 U_{0n} + (e_8 - e_5 \beta^2) X_{0n} - \frac{e_1}{2} \overline{a_n} \beta \right\} = 0$$
(3.18)

$$\sum_{m=1}^{\infty} Sin(\alpha x_1) \left\{ -\frac{a_9}{2} \alpha^2 V_{m0} + (e_{11} - e_5 \alpha^2) Y_{m0} - \frac{a_9}{2} (\overline{a_0} \gamma_m + \overline{b_0} \delta_m) + \frac{a_7}{2} \overline{c_m} \right\} = 0$$
(3.19)

Yukarıda yapılan işlemler ile 2m+2n+2 adet bilinmeyen Fourier katsayısının daha çözülmesi gerekmektedir. Denge denklemleri içinde geçen Fourier sınır katsayıları Chaudhuri [35] tarafından aşağıdaki şekilde tanımlanmıştır:

$$\overline{a}_{n} = \frac{4}{ab} \int_{0}^{b} [u_{2}(a, x_{2}) - u_{2}(0, x_{2})] C \, o \, s(\beta x_{2}) d \, x_{2}$$

$$\overline{b}_{n} = -\frac{4}{ab} \int_{0}^{b} [u_{2}(a, x_{2}) + u_{2}(0, x_{2})] C \, o \, s(\beta x_{2}) d \, x_{2}$$

$$\overline{c}_{m} = \frac{4}{ab} \int_{0}^{a} [u_{2,2}(x_{1}, b) - u_{2,2}(x_{1}, 0)] S \, i \, n(\alpha x_{1}) d \, x_{1}$$

$$\overline{d}_{m} = -\frac{4}{ab} \int_{0}^{a} [u_{2,2}(x_{1}, b) + u_{2,2}(x_{1}, 0)] S \, i \, n(\alpha x_{1}) d \, x_{1}$$
(3.20)

Bundan sonraki adım; denge denklemlerinin sürekli hale getirilmesi ile çözüm modeline ilave olan bilinmeyenlerin belirlenebilmesi için, doğal ve geometrik sınır şartlarından yararlanılarak ilave eşitlikler oluşturulmasıdır.

3.5 Doğal Sınır Şartları

 $x_1=0,a$ kenarlarında, N_1 kuvveti ve M_1 momenti ile ilgili şartlar tamamen sağlanmaktadır. Bilinmeyen sabit katsayıların sayısı ile, bunların hesaplanabilmesi için ihtiyaç duyulan eşitlik sayısının aynı olabilmesi için, N_6 eşitliğinden faydalanılabilir. Denklem (2.47)'de tanımlanmış olan N_6 eşitliği kullanılarak n=1,2,3,... için aşağıdaki eşitlikler yazılabilir.

$$\sum_{m=1,3,5,\dots}^{\infty} \left\{ \frac{A_{66}}{2} \left[2\alpha V_{m0} + \bar{a}_0 \gamma_m + \bar{b}_0 \psi_m \right] + \alpha a_9 Y_{m0} \right\} \psi_m = 0$$
(3.21)

$$\sum_{m=2,4,6,\dots}^{\infty} \left\{ \frac{A_{66}}{2} \left[2\alpha V_{m0} + \bar{a}_0 \gamma_m + \bar{b}_0 \psi_m \right] + \alpha a_9 Y_{m0} \right\} \gamma_m + \frac{A_{66}}{4} \bar{a}_0 = 0$$
(3.22)

$$\sum_{m=1,3,5,\dots}^{\infty} \begin{cases} A_{66} \left[\alpha V_{mn} + a_n \gamma_m + b_n \psi_m \right] + A_{66} \beta U_{mn} \\ + \alpha a_9 Y_{mn} + \beta a_9 X_{mn} - \frac{a_{10}}{2} \alpha \beta W_{mn} \end{cases} \psi_m = 0$$
(3.23)

$$\sum_{m=2,4,6,\dots}^{\infty} \begin{cases} A_{66} \left[\alpha V_{mn} + \bar{a}_n \gamma_m + \bar{b}_n \psi_m \right] + A_{66} \beta U_{mn} \\ + \alpha a_9 Y_{mn} + \beta a_9 X_{mn} - \frac{a_{10}}{2} \alpha \beta W_{mn} \end{cases} \gamma_m + \frac{A_{66}}{2} \left(\bar{a}_n + \beta U_{0n} \right) + \beta a_9 X_{0n} = 0$$
(3.24)

3.6 Geometrik Sınır Şartları

Mevcut sınır şartları altında, $x_2=0,b$ kenarlarında x_2 ekseni boyunca yer değişimi olmayacaktır. Yani u_2 yer değişimine bağlı V_{mn} genliği için, m=1,2,3,... değerlerinde aşağıdaki ifadelerin yazılması mümkündür.

$$\sum_{n=1,3,5,\dots}^{\infty} \psi_n V_{mn} = 0 \qquad ; \qquad V_{m0} + \sum_{n=2,4,6,\dots}^{\infty} \gamma_n V_{mn} = 0 \qquad (3.25)$$

Sonuç olarak, Doğal ve geometrik sınır şartı ifadeleri de kullanılarak 5mn+4m+4n+2 adet daha denklem belirlenmiş olmaktadır. Böylece bilinmeyen Fourier katsayısı ve bunların bulunabilmesi için ihtiyaç duyulan denklem sayısı eşitlenmiştir. Bundan sonra yapılacak işlem, oluşturulan denklemlerin kullanılmasıyla, denge denklemleri içinde tanımlanmış olan Fourier katsayılarını ve genlik ifadeleri belirleyerek, yer değişimlerini hesaplamaktır.

Çözüm için belirlenmiş eşitliklerin kullanılarak, Fourier fonksiyonlarındaki genlik değerlerinin bulunabilmesi için öncelikle bir yakınsama analizi yapılacak ve sonsuza giden toplama ifadeleri için bir işlem sayısı belirlenecektir. Tüm denklemlerin çözümü için MATLAB™ programında bir algoritma hazırlanmış ve çözümün farklı aşamalarda doğruluğu kontrol edilmiştir. Çalışmanın bundan sonraki bölümlerinde, bahse konu teori öncelikle bir kalın plak sistemi için uygulanacak, ardından da çift eğrilikli bir kabuk için aynı süreksiz sınır şartları etkisinde analizler yapılacaktır.

BÖLÜM 4

SS1-SS4 BASİT MESNETLİ BİR PLAĞIN STATİK ANALİZİ

Bu çalışmanın ana amacı; sınır şartlarının neden olduğu süreksizliklerin giderilerek, çözüm yöntemine dahil edilecek parametreler ile analitik çözüme yönelik matematik modelin oluşturulmasıdır. Bu kapsamda SS1-SS4 sınır şartlarının süreksizlikleri öncelikle bir kalın plakta giderilecek ve ÜMKDT kullanılarak kalın plağın statik analizi yapılacaktır.

ÜMKDT için oluşturulan (2.61) denkleminde verilen kısmi diferansiyel denklem sistemi aşağıdaki şekilde özetlenebilir.

$$K_{ij}x_j = f_i$$
; $(i, j = 1,...,5)$ ve $(K_{ij} = K_{ji})$ (4.1)

Burada;

$$\{x_i\}^T = \{u_1 \ u_2 \ u_3 \ \phi_1 \ \phi_2\}$$
(4.2)

$$\{f_j\}^I = \{0\ 0\ -q\ 0\ 0\} \tag{4.3}$$

Bölüm 2 içerisinde çift eğrilikli kabuk için tanımlanmış olan denge denklemlerini oluşturan katsayılar içindeki R_1 ve R_2 yarıçaplarını sonsuza götürerek, kısmi diferansiyel denklemlerden oluşan beş adet denge denklemi düz bir plak için tekrar oluşturulabilir. Bu durumda, $[K_{ij}]$ matrisi elemanlarını aşağıdaki gibi ifade etmek mümkündür.

$$K_{11} = A_{11} \frac{\partial^2}{\partial x^2} + A_{66} \frac{\partial^2}{\partial y^2}$$
(4.4)

$$K_{12} = \left(A_{12} + A_{66}\right) \frac{\partial^2}{\partial x \partial y} \tag{4.5}$$

$$K_{13} = -c_1 E_{11} \frac{\partial^3}{\partial x^3} - (2c_1 E_{66} + c_1 E_{12}) \frac{\partial^3}{\partial x \partial y^2}$$
(4.6)

$$K_{14} = \left(B_{11} - c_1 E_{11}\right) \frac{\partial^2}{\partial x^2} + \left(B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial y^2}$$
(4.7)

$$K_{15} = \left(B_{12} - c_1 E_{12} + B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial x \partial y}$$
(4.8)

$$K_{22} = A_{66} \frac{\partial^2}{\partial x^2} + A_{22} \frac{\partial^2}{\partial y^2}$$
(4.9)

$$K_{23} = -c_1 E_{22} \frac{\partial^3}{\partial y^3} - (2c_1 E_{66} + c_1 E_{12}) \frac{\partial^3}{\partial x^2 \partial y}$$
(4.10)

$$K_{24} = \left(B_{12} - c_1 E_{12} + B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial x \partial y}$$
(4.11)

$$K_{25} = \left(B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial x^2} + \left(B_{22} - c_1 E_{22}\right) \frac{\partial^2}{\partial y^2}$$
(4.12)

$$K_{33} = \left[A_{55} - 6c_1D_{55} + 9c_1^2F_{55}\right]\frac{\partial^2}{\partial x^2} + \left[A_{44} - 6c_1D_{44} + 9c_1^2F_{44}\right]\frac{\partial^2}{\partial y^2} - 9c_1^2H_{11}\frac{\partial^4}{\partial x^4} - 2c_1^2\left(H_{12} + 2H_{66}\right)\frac{\partial^4}{\partial x^2\partial y^2} - c_1^2H_{22}\frac{\partial^4}{\partial y^4}$$
(4.13)

$$K_{34} = \left[A_{55} - 6c_1 D_{55} + 9c_1^2 F_{55} \right] \frac{\partial}{\partial x} + c_1 \left(F_{11} - c_1 H_{11} \right) \frac{\partial^3}{\partial x^3} + \left[c_1 \left(F_{12} - c_1 H_{12} \right) + 2c_1 \left(F_{66} - c_1 H_{66} \right) \right] \frac{\partial^3}{\partial x \partial y^2}$$
(4.14)

$$K_{35} = \left[A_{44} - 6c_1 D_{44} + 9c_1^2 F_{44} \right] \frac{\partial}{\partial y} + c_1 \left(F_{22} - c_1 H_{22} \right) \frac{\partial^3}{\partial x^3} + \left[c_1 \left(F_{12} - c_1 H_{12} \right) + 2c_1 \left(F_{66} - c_1 H_{66} \right) \right] \frac{\partial^3}{\partial x^2 \partial y}$$
(4.15)

$$K_{44} = \left[D_{11} - 2c_1F_{11} + c_1^2H_{11} \right] \frac{\partial^2}{\partial x^2} + \left[D_{66} - 2c_1F_{66} + c_1^2H_{66} \right] \frac{\partial^2}{\partial y^2} - (A_{55} + 6c_1D_{55} + 9c_1^2F_{55})$$
(4.16)

$$K_{45} = \left[D_{12} - c_1 F_{12} + D_{66} - c_1 F_{66} - c_1 \left(F_{12} - c_1 H_{12} \right) - c_1 \left(F_{66} - c_1 H_{66} \right) \right] \frac{\partial^2}{\partial x \partial y}$$
(4.17)

$$K_{55} = \left[D_{66} - 2c_1 F_{66} + c_1^2 H_{66} \right] \frac{\partial^2}{\partial x^2} + \left[D_{22} - 2c_1 F_{22} + c_1^2 H_{22} \right] \frac{\partial^2}{\partial y^2} -A_{44} + 3c_1 D_{44} + 3c_1 \left(D_{44} - 3c_1 F_{44} \right)$$
(4.18)

Bundan sonraki aşamada, yukarıdaki denklem sistemi kullanılarak sayısal uygulama yapılacak ve sonuçlar ticari bir sonlu elemanlar programı ile karşılaştırılacaktır.

4.1 Sayısal Uygulama

Sayısal sonuçlar çapraz dizilimdeki, kare bir plağın aşağıdaki dizilim açıları için düzgün yayılı yük etkisi altında icra edilmiştir.

- Asimetrik [0°/90°]
- Simetrik [0°/90°/0°]
- Simetrik [0°/90°/90°/0°]

Malzeme özelliklerinin deformasyona etkisinin incelenebilmesi amacıyla Çizelge 4.1'deki malzeme özellikleri tanımlanmıştır. Çizelge 4.1'de tanımlanmış E_1 ve E_2 malzemenin sırasıyla x_1 ve x_2 eksenlerindeki Young modülleridir. G_{12} plak düzlemindeki kayma rijitliğini, G_{13} ve G_{23} sırasıyla $x_1 - x_3$ ve $x_2 - x_3$ düzlemlerindeki kalınlık yönündeki kayma rijitliklerini temsil etmektedir. Plak eksen takımında $x_1 - x_2$ düzlemindeki Poisson oranı ise v_{12} ile gösterilmektedir.

	Malzeme I	Malzeme II
E ₁	175.78 GPa	105.47 GPa
	(25.000 Ksi)	(15.000 Ksi)
E_1/E_2	25	15
G ₁₂ / E ₂	0.5	0.4286
G ₁₃ / E ₂	0.5	0.4286
G ₂₃ / E ₂	0.2	0.3429
V ₁₂	0.25	0.40

Çizelge 4.1 Malzeme Özellikleri

İncelemenin birimlerden ve plağın özelliklerinden bağımsız olarak yapılabilmesi amacıyla aşağıdaki boyutsuz katsayılar tanımlanmıştır.

$$u_{1}^{*} = (10^{3} E_{2} h^{3} / p_{0} a^{4}) u_{1}, \qquad u_{2}^{*} = (10^{3} E_{2} h^{3} / p_{0} a^{4}) u_{2}, \qquad u_{3}^{*} = (10^{3} E_{2} h^{3} / p_{0} a^{4}) u_{3},$$

$$\phi_{1}^{*} = (10^{2} E_{2} h^{3} / p_{0} a^{3}) \phi_{1}, \qquad \phi_{2}^{*} = (10^{2} E_{2} h^{3} / p_{0} a^{3}) \phi_{2},$$

$$M_{1}^{*} = (10^{3} / p_{0} a^{2}) M_{1}, \qquad M_{2}^{*} = (10^{3} / p_{0} a^{2}) M_{2}.$$
(4.19)

Boyutsuz katsayılar içinde verilen 'a' değişkeni plağın kenar boyunu ifade etmektedir ve 812.8 mm. (32 inç)'e eşittir. Plak üzerindeki yük ise p_o ile gösterilmiştir ve hesaplamalarda 100 kPa olarak kabul edilmiştir.

Hesaplamaların ilk aşamasını sonucun yakınsaklık kontrolü oluşturmaktadır. Bu aşamada plak ortasındaki çökme ve moment değerlerinin artan işlem sayısına bağlı olarak değişimi incelenerek, değerlerin birbirine yakınsadığı işlem adedi belirlenir. Şekil 4.1 incelendiğinde, kalın (a/h = 10) ve asimetrik dizilimdeki [0°/90°] plak merkezinin x_3 ekseni boyunca boyutsuz yer değişimi (u_3^*) ve moment (M_1^*) değerlerinin hızlı bir şekilde yakınsadığı belirlenmiştir.

Şekil 4.1 Plak çözümü için yakınsaklık kontrolü

Çizelge 4.2 Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki asimetrik [0°/90 [°]	']
dizilimli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler	

a/h		10	20	30	40	50	75	100
¥	Çözüm	19.191	17.508	17.200	17.092	17.043	16.993	16.976
	SEM	19.171	17.319	16.837	16.697	16.629	16.558	16.531
M ₁ *	Çözüm	62.875	62.966	62.992	63.003	63.008	63.013	63.015
	SEM	62.195	62.055	61.979	61.933	61.903	61.860	61.836

Çizelge 4.3 Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik $[0^{\circ}/90^{\circ}/0^{\circ}]$ dizilimli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

a/h		10	20	30	40	50	75	100
u ₃ *	Çözüm	10.899	7.759	7.152	6.937	6.838	6.739	6.704
	SEM	10.252	7.587	7.077	6.896	6.813	6.729	6.700
M.*	Çözüm	122.984	128.093	129.074	129.414	129.571	129.724	129.777
IVI1	SEM	124.502	128.574	129.316	129.561	129.668	129.766	129.795

Çizelge 4.4 Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

a/h		10	20	30	40	50	75	100
U2*	Çözüm	11.055	7.923	7.303	7.083	6.980	6.878	6.842
•3	SEM	10.285	7.710	7.209	7.032	6.948	6.866	6.836
M4*	Çözüm	108.784	117.368	119.301	120.009	120.342	120.674	120.791
1	SEM	111.690	118.379	119.805	120.313	120.547	120.762	120.830

Çizelge 4.5 Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki asimetrik [0°/90°] dizilimli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

a/h		10	20	30	40	50	75	100
U2*	Çözüm	24.077	22.518	22.228	22.128	22.081	22.034	22.018
u ₃	SEM	23.951	22.120	21.758	21.660	21.560	21.491	21.464
M4*	Çözüm	61.212	61.268	61.282	61.287	61.290	61.292	61.293
111	SEM	60.842	60.651	60.564	60.516	60.484	60.441	60.419

Çizelge 4.6 Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik $[0^{\circ}/90^{\circ}/0^{\circ}]$ dizilimli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

a/h		10	20	30	40	50	75	100
U2 [*]	Çözüm	13.706	11.141	10.654	10.483	10.404	10.325	10.297
•3	SEM	13.648	11.137	10.658	10.488	10.409	10.330	10.301
M.*	Çözüm	118.246	121.466	122.090	122.309	122.411	122.511	122.546
1	SEM	118.887	121.777	122.275	122.432	122.500	122.549	122.559

Çizelge 4.7 Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli plak merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

a/h		10	20	30	40	50	75	100
U2 [*]	Çözüm	13.490	11.189	10.753	10.599	10.528	10.457	10.433
43	SEM	13.480	11.202	10.765	10.610	10.537	10.464	10.438
M4*	Çözüm	108.451	112.428	113.268	113.571	113.713	113.854	113.903
	SEM	108.828	112.686	113.438	113.691	113.799	113.896	113.926

Plak merkezinin x_3 ekseni boyunca boyutsuz yer değişimi (u_3^*) ve moment (M_1^*) değerlerinin, bu çalışmada kullanılan ÜMKDT sonuçları ve sonlu elemanlar metodu (SEM) ile elde edilen sonuçları; asimetrik $[0^\circ/90^\circ]$ ve simetrik $[0^\circ/90^\circ/90^\circ/0^\circ]$ dizilimli plak için farklı kalınlık (a/h) oranları ve farklı malzeme özellikleri için Çizelge 4.2 – 4.7'de verilmiştir. Karşılaştırmalarda elde edilen SEM sonuçları için ticari bir sonlu elemanlar metodu yazılımı olan ANSYS[™] kullanılmıştır.

Kalın (a/h = 10) bir plağın x₁ ve x₂ eksenlerindeki yer değişimleri ve dönmeleri, asimetrik [0°/90°] ve simetrik [0°/90°/0°] dizilimler için x₁=0, a ve x₂=0, b boyunca belirlenerek Şekil 4.2-4.5'de gösterilmiştir. Plak merkezinin x₃ ekseni boyunca boyutsuz yer değişimi (u_3^*) ve moment (M_1^*) değerleri plak merkezinde maksimum, yüzeye paralel yer değişimi (u_1^*) ve dönme (Φ_1^*) ise sıfır değerini almaktadır. Yüzeye paralel boyutsuz yer değiştirme (u_1^*) ve dönme (Φ_1^*), x₁=0 ve x₁=a'de maksimum değerine ulaşmaktadır. Yüzeye paralel boyutsuz yer değiştirme (u_1^*), asimetrik [0°/90°] diziliminde görülmektedir (Şekil 4.2). Ancak, simetrik [0°/90°/0°] dizilimi için durum farklıdır. Simetrik dizilim için yüzeye paralel boyutsuz yer değiştirme (u_1^*) görülmez (Şekil 4.3). Bu durum, asimetrik dizilimlerde görülen eğilme-uzama birleşik hareketinden kaynaklanmaktadır.

Şekil 4.2 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}]$ diziliminde kalın (*a/h=10*) plak üzerinde *x*₁ ekseninde oluşan yer değişimi ve dönmeler

Asimetrik $[0^{\circ}/90^{\circ}]$ ve simetrik $[0^{\circ}/90^{\circ}/0^{\circ}]$ dizilimlere sahip plak için boyutsuz yer değişimi ve moment değerleri x_2 ekseni boyunca incelendiğinde; plak merkezinin x_3 ekseni boyunca boyutsuz yer değişimi (u_3^*) değerinin plak merkezinde maksimum değerlerine ulaştığı görülmektedir (Şekil 4.4 – 4.5). Ancak, moment (M_2^*) değeri asimetrik dizilimde merkezde maksimum değerine ulaşırken, simetrik dizilimde $x_2=b/4$ ve $x_2=3b/4$ koordinatlarında maksimum değerini almaktadır. Yer değişimi (u_2^*) ise $x_2=b/4$ ve $x_2=3b/4$ koordinatlarında maksimum değerlerine ulaşmaktadır. Ancak, (u_2^*) simetrik $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde asimetrik dizilimlerde görülen eğilme-uzama birleşik hareketinden ötürü görülmez.

Şekil 4.3 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın (*a/h=10*) plak üzerinde *x*₁ ekseninde oluşan yer değişimi ve dönmeler

Şekil 4.4 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}]$ diziliminde kalın (*a/h=10*) plak üzerinde *x*₂ ekseninde oluşan yer değişimi ve dönmeler

Şekil 4.5 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın (*a/h=10*) plak üzerinde *x*₂ ekseninde oluşan yer değişimi ve dönmeler

Karşılaştırmalı deformasyon değerleri ve plak üzerinde sınır şartlarına bağlı olarak oluşan yer değişimleri incelendiğinde; süreksiz sınır şartları etkisindeki Fourier serilerinin kullanıldığı çözüm tekniğinin, oldukça hassas sonuçlar verdiği ve sınır şartlarının neden olduğu süreksizlikleri doğru bir biçimde çözüm yöntemine dahil ettiği belirlenmiştir.

BÖLÜM 5

SS1-SS4 BASİT MESNETLİ ÇİFT EĞRİLİKLİ BİR KABUĞUN STATİK ANALİZİ

Bölüm 4'de ifade edildiği şekilde, ÜMKDT için oluşturulan denge denklemleri, çift eğrilikli bir kabuk için $K_{ij}x_j = f_i$ (*i*, *j*=1,...,5) formunda yazılabilir. Bu durumda, çift eğrilikli bir kabuk için, [K_{ij}] matrisi elemanlarını aşağıdaki gibi ifade etmek mümkündür.

$$K_{11} = A_{11} \frac{\partial^2}{\partial x^2} + A_{66} \frac{\partial^2}{\partial y^2}$$
(5.1)

$$K_{12} = \left(A_{12} + A_{66}\right) \frac{\partial^2}{\partial x \partial y}$$
(5.2)

$$K_{13} = \left(\frac{A_{11}}{R_1} + \frac{A_{12}}{R_2}\right)\frac{\partial}{\partial x} - c_1 E_{11}\frac{\partial^3}{\partial x^3} - \left(2c_1 E_{66} + c_1 E_{12}\right)\frac{\partial^3}{\partial x \partial y^2}$$
(5.3)

$$K_{14} = \left(B_{11} - c_1 E_{11}\right) \frac{\partial^2}{\partial x^2} + \left(B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial y^2}$$
(5.4)

$$K_{15} = \left(B_{12} - c_1 E_{12} + B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial x \partial y}$$
(5.5)

$$K_{22} = A_{66} \frac{\partial^2}{\partial x^2} + A_{22} \frac{\partial^2}{\partial y^2}$$
(5.6)

$$K_{23} = \left(\frac{A_{12}}{R_1} + \frac{A_{22}}{R_2}\right)\frac{\partial}{\partial y} - c_1 E_{22}\frac{\partial^3}{\partial y^3} - \left(2c_1 E_{66} + c_1 E_{12}\right)\frac{\partial^3}{\partial x^2 \partial y}$$
(5.7)

$$K_{24} = \left(B_{12} - c_1 E_{12} + B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial x \partial y}$$
(5.8)

$$K_{25} = \left(B_{66} - c_1 E_{66}\right) \frac{\partial^2}{\partial x^2} + \left(B_{22} - c_1 E_{22}\right) \frac{\partial^2}{\partial y^2}$$
(5.9)

$$K_{33} = \left[A_{55} - 6c_1 D_{55} + 9c_1^2 F_{55} + c_1 \left(\frac{E_{12}}{R_1} + \frac{E_{22}}{R_2}\right) + c_1 \left(\frac{E_{11}}{R_1} + \frac{E_{12}}{R_2}\right) \right] \frac{\partial^2}{\partial x^2} \\ + \left[A_{44} - 6c_1 D_{44} + 9c_1^2 F_{44} + 2c_1 \left(\frac{E_{12}}{R_1} + \frac{E_{22}}{R_2}\right) \right] \frac{\partial^2}{\partial y^2} \\ - 9c_1^2 H_{11} \frac{\partial^4}{\partial x^4} - 2c_1^2 \left(H_{12} + 2H_{66} \right) \frac{\partial^4}{\partial x^2 \partial y^2} \\ - c_1^2 H_{22} \frac{\partial^4}{\partial y^4} - \left[\left(\frac{A_{11}}{R_1^2} + \frac{A_{12}}{R_1 R_2} \right) + \left(\frac{A_{12}}{R_1 R_2} + \frac{A_{22}}{R_2^2} \right) \right] \right]$$
(5.10)

$$K_{34} = \left[A_{55} - 6c_1 D_{55} + 9c_1^2 F_{55} - \frac{1}{R_1} (B_{11} - c_1 E_{11}) - \frac{1}{R_2} (B_{12} - c_1 E_{12}) \right] \frac{\partial}{\partial x} + c_1 (F_{11} - c_1 H_{11}) \frac{\partial^3}{\partial x^3} + \left[c_1 (F_{12} - c_1 H_{12}) + 2c_1 (F_{66} - c_1 H_{66}) \right] \frac{\partial^3}{\partial x \partial y^2}$$
(5.11)

$$K_{35} = \left[A_{44} - 6c_1 D_{44} + 9c_1^2 F_{44} - \frac{1}{R_1} (B_{12} - c_1 E_{12}) - \frac{1}{R_2} (B_{22} - c_1 E_{22}) \right] \frac{\partial}{\partial y} + c_1 (F_{22} - c_1 H_{22}) \frac{\partial^3}{\partial y^3} + \left[c_1 (F_{12} - c_1 H_{12}) + 2c_1 (F_{66} - c_1 H_{66}) \right] \frac{\partial^3}{\partial x^2 \partial y}$$
(5.12)

$$K_{44} = \left[D_{11} - 2c_1 F_{11} + c_1^2 H_{11} \right] \frac{\partial^2}{\partial x^2} + \left[D_{66} - 2c_1 F_{66} + c_1^2 H_{66} \right] \frac{\partial^2}{\partial y^2} - (A_{55} + 6c_1 D_{55} + 9c_1^2 F_{55})$$
(5.13)

$$K_{45} = \left[D_{12} - c_1 F_{12} + D_{66} - c_1 F_{66} - c_1 \left(F_{12} - c_1 H_{12} \right) - c_1 \left(F_{66} - c_1 H_{66} \right) \right] \frac{\partial^2}{\partial x \partial y}$$
(5.14)

$$K_{55} = \left[D_{66} - 2c_1 F_{66} + c_1^2 H_{66} \right] \frac{\partial^2}{\partial x^2} + \left[D_{22} - 2c_1 F_{22} + c_1^2 H_{22} \right] \frac{\partial^2}{\partial y^2} -A_{44} + 3c_1 D_{44} + 3c_1 \left(D_{44} - 3c_1 F_{44} \right)$$
(5.15)

Bundan sonraki aşamada, yukarıdaki denklem sistemi kullanılarak, çift eğrilikli bir kabuk için sayısal uygulama yapılacak ve sonuçlar ticari bir sonlu elemanlar programı ile karşılaştırılacaktır.

5.1 Sayısal Uygulama

Sayısal sonuçlar çapraz dizilimdeki, kare formda çift eğrilikli bir kabuğun aşağıdaki dizilim açıları için düzgün yayılı yük etkisi altında icra edilmiştir.

- Asimetrik [0°/90°]
- Simetrik [0°/90°/0°]
- Simetrik [0°/90°/90°/0°]

İncelemenin birimlerden ve çift eğrilikli kabuğun özelliklerinden bağımsız olarak yapılabilmesi amacıyla aşağıdaki boyutsuz katsayılar tanımlanmıştır.

$$u_{1}^{*} = (10^{3} E_{2} h^{3} / p_{0} a^{4}) u_{1}, \qquad u_{2}^{*} = (10^{3} E_{2} h^{3} / p_{0} a^{4}) u_{2}, \qquad u_{3}^{*} = (10^{3} E_{2} h^{3} / p_{0} a^{4}) u_{3},$$

$$\phi_{1}^{*} = (10^{2} E_{2} h^{3} / p_{0} a^{3}) \phi_{1}, \qquad \phi_{2}^{*} = (10^{2} E_{2} h^{3} / p_{0} a^{3}) \phi_{2},$$

$$M_{1}^{*} = (10^{3} / p_{0} a^{2}) M_{1}, \qquad M_{2}^{*} = (10^{3} / p_{0} a^{2}) M_{2}.$$
(5.16)

Boyutsuz katsayılar içinde verilen 'a' değişkeni kabuğun kenar boyunu ifade etmektedir ve 812.8 mm. (32 inç)'e eşittir. Kabuk üzerindeki yük ise p_o ile gösterilmiştir ve hesaplamalarda 100 kPa olarak kabul edilmiştir.Malzeme özelliklerinin deformasyona etkisinin incelenebilmesi amacıyla aşağıdaki malzeme özellikleri tanımlanmıştır. Çizelge 5.1'de tanımlanmış E_1 ve E_2 malzemenin sırasıyla x ve y eksenlerindeki Young modülleridir. G_{12} kabuk düzlemindeki kayma rijitliğini, G_{13} ve G_{23} sırasıyla $x_1 - x_3$ ve $x_2 - x_3$ düzlemlerindeki kalınlık yönündeki kayma rijitliklerini temsil etmektedir. Çift eğrilikli kabuk eksen takımında $x_1 - x_2$ düzlemindeki Poisson oranı ise v_{12} ile gösterilmektedir.

	Malzeme I	Malzeme II
<i>E</i> ₁	105.47 GPa	132.384 GPa
	(15.000 Ksi)	(19.200 Ksi)
E_1/E_2	15	12.31
G ₁₂ / E ₂	0.4286	0.526
G ₁₃ / E ₂	0.4286	0.526
G ₂₃ / E ₂	0.3429	0.335
<i>v</i> ₁₂	0.40	0.24

Çizelge 5.1 Malzeme Özellikleri

Şekil 5.1 Çift eğrilikli kabuk çözümü için yakınsaklık kontrolü

Çizelge 5.2 Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki asimetrik [0°/90°] dizilimli çift eğrilikli kalın kabuk (a/h=10) merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

R/a		5	10	20	30	40	50	100
*	Çözüm	23.121	23.915	24.079	24.097	24.099	24.098	24.091
uz	SEM	23.003	23.889	24.082	24.101	24.102	24.102	24.090
M ₁ *	Çözüm	61.154	62.169	61.943	61.755	61.641	61.565	61.399
	SEM	60.012	60.355	60.501	60.523	60.777	60.890	61.021

Çizelge 5.3 Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/0°] dizilimli çift eğrilikli kalın kabuk (a/h=10) merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

R/a		5	10	20	30	40	50	100
Ua*	Çözüm	13.318	13.606	13.680	13.694	13.699	13.701	13.704
~3	SEM	13.003	13.411	13.443	13.501	13.502	13.562	13.700
M.*	Çözüm	114.651	117.326	118.014	118.142	118.187	118.208	118.236
1	SEM	115.885	117.456	117.544	118.003	118.096	118.105	118.232

Çizelge 5.4 Malzeme I özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli çift eğrilikli kalın kabuk (a/h=10) merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

R/a		5	10	20	30	40	50	100
U2 [*]	Çözüm	13.061	13.380	13.462	13.477	13.482	13.485	13.488
43	SEM	13.112	13.254	13.423	13.460	13.401	13.410	13.455
M4*	Çözüm	104.762	107.506	108.213	108.345	108.391	108.413	108.441
1	SEM	105.203	106.320	107.536	107.750	107.869	108.235	108.400

Çizelge 5.5 Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki asimetrik [0°/90°] dizilimli çift eğrilikli kalın kabuk (a/h=10) merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

R/a		5	10	20	30	40	50	100
₩2 112	Çözüm	66.036	65.953	65.886	65.860	65.846	65.837	65.820
-3	SEM	66.102	66.001	65.993	65.871	65.850	65.829	65.822
M4*	Çözüm	71.590	71.827	71.887	71.898	71.902	71.904	71.906
1	SEM	71.703	71.822	71.840	71.856	71.875	71.890	71.916

Çizelge 5.6 Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/0°] dizilimli çift eğrilikli kalın kabuk (a/h=10) merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

R/a		5	10	20	30	40	50	100
u ₃ *	Çözüm	63.547	63.604	63.618	63.621	63.622	63.622	63.623
	SEM	63.502	63.551	63.586	63.590	63.597	63.599	63.601
M.*	Çözüm	84.448	84.640	84.688	84.697	84.701	84.702	84.704
1	SEM	84.512	84.653	84.692	84.702	84.705	84.709	84.712

Çizelge 5.7 Malzeme II özelliklerine sahip, düzgün yayılı yük altındaki simetrik [0°/90°/90°/0°] dizilimli çift eğrilikli kalın kabuk (a/h=10) merkezindeki boyutsuzlaştırılmış deformasyon ve momentler

F	R/a	5	10	20	30	40	50	100
u ₃ *	Çözüm	64.019	64.122	64.148	64.153	64.155	64.155	64.156
	SEM	64.098	64.131	64.142	64.150	64.155	64.159	64.160
M ₁ *	Çözüm	83.692	83.946	84.011	84.023	84.027	84.028	84.031
	SEM	83.807	83.999	84.005	84.014	84.015	84.019	84.023
	u ₃ *	R/a u3* Çözüm SEM Çözüm SEM	R/a 5 µ3* Çözüm 64.019 SEM 64.098 M1* Çözüm 83.692 SEM 83.807	R/a 510 u_3^* $C\ddot{o}z\ddot{u}m$ 64.019 64.122 SEM 64.098 64.131 M_1^* $C\ddot{o}z\ddot{u}m$ 83.692 83.946 SEM 83.807 83.999	R/a 51020 u_3^* $\zeta \ddot{o} \ddot{c} \ddot{u} m$ 64.019 64.122 64.148 SEM 64.098 64.131 64.142 M_1^* $\zeta \ddot{o} \ddot{c} \ddot{u} m$ 83.692 83.946 84.011 SEM 83.807 83.999 84.005	R/a 5102030 u_3 $\zeta\ddot{o}z\ddot{u}m$ 64.019 64.122 64.148 64.153 u_3 $\zeta\ddot{o}z\ddot{u}m$ 64.098 64.131 64.142 64.150 M_1 $\zeta\ddot{o}z\ddot{u}m$ 83.692 83.946 84.011 84.023 M_1 SEM 83.807 83.999 84.005 84.014	R/a 510203040 u_3 $\zeta \ddot{o} z \ddot{u} m$ 64.019 64.122 64.148 64.153 64.155 u_3 $\zeta \ddot{o} z \ddot{u} m$ 64.098 64.131 64.142 64.150 64.155 M_1 $\zeta \ddot{o} z \ddot{u} m$ 83.692 83.946 84.011 84.023 84.027 M_1 SEM 83.807 83.999 84.005 84.014 84.014	k/a 51020304050 u_3^* $\zeta \ddot{o} z \ddot{u} m$ 64.019 64.122 64.148 64.153 64.155 64.155 u_3^* $\zeta \ddot{o} z \ddot{u} m$ 64.098 64.131 64.142 64.150 64.155 64.159 M_1^* $\zeta \ddot{o} z \ddot{u} m$ 83.692 83.946 84.011 84.023 84.027 84.028 M_1^* $S E M$ 83.807 83.999 84.005 84.014 84.015 84.015

Hesaplamaların ilk aşamasını sonucun yakınsaklık kontrolü oluşturmaktadır. Bu aşamada çift eğrilikli kabuk ortasındaki çökme ve moment değerlerinin artan terim sayısına bağlı olarak değişimi incelenerek, değerlerin birbirine yakınsadığı işlem adedi

belirlenir. Şekil 5.1 incelendiğinde, kalın (a/h = 10) ve asimetrik dizilimdeki [0°/90°] kabuk merkezinin x_3 ekseni boyunca boyutsuz yer değişimi (u_3^*) ve moment (M_1^*) değerlerinin hızlı bir şekilde yakınsadığı belirlenmiştir. Bu çalışmada bulunan değerler için terim sayısı 160 olarak kabul edilmiştir.

Çift eğrilikli kabuk merkezinin z ekseni boyunca boyutsuz yer değişimi (u_3^*) ve moment (M_1^*) değerlerinin, bu çalışmada kullanılan ÜMKDT sonuçları ve sonlu elemanlar metodu (SEM) ile elde edilen sonuçları; asimetrik $[0^\circ/90^\circ]$ ve simetrik $[0^\circ/90^\circ/90^\circ/0^\circ]$ dizilimli plak için farklı eğrilik (R/a) oranları ve farklı malzeme özellikleri için Çizelge 5.2 – 5.7'de verilmiştir. Karşılaştırmalarda elde edilen SEM sonuçları için ticari bir sonlu elemanlar analizi yazılımı olan ANSYSTM kullanılmıştır.

Kalın (a/h = 10) bir çift eğrilikli kabuğun (R/a=10) x_1 ve x_2 eksenlerindeki yer değişimleri ve dönmeleri, asimetrik [$0^{\circ}/90^{\circ}$] ve simetrik [$0^{\circ}/90^{\circ}/0^{\circ}$] dizilimler için $x_1=0,a$ ve $x_2=0,b$ boyunca belirlenerek Şekil 5.2-5.5'de gösterilmiştir. Kabuk merkezinin x_3 ekseni boyunca boyutsuz yer değişimi (u_3^*) ve moment (M_1^*) değerleri kabuk merkezinde maksimum, yüzeye paralel yer değişimi (u_1^*) ve dönme (Φ_1^*) ise sıfır değerini almaktadır. Yüzeye paralel yer değişimi (u_1^*) ve dönme (Φ_1^*), $x_1=0$ ve $x_1=a'$ de maksimum değerine ulaşmaktadır.

Çift eğrilikli kabuğun y ekseni boyunca deformasyonu incelendiğinde yüzeye paralel yer değişimi (u_2^*) nin, x_1 ekseni boyunca $(u_1^*)'$ in sergilediği değişimi ters yönde gösterdiği belirlenmiştir. Bu hareketin sebebi eksen takımındaki değişikliktir.

Şekil 5.2 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}]$ diziliminde kalın (*a/h=10*), kabuk (R/a=10) üzerinde x_1 ekseninde oluşan boyutsuz yer değişimi ve dönmeler.

Şekil 5.3 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın (*a/h=10*), kabuk (R/a=10) üzerinde x_1 ekseninde oluşan boyutsuz yer değişimi ve dönmeler

Şekil 5.4 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}]$ diziliminde kalın (*a/h=10*), kabuk (R/a=10) üzerinde x_2 ekseninde oluşan boyutsuz yer değişimi ve dönmeler

Şekil 5.5 Malzeme I özelliklerine sahip $[0^{\circ}/90^{\circ}/0^{\circ}]$ diziliminde kalın (*a/h=10*), kabuk (R/a=10) üzerinde x_2 ekseninde oluşan boyutsuz yer değişimi ve dönmeler

Asimetrik $[0^{\circ}/90^{\circ}]$ ve simetrik $[0^{\circ}/90^{\circ}/0^{\circ}]$ dizilimlere sahip kabuk için boyutsuz yer değişimi ve moment değerleri incelendiğinde; çift eğrilikli kabuk merkezinin x_3 ekseni

boyunca boyutsuz yer değişimi (u_3^*) ve moment (M_2^*) değerlerinin kabuk merkezinde maksimum değerlerine ulaştığı görülmektedir (Şekil 5.4 – 5.5). Yer değişimi (u_2^*) ise $x_2=0$ ve $x_2=b$ koordinatlarında maksimum değerlerine ulaşmaktadır.

Karşılaştırmalı deformasyon değerleri ve çift eğrilikli kabuk üzerinde sınır şartlarına bağlı olarak oluşan yer değişimleri incelendiğinde; süreksiz sınır şartları etkisindeki Fourier serilerinin kullanıldığı çözüm tekniğinin, oldukça doğru sonuçlar verdiği ve SEM sonuçları ile karşılaştırıldığında, sınır şartlarının neden olduğu süreksizlikleri doğru bir biçimde çözüm yöntemine ithal ettiği belirlenmiştir.

BÖLÜM 6

SONUÇLAR VE ÖNERİLER

Bu çalışmada; yüksek mertebeli deformasyon teorisi kullanılarak, sınır şartlarının neden olduğu süreksizlikler nedeniyle Navier veya Levy tipi çözüm teknikleri ile çözülemeyen, simetrik ve asimetrik dizilimli lamine kompozitlerin analitik çözümü yapılmıştır. Öncelikle farklı deformasyon teorileri hakkında bilgi verilmiş, ardından sınır şartlarının neden olduğu süreksizlikler, denge denklemlerine ilave edilen türevlere yerleştirilen tamamlayıcı katsayılar ile giderilerek, SS1 ve SS4 sınır şartları altında çözüm için yüksek mertebeli beş adet kısmi diferansiyel denklemden oluşan denklem sistemi oluşturulmuştur.

Yüksek mertebeli kısmi diferansiyel denklemlerin parametrik çözümleri MAPLE[™] programında hazırlanan bilgisayar programı ile yapılmıştır. Bu programda hesaplanan çözüm fonksiyonları kullanılarak, sayısal sonuçların belirlenebilmesi amacıyla; denklem sisteminin parametrik çözümü için MATLAB[™] programlama dili kullanılarak bir bilgisayar programı hazırlanmıştır. Hesaplamaların başlangıcında sonsuza giden fonksiyonlar incelenerek, yakınsama kontrolleri yapılmış ve yakınsamanın oluştuğu işlem adedi belirlenmiştir. Ardından, tüm denklem sistemi için belirlenen terim sayısında işlem yapılarak, tekrar sayısına bağlı olarak oluşan matrislerin çözümleri yapılmıştır. Son olarak, hesaplanan sonuçlarda kullanılan malzeme modeline uygun olarak ANSYS[™] programında sonlu elemanlar modeli oluşturulmuş ve MATLAB[™] programından elde edilen sayısal sonuçlar karşılaştırılmıştır.

Analitik çözümlerin kontrol edilebilmesi amacıyla, ticari bir sonlu elemanlar yazılımı olan ANSYS™ programında, eşit kenar uzunluklarına sahip bir plak geometrisi ve eşit

eğrilik yarıçaplarına sahip bir kabuk geometrisi oluşturulmuştur. Modellenen geometrilerde, Şekil 6.1'de gösterilen, her bir kenarında 1'er mm uzunluğa sahip kare formlu bir ağ (mesh) oluşturulmuştur. Oluşturulan ağ, Şekil 6.2'de detaylı geometrisi verilen SHELL 181 elemanı kullanılarak SEM modeli oluşturulmuştur.

Şekil 6.2 SHELL 181 eleman geometrisi [55]

Analiz için ihtiyaç duyulan kat sayısı ve kat kalınlıkları girilerek, SS1-SS4 sınır şartları için plak ve kabuk kenarlarına dönme ve yer değişimleri tanımlanmıştır. SS1 sınır şartına sahip kenarlar için; kendi ekseninde dönme, x ve y eksenlerinde hareket etmeye izin verilmiş, z ekseni ve diğer eksenler üzerine dönme hareketi kapatılmıştır. SS4 sınır şartına sahip kenarlar için ise kendi eksenlerinde dönme hareketi hariç tüm hareketler kapatılmıştır. Tüm plak ve kabuk alanına 100 KN yayılı yük uygulanarak analizler gerçekleştirilmiştir.

Belirlenen denklem sistemi öncelikle bir plağa uygulanmış ve sonuçlar sonlu elemanlar metodu ile karşılaştırılarak hassasiyet kontrolü yapılmıştır. Benzer şekilde denklem sistemi çift eğrilikli bir kabuk için uygulanmış ve sonuçların sayısal yöntemle karşılaştırması yapılmıştır. Sonuçlar incelendiğinde, yöntemin farklı sınır şartları altında başarı ile kullanılabileceği tespit edilmiştir.

Şekil 6.3 Hazırlanan MATLAB™ kodunun akış şeması

Seçilen teorinin çift eğrilikli kabuklar için kullanılması nedeniyle, kompozit teknelerin posta ve tülanileri arasında kalan borda kaplaması için mevcut çözümün doğru bir yaklaşım olacağı belirlenmiştir. Ancak karşılaşılacak farklı sınır şartları için bu çalışmada anlatılan yaklaşımla süreksizliklerin giderilmesi gerekmektedir. Her farklı sınır şartı yerleşim kombinasyonuna bağlı olarak, bu çalışmada yapılan uygulamaya benzer şekilde çözüm metodu geliştirilmesi gerekmektedir.

Kullanılan yöntemin literatürde bulunmayan sınır şartları için geliştirilmesi ve kurulan matematiksel modelin tüm detayları ile sunulmuş olması nedeniyle, çalışmanın kompozit lamine malzemelerin makromekanik özelliklerinin belirlenmesi konusunda çalışan araştırmacılara faydalı olacağı değerlendirilmektedir.

6.1 Sonuçlar

Bu calışmada kalın, çapraz dizilime sahip, dikdörtgen kesitli ve sonlu boyutlara sahip genel bir katmanlı kompozit plağın veya kabuğun deformasyon probleminin çözümü için literatürde mevcut olmayan analitik bir çözüm metodu sunulmuştur. Kullanılan cözüm metodunda, süreksiz sınır şartları için genelleştirilmiş ve etkin çözüm verdiği belirlenmiş Fourier serileri, süreksiz sınır şartları altındaki beş adet yüksek mertebeli kısmi diferansiyel denklemi çözmek için kullanılmıştır. Sadece kısmi çözüm sağlayan klasik Navier veya Levy tipi çözüm yaklasımlarından farklı olarak, kullanılan metod tüm farklı sınır şartları için kısmi ve tamamlayıcı çözüm sağlamaktadır. Navier veya Levy gibi mevcut analitik cözümler, iyi bilinen, değişkenlerin ayrılması yöntemine dayanmaktadır. Bu çözümler kısmi sonuçları temsil ederler ve kısmi sonuçların sınır şartlarını ifade edebilmesine bağlı hassasiyette sonuç verirler. Tamamlayıcı çözümün türetilmesi için, sınır şartlarının süreksizliklerini ifade edecek özel çözüm fonksiyonları ve kısmi türevleri işleme dahil edilmiştir. Bu çözüm yöntemi; eşitsizlikler ile ifade edilen tamamlayıcı sınır şartlarının, eşitlikler ile ifade edilen tanımlanmış sınır şartları kadar önemli bir rol oynadığı prensibine dayanmaktadır.

Öncelikle kullanılan teorinin çözüm hassasiyetine etkileri ve elde edilen sonuçların SEM kullanılarak elde edilenler ile karşılaştırıldığında görülen yakınsama göstermektedir ki; ÜMKDT kullanılması çalışmanın başlangıcında yapılan ve oldukça başarılı sonuçlar alınmasını sağlayan bir tercih olmuştur. Bu çalışmadan elde edilen sonuçları üç bölümde incelemek faydalı olacaktır. Plak için yapılan incelemelerden elde edilecek sonuçlar, çift eğrilikli kabuk için yapılan incelemelerden elde edilen sonuçlar ve plak ile kabuğun karşılaştırılmasından elde edilen sonuçlar.

Çalışmanın plak için yapılan sayısal incelemeleri içeren dördüncü bölümü incelendiğinde, özellikle işlem adedinin belirlenmesinde etkili olan yakınsaklık kontrolü grafiğinde, çökme değerinin çok kısa sürede yakınsadığı ancak moment değerinin başlangıçta bir miktar salınım yaptıktan sonra yakınsadığı belirlenmiştir.

Plak için yapılan incelemede temel olarak kalınlığın deformasyona etkileri incelenmiş, ayrıca malzeme özelliklerinin etkilerinin gözlenebilmesi amacıyla iki farklı malzeme modeli kullanılmıştır. Malzeme modellerinin etkileri incelendiğinde daha yüksek elastisite modülüne sahip olan malzemenin daha az çöktüğü tespit edilmiştir.

Farklı kalınlık oranlarına (a/h) sahip plaklar için yapılan incelemede, dizilimin simetrik veya asimetrik olmasına bakılmaksızın kalın plaklardaki kalınlık yönündeki boyutsuz yer değişimi (u_3^*) miktarının ince plaklara oranla daha fazla olduğu belirlenmiştir. Bunun iki nedenden kaynaklandığı değerlendirilmektedir. Öncelikle kalın plaklarda kayma deformasyonlarının etkisi artmaktadır. İkinci olarak; ince plaklarda etkin olan membran kuvvetlerinin çökme miktarında azalmaya neden olduğu belirlenmiştir. SEM analizleri sırasında da özellikle ince plaklarda büyük deformasyonlara izin verilen analizlerde deformasyon miktarının membran kuvvetleri etkisiyle oldukça azaldığı tespit edilmiştir. Ancak moment değerleri incelendiğinde ince plaklarda nispeten daha yüksek olduğu ve bu durumun simetrik veya asimetrik dizilimde değişmediği belirlenmiştir.

Çift eğrilikli kabuk için yapılan sayısal uygulamanın detaylandırıldığı beşinci bölüm incelendiğinde, işlem adedinin belirlenmesi amacıyla yapılan yakınsaklık kontrolünde hem yer değişimi, hem de moment değerlerinin çok kısa sürede yakınsadığı ve salınım oluşmadığı belirlenmiştir. Çift eğrilikli kabuk için denge denklemlerine dahil edilen yer değişimi ifadeleri ve ilgili türevlerinin etkileri nedeniyle değerlerin kısa sürede yakınsadığı belirlenmiştir.

Kabuk geometrisinde etken olan eğrilik yarıçapı değerine bağlı olarak incelemeler yapılmıştır. Genel olarak eğrilik yarıçapı arttıkça yani kabuk geometrisi plak geometrisine yaklaştıkça deformasyon oluşumunda artış tespit edilmiştir. Eğrilik yarıçapının azalması durumunda kabuk geometrisinin daha az deformasyon oluşmasını sağladığı belirlenmiştir.

Özellikle sayısal uygulamaların doğrulanması amacıyla kullanılan SEM analizi çalışmalarında, ince ve asimetrik dizilimli plak ve kabukların SEM ile incelenmesi sırasında analitik çözümden bir miktar sapma olduğu belirlenmiştir. Bunun sebebi olarak; ince kabuk ve plaklarda oluşan membran etkileri ve kullanılan teorinin kayma deformasyonlarının etkilerini dahil etmesi olduğu belirlenmiştir.

Çift eğrilikli kabuklar için yapılan incelemelerde, x ve y eksenlerindeki eğrilik yarıçapları birbirlerine eşit kabul edilmiş ve sayısal uygulamalar bu şart altında yapılmıştır. Ancak gemi formu gibi, boyuna ve yükseklik yönlerinde farklı eğriliklere sahip kompozit kabuklar için de, bu çalışmada kullanılan teori oldukça başarılı sonuçlar vermektedir.

Lamine katlarını oluşturan tabakaların dizilim yönleri bu çalışmada tek yönlü fiber katlarının 0° ve 90° ile yerleştirilmesi ile elde edilen çapraz dizilim (cross-ply) için uygulanmıştır. Ancak fiber yönlerinin farklı açılar için yerleştirilmesi durumunda (30°, 45°, 60° gibi) kullanılan teorinin yeterli olacağı ancak bu çalışmada kullanılan malzeme katılık matrislerinde bazı ilavelere neden olacağından mevcut çözüm ile doğru sonuçlar alınamayacağı belirlenmiştir.

6.2 Öneriler

Bu çalışmada kullanılan yöntem ile literatüre kazandırılmış yeni çözümler genellikle basit mesnet ve ankastre mesnetler ile sınırlıdır. Ancak kayar (roller skate) ve serbest (free) mesnet tipleri için de uygulama yapılması mümkündür. Çalışmanın bundan sonraki devamında toplam onaltı adet farklı mesnet türü için, farklı yerleşimlerde sınır koşullarının neden olacağı süreksizlikler incelenerek analitik çözüm yöntemi geliştirilebilir ve matematik model oluşturulabilir.

Bu çalışmada temel olarak yapılan malzeme kabullerinden birisi olan çapraz dizilim (cross-ply), ilgili bölümlerde de belirtildiği gibi katılık matrisinde bazı hücrelerin sıfır olarak kabul edilmesi nedeniyle, matematiksel modelin kolaylaştırılmasını sağlamaktadır. Ancak gelecek çalışmalarda açılı katlara (angle-ply) sahip plak ve çift eğrilikli kabuklar için de çalışmalar yapılması mümkündür. Bu konularda da literatürde çok fazla uygulama bulunmadığı tespit edilmiştir.

Matematiksel model; dinamik etkiler ihmal edilerek, tamamen statik durum için oluşturulmuştur. Ancak bu çalışmada kullanılan teorinin dinamik olarak da kullanılması mümkündür. Bu durumda, malzemeyi oluşturan katların yoğunlukları ve atalet etkileri de hesaplamalara dahil edilecek ve plak / kabuk sisteminin dinamik davranışı belirlenebilecektir.

Sonuç olarak; bu çalışmada kullanılan metod ile,

- Farklı sınır şartları altında süreksizliklerin giderilmesine yönelik çalışmalar,
- Uygulamaya yönelik benzetimler sonucunda oluşan sınır şartları altında farklı malzeme türleri için çalışmalar,
- Açılı katlara (angle-ply) sahip laminelere yönelik uygulamalar ve
- Dinamik bölümün denklem sistemine ilavesiyle dinamik modellemeler

üzerinde literatürde fazla çalışma bulunmadığı ve bu konularda yapılacak çalışmaların orijinal çalışmalar olarak değerlendirileceği tespit edilmiştir. Kompozit lamine mekaniği konusunda çalışacak araştırmacılara yukarıda bahsedilen konularda çalışmaları önerilmektedir.

KAYNAKLAR

- Mouritz, A.P., Gellert, E., Burchill, P. ve Challis K., (2001), "Review of Advanced Composite Structures For Naval Ships And Submarines", Composite Structures, 53:21-41.
- [2] Kabir, H.R.H., Al-Khaleefi, A.M. ve Chaudhuri, R.A., (2001), "Free Vibration Analysis of Thin Arbitrarily Laminated Anisotropic Plates Using Boundary-Continuos Displacement Fourier Approach", Composite Structures, 53:469-476.
- [3] Basset, A.B., (1890), "On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells", Phil. Trans. Royal Soc., London, Series A, 181:433-480.
- [4] Noor, A.K. ve Burton, W.S., (1989), "Assessment of Shear Deformation Theories for Multilayered Composite Plates", Applied Mechanical Review 42(1):1-14.
- [5] Kant, T. ve Swaminathan, K., (2000), "Estimation of Transverse/Interlaminar Stresses in Laminated Composites – A Selective Review and Survey of Current Developments", Composite Structures, 49:65-75.
- [6] Noor, A.K. ve Burton, W.S., (1990), "Assessment of Computational Models for Multilayered Composite Shells", Applied Mechanical Review, 43:67-97.
- [7] Qatu, M.S., (2002), "Recent Research Advances in the Dynamic Behavior of Shells:1989-2000, Part I:Laminated Composite Shells", Applied Mechanical Review, 55:325-350.
- [8] Green, A.E., (1944), "Double Fourier Series and Boundary Value Problems", Proceedings of Cambridge Phil.Soc., 40:222-228.
- [9] Green, A.E. ve Hearmon, R.F.S., (1945), "The Buckling of Flat Rectangular Plywood Plates", Phil. Magazine, 36:659-687.
- [10] Jones, R.M., (1999), Mechanics of Composite Materials, 2nd Edition, PA: Taylor and Francis, Philadelphia.
- [11] Whitney, J.M., (1971), "Fourier Analysis of Clamped Anisotropic Plates", USAF Technical Report (Accession Number: AD0723287)
- [12] Chaudhuri, R.A., Balaraman, K. ve Kunukkasseril, X.V., (2005), "A Combined Theoretical and Experimental Investigation on Free Vibration of Thin Symmetrical Laminated Plates", Composite Structures, 67(1):85-97.

- [13] Chaudhuri, R.A. ve Kabir, H.R.H., (1992a), "Sensitivity of the Response of Moderately Thick Cross-ply Doubly-curved Panels to Lamination and Boundary Constraint. Part-I: Theory, Part-II: Application", International Journal of Solids and Structures, 30:263-272, 273-286.
- [14] Chaudhuri, R.A. ve Kabir, H.R.H., (1992b), "A Boundary Continuous Displacement Based Fourier Analysis of Laminated Doubly Curved Panels Using Classical Shallow Shell Theories", International Journal of Engineering Science, 30:1647-1664.
- [15] Chaudhuri, R.A. ve Kabir, H.R.H., (1992c), "Influence of Laminations and Boundary Conditions on the Response of Moderately Thick Cross-ply Rectangular Plates", Journal of Composite Materials, 26(1):61-77.
- [16] Chaudhuri, R.A. ve Kabir, H.R.H., (1992d), "A Boundary Discontinuous Fourier Solution For Clamped Transversely Isotropic Mindlin Plates", International Journal of Solids and Structures, 30(2):287-297.
- [17] Chaudhuri, R.A. ve Kabir, H.R.H., (1992e), "Fourier Analysis of Clamped Moderately Thick Arbitrarily Laminated Plates", AIAA Journal, 30:2796-2798.
- [18] Chaudhuri, R.A. ve Kabir, H.R.H., (1994a), "Effect of Boundary Constraint on the Frequency Response of Moderately Thick Flat Laminated Panels", Composite Engineering, 4:417-428.
- [19] Chaudhuri, R.A. ve Kabir, H.R.H., (1994b), "Effect of Boundary Constraint on the Frequency Response of Moderately Thick Flat Laminated Panels", Composite Engineering, 4(4):417-428.
- [20] Kabir, H.R.H., (1999), "On the Frequency Response of Moderately Thick Simply Supported Rectangular Plates with Arbitrary Lamination", International Journal of Solids and Structures, 36(15):2285-2301.
- [21] Reddy, J.N. ve Liu, C.F., (1985), "A Higher Order Shear Deformation Theory of Laminated Elastic Shells", International Journal of Engineering, 23(3):319-330.
- [22] Reddy, J.N., (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, FL.
- [23] Whitney, J.M., (1970), "The Effect of Boundary Conditions on the Response of Laminated Composites", Journal of Composite Materials, 4:192 203.
- [24] Whitney, J.M., (1971), "The Effect of Boundary Conditions on the Response of Laminated Composites", Journal of Applied Mechanics, 530-532.
- [25] Whitney, J.M. ve Leissa, A.W., (1970), "Analysis of Simply Supported Laminated Anisotropic Plates", AIAA Journal, 8:28-33.
- [26] Whitney, J.M. ve Pagano, N.J., (1970), "Shear Deformation in Heterogeneous Anisotropic Plates", Journal of Applied Mechanics, 37(5):1031-1036.
- [27] Librescu, L. ve Khdeir, A.A., (1988), "Analysis of Symmetric Cross-ply Laminated Elastic Plates Using a Higher-Order Theory:Part I-Stress and Displacement", Composite Structures, 9:189-213.

- [28] Chaudhuri, R.A. ve Kabir, H.R.H., (1993a), "Vibration of Clamped Moderately Thick General Cross-ply Plates Using a Generalized Navier's Approach", Composite Structures, 24(4):311-321.
- [29] Chaudhuri, R.A. ve Kabir, H.R.H., (1993b), "Sensitivity of the Response of Moderately Thick Cross-ply Doubly-curved Panels to Lamination and Boundary Constraint - I Theory, - II Application", International Journal of Solids and Structures, 30(2):273-286, 263-272.
- [30] Chaudhuri, R.A. ve Kabir, H.R.H., (1993c), "Boundary Discontinuous Fourier Analysis of Doubly-curved Panels Using Classical Shallow Shell Theories", International Journal of Engineering Science, 31(11):1551-1564.
- [31] Chaudhuri, R.A. ve Kabir, H.R.H., (1994), "Static and Dynamic Analysis of Finite General Cross-Ply Doubly-Curved Panels Using Classical Shallow Shell Theories", Composite Structures, 28:73-91.
- [32] Chaudhuri, R.A., (1989), "On Boundary-Discontinuous Double Fourier Series Solution to a System of Completely Coupled P.D.E.'s", International Journal of Engineering Science, 27:1005-1022.
- [33] Shu, X-P., (1997), "A Refined Theory of Laminated Shells with Higher Order Transverse Shear Deformation", International Journal of Solids and Structures, 34(6):673-683.
- [34] Kabir, H.R.H., (2002), "Application of Linear Shallow Shell Theory of Reissner to Frequency Response of Thin Cylindrical Panels with Arbitrary Lamination", Composite Structures, 56:35-52.
- [35] Chaudhuri, R. A., (2002), "On the Roles of Complementary and Admissible Boundary Constraints in Fourier Solutions to Boundary-Value Problems of Completely Coupled rth Order P.D.E.'s", Journal of Sound and Vibration, 251:261–313.
- [36] Öktem, A.S. ve Chaudhuri, R.A., (2007a), "Levy Type Analysis of Cross-ply Plates Based on Higher Order Theory", Composite Structures 78:243-253.
- [37] Öktem, A.S. ve Chaudhuri, R.A., (2007b), "Fourier Solution to a Thick Cross-ply Levy Type Clamped Plate Problem", Composite Structures, 79:481-492.
- [38] Öktem, A.S. ve Chaudhuri R.A., (2007c), "Fourier Analysis of Thick Cross-ply Levy Type Clamped Doubly Curved Panels", Composite Structures, 80:489-503.
- [39] Öktem A.S. ve Chaudhuri, R.A., (2007d), "Levy Type Fourier Analysis of Thick Doubly Curved Panels", Composite Structures, 80:475-488.
- [40] Öktem, A.S. ve Chaudhuri, R.A., (2008a), "Boundary Discontinuous Fourier Analysis of Thick Cross-ply Clamped Plates", Composite Structures, 82:489-503.
- [41] Öktem, A.S. ve Chaudhuri, R.A., (2008b), "Effect of Inplane Boundary Constraints on the Response of Thick General (Unsymmetric) Cross-ply Laminates", Composite Structures, 83:1-12.
- [42] Öktem, A.S. ve Chaudhuri, R.A., (2009a), "Sensitivity of the Response of Thick Cross-ply Doubly Curved Panels to Edge Clamping", Composite Structures, 87:293-306.

- [43] Öktem, A.S. ve Chaudhuri, R.A., (2009b), "Higher-order Theory Based Boundarydiscontinuous Fourier Analysis of Simply Supported Thick Cross-ply Doubly Curved Panels", Composite Structures 89, 448-458.
- [44] Chaudhuri, R.A. ve Kabir, H.R.H., (1989), "On Analytical Solutions to Boundary Value Problems of Doubly-curved Moderately-thick Orthotropic Shells", International Journal of Engineering Science, 27(11):1325-1336.
- [45] Öktem, A.S., (2005), The Effect of Boundary Conditions on the Response of Laminated Thick Composite Plates and Shells, Doktora Tezi, Department of Mechanical Engineering, The University of Utah (yayımlanmamış).
- [46] Hobson, E.W., (1950), The Theory of Functions of a Real Variable Vol II., 2nd Edition, Haren Press, Washington D.C.
- [47] Chaudhuri, R.A. ve Abu-Arja, K.R., (1988), "Exact Solution of Shear-Flexible Doubly Curved Anti-symmetric Angle-ply Shells", International Journal of Engineering Science, 26:587-604.
- [48] Chaudhuri, R.A. ve Abu-Arja, K.R., (1991), "Static Analysis of Moderately Thick Finite Anti-symmetric Angle-ply Cylindrical Panels and Shells", International Journal of Solids and Structures, 28:1-16.
- [49] Kabir, H.R.H. ve Chaudhuri, R.A., (1991), "Free Vibrations of Anti-symmetric Angle-ply Finite Doubly Curved Shells", International Journal of Solids and Structures, 28:17-32.
- [50] Kabir, H.R.H. ve Chaudhuri, R.A., (1994a), "On Gibbs-Phenomenon-Free Fourier Solution for Finite Shear-flexible Laminated Clamped Curved Panels", International Journal of Engineering Science, 32:501-520.
- [51] Kabir, H.R.H. ve Chaudhuri, R.A., (1994b), "Vibration of Clamped Moderately Thick Arbitrarily Laminated Plates Using Generalized Navier's Approach", Journal of Sound and Vibration, 171(3):397-410.
- [52] Kabir, H.R.H., (1996a), "On Boundary Value Problems of Moderately Thick Shallow Cylindrical Panels With Arbitrary Laminations", Composite Structures, 34:169-184.
- [53] Kabir, H.R.H., (1996b), "A Novel Approach to the Solution of Shear Flexible Rectangular Plates with Arbitrary Laminations", Composites Part:B, 27:95-104.
- [54] Kabir, R.H., Al-Khaleefi, A.M. ve Al-Marzouk, M., (2003), "Double Orthogonal Set of Solution Functions for Cross-ply Laminated Shear Flexible Cylindrical/Doubly Curved Panels", Composite Structures, 59(2):189-198.
- [55] ANSYS Release 11 Documentation.

KATSAYI TANIMLARI

ÜMKDT denge denklemlerinde kullanılan katsayıların karşılıkları aşağıdaki gibidir.

$$\begin{split} a_{1} &= \frac{A_{11}}{R_{1}} + \frac{A_{22}}{R_{2}}, & a_{2} = B_{11} - \frac{4E_{11}}{3h^{2}}, \\ a_{3} &= B_{12} - \frac{4E_{12}}{3h^{2}}, & a_{4} = \frac{4E_{11}}{3h^{2}}, \\ a_{5} &= \frac{4E_{12}}{3h^{2}}, & a_{6} = \frac{A_{12}}{R_{1}} + \frac{A_{22}}{R_{2}}, \\ a_{7} &= B_{22} - \frac{4E_{22}}{3h^{2}}, & a_{8} = \frac{4E_{22}}{3h^{2}}, \\ a_{9} &= B_{66} - \frac{4E_{66}}{3h^{2}}, & a_{10} = \frac{8E_{66}}{3h^{2}}, \\ a_{11} &= B_{22} - \frac{4E_{22}}{3h^{2}}, & b_{2} = D_{11} - \frac{4F_{11}}{3h^{2}}, \\ b_{3} &= D_{12} - \frac{4F_{12}}{3h^{2}}, & b_{4} = \frac{4F_{11}}{3h^{2}}, \\ b_{5} &= \frac{4F_{12}}{3h^{2}}, & b_{6} = \frac{B_{12}}{R_{1}} + \frac{B_{22}}{R_{2}}, \\ b_{7} &= D_{22} - \frac{4F_{22}}{3h^{2}}, & b_{8} = \frac{4F_{22}}{3h^{2}}, \\ \end{split}$$

$$b_{9} = D_{66} - \frac{4F_{66}}{3h^{2}}, \qquad b_{10} = \frac{8F_{66}}{3h^{2}}, \\ b_{11} = \frac{E_{11}}{R_{1}} + \frac{E_{12}}{R_{2}}, \qquad b_{12} = F_{11} - \frac{4H_{11}}{3h^{2}}, \\ b_{13} = F_{12} - \frac{4H_{12}}{3h^{2}}, \qquad b_{14} = \frac{4H_{11}}{3h^{2}}, \\ b_{15} = \frac{4H_{12}}{3h^{2}}, \qquad b_{16} = F_{22} - \frac{4H_{22}}{3h^{2}}, \\ b_{17} = \frac{4H_{22}}{3h^{2}}, \qquad b_{18} = F_{66} - \frac{4H_{66}}{3h^{2}}, \\ b_{19} = \frac{8H_{66}}{3h^{2}}, \qquad b_{20} = \frac{E_{12}}{R_{1}} + \frac{E_{22}}{R_{2}}$$
(A.12-A.32)

$$d_{1} = A_{44} - \frac{4D_{44}}{h^{2}}, \qquad \qquad d_{2} = A_{55} - \frac{4D_{55}}{h^{2}},$$
$$d_{3} = D_{44} - \frac{4F_{44}}{h^{2}}, \qquad \qquad d_{4} = D_{55} - \frac{4F_{55}}{h^{2}} \qquad (A.33-A.36)$$

$$f_1 = A_{12} + A_{66}, \qquad \qquad f_2 = a_3 + a_9,$$

$$f_3 = -a_{10} - a_5$$
, $f_4 = d_2 - \frac{4d_4}{h^2} - \frac{a_2}{R_1} - \frac{a_3}{R_2}$,

$$\begin{split} f_5 &= d_1 - \frac{4d_3}{h^2} - \frac{a_3}{R_1} - \frac{a_7}{R_2}, & f_6 &= d_2 - \frac{4d_4}{h^2} + \frac{4b_{11}}{3h^2} + \frac{a_4}{R_1} + \frac{a_5}{R_2}, \\ f_7 &= d_1 - \frac{4d_3}{h^2} + \frac{4b_{20}}{3h^2} + \frac{a_5}{R_1} + \frac{a_8}{R_2}, & f_8 &= \frac{4E_{12}}{3h^2} + \frac{8E_{66}}{3h^2}, \\ f_9 &= \frac{4b_{12}}{3h^2}, & f_{10} &= \frac{4b_{13}}{3h^2} + \frac{8b_{18}}{3h^2}, \\ f_{11} &= \frac{4b_{14}}{3h^2}, & f_{12} &= -\frac{8b_{15}}{3h^2} - \frac{8b_{19}}{3h^2}, \end{split}$$

$$f_{13} = \frac{4b_{16}}{3h^2}, \qquad f_{14} = \frac{4b_{17}}{3h^2},$$

$$f_{15} = -\frac{a_1}{R_1} - \frac{a_6}{R_2} \qquad (A.37-A.52)$$

$$e_{1} = B_{12} + B_{66} - \frac{4E_{12}}{3h^{2}} - \frac{4E_{66}}{3h^{2}}, \qquad e_{2} = b_{1} - d_{2} + \frac{4d_{4}}{h^{2}} - \frac{4b_{11}}{3h^{2}}, \\ e_{3} = b_{2} - \frac{4b_{12}}{3h^{2}}, \qquad e_{4} = b_{3} + b_{9} - \frac{4b_{13}}{3h^{2}} - \frac{4b_{18}}{3h^{2}}, \\ e_{5} = b_{9} - \frac{4b_{18}}{3h^{2}}, \qquad e_{6} = -b_{4} + \frac{4b_{14}}{3h^{2}}, \\ e_{7} = -b_{5} - b_{10} + \frac{4b_{15}}{3h^{2}} + \frac{4b_{19}}{3h^{2}}, \qquad e_{8} = -d_{2} + \frac{4d_{4}}{h^{2}}, \\ e_{9} = (b_{6} - d_{1} + \frac{4d_{3}}{h^{2}} - \frac{4b_{16}}{3h^{2}}), \qquad e_{10} = -b_{8} + \frac{4b_{17}}{3h^{2}}, \\ e_{11} = -d_{1} + \frac{4d_{3}}{h^{2}}, \qquad e_{12} = b_{6} - d_{1} + \frac{4d_{3}}{h^{2}} - \frac{4b_{20}}{3h^{2}} \qquad (A.53-A.65)$$

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER	
Adı Soyadı	: Veysel ALANKAYA
Doğum Tarihi ve Yeri	: 1973 İstanbul
Yabancı Dili	: İngilizce
E-posta	: valankaya@hotmail.com

ÖĞRENİM DURUMU

Derece	Alan	Okul/Üniversite	Mezuniyet Yılı
Y. Lisans	Gemi İnşa Müh.	Yıldız Teknik Üniversitesi	2002
Lisans	Gemi İnşa Müh.	Deniz Harp Okulu	1995
Lise		Deniz Lisesi	1991

İŞ TECRÜBESİ

Yıl	Firma/Kurum	Görevi
2005-2011	Dz.K.K. İstanbul Tersanesi Komutanlığı	Dizayn Proje Ofisi
		MİLGEM Projesi Tekne
		Dahili Donatım Müh.
1995 – 2005	Deniz Kuvvetleri Komutanlığı	Muhtelif Yüzer Birliklerde
		Makine Subaylığı

YAYINLARI

Makale

1.	Alankaya, V., (2010), " Boundary Discontinuous Fourier Analysis of a
	Doubly-curved Cross-ply Laminated Composite Shell", Deniz Harp
	Okulu Deniz Bilimleri ve Mühendisliği Dergisi, 6(2):149-165

- Alankaya, V. ve Alarçin, F., (2011), "A Brief Survey on the Deflection Effects of Composite Characteristics", Deniz Harp Okulu Deniz Bilimleri ve Mühendisliği Dergisi, (Baskıda)
- Alankaya, V. ve Alarçin, F., (2011), "Yatlarda Kullanılan Kompozit Parampetler İçin Boyut Sınırlamalarının Yüksek Mertebeli Kayma Deformasyon Teorisi Yöntemiyle Belirlenmesi", SİGMA (Kabul edildi, YTUJENS-2011-125)
- Öktem, A.S., Alankaya, V. ve Soares, C.G., (2011), "Boundary-Discontinuous Fourier Analysis of Simply Supported Cross-ply Plates", Applied Mathematical Modelling, (Under Review)
- Alankaya, V. ve Alarçin, F., (2011), "Structural Effect of Geometry in Composite Sonar Domes", Ocean Engineering, (Under Review)

Bildiri

1.Alankaya, V. ve Alarçin, F., (2011), "The Future of PlatformIntegration Systems on Ships", MARTECH 2011, Lizbon, Portekiz.