T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

GNSS ÖLÇÜLERİ İLE GÜNEYBATI ANADOLU'DAKİ BLOK HAREKETLERİ VE GERİLİM ALANLARININ BELİRLENMESİ

İBRAHİM TİRYAKİOĞLU

DOKTORA TEZİ HARİTA MÜHENDİSLİĞİ ANABİLİM DALI GEOMATİK PROGRAMI

DANIŞMAN DOÇ. DR. V. ENGİN GÜLAL

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

GNSS ÖLÇÜLERİ İLE GÜNEYBATI ANADOLU'DAKİ (GBA) BLOK HAREKETLERİ VE GERİLİM ALANLARININ BELİRLENMESİ

İbrahim TİRYAKİOĞLU tarafından hazırlanan tez çalışması 24/02/2012 tarihinde aşağıdaki jüri tarafından Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Harita Mühendisliği Anabilim Dalı Geomatik Programında **DOKTORA TEZİ** olarak kabul edilmiştir.

Tez Danışmanı

Doç. Dr. V. Engin GÜLAL Yıldız Teknik Üniversitesi

Eş Danışman

Doç. Dr. Saffet ERDOĞAN Afyon Kocatepe Üniversitesi

Jüri Üyeleri

Doç. Dr. V. Engin GÜLAL Yıldız Teknik Üniversitesi

Prof. Dr. Ömer AYDIN Yıldız Teknik Üniversitesi

Prof. Dr. Reha M. ALKAN Hitit Üniversitesi

Prof. Dr. Halil ERKAYA Yıldız Teknik Üniversitesi Prof. Dr. Ali PINAR

İstanbul Üniversitesi

Bu çalışma, TÜBİTAK'ın 108Y298 numaralı projesi ile desteklenmiştir.

Tez çalışmamın süresince benden yardımını esirgemeyen, yol gösteren Tez Danışmanım Doç. Dr. Engin Gülal'a, Eş Danışmanın Doç. Dr. Saffet Erdoğan'a teşekkürlerimi sunarım. Tez çalışmam sırasında her konudaki destekleri için değerli bölüm hocalarıma minnettarlarımı sunarım. Yer Bilimleri açısından tüm sorularımı yanıtlayan Doç. Dr. Semih Ergintav'a, Dr. Rahşan Çakmak'a teşekkürlerimi bir borç bilirim. Geçmiş yıllarda bölgede yapmış oldukları ölçüleri benimle paylaşan Dr. Robert Reilinger, Dr. Simon McClusky ve MIT'ye (Massachussets Institute of Technology) teşekkür ederim. Çalışmayı 108Y298 nolu proje numarası ile destekleyen TÜBİTAK'a teşekkür ederim.

Hayatım boyunca bana inanan ve desteğini esirgemeyen Aile büyüklerime teşekkür ve şükranlarımı sunarım. Akademik çalışmalarımda büyük bir sabırla bana destek olan ailemize yeni katılan kızım Ela Naz'a ve tezim süresince oyun sürelerinde çaldığım zamanlarda gösterdiği hoş görüsüyle oğlum Mert'e ve canım eşim Deniz'e minnettarım ve bu tezi onlara ithaf ediyorum.

Ocak, 2012

İbrahim TİRYAKİOĞLU

İÇİNDEKİLER

Sayfa
SİMGE LİSTESİviii
KISALTMA LİSTESİix
ŞEKİL LİSTESİ ×
ÇİZELGE LİSTESİxii
ÖZETxiii
ABSTRACTxv
BÖLÜM 1
GİRİŞ1
1.1 Literatür Özeti 1
1.2 Tezin Amacı
1.3 Hipotez
BÖLÜM 2
TEKTONİK HAREKETLERİN BELİRLENMESİNDE GNSS TEKNOLOJİSİNİN KULLANILMASI 8
2.1 Küresel Konumlama Sistemleri9
2.1.1 GPS Teknolojisi9
2.1.2 GLONASS Teknolojisi10
2.1.3 Galileo Teknolojisi11
2.1.4 Diğer Konumlama Teknolojileri
2.2 GNSS Gözlemleri ve Konum Belirleme
2.2.1 GNSS Gozlemieri
2.5 GNSS Veriferinin Degenerarinesi
2.3.2 GNSS Verilerinin Değerlendirilmesinde Parametre Kestirimleri 19
2.4 GNSS Verilerinin Değerlendirilme Programları
2.4.1 GAMIT Yazılım Modülü
2.4.2 GLOBK Yazılım Modülü 26

YERKABUGI	J HAREKETLERI VE GUNEYBATI ANADOLUDAKI TEKTONIK YAPILAR	3
3.1	Levha Tektoniği	3
3.2	Depremlerin Oluşumu ve Faylanma Türleri	3
3.	2.1 Faylanma Türleri	3
3.3	Güneybatı Anadolu'daki Başlıca Tektonik Yapılar	3
3.	3.1 Fethiye-Burdur Fay Zonu	3
3. ว	3.2 Dinar ve Çivril Faylari	3 ר
3. ว	3.3 GOKOVA GRADENI	3 1
э. 2	2.5 Isparta Acisi (Rüklümü)	4 4 ۸
3. 3./	Güneyhəti Anədolu'nun Denremselliği	4 ۱
 ВОНІІМ <i>А</i>		4
GERÍLME AI	NALİZİ ve SONLU ELEMANLAR YÖNTEMİ	4
4.1	Gerilim ve Yamulma	4
4.	1.1 Gerilim	4
4.	1.2 Yamulma	4
4.2	Soniu Elemaniar Yontemi	5 -
4.3	Elastik Atim Teorisi	5
BÖLÜM 5		
GÜNEYBATI	ANADOLU HIZ ALANININ BELİRLENMESİ	5
GÜNEYBATI 5.1	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması	5
GÜNEYBATI 5.1 5.2	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı	5 5 5
GÜNEYBATI 5.1 5.2 5.3	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri	5 5 5 6
GÜNEYBATI 5.1 5.2 5.3 5.4	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının	5 5 6
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması	5 5 6 6
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5.	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin	5 5 6 6
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5.	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi	5 5 6 6
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. 5.	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi 4.2 GLOBK Modülünde Yapılan İşlem Adımları	5 5 6 6 6 7
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. Do 5. 5.	ANADOLU HIZ ALANININ BELİRLENMESİÇalışma Alanının TanıtılmasıGNSS AğıGNSS ÖlçüleriGNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarınınaplanması4.1GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerineğerlendirilmesi4.2GLOBK Modülünde Yapılan İşlem Adımları4.3Global ve Bölgesel GNSS Hızlarının Hesaplanması	5 5 6 6 6 7 8
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. Da 5. 5. BÖLÜM 6	Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi 4.2 GLOBK Modülünde Yapılan İşlem Adımları 4.3 Global ve Bölgesel GNSS Hızlarının Hesaplanması	5 5 6 6 7 8
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. Di 5. 5. BÖLÜM 6 GÜNEYBATI	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi 4.2 GLOBK Modülünde Yapılan İşlem Adımları 4.3 Global ve Bölgesel GNSS Hızlarının Hesaplanması	5 5 6 6 6 7 8
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. Da 5. 5. BÖLÜM 6 GÜNEYBATI 6.1	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi 4.2 GLOBK Modülünde Yapılan İşlem Adımları 4.3 Global ve Bölgesel GNSS Hızlarının Hesaplanması ANADOLU BLOK MODELİ VE GERİLME ALANININ BELİRLENMESİ Blok Modelin Oluşturulması	5 5 6 6 6 8 8 8
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. 5. BÖLÜM 6 GÜNEYBATI 6.1 6.1	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi 4.2 GLOBK Modülünde Yapılan İşlem Adımları 4.3 Global ve Bölgesel GNSS Hızlarının Hesaplanması ANADOLU BLOK MODELİ VE GERİLME ALANININ BELİRLENMESİ Blok Modelin Oluşturulması 1.1 Sabit Blok Teoremi ile Blok Modelin Belirlenmesi	5 5 6 6 6 8 8 8 8
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. Di 5. 5. BÖLÜM 6 GÜNEYBATI 6.1 6.1 6.	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi 4.2 GLOBK Modülünde Yapılan İşlem Adımları 4.3 Global ve Bölgesel GNSS Hızlarının Hesaplanması Blok Modelin Oluşturulması 1.1 Sabit Blok Teoremi ile Blok Modelin Belirlenmesi 1.2 Elastik Atım Teorisi ile Blok Modeli	5 5 6 6 6 8 8 8 8 8
GÜNEYBATI 5.1 5.2 5.3 5.4 Hesa 5. 5. BÖLÜM 6 GÜNEYBATI 6.1 6.1 6.2	ANADOLU HIZ ALANININ BELİRLENMESİ Çalışma Alanının Tanıtılması GNSS Ağı GNSS Ölçüleri GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının aplanması 4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin eğerlendirilmesi 4.2 GLOBK Modülünde Yapılan İşlem Adımları 4.3 Global ve Bölgesel GNSS Hızlarının Hesaplanması ANADOLU BLOK MODELİ VE GERİLME ALANININ BELİRLENMESİ Blok Modelin Oluşturulması 1.1 Sabit Blok Teoremi ile Blok Modelin Belirlenmesi 1.2 Elastik Atım Teorisi ile Blok Modeli Gerilme Alanının Belirlenmesi	5 5 6 6 6 7 8 8 8 8 8 8 9 10

BÖLÜM 7

SONUÇ VE ÖNERİLER	
KAYNAKLAR	

EK-A

TÜM GNS	S KAMPANYALARI GÜNLÜK TEKRARLILIK ÖRNEKLERİ	. 125
A-:	1 1997 Yılı Günlük Tekrarlılıkları	. 126
A-2	2 1998 Yılı Günlük Tekrarlılıkları	. 128
A-3	3 2000 Yılı Günlük Tekrarlılıkları	. 130
A-4	4 2002 Yılı Günlük Tekrarlılıkları	. 132
A-!	5 2003Yılı Günlük Tekrarlılıkları	. 134
A-(6 2004/1 Yılı Günlük Tekrarlılıkları	. 136
A-	7 2004/2 Yılı Günlük Tekrarlılıkları	. 138
A-a	8 2005 Yılı Günlük Tekrarlılıkları	. 140
A-9	9 2006 Yılı Günlük Tekrarlılıkları	. 142
A-:	10 2009 Yılı Günlük Tekrarlılıkları	. 144
A -:	11 2010 Yılı Günlük Tekrarlılıkları	. 146
EK-B		
ZAMAN SI	ERİLERİ ÖRNEKLERİ (YILLIK TEKRARLILIK)	. 148

EK-C

ITRF05 GÖRE HESAPLANAN HIZ ALANI	154
ÖZGEÇMİŞ	155

SIMGE LISTESI

- *A* Katsayılar matrisi
- A₁ İyonosferik katsayıları
- *B* Birim deformasyon ile düğüm noktalarının yer değiştirmeleri
- c Işık hızı
- D Gerilme-birim deformasyon ilişkisi
- $d\rho$ Standart troposferik modeller
- *d*_{*u*} Deformasyon vektörü
- *E* Simetrik gerinim tensörü
- *f* Frekans
- *K* Stiffness-rijitlik-sertlik-diregenlik matrisi
- L Gözlem vektörü
- μ Yerin gravite etkisi
- N Faz belirsizliği
- N_i^k Uydu ve alıcıya ilişkin faz belirsizlikleri
- P Ağırlık matrisi
- *R_E* Yerin yarıçapı
- \hat{r}_i Dünya ve ay (veya güneş) merkezi arası uzaklık
- t_r, t_e Sinyalin uydudan ayrılış zamanını ve alıcıya geliş zamanı
- Δt Alici saat hatasi
- v_k Artık hata
- *X* Bilinmeyenler vektörü
- $\delta t_r, \delta t_k$ Alıcı ve uydu saat hataları
- σ_c Kod ölçülerinin standart sapması
- $\sigma_{\scriptscriptstyle p}$ Faz ölçülerinin standart sapması
- ρ_i^k Uydu alıcı arası geometrik mesafe
- $\delta_{\scriptscriptstyle tide}, \delta_{\scriptscriptstyle rel}$ Gelgit ve rölativistik etkiyi
- λ Dalga boyu
- *τ* Kayma Gerilimi
- *v* Poisson oranı

KISALTMA LİSTESİ

	Amerika Birlesik Devletleri
CORS	Sürekli Gözlem Vanan Referans İstasyonu
FKK	En Küçük Kareler
FAPS	Farth Atmospheric and Planetary Sciences
ERF7	Fethive Burdur Fay Zonu
FFM	Finite Element Method
GAMIT	GPS Analysis Massachussets Institute of Technology
GLOBK	Global Kalman
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
GST	Galileo System Time
GTRF	Galileo Terrestrial Reference Frame
IERS	International Earth Rotation Service
IGS	International GNSS Service
ITRF	International Terrestrial Reference Frame
JPL	Jet Propulsion Laboratory
KAF	Kuzey Anadolu Fayı
MIT	Massachusetts Institute of Technology
NETS	National Etalon Time Scale
NRMS	Normalized Root Mean Square
NFS	National Science Foundation
PPB	Parts Per Bilion
PRN	Pseudo Random Number
QZSS	Quasi-Zenith Satellites System
RINEX	Receiver Independent Exchage
SEM	Sonlu Elemanlar Metodu
SOPAC	Scripps Orbit and Permanent Array Center
TUSAGA	Türkiye Ulusal Sabit GPS Ağı
USNO	U.S. Naval Observatory
UTC	Universal Time Coordinated
VLBI	Very Long Baseline Interfrometry
WGS	World Geodetic System
WRMS	Weighted Root Mean Square

ŞEKİL LİSTESİ

Sayfa

Şekil 2. 1	GNSS verilerinin değerlendirilmesinde genel iş akışı	16
Şekil 2. 2	GAMIT işlem akış şeması	25
Şekil 3. 1	Yerkürenin katmanlı iç yapısı	31
Şekil 3. 2	Dünyamızın tektonik levha yapısı	32
Şekil 3. 3	Levha sınırı tipleri	34
Şekil 3. 4	Eğim atımlı normal faylar (A) ve eğim atımlı ters fayların (B) gösterimi	35
Şekil 3. 5	Doğrultu atımlı fay gösterimi (sağ yönlü)	35
Şekil 3. 6	Yanal atımlı fay gösterimi	36
Şekil 3. 7	Güneybatı Anadolu ve çevresindeki önemli tektonik yapılar	37
Şekil 3. 8	Dinar fayı ve çevresi	39
Şekil 3. 9	Gökova Grabeni	40
Şekil 3. 10	Knidos Fayı ve çevresi	41
Şekil 3. 11	Isparta Açısı (Büklümü) çevresi faylar	42
Şekil 3. 12	Güneybatı Anadolu'da büyüklüğü 4 den büyük, son 50 yıldır olan	
	depremlerin yıllara göre dağılımı	43
Şekil 3. 13	Ülkemizde son yüzyılda meydana gelen 5 Mw'den büyük depremler	44
Şekil 4. 1	dA alan elemanı üzerine etkiyen kuvvetler	46
Şekil 4. 2	Bir yüzeye etki eden gerilimin dik bileşenleri	47
Şekil 4. 3	Birim boy kısalması, basınç gerinimi	49
Şekil 4. 4	Birim boy uzaması, çekme gerinimi	49
Şekil 4. 5	Yamulma elipsi	52
Şekil 4. 6	Sonlu elemanlar sisteminde tipik bir üçgen eleman	55
Şekil 4. 7	Elastik atım teorisi	57
Şekil 4. 8	Elastik atım teorisi grafik anlatımı	57
Şekil 4. 9	Hızların kesit düzlemine indirgenmesi	58
Şekil 5. 1	Çalışma bölgesi	60
Şekil 5. 2	Çalışma için kurulan GNSS ağı	62
Şekil 5. 3	Zincirli tripod (A), pilye (B), alet sehpası (C)	66
Şekil 5. 4	Koordinat farklarının incelenmesi	68
Şekil 5. 5	GAMIT Klasör yapısı	69
Şekil 5. 6	GAMIT Klasör yapısı (process sonrası)	72
Şekil 5. 7	Autcln.sum.post dosyası Allan SD@100 ve Range rms değerleri	75
Şekil 5. 8	CLTK ve BZKT noktaları 2009 yılı günlük tekrarlılık grafikleri	76
Şekil 5. 9	TUSAGA-Aktif istasyonları yatay wrms değerleri	78

Şekil	5.	10	AKSI ve USAK (TUSAGA-Aktif) noktaları yıllık tekrarlılık grafikleri	79
Şekil	5.	11	SLVR ve SRKK noktaları yıllık tekrarlılık grafikleri	80
Şekil	5.	12	Avrasya plakası sabit alınarak elde edilen hızlar	83
Şekil	5.	13	ISRT noktasının koodinat değişmi	83
Şekil	6.	1	[1] de kullanılan blok model ve GNSS ölçü noktaları	86
Şekil	6.	2	YUNK, CIHA, KAMN, KNYA noktaları sabit alınarak hesaplanan bağıl hızlar.	86
Şekil	6.	3	SRKK, AKSU, BEYS, KAYA, SARV, ANMU noktaları sabit alınarak hesaplanar	۱
			bağıl hızlar	88
Şekil	6.	4	KAMN noktasına ait zaman serisi	89
Şekil	6.	5	ISRT, ISPT, CLTK, YSFC, CAVD, SIRA noktaları sabit alınarak hesaplanan bağ	ģil
			hızlar	90
Şekil	6.	6	Antalya bölgesindeki önemli jeolojik oluşumlar	91
Şekil	6.	7	Isparta Açısı gösterimi	91
Şekil	6.	8	KNID, MARM, DATC noktaları sabit alınarak hesaplanan bağıl hızlar	93
Şekil	6.	9	IZMI, SALH, AYD1 noktaları sabit alınarak hesaplanan bağıl hızlar	93
Şekil	6.	10	DIDI, CINE, CAMK, MULA, MUGL noktaları sabit alınarak hesaplanan bağıl	
			hızlar	94
Şekil	6.	11	CESM noktasına ait zaman serisi	95
Şekil	6.	12	Sabit blok teorimi ile Güneybatı Anadolu'nun blok modeli	96
Şekil	6.	13	Güneybatı Anadolu'nun elastik kabuk derinliği haritası	96
Şekil	6.	14	Çalışma bölgesinde alınan kesitlerin yaklaşık yerleri	98
Şekil	6.	15	Çalışma bölgesinde alınan Kesit 1'e ait elastik atım modeli	99
Şekil	6.	16	Çalışma bölgesinde alınan Kesit 2'ye ait elastik atım teorisi	99
Şekil	6.	17	Çalışma bölgesinde alınan Kesit 3'e ait elastik atım teorisi1	.00
Şekil	6.	18	Çalışma bölgesinde alınan Kesit 4'e ait elastik atım teorisi1	.00
Şekil	6.	19	Çalışma bölgesinde alınan Kesit 5'e ait elastik atım teorisi1	.01
Şekil	6.	20	Çalışma bölgesinde alınan Kesit 6'ya ait elastik atım teorisi 1	.01
Şekil	6.	21	Güneybatı Anadolu yamulma alanı 1	.02
Şekil	6.	22	Güneybatı Anadolu anlamlı yamulma alanı1	.03
Şekil	6.	23	Bölgede meydana gelen deprem çözümleri 1	.04
Şekil	6.	24	Sonlu elemanlar yöntemiyle elde edilen hız alanı1	.07
Şekil	6.	25	Y yönünde elde edilen asal gerilme alanları 1	.07
Şekil	6.	26	X yönünde elde edilen asal gerilme (stres) alanları1	.08
Şekil	6.	27	XY yönünde (kayma-makaslama) elde edilen asal gerilme alanları 1	.08

ÇİZELGE LİSTESİ

Sayfa

Çizelge 5.1	Geçmiş yıllarda yapılan GNSS ölçüleri ve yılları	61
Çizelge 5. 2	GATGA noktaları	63
Çizelge 5.3	Kurulan GNSS ağındaki CORS-TR noktaları	64
Çizelge 5.4	GNSS ekipmanları	65
Çizelge 5. 5	GNSS ölçü günleri	67
Çizelge 5.6	Tables klasörü girdileri	70
Çizelge 5.7	Değerlendirme için kullanılan IGS istasyonları	71
Çizelge 5.8	GAMIT değerlendirme stratejisi	72
Çizelge 5.9	GAMIT gün çözümleri nrms değerleri	74
Çizelge 5.10	Stabilizasyonunda kullanılan IGS istasyonları	82
Çizelge 5.11	Avrasya plakası sabit alınarak hesaplanan hız değerleri	

GNSS ÖLÇÜLERİ İLE GÜNEYBATI ANADOLU'DAKİ (GBA) BLOK HAREKETLERİ VE GERİLİM ALANLARININ BELİRLENMESİ

İbrahim TİRYAKİOĞLU

Harita Mühendisliği Anabilim Dalı Doktora Tezi

Tez Danışmanı: Doç. Dr. V. Engin GÜLAL Eş Danışman: Doç. Dr. Saffet ERDOĞAN

Kabuk deformasyonları belirleme çalışmaları çok eski yıllardan günümüze kadar farklı disiplinlerde çalışan bilim adamları tarafından yürütülmüştür. Meydana gelen kabuk deformasyonlarının ürettiği en önemli sonuçlardan biride depremdir. Depremlerin önceden tahmini için yapılan çalışmalar son yüzyılda artarak devam etmiştir. Günümüzde deprem üreten fayların çevresine kurulan deformasyon ağlarının izlenmesi ile depremin zamanı net bir şekilde belirlenemese de faylar üzerindeki gerilmeler ile olası deprem yerleri tahmin edilebilmektedir. Özellikle GNSS (Global Navigation Satellite System) ölçme tekniğinin gelişmesi sadece jeodezi için değil tüm yer bilimleri için önemli bir kazanç olmuştur. 1980'li yıllardan itibaren GNSS, klasik ölçme tekniklerini geride bırakarak, geniş kullanım alanı bulmuştur.

Bu çalışmada Güneybatı Anadolu Bölgesi'ndeki blok hareketleri ve gerilim alanlarını belirlemeye yönelik GNSS ölçümleri yapılmıştır. Bölgeye kurulan 57 noktalı Güneybatı Anadolu Tektonik GNSS Ağı (GATGA) ölçüleri GAMIT/GLOBK yazılım takımıyla değerlendirilerek bölgenin hız alanı elde edilmiştir. Ayrıca GRID_STRAIN ve ANSYS yazılımları kullanılarak Güneybatı Anadolu'nun yamulma (strain) ve gerilme (stres) alanları elde edilmiştir. Daha önce [1] ve [2] de belirlenen blok modeli üzerinde iyileştirmeler yapılmıştır.

Yapılan çalışmalar sonucunda Anadolu bloğu üzerinde bulunan noktaların Avrasya bloğuna göre 10-15 mm/yıl (± 0.5 mm/yıl) hız ile hareket ettiği görülürken, bu hız değeri Ege açılma bloğunda 26-29 mm/yıl (± 0.5 mm/yıl), Marmaris bloğu üzerinde ise 31-34 mm/yıl (± 0.5 mm/yıl) kadar ulaştığı görülmektedir. Yine Güneybatı Anadolu'nun gerilme analizi sonunda Fethiye-Burdur Fay Zonu çevresinde anlamlı yamulma ve gerilmeler tespit edilmiştir.

Bu çalışmanın en önemli sonuçlarından biri ise bölgenin blok modelin iyileştirilmesidir. Özellikle değişen blok modelin sınırları ile birlikte Isparta Açısının batı ve doğu kanatlarının günümüz tektoniği açısında yorumlanmış ve sonuçlar irdelenmiştir.

Anahtar Kelimeler: Kabuk deformasyonu, Güneybatı Anadolu, GNSS, blok model, yamulma ve gerilme analizi, sonlu elemanlar yöntemi,

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ABSTRACT

IDENTIFICATION OF THE BLOCK MOVEMENTS AND STRESS ZONES IN SOUTHWESTERN ANATOLIA WITH GNSS MEASUREMENTS

İbrahim TİRYAKİOĞLU

Department of Geomatic Engineering

PhD. Thesis

Advisor: Assoc. Doç. Dr.V. Engin GÜLAL Co-Advisor: Doç. Dr.Saffet ERDOĞAN

Crustal deformation monitoring studies have been one of the most popular topic for the researchers from various disciplines for long time. One of the major natural events due to the crustal deformation are the earthquakes. The studies on the prediction of the earthquakes have been increased during the last century. It is possible to predict the location of the earthquakes by computing the stress concentration on the seismic faults if those are instrumented with the deformation observation equipments but still lacks of predicting the time of the occurence. The development of Global Navigation Satellite System (GNSS) measurement systems had been in advantage of not only the geodezy but also earth related sciences. Starting from 1980's, GNSS has been incrementally favored instead of the conventional measurement techniques.

In this study, a series of GNSS observations were conducted with the aim of determining the block movements and stress concentrations within SouthWest Anatolia. After establishing a tectonic GNSS network (SWAGNET) of 57 stations, the observations were processed in GAMIT/GLOBK to compute the velocity field of the area. In addition to that, the strain and stress concentrations were also computed by using GRID_STRAIN and ANSYS softwares.

The computed results display that the stations on the Anatolian block move at a rate of 10-15±0.5mm per year relative to Eurasia. This movement locally reaches to 26-29±0.5mm per year and 31-34±0.5mm on Aegean expansion and Marmaris blocks,

respectively. Besides these results, the results of the stress analysis on SouthWest Anatolia indicates the existence of consistent strains and, consequently, stresses in the vicinity of Fethiye-Burdur Fault Zone.

One of the major conclusion of this study is the recommendation of the improvements on the SouthWest Anatolia Block model already available in the literature. Particularly, having revised block boundaries the improved block model, the east and west sides of Isparta angle are thorougly investigated and examined with respect to the present tectonic knowledge.

Key words: Crust deformation, Souhgtwest Anatolia, block model, GNSS, strain and stress analisys, finite elements method

YILDIZ TECHNICAL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

BÖLÜM 1

GİRİŞ

1.1 Literatür Özeti

Güneybatı Anadolu birçok tektonik oluşumu barındıran karmaşık bir yapıya sahiptir. Bu karmaşık yapı nedeniyle yerli ve yabancı birçok yerbilimcinin jeodezik, jeolojik ve jeofiziksel calışmalarına konu olmuştur. Güneybatı Anadolu'daki ilk jeodezik GNSS ölçüleri [3] de yayınlanan Ege denizi ve Batı Anadolu'nun hız ve gerilim alanlarını bulmak için 1988-1996 yılları arasında yapılan ölçülerdir. Çalışma, Batı Anadolu'da yapılmış ve geniş kapsamlı GNSS ölçüleri olması nedeniyle dikkat çekmiştir. Birçok araştırmacı bu çalışmadan elde edilen GNSS hız verilerini kendi çalışmalarında kullanmıştır. Bu çalışma daha sonra belirtilecek olan [4] de Doğu Akdeniz'i kapsayan calışmalarının sonuçlarını göstermektedir. Çalışmada elde edilen hız vektörleri Avrasya plakası sabit alınarak elde edilmiştir. Çalışmada Batı Anadolu ve Ege'yi kapsayan yamulma (strain) analizi yapılmıştır. Yamulma analiz yöntemi olarak yazar yine [5] de belirttiği yöntemi kullanılmıştır. Çalışmada sonuç olarak Marmara Denizi'nde Kuzey Ege'ye doğru 170 nanostrain büyüklüğünde sağ yönlü makaslama gerilmeleri tespit edilmiştir. Ege Denizi ve çevresinde KKD-GGB yönlü 150 nanostrain açılmalar Batı Anadolu'da ise 95 nanostrain büyüklüğünde K-G yönlü açılmalar tespit edilmiştir. Ayrıca bölgenin depremselliği incelenerek gerilme analizlerinin yorumlanmasına destek olmuştur.

Bölgedeki en kapsamlı çalışma, diğer birçok çalışmaya altık olan [4] çalışmasıdır. [4] de Doğu Akdeniz olarak tanımlanan Kafkaslardan Adriyatik Denizi'ne, Avrasya plakasından Afrika plakasına kadar olan bölgede 189 noktada 1988-1997 yılları arasında GNSS ölçmeleri yapmışlardır. 189 noktanın hızları Avrasya plakası sabit olarak alınarak GAMIT/GLOBK yazılım takımıyla hesaplanmıştır. Yaptıkları kapsamlı ölçülerle her bir plakaya ait Euler Kutup noktaları bu çalışma ile belirlenmiştir. Değerlendirmede Avrasya ve Afrika plakalarına ait Euler Kutup vektörlerinin belirlerken 23 IGS istasyonu, 3 sürekli gözlem yapan GNSS istasyonu kullanılmıştır. Bu çalışmada Kafkasya Dağları ile Adriyatik Denizi yönlü hareketle (D-B yönlü hareket), K-G yönlü olan Avrasya plakası ile Afrika plakasının hareketleri olan, küresel kabuk hareketleri incelenmiştir. Bu çalışmalar Arap plakasının yıllık 18 mm/yıl hareket ile Avrupa plakasına yaklaştığını göstermiştir. Ayrıca Doğu Türkiye ve Kuzey Mısır'da yapılan deformasyon analizlerinin değerlendirilmesine göre oluşturulan model vektörüne göre meydana gelen hareket, Anadolu ve Avrasya plakaları için Euler Kutup noktası olarak [6], [7] ve [8] de hesaplamış oldukları değerlerden farklı olarak 30.7°± 0.8°K, 32.6°± 0.4°D, rotasyon miktarını ise 1.2°± 0.1°/Myıl hesaplanmıştır. Bu bulgular Türkiye'nin deformasyon hareketinin saat yönünün tersine göre ve son derece tutarlı bir hareket özelliği göstermektedir. Ege kıyılarına gelince bu hareket, plakanın göreli olarak Afrika plakasının altına doğru kaydığını göstermektedir. [4] de kullanılan KASO, SIRA, MARM gibi noktaların bu tez çalışmasında kullanılmış olması çalışmanın önemini daha da arttırmaktadır.

[9] da Afrika, Arap ve Avrasya plakalarında 1992-2002 yılları arasında GNSS ölçüleri yapılmıştır. GNSS ölçüleri plakalar üzerinde bulunan sabit ve tekrarlı GNSS istasyonlarından ölçüler yaparak elde edilmiştir. Elde edilen GNSS verileri GAMIT/GLOBK yazılım takımlarıyla değerlendirmiş ve bölgeye ait güncel hız alanları elde edilmiştir. Çalışma [4] ün devamı niteliğinde olup daha önce elde edilen hız alanlarının güncellenmesi niteliğindedir.

[1] çalışmasında, 1988-2005 yılları arasında bölgeyi kapsayan GNSS ölçüleri yapılmıştır. Çalışma, [4] de yapılan çalışmanın güncellenmiş halidir. Çalışmada 440 istasyonda GNSS ölçüsü yapılmıştır. Avrasya plakası sabit alabilmek için bölgedeki stabil 32 IGS istasyonu seçilmiş ve ITRF00 da hız elde edilmiştir. Bu çalışmanın en önemli sonuçlarından birisi Arap Yarımadası, İran'ın büyük bölümü, Kafkaslar ve Anadolu'nun batı kısmı 20-30 mm/yıl hızla hareket ettiğinin belirtilmesidir. Yine bu çalışma ile Avrasya, Mısır ve Somali plakalarında ise 5 mm/yıl gibi küçük bir hızla hareket ettiği ve

2

plakalar üzerinde bu dengesiz hareketin sonucu olarak bölgeye büyük ölçekte bakıldığında saat ibresinin tersi yönünde bir dönme hareketi yaptığı gösterilmiştir. Bu dönme hareketi incelendiğinde, hareketin Isparta Büklümü civarında arttığı ve Helenik yay üzerinden devam ettiği görülmüştür. [4] de belirtilen Euler Kutup noktasına göre bölgedeki artık hızlar hesaplanmıştır. Elde edilen artık hızlara göre Arap Yarımadası, Anadolu Bloğu, Afrika plakasının blok dağılımları çizmişler ve bu blokların yıllık hareketlerini hesaplamışlardır. [10] da yine aynı yazarlar Anadolu'nun da içinde bulunan Akdeniz ve Ortadoğu'nun tektonik yapısını incelemişlerdir.

[11] ve [12] de Fethiye-Burdur Fay Zonu çevresine kurulan 16 noktalı GNSS ağında 2003-2006 yılları arasında ölçüler yapılmıştır. Ölçüler GAMIT/GLOBK yazılım takımıyla değerlendirilmiştir. Avrasya plakası sabit için [4] de belirtilen IGS istasyonları ile birlikte farklı stabilizasyon seçenekleri denenmiştir. Aynı zamanda elde edilen hız alanı kullanılarak bölgeye ilişkin gerilme analizi yapılmıştır. Bu çalışmaların en önemli noktalarından biriside [1] da belirtilen blok sınırlarının bu çalışmadaki sonuçlarla uyum içinde olmayışıdır.

[13] de İzmir Körfezi'ni de içine alan Batı Anadolu da 1992-2004 yılları arasında GNSS ölçüleri yapılmıştır. Batı Anadolu da kurulan sabit GNSS istasyonlarının 2001-2004 yılları arasındaki verileri kullanılmıştır. Noktaların hızları ITRF2000 de, Anadolu ve Avrasya plakaları sabit kabul edilerek hesaplanmıştır. Elde edilen hızlardan bölgeye ilişkin gerilme alanları hesaplanmıştır. Gerilme alanlarını hesaplamak için çalışma bölgesi 8'x8' gridlere bölünmüştür. Her grid köşe noktasında [14] de belirtilen En Küçük Kareler (EKK) kestirimli gerilme analizleri yapılmıştır. Gerilme analizleri sonucunda Karaburun Koyu civarında saat ibresi yönünde bir rotasyon ile genişlemeler tespit edilmiştir. Bölgede İzmir körfezinin yakınlarında bulunan Tuzla fayı civarında maksimum gerilmeler elde edilmiştir.

[15] de sabit GNSS istasyonları ile Anadolu'nun kinematiğini incelemişlerdir. 1999 yılına kurulan Türkiye Ulusal GNSS Sabit Ağı (TUSAGA) ile Marmara bölgesinde kurulan Marmara Bölgesi Sürekli GNSS Ağı (MAGNET) verileri değerlendirilmiştir. Bu ağlardan alınan verilen ilk aşamada ITRF96 referans sisteminde yatay hız değerleri hesaplanmış ve 17 Ağustos 1999 İzmit depreminden sonra bunlar bölgenin inter-sismik hız alanının

3

tanımlanmasında kullanılmıştır. Analizler, 1999 yılının 230 uncu (18 Ağustos) gününden itibaren başlatılmış olup, İzmit depreminden sonra 2001 yılının sonuna kadar 900 günü kapsamaktadır. Yapılan değerlendirmelerde MAGNET ve TUSAGA ağlarında bulunan noktaların pre-sismik (fay üzerindeki gerilmenin kritik düzeye geldiği dönem) ve intersismik dönemler (fay üzerinde hareketin olmadığı, ancak elastik yamulma enerjisinin biriktiği dönem) arasında hızlar arasında küçük farklar olduğunu görmüşlerdir.

[16] da Batı Anadolu da olan depremleri (sismoteknik) ve [17] de elde edilen GNSS hızlarını kullanılarak gerilme analizi yapılmıştır. Çalışmada Batı Anadolu 25 alt bölgeye bölünerek, bu alt bölgelerde olan 3 Mw ve üzeri depremleri kendi aralarında sınıflandırılmıştır. [18] de öngördüğü fonksiyonu kullanılarak bölgede bir gerilme analizi yapmış ve GNSS hızlarından elde ettiği gerilme analizi ile karşılaştırmalar yapmışlardır.

[19] da yaptıkları çalışmada KAF boyunca uzun dönem yer değiştirmeleri üzerinde plaka hareketlerini araştırmışlardır. Isı akışı ve jeodezik veriler, 3B Sonlu Elemanlar Metodu (SEM) kodu (ADEL1) ile kurulan modele girilmiştir. Kurulan modelden elde edilen sonuçlar [4] de verilen sonuçlarla karşılaştırmışlardır. Kurulan modelde KAF yer değiştirmeleri 17 mm/yıl (viskocity 10¹⁹ Pa ve 0.05 sürtünme katsayısı) elde edilmiştir. Marmara ve Ege bölgesinde GNSS ölçüleri ile elde edilen hız alanları ile modelden elde edilen hız alanları arasında zayıf bir ilişki olduğu görülmüştür. Bu zayıf ilişkinin litosfer için kurulan modelin çok basit bir model olmasından kaynaklandığı düşünülmektedir. Ancak kurulan modelin İç Anadolu bölgesinde yapılan GNSS ölçülerinde elde edilen hız alanları ile çok iyi bir uyum sağladığı görülmüştür. Ayrıca bazı araştırmacılar Doğu Akdeniz'in karmaşık kinematiğini inceleme altına almışlar ve buradaki kabuğun akış parametrelerini geliştirmek için SEM kullanmışlardır. Kurdukları model yaklaşık 1800 km uzunluğunda 900 km genişliğindedir. Model batıda Mora Yarımadası'ndan doğuda Kafkaslara, kuzeyde Karadeniz'den güneyde Kıbrıs Adası'na kadar uzanmaktadır. Kabuk kalınlığı 30 km (ρ c: 2800 kg/m³) alınmıştır. Akışkan asthenosfer ile kabuk arasındaki ilişkiyi göstermek için hidrostatik güçler (pa: 3000 kg/m³) olarak alınmıştır. Kurulan modelin sınırlarında GNSS ölçülerinde [4] de elde edilen hızlar kullanılmıştır.

[20] de İran ve Kuzey Umman'da Alp-Himalaya dağ bölgesindeki yer değiştirmeyi ölçmek için 27 GNSS istasyonu tesis edilmiştir. Çalışmada 1999 Eylül ve 2001 Ekim'inde

yapılan iki araştırmanın sonuçları sunulmuş ve yorumlanmıştır. Umman'daki GNSS istasyonları, Arap plakasının Avrasya'ya göre kuzeye hareketinin NUVEL-1A tahminlerinden daha yavaş olduğunu göstermektedir. Bu ise 27.9°±0.5°N, 19.5°± 1.4°E 0.41°±0.1° M/yıl'lık bir GNSS Arap-Avrasya vektörü tanımlamaktadır. Bu çalışma ile deformasyonun 2 mm/yıl dan küçük olduğu görülmüştür.

Literatürde yapılan SEM çalışmalarına bakıldığında [21] de Anadolu Avrasya Arap Afrika plakalarını aralarındaki etkileşimini modellemeye yönelik 2 boyutlu bir yüzey gerilimli Sonlu Elemanlar şeması kurmuşlardır.

Diğer bir sonlu elemanlar uygulaması da [22] de Arabistan'ın 30 mm/yıl hızla kuzey yönlü hareketi ve Helenik arkta 40 MPa lık bir vakum gücünün bölgedeki stres ve hız alanların oluşması için gerekliğine gösteren model kurmuştur.

[23] de Güney İsveç'in Skane boyunca uzanan Tornguist bölgesi, fay yapısını GNSS gözlemleriyle incelemişlerdir. Bölgede kabuk hareketlerini izleyebilir GNSS ağı kurulmuştu. Sonuçlar, bölgedeki maksimum makaslama gerinimini ve açılmayı, aktif fay bölgesinde tam olarak yerini ve kesişimlerini göstermiştir. Ancak Tornguist bölgesindeki son kabuk hareketlerini tamamen keşfedebilmek için jeofiziksel ve jeolojik bilgilerle birlikte ağda daha fazla gözlemlere ihtiyaç olduğunu görmüşlerdir. Bu çalışmada 1989 yılında bölge üzerine GNSS deformasyon ağı kurulduğu ve bu ağda 1989, 1990, 1992, 1996, 1998 epoklarına dayalı gözlem yapıldığı belirtilmiştir. Bu ağ İsveç sabit GNSS ağında 2 noktayı da (Onsala Hassleholm) kapsamaktadır.

[24] de Hooke kanunları uygulanarak yerkabuğundaki jeodinamik gerilim ve yatay gerinimin ilişkisini açıklamaya çalışılmıştır. Iglaninia nükleer tesisi arazisinde bir çalışma yapılmıştır. Çalışma ile Iglaninia nükleer tesisi bölgesinin tektonik yapısı, tektonik gerilim ile yatay gerinimler Arasındaki ilişki ortaya konulmuş ve pratikte Hooke kanunlarının uygulanabileceği ortaya konmuştur. Iglaninia nukleer tesisi bölgesinde yer kabuğunun yatay hareketlerinin ölçülmesi için 2.5 metre derinliğinde zorunlu merkezlendirmeli 10 özel yer poligon tesis edilmiştir. Jeodinamik poligonlardaki ölçümler 1998 ve 1999 Eylül ayında yapılmıştır.

5

[25] de tüm Akdeniz'de yapılan deformasyon çalışmalarında Avrasya, Afrika Arabistan çarpışmalarının ve Ege Denizinde ki dalma batmaların bölgedeki var olan deformasyonların sorumlu olacağı önemli tektonik olayların olduğunu görmüşlerdir.

[26] da Doğu Akdeniz bölgesinde depremsellik verilerini kullanarak sonlu elemanlar yöntemi kullanarak gerilme analizleri yapmışlardır. Bu amaçla çalışma bölgesini daha önce GNSS ölçüleri yapılan çalışmalara göre 64 alt bölgeye ayırmışlardır. SEM kullanırken sınır şartı olarak elde edilen hızların sabit kabul edildiği plakaların sınırlarını kabul etmiştir. GNSS hızları sonlu elamanların serbestlik derecesini belirleyeceği için sonlu elemanlar çözümü 2 boyutlu olarak ele alınmıştır. Bölgenin tabaka yapısı elastik olarak kabul edilmiştir.

1.2 Tezin Amacı

Tezin temel amacı, Güneybatı Anadolu'ya ait güncel hız verilerini tespit etmek ve bölgedeki blok modelini oluşturmaktır. Bu kapsam da yapılan GNSS ölçüleri ile bölgede bulunan faylar üzerindeki gerilim-yamulma miktarları ve yönleri hesaplanmıştır.

Ayrıca bölge içerisinde meydana gelmiş depremlerin kaynak parametreleri çözümü ile GNSS çözümlerinden elde edilen yamulma verileri karşılaştırılarak bölgenin tektoniğinin belirlenmesinde birleşik çözüm olarak kullanılmıştır.

Bu detaylı çalışma ile bölgede hala tartışmalı olan birçok tektonik olayında aydınlanması beklenmektedir.

1.3 Hipotez

Bölgede daha önce yapılan çalışmalar yalnız Güneybatı Anadolu'yu kapsamaktan çok daha büyük ölçekte bölgeler üzerinde yoğunlaşmıştır. Bu nedenle 10-15 GNSS gözlem noktaları ile blok model çalışmaları yapılmıştır. [1] bölgedeki ilk blok modeli ortaya koymuştur. [1] ve [11] de elde edilen blok sınırlarının farklı olduğunu belirtmiş ancak sınırları net olarak belirtmemiştir. Her iki çalışmada da modelleme için kullandıkları ve GNSS ölçüsü yaptıkları nokta sayısı çok fazla değildir. Yine [2] de daha önceki her iki çalışmadan farklı bir blok modeli ortaya sürmüştür. Bu çalışma ile Güneybatı Anadolu da kapsamlı GNSS ölçüsü yapılmış ve elde edilen blok modelin literatürde belirtilen blok modellerden farklı olduğu hipotezi savunulmuştur.

BÖLÜM 2

TEKTONİK HAREKETLERİN BELİRLENMESİNDE GNSS TEKNOLOJİSİNİN KULLANILMASI

Teknolojideki gelişmelere paralel olarak düşen maliyet oranları ile GNSS'in kullanım alanları genişlemiştir. Özellikle tektonik hareketlerin belirlenmesinde GNSS kullanımı son derece yaygınlaşmıştır. Bunun en güzel örnekleri de 1990'li yılların başlarında yapılan çalışmalarda 10-15 noktalı kurulan tektonik ağların yerini, günümüzde 50-60 noktalı ve sürekli gözlem yapan ağların çalışmalarda yer almasıdır [27], [28], [29].

Tektonik hareketlerinin incelenmesi sayesinde bugün, büyük depremlerin birçoğunun nerelerde olacağı tahmin edilmektedir. Tektonik hareketler yüzünden litosfer parçalarında deformasyon meydana gelmektedir. Bu deformasyon sonucunda levha ve fayların iki taraflarındaki noktalar birbirine göre hareket etmektedir. Bu hareketin miktarı yıllık 10 cm'ye kadar çıkabilmektedir [30]. Bu hareket miktarları VLBI (Very Long Base Interfrometry), SLR (Satellite Long Range) ve GNSS teknikleri kullanılarak tespit edilebilmektedir. GNSS tekniği yöntemi VLBI ve SLR yöntemlerine göre hem ekonomik yönden daha uygun, hem de her türlü hava koşullarında ve gece-gündüz kullanım olanağı sağlaması ve kullanıcı dostu olması nedeniyle daha çok tercih edilmektedir.

Uzay jeodezisi, levhaların incelenmesi üzerinde önemli bir rol oynamaktadır. GNSS teknolojisi tektonik hareketlerin zamana bağımlı hareketlerini anlama ve deprem riskini kestirme açısından oldukça önemli bir çalışma olmaktadır. GNSS tekniği yöntemi ile depremlere neden olan aktif kırık sistemleri boyunca deprem öncesinde, deprem sırasında ve deprem sonrasında meydana gelen deformasyonlar uzun gözlemler sonucu belirlenebilmektedir. GNSS'in tektonik kullanımı için, fay kırıkların ayırdığı blokların üzerinde ve bloğun tamamını temsil edecek şekilde bir ağ tasarımı yapılır.

Tesis edilen bu ağ, bölgedeki kabuk kalınlığı kadar faya yakın ve uzak çevresine yeteri kadar GNSS noktası tesis edilir. Bu noktalarda belli aralıklarla kampanya tipi veya sürekli olarak gözlemler yapılır. Elde edilen ölçülerin değerlendirme aşamasında yeryüzüne yayılmış ve koordinatı çok uzun süreler boyunca ölçülen global noktalardan faydalanılır. Zamansal değişimlere göre hesaplanan yer değiştirme vektörleri ile bölgede oluşan gerilme ve sıkışma miktarları tahmin edilebilmektedir.

2.1 Küresel Konumlama Sistemleri

İnsanoğlu geçmişte konum belirlemek için yıldızlar, rüzgar yönleri, kaba zaman ölçümleri, haritalara işlenmiş arazi işaretleri ve deniz fenerleri gibi yapay navigasyon araçları kullanırken, günümüzde yapay uydular ile konum belirleme teknikleri yaygın olarak kullanılmaktadır.

İlk uydu tabanlı sistem olan Transit'ten günümüze yarım asırlık bir dönem geçmiştir. Transit'ten elde edilen deneyimler sonucu hassas ve doğru konum belirlemeye imkan veren yeni sistemlere gereksinim ortaya çıkmıştır. Bunun ilk adımı olarak 1980'li yıllara gelindiğinde ABD tarafından GPS (Global Positioning System) geliştirilmiştir. GPS uzun zaman küresel konumlama sistemleri adı ile bütünleşik olarak anılmıştır. Daha sonra sırasıyla Rusya Federasyonu tarafından işletilmekte olan GLONASS (GLObal NAvigation Satellite System) ve Avrupa Birliği ülkeleri tarafından kurulmakta olan ve ilk uyduları fırlatılan GALILEO uydu konumlama sistemlerinin kurulmasıyla küresel konumlama sistemleri GNSS adını almıştır. GNSS, ABD'nin GPS, Rusya'nın GLONASS ve Avrupa'nın GALILEO ve benzer uydu sistemlerini içinde barındıran, yaklaşık 80 uyduya sahip, uydularla konum belirleme sisteminin genel adıdır.

Ayrıca Çin Halk Cumhuriyeti BeiDoiu isimli uydu konumlama sistemi ile Japonya'da Quasi-Zenith konumlama sistemi (QZSS, Quasi-Zenith Satellites System) ile ilgili çalışmaları yürütmektedir [31].

2.1.1 GPS Teknolojisi

Günümüzün modern konum belirleme teknolojisinin de temelini oluşturan ilk uydu tabanlı sistem Transit'tir. İlk prototip Transit uydusu 1961'de yörüngeye

yerleştirilmiştir. Sistem 1967'de sivil kullanıma açılmıştır. Transit sistemi yeryüzünden yaklaşık 1100 km uzaklıktaki 6 uydudan oluşmuştur. Transit sisteminde amaç gerçek zamanlı konum ve hız bilgisinin belirlenmesi olmasına karşın Transit ile düşük doğruluk elde edilebilmiştir. Transit'ten elde edilen deneyimler sonucu doğru konum belirlemeye olanak veren bir sistem gereksinimi ortaya çıkmıştır. 1980'li yıllara gelindiğinde ABD tarafından GPS geliştirilmiştir [32].

GPS sistemi üç ana bölümden oluşmaktadır. Bunlar; uzay bölümü, kontrol bölümü ve kullanıcı bölümüdür. Uzay bölümü, Ekvator ile 55° eğim yapan 6 yörünge düzlemi üzerine yerleştirilmiş 32 uydudan oluşmaktadır. Uydular yer merkezinden 26560km (yeryüzünden yaklaşık 20200km) uzaklıkta olup 11 saat 58 dakikada bir tam devir yapmaktadırlar.

GPS uyduları iki frekansta taşıyıcı dalga yayımlar. L1 taşıyıcısının frekansı 1575.42 MHz'dir. L2 taşıyıcısının frekansı 1227.60 MHz'dir. L1 ve L2 taşıyıcı frekansları, uydu saat düzeltmeleri, yörünge parametreleri gibi bilgilerin yeryüzündeki alıcıya ulaştırılabilmesi amacıyla kodlarla ve navigasyon mesajı verileri ile modüle edilmiştir. Bu modülasyon işlemi ile her uyduya tek anlamlı PRN (Pseudo Random Numbers) kod numarası verilmiştir. Tüm uydular aynı taşıyıcı frekansta veri yayını yapmasına karşın, uydu sinyalleri PRN kod modülasyonu tekniği nedeniyle birbiri ile karışmamaktadır. L1 taşıyıcısı, P kod, C/A kod ve Navigasyon mesajını taşır. L2 taşıyıcısı ise P kod ve navigasyon mesajını taşır. GPS'in elektromanyetik spektrumunda 1381.05 MHz frekansında olan L3 taşıyıcısı da mevcuttur. Ayrıca GPS sinyal modernizasyonu kapsamında uydulara L2C ve L5 sinyali eklenmiştir. L5 sinyalinin taşıyıcı frekansı 1176.45 MHz'dir [32, 33].

2.1.2 GLONASS Teknolojisi

GLONASS sistemi; Sovyet Rusya tarafından GPS'e karşı geliştirilmiş olan konum belirleme sistemidir. Sistem 1980'li yılların başlarında tasarlanmıştır. Dönemim Sovyet Rusya'sı GLONASS sisteminin ilk uydusunu 12 Ekim 1982 yılında fırlatmıştır. Ancak Sovyet Rusya'nın dağılması ile sistemin uygulanışı 1990'lı yılların ortasına kadar askıya alınmıştır. 2003 yılında GLONASS M, 2005 yılında da GLONASS K uydularının fırlatılmasıyla günümüzde 3 yörüngede aktif 21, yedek 3 uydu ile hizmet vermektedir. 21 uydu ile Dünya'nın %97'lik bölümünde en az 4 uydudan, 24 uydu ile Dünya'nın %99'luk bölümünde en az 5 uydudan sinyal alınabilmektedir. C/A kod üzerinden 100 m, P kod üzerinden 10-20 m doğrulukla konum belirleme imkanı sunmaktadır. 0.5625 MHz aralıklarla 25 kanallı, L bant üzerinden iki sinyal taşıyıcı frekansı (1602.5625 -1615.5 MHz ve 1240 - 1260 MHz) kullanılmaktadır. 19.100 km de dairesel ve 64.8° eğiklikli yörüngelerin her birinde 8 uydu yörüngelerini 11 saat 15 dakikada tamamlamaktadır [34], [35].

GLONASS sisteminde iki frekans bandında yayın yapılmaktadır. Bu frekans bantları L1 (2005 yılının sonuna kadar 1602–1609.31 MHz, 2005 yılından itibaren 1598.06–1605.38 MHz) ve L2 (7/9 L1) frekanslarıdır [36]. P kod L1 ve L2 frekansları, C/A kod ise sadece L1 frekansı üzerinden yayınlanmaktadır. GLONASS navigasyon mesajının yayınlanması 2.5 dakika sürmekte, efemeris ve saat bilgileri 30 saniyede bir tekrar edilmektedir. P kod ise 12 dakikada yayınlanmakta olup, efemeris ve saat bilgileri 10 saniyede bir tekrar edilmektedir [31], [34], [37].

GLONASS, koordinat sistemi olarak, yer parametre sistemi 1990'ı (PZ-90/Earth Parameter System 1990,) kullanmaktadır. PZ-90, WGS84 koordinat sisteminin kullanıldığı yer modeline benzer parametreler içermektedir. WGS84 ile PZ-90 arasında dönüşüm matrisi ile sistemler birbirine kolay çevrilebilmektedir [31], [38].

GLONASS ve GPS farklı zaman sistemleri kullanmaktadır. GLONASS zaman sistemi UTC (SU/Soviet Union) iken GPS zaman sistemi UTC (USNO/United State Naval Observatory) dur. UTC (SU), NETS (National Etalon Time Scale) kurumu tarafında belirlenirken UTC (USNO), U.S. Naval Observatory tarafından belirlenmektedir. İki zaman sistemi arasında birkaç yüz nanosaniye farklılık göstermektedir [39].

2.1.3 Galileo Teknolojisi

Galileo Uydu Sistemi, GPS sisteminin Avrupa kaynaklı alternatifi olarak tasarlanmış bir navigasyon sistemidir. Galileo Uydu Sistemi için, 26 Mart 2002 tarihindeki Avrupa Ulaştırma Bakanları Kurulu toplantısında 450 Milyon avro'luk bir bütçe ayrılmıştır. Galileo Uydu Sistemi, 2000 yılında tasarlanmış olup 2002–2005 yılları arasında uydu geliştirilmesi, yer istasyonları ile altyapı tesislerinin oluşturulması ve test çalışmaları yapılmıştır. Sistemin ilk uydusu olan Giove uydusu 28 Aralık 2005 tarihinde Kazakistan uzay istasyonundan fırlatılmıştır. 2006–2007 yıllarında sistem uydularının tamamlanması, yörüngelerine oturtulması, çalışmaları tamamlanarak, 2008 yılında sistemin kullanıma açılması öngörülmüştür [40]. Ancak sistemde meydana gelen aksaklıklar nedeniyle sistemin işletimi ve ticari kullanımı için öngörülen zaman 2014 olarak değiştirilmiştir [33].

Galileo Uydu Sisteminde, her biri yaklaşık 675 kg ağırlığında ve boyutları 2.7 m x 1.2 m x 1.1 m olan 27 asıl 3 yedek olmak üzere toplam 30 adet uydudan oluşacaktır. Uyduların yörünge yüksekliği yaklaşık olarak 23616 km dir. Bir uydunun dolanım süresi 14 saat 4 dakika olacaktır. Yörüngeler ekvatorla 56[°] ilk açı yapacaktır [41]. Dünya üzerinde herhangi bir yer ve zamanda en az 6 uydunun gözlenebilmesi sağlanacaktır. Tam faaliyette iken ± 1 m hassasiyetinde konum belirleme yeteneği olacaktır. Galileo uyduları 6 navigasyon sinyali gönderecek ve bu navigasyon sinyalleri 6 frekans bandında üretilecektir. Bunlar L1F, L1P, E5a, E5b, E6C ve E6P sinyalleridir. Bu sinyallerin taşıyıcı frekansları E5 sinyali için 1164-1215 MHz, E6 sinyali için 1260-1300 MHz ve L1 sinyali için 1559-1592 Mhz olarak belirlenmiştir [31], [42].

GPS ve Galileo her ne kadar farklı sistemler olsa da kullanıcı alıcılarının en iyi ölçme performansını elde etmeleri için birlikte çalışabilirlik konusu zorunluluk haline gelmiştir. Bu bağlamda kısmi sinyal örtüşmesi, Jeodezik referans koordinat çatıları ve referans zaman çatıları konusunda ortak çalışmalar yapılmıştır. Galileo E5 ve E2-L1-E1 sinyali sırasıyla GPS L5 ve L1 sinyalleri ile kısmi olarak örtüşerek kullanıcı alıcıların ortak kullanımına sunulmuştur [31].

Galileo, GPS referans koordinat sistemi WGS84'den farklı olarak GTRF (Galileo Terrestrial Reference Frame) kullanmaktadır. GRTF ile WGS84 arasında birkaç cm'lik fark olacağı düşünülmektedir. Bu farkın sadece çok hassas uygulamalar dışında önemli olmadığı düşülmektedir. Galileo sistemi referans zamanı olarak GST (Galileo System Time) kullanmaktadır. Ancak sistemin GPS zamanından nanosaniyeler mertebesinde farklılık göstermesinden dolayı ikisi aynı kabul edilmektedir [31].

12

2.1.4 Diğer Konumlama Teknolojileri

Çin, bağımsız uydu sistemini, 1983 yılında Çin'deki deniz araçlarının navigasyonu nu sağlamak için başlatmıştır. BeiDou konumlama sisteminin temelleri 1994 yılında atılmaya başlanmış ve sistemin ilk uydusu 2000 yılının Ekim ayında fırlatılmıştır [39]. BeiDou'nun küresel konumlama sistemlerine entegre olması için 2007 yılında meydana gelen planlama değişikliği ile COMPASS adını almıştır. 2020 yılına kadar 35 uyduya sahip olması planlanmaktadır. Bu uyduların kaç farklı yörüngede olacağı henüz planlanmamıştır. Uyduların yörünge yüksekliği yaklaşık olarak 21500 km olacaktır. Bir uydunun dolanım süresi 12 saat 35 dakikadır. Yörüngeler Ekvatorla 55° açı yapmaktadır [41], [43] . COMPASS uyduları sinyalleri 4 frekans bandında üretilmiştir. Bunlar B1, B1-2, B2 ve B3 sinyalleridir. B1 sinyali 1561.10 MHz, B1-2 sinyali 1589.74 MHz, B2 sinyali 1207.14 MHz, B3 sinyali 1268.52 MHz sinyalinin taşıyıcı frekansından yayınlanmaktadır [43].

2.2 GNSS Gözlemleri ve Konum Belirleme

2.2.1 GNSS Gözlemleri

GNSS ile iki temel büyüklük gözlenmektedir. Bu gözlemler Kod Pseudorange ve Taşıyıcı Dalga Fazı olarak isimlendirilmektedir. Yüksek doğruluk isteyen bilimsel çalışmalarda faz ölçüleri kullanılırken, konumlama amaçlı anlık uygulamalarda ise kod (pseudorange) ölçüleri kullanılmaktadır.

Pseudorange, alıcı anteni ile uydu arasındaki mesafenin belirlenmesi işleminin genel adıdır. Bu mesafe genel anlamda GNSS sinyallerinin alıcıya ulaşması ile uydudan çıkış zamanı arasındaki sürenin ölçülmesi ve ışık hızı ile çarpılmasıyla hesaplanmaktadır. Hesaplanan uzunluk her zaman için alıcı ve uydu saatlerindeki sapmalardan, sinyal gecikmelerinden ve çeşitli etkilerden dolayı hatalarla yüklü olacaktır. Bu etkilerde göz önünde alındığında pseudorange,

$$R_i^k(t_r, t_e) = \rho_i^k(t_r, t_e) - (\delta t_r - \delta t_k)c + \delta_{ion} + \delta_{trop} + \delta_{tide} + \delta_{rel} + \varepsilon_c$$

ile ifade edilir. Bağıntıda ρ_i^k uydu alıcı arası geometrik mesafeyi, *i* frekans indeksini, t_r, t_e sırasıyla sinyalin uydudan ayrılış zamanını ve alıcıya geliş zamanını, $\delta t_r, \delta t_k$ sırasıyla alıcı ve uydu saat hatalarını, *c*ışık hızını, $\delta_{ion}, \delta_{trop}$ iyonosferik ve troposperik etkiyi, $\delta_{iide}, \delta_{rel}$ gelgit ve rölativistik etkiyi, ε_c diğer etkileri göstermektedir [44].

Taşıyıcı fazda ise uydular konum belirlemek amacı ile dünyaya sürekli olarak sinyaller gönderirler. Alıcı açıldıktan sonra sürekli faz üretmeye başlar. Alıcı sinyaller, uydudan gelen sinyalin tam devri ile birlikte sayılmaya başlanır ve uydu görüntüden çıkıncaya kadar sayılır. Bir alıcıda ilk ölçünün yapıldığı t_e anında yapılan anlık faz farkı ölçüsü yalnızca taşıyıcı dalganın en son parçasıdır. Uydu-alıcı arasındaki N sayısındaki tam dalga boyu sayısı belli değildir. En genel şekliyle faz denkleminin matematiksel modeli aşağıdaki biçimde verilmiştir [33], [44].

$$\lambda \phi_i^k(t_r, t_e) = \rho_i^k(t_r, t_e) - (\delta t_r - \delta t_k)c + \lambda N_i^k - \delta_{ion} + \delta_{trop} + \delta_{tide} + \delta_{rel} + \varepsilon_p$$
(2.2)

GNSS gözlemlerini fiziksel olarak etkileyen sapmalar modellenebilmektedir. Eşitlikte N_i^k uydu ve alıcıya ilişkin (i alıcı, k uydu) faz belirsizlikleri (Ambiguity), λ ise dalga boyunu göstermektedir. Bu sapmalardan iyonosferik sapma,

$$\delta_{ion} = \frac{A_1}{f^2} + \frac{A_2}{f^3}$$

bağıntısıyla ifade edilmektedir. Bağıntıda A_1 ve A_2 iyonosferik katsayıları, f ise frekans değerini göstermektedir. GNSS gözlemlerine etki eden diğer bir sapma ise troposferik sapmadır [44]. Troposferik sapma,

$$\delta_{trop} = f_P d\rho \tag{2.4}$$

$$\delta_{trop} = \frac{f_Z d\rho}{F} + \frac{f_a d\rho}{F_c}$$
(2.5)

(2.3)

bağıntılarıyla hesaplanmaktadır [44]. Burada $d\rho$ standart troposferik modeller kullanılarak hesaplanan troposferik etkiyi, f_P, f_Z, f_a sırasıyla yol, düşey, yatay yöndeki troposferik gecikmeleri F ve F_c ise haritalama fonksiyonlarını (mapping functions) ifade etmektedir. Gelgit sapmalarının ise yeryüzü ve okyanus üzerinde olmak üzere 2 türü vardır. Güneş ve ayın gravitasyonel çekim etkisi ile yerin elastik yapısında meydana gelen deformasyon olayına yeryüzü gelgiti adını almaktadır. Meydana gelen deformasyon sadece çekim gücünün değişimine değil bununla birlikte yerin hareketi ve fiziksel yapısı da bağlıdır [45]. Yeryüzü gelgit etkisiyle meydana gelen yer değiştirme miktarının bir istasyon noktası üzerindeki etkisinin basitleştirilmiş hali,

$$\Delta \vec{\rho} = \sum_{j=1}^{2} \frac{\mu_j R_E^4}{\mu r_j^3} \left\{ h_2 \hat{\rho} \left[\frac{3}{2} (\hat{r} \cdot \hat{\rho})^2 - \frac{1}{2} \right] + 3l_2 (\hat{r} \cdot \hat{\rho}) \left[\hat{r}_j - (\hat{r}_j \cdot \hat{\rho}) \hat{\rho} \right] \right\}$$
(2.6)

eşitliğiyle belirlene bilmektedir [46]. Burada R_E yerin yarıçapı, μ yerin gravite etkisini j = 1, 2 ay ve güneşi gösteren katsayıları, \hat{r}_i dünya ve ay (veya güneş) merkezi arası uzaklığı göstermektedir. Gelgit sapmalarının ikincisi ise okyanus yüklemeleridir. Okyanus yüklemeleri kısaca okyanuslarda meydana gelen gelgitler etkisiyle çeşitli zamanlarda alttaki yerkabuğuna baskısı olarak tanımlanabilir. Bu baskı sonucunda meydana gelen yer değiştirme miktarının bir istasyon noktası üzerindeki etkisi,

$$\Delta \overrightarrow{\rho_j} = \sum_{j=1}^{11} f_i.amp_j(i).\cos\left[\arg(i,t) - phase_j(i)\right]$$
(2.7)

eşitlikleriyle hesaplanabilmektedir. Eşitliklerde j = 1, 2, 3 sırasıyla radyal, batı ve güney doğrultulardaki yer değiştirmeyi $amp_j(i)$ ve $phase_j(i)$ *i* dalgasının genliği ve fazını, w_i *i* dalgasının açısal hızını göstermektedir [44].

2.3 GNSS Verilerinin Değerlendirilmesi

En genel anlamda GNSS verilerinin değerlendirilmesindeki genel iş akışı dört temel başlık altında incelenebilir (Şekil 2.1).

Şekil 2. 1 GNSS verilerinin değerlendirilmesinde genel iş akışı [44], [47]

2.3.1 GNSS Ölçülerinin Hazırlanması ve Ön Değerlendirme Fonksiyonları

GNSS verilerinin değerlendirme yazılımda, girdi olarak değişik alıcılardan elde edilen ham verilerin, alıcıdan bağımsız olması için RINEX (The Receiver Independent Exchange Format) formatına dönüştürülmesi gerekmektedir. Verileri RINEX formatına çevirmek için geliştirilmiş birçok programcık bulunmakta ve bunların büyük bir çoğunluğu ticari yazılımlar içine modül olarak yerleştirilmektedir.

Ham data RINEX dönüşümü yapıldıktan sonra GNSS verilerinin değerlendirilmesindeki önemli aşamalardan biriside faz kesikliklerinin belirlenmesidir. Düzeltilebilir ve düzeltilemez olarak iki tür faz kesikliği bulunmaktadır. Faz kesiklikleri belirlenip düzeltildikten sonra uydu saat hatalarını modellemek için uydu yörünge bilgilerine ihtiyaç duyulmaktadır. Uydu yörünge bilgileri uydulardan gelen navigasyon mesajları ile elde edilebileceği gibi, IGS tarafında hesaplanan hassas yörünge bilgileri internet ortamında da temin edilebilmektedir. GNSS verilerinin değerlendirmeye hazırlanmasındaki son aşama ise gerekli olan fiziksel modellerin belirlenmesidir. Bu fiziksel modeller kullanılacak GNSS değerlendirme programlarının kütüphanelerinde bulunmaktadır. Yapılacak değerlendirmenin özelliğine göre bu modellerin seçilmesi önemlidir. Bu modellere örnek olarak,

- Troposferik etkilerin belirleme ve düzeltme için troposferik modeller,
- İyonosferik etkilerin belirleme ve düzeltme için iyonosferik modeller,
- Rölativistik modeller,
- Yeryüzü gelgit modelleri,
- Okyanus gelgit yükleme modelleri,
- Güneş radyasyon modelleri,
- Atmosferik sürüklenme modelleri

verilmektedir [44], [48].

GNSS veri birleştirmeleri aynı istasyonda ve aynı alıcı ile ölçülen farklı GNSS kod ve faz ölçülerinin birleştirilmesidir (ϕ_1 , ϕ_2 fazları, P_1 , P_2 kodları vb.). GNSS veri farkları ise farklı istasyonlarda ölçülen GNSS kod ve faz ölçülerini birleştirme yöntemidir. Bu veri fark yöntemleri tekli, ikili ve üçlü farklardır. Tekli farklar iki alıcı noktasında aynı uyduya eş zamanlı olarak yapılan faz gözlemleri arası farktır. İkili farklar ise iki tekli farkın arasındaki farktır. Üçlü farklar ise iki farklı epokta oluşturulan ikili farklar arası fark olarak tanımlanmaktadır [33].

GNSS verilerinin değerlendirilmesini ilk aşaması alıcıya ait mutlak konumun belirlenmesidir. Mutlak konum belirlemede tek nokta konum belirleme ve hassas nokta konum belirleme olmak üzere iki yöntemle yapılabilmektedir [41]. Bu iki yöntemde istasyon koordinatlarını ve alıcı saat hatalarını belirlemek için yapılan ön değerlendirmelerdir. Tek nokta konum belirleme yöntemi için GNSS pseudorange kod ölçülerinin matematiksel modeli eşitlik (2.1) de verilmiştir. Eşitlik (2.1) de hesaplanan kod değerini C ile ifade edip denklem sadeleştirilirse,

$$C = \rho_i^k(t_r, t_e) + \delta t_k c + \delta_{ion} + \delta_{trop} + \delta_{tide} + \delta_{rel} + \varepsilon_c$$
(2.8)

şeklini alır. Burada uydu saat hataları atomik saatler kullanılarak düzeltilebilinmektedir. Ayrıca diğer hatalarında Bölüm 2.2.1 verilen formüllerle giderildiği zaman eşitlik (2.8) de alıcı saat hatası ve alıcı koordinatları olmak üzere dört bilinmeyen kalmaktadır. Geçerli bir çözüm yapılabilmesi için alıcı saat hatası başlangıç değerini sıfır kabul edip eşitlik (2.8) lineer hale getirilirse eşitlik,

$$l_{k} = \frac{-1}{\rho_{i}^{k}(t_{r}, t_{e})} \begin{bmatrix} x_{k} - x_{i0} & y_{k} - y_{i0} & z_{k} - z_{i0} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} - \Delta t + v_{k}$$
(2.9)

şeklini alacaktır. Burada k indisi uyduyu, i indisi ise alıcıyı ifade etmektedir. Eşitlik daha genel bir formda yazılacak olursa,

$$l_{k} = \begin{bmatrix} a_{k1} & a_{k2} & a_{k3} & -1 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ \Delta t \end{bmatrix} + v_{k}$$
(2.10)

halini alacaktır. Yukarıdaki ifadede a_{kj} Eşitlik (2.9) da verilen katsayıları, $\begin{bmatrix} \Delta x & \Delta y & \Delta z \end{bmatrix}^T$ koordinatlar arasındaki farkı, v_k artık hataları, Δt alıcı saat hatasını göstermektedir. Bütün uydular için yapılan gözlemlerin tamamı Eşitlik (2.10) için uygularsak, (2.10) eşitliği genel bir eşitlik şekline dönüşür ve tek nokta konumlama denklem sistemi,

$$L = AX + V, \quad P \tag{2.11}$$

olacaktır. Burada Lgözlem vektörü, X bilinmeyenler vektörü, A katsayılar matrisi, P ağırlık matrisini göstermektedir. Eşitlik (2.11) EKK çözümünden sonra,

$$X = (A^{T} P A)^{-1} A^{T} P L$$
(2.12)

ifadesine dönüşecektir. Burada dikkat edilmesi gereken en önemli durum denklemin katsayılar matrisi başlangıç koordinat değerleri kullanılarak oluşturulmaktadır. Ancak başlangıç koordinatları çoğu zaman tam olarak bilinemezler. Bu nedenle tek nokta konumlama problemi için genellikle iteratif çözümler kullanılır. Farklı bir anlatımla başlangıçta kullanılan istasyon koordinatlarından hesaplanan sonuç koordinatları tekrar başlangıç koordinatı olarak işleme sokulmaktadır. Bu işlem başlangıç ve sonuç koordinatları arasındaki fark minimum oluncaya kadar devam etmektedir. Yukarıda da belirtildiği gibi tek nokta konum belirleme denkleminde dört bilinmeyen vardır. Bu nedenle problemin çözümü için en az dört denkleme ihtiyaç olacaktır. Bu denklemlerin oluşturulması ve çözümü için tek nokta konum belirleme için en az dört adet uydudan gözlem değerleri oluşturulmalıdır. Alıcı istasyon koordinatlar hesaplanır hesaplanmaz denklem (2.10) da bulunan $(\Delta x \quad \Delta y \quad \Delta z)^T$ sıfır olacaktır ve denklem (2.10)

$$l_k = -\Delta t + v_k \tag{2.13}$$

olur ve alıcı saat hatası,

$$\Delta t = \frac{-1}{K} \sum_{k=1}^{K} l_k$$
 (2.14)

formülüyle hesaplanabilmektedir. Burada K bir epoktaki gözlenen uyduların toplam sayısını göstermektedir. Alıcı saat hataları aynı şekilde faz ölçüleri ile de hesaplanabilmektedir [44].

2.3.2 GNSS Verilerinin Değerlendirilmesinde Parametre Kestirimleri

GNSS verilerinin değerlendirilmesinde parametre kestirimlerinin önemli aşamalarından biriside faz belirsizliklerinin çözümüdür. GNSS kod ve faz ölçüleri eşitlik (2.1) ve (2.2) de verilmiştir. Bu eşitlikler sadeleştirilerek,

$$R_{j} = C_{p} + \delta_{ion}(j)$$
(2.15)

$$\lambda_j \varphi_j = C_p + \lambda_j N_j - \delta_{ion}(j), j = 1, 2$$
(2.16)

şeklinde yazılır. Eşitlik (2.15) ve (2.16) matris formunda gösterilecek olursa,

$$\begin{bmatrix} R_{1} \\ R_{2} \\ \lambda_{1}\varphi_{1} \\ \lambda_{2}\varphi_{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & f_{s}^{2} / f_{1}^{2} & 1 \\ 0 & 0 & f_{s}^{2} / f_{2}^{2} & 1 \\ 1 & 0 & -f_{s}^{2} / f_{1}^{2} & 1 \\ 0 & 1 & -f_{s}^{2} / f_{2}^{2} & 1 \end{bmatrix} \begin{bmatrix} \lambda_{1}N_{1} \\ \lambda_{2}N_{2} \\ B_{1} \\ C_{\rho} \end{bmatrix}, P = \begin{bmatrix} \sigma_{c}^{2} & 0 & 0 & 0 \\ 0 & \sigma_{c}^{2} & 0 & 0 \\ 0 & 0 & \sigma_{p}^{2} & 0 \\ 0 & 0 & 0 & \sigma_{p}^{2} \end{bmatrix}^{-1}$$
(2.17)

-1

şekline dönüşecektir [49]. Yukarıdaki eşitlikte N faz belirsizliğini, σ_c kod ölçülerinin standart sapmasını, $\sigma_{_p}$ ise faz ölçülerinin standart sapmasını göstermektedir. Eşitlik (2.17) tek bir epok için bir alıcı ile bir uydunun gözlem bilgilerini içermektedir. Burada P ağırlık matrisidir. Eşitlik (2.17) de gözlem büyüklükleri ile bilinmeyenler arasında bir dönüşüm yapılıp eşitlik lineer hale getirilirse,

$$a = \frac{f_1^2}{f_1^2 - f_2^2}, \quad b = \frac{-f_2^2}{f_1^2 - f_2^2}, \quad g = \frac{1}{f_1^2} - \frac{1}{f_2^2}, \quad q = gf_s^2$$
(2.18)

ile gösterilebilmektedir. Burada a ve b arasında,

$$1 - a = b, \quad \frac{1}{f_1^2 g} = b \quad \frac{1}{f_2^2 g} = -a \tag{2.19}$$

bağıntıları vardır ve Eşitlik (2.17),

$$\begin{bmatrix} 0 & 0 & f_s^2 / f_1^2 & 1 \\ 0 & 0 & f_s^2 / f_2^2 & 1 \\ 1 & 0 & -f_s^2 / f_1^2 & 1 \\ 0 & 1 & -f_s^2 / f_2^2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1-2a & -2b & 1 & 0 \\ -2a & 2a-1 & 0 & 1 \\ 1 / q & -1 / q & 0 & 0 \\ a & b & 0 & 0 \end{bmatrix} = T$$
(2.20)

şeklini alır. Yukarıdaki eşitlikte a ve b, L₁ ve L₂ gözlemlerinin iyonosferden bağımsız olarak birleştirilmesinde kullanılan katsayılardır. Eşitlik (2.17) faz belirsizliklerinin çözümünü yapmak için düzenlenirse,

$$\begin{bmatrix} \lambda_1 N_1 \\ \lambda_2 N_2 \\ B_1 \\ C \rho \end{bmatrix} = \begin{bmatrix} 1-2a & -2b & 1 & 0 \\ -2a & 2a-1 & 0 & 1 \\ 1/q & -1/q & 0 & 0 \\ a & b & 0 & 0 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \\ \lambda_1 \varphi_1 \\ \lambda_2 \varphi_2 \end{bmatrix}$$
(2.21)

olur. Çözüm vektörüne ilişkin kovaryans matrisi ise,

$$Q = \operatorname{cov} \begin{bmatrix} \lambda_1 N_1 \\ \lambda_2 N_2 \\ B_1 \\ C_{\rho} \end{bmatrix} = T \begin{bmatrix} \sigma_c^2 & 0 & 0 & 0 \\ 0 & \sigma_c^2 & 0 & 0 \\ 0 & 0 & \sigma_c^2 & 0 \\ 0 & 0 & 0 & \sigma_c^2 \end{bmatrix} T^T$$
(2.22)

olarak yazılır [44].

2.4 GNSS Verilerinin Değerlendirilme Programları

GNSS verilerinin değerlendirilmesi için GNSS alıcı üreticileri tarafından yazılan ticari programlarla, üniversiteler ve bilimsel kuruluşlar tarafından geliştirilen bilimsel programlar bulunmaktadır. Ticari programlar firmanın kendilerine özgü ve müşterilerinin ihtiyaçları karşılayabilecekleri şekilde hazırlanmış kısıtlı programlardır. Ticari programlar kullanım kolaylığı ve kullanıcının daha az zamanda daha çok şey
üretmesini sağlarken, aynı zamanda yazılımın çalışma prensibi bakımından bilinmeyenlerle dolu olmaları nedeni ile birer kara kutudurlar. Ticari programlara örnek olarak Thales GNSS, ASHTECH OFFICE SUITE ve SKI PRO verilebilir. Bilimsel programlar ise genellikle üniversitelerin ve enstitülerin kullanması amacıyla geliştirilmiştir. Günümüzde birçok bilimsel çalışmada BERNESE, GIPSY ve GAMIT/GLOBK gibi programlar kullanılmaktadır [50], [51].

GNSS veri analizi programları genel olarak iki ana fonksiyondan oluşmaktadır. Bunlar, fiziksel modelleri, algoritmaları ve araçları içeren yazılım kütüphanesi ile verilerin işlenmesini sağlayan veri işleme platformlarıdır.

Yazılım kütüphanesinde GNSS ölçülerine etki eden faktörleri minimize etmeye yarayan modeller bulunmaktadır. Bu modellere örnek olarak troposferik ve iyonosferik modeller verilebilir [48]. GNSS verilerinin ön değerlendirilmesinin yapıldığı algoritmalarda yazılım kütüphanesinde bulunmaktadır. Bu algoritmalara örnek olarak saat, Kalman, Robust ve EKK algoritmaları verilebilinir. Aynı zamanda fonksiyon kütüphanesinde veri işlemesine etki etmemesine rağmen işlemlerin görselleştirilmesi ve farklı sonuçları alınabilmesi sağlayan araçlarda mevcuttur (Dönüşüm ve görselleştirici araçlar vb). Veri işleme platformunda ise yazılım kütüphanesinde bulunan modeller ve algoritmalar kullanılarak GNSS verileri değerlendirilir [44].

Gerek ticari gerekse bilimsel yazılımlarda veri değerlendirme aşamaları aynıdır. Ancak ticari programlarda kullanılan modeller hem kısıtlı hem de değerlendirme stratejisine göre seçim sunmamaktadır. Bununla birlikte levha hareketlerinin belirlenmesi gibi, yüksek doğruluk gerektiren çalışmalarda veriler, ticari programlar ile gereken doğrulukta değerlendirilememektedir.

Bilimsel yazılımlar genellikle kaynak kodlu GPS yazılım paketlerindendir. Bunlardan GIPSY (GPS-Inferred Positioning System), 1985 yılında Jet Propulsion Laboratory (JPL) tarafından geliştirilmiştir. Yazılım birbirinden bağımsız iki kısımdan oluşmaktadır. İlk kısım uzay araçları için geliştirilen yörünge belirleme yazılımından oluşur. İkinci kısım ise yerkabuğu dinamiği ve radyo dalgaları gecikmeleri modellemelerini kapsayan VLBI jeodezik yazılımından oluşur. Daha sonraları bu iki sisteme Kalman Filtreleme ile parametre tahmini ve interaktif veri düzeltme özellikleri eklenmiştir. Bu arada yazılıma

ilave özellikler eklenerek modüler hale getirilmiş ve OASIS adını almıştır [52]. Diğer bir yazılım olan BERNESE yazılımı biraz daha karmaşık bir sistemdir. Sadece ölçüm işlemini değil aynı zamanda bir gökyüzü cismi olarak GPS uydularının davranışları ve Dünya'nın bir gezegen oluşu gibi etmenlere bağlı olarak pek çok fiziksel etkiyi modellemektedir [51].

GAMIT/GLOBK ise Amerika Birleşik Devletleri, MIT (Massachusetts Institute of Technology) bünyesinde geliştirilen ve NSF (National Science Foundation) finanse edilen bir yazılım takımıdır. Bu yazılım paketi bilimsel çalışmalarda yeni ilerlemelere araç olması ve açık kaynak olması nedeniyle birçok kullanıcı tarafından tercih edilmektedir. Yazılımın bir seri komut takımıyla yönetilmesi ve ara yüzü olmaması nedeniyle Linux ve benzeri Unix türevi işletim sistemleri üzerinde çalışmaktadır [53].

Bu çalışmadaki GNSS verilerinin değerlendirilmesinde GAMIT/GLOBK yazılımı 10.4 versiyonu kullanılmıştır.

2.4.1 GAMIT Yazılım Modülü

GAMIT yazılımı ile GNSS verilerinin değerlendirilmesi için öncellikle, farklı markalardaki alıcılarla toplanan verilerin belli bir standarda indirgenmesi sağlanmalıdır. Bunun için alıcıdan bağımsız değişim formatı olan RINEX (The Receiver INdependent EXchage FORMAT) veri formatına dönüşüm sağlanmıştır.

GAMIT modülü analizlerde genel olarak taşıyıcı dalga faz ölçmeleri ve Pseudo-range gözlemlerini kullanarak, üç boyutlu koordinatların, uydu yörüngelerinin, atmosferik zenit gecikmelerinin ve Dünya dönüklük parametrelerinin kestirimi yapılabilmektedir. Bu işlemleri gerçekleştirirken faz belirsizliklerinin çözümü için çiftli fark yöntemini kullanmaktadır.

GAMIT yazılımında GNSS ölçülerinin değerlendirmesinde birçok aşama mevcuttur. Bu aşamalar sh_gamit komutuyla otomatik yapıldığı gibi tek tekte yapılabilir. Sh_gamit komutu tek tek yapılan işlem adımlarının sırasıyla çalışması için geliştirilmiş bir komuttur. Her iki seçenekte veriler aynı işlemden geçirildiği için sonuçlarda bir değişiklik olmamaktadır.

GAMIT yazılımının ilk işlem aşamasında uydu saatleri ve uydu ön yörünge bilgileri elde edilir. Yörünge ve kod ölçüleri bilgileri ile yaklaşık nokta koordinatlarına dayalı olarak ilgili istasyon saat düzeltmeleri hesaplanır. İkinci aşamada ise faz kesiklikleri saptanır ve ortadan kaldırılır [53], [54].

Sonraki adımlar için GAMIT, birbirinden bağımsız çift-farkları oluşturmak üzere bir algoritma kullanmaktadır. Çift-fark oluşturulmuş iyonosferden bağımsız gözlemleri kullanımı ile ilk dengelemede gerekli olan tüm parametreler kestirilir. Birinci dengelemede saptanan birbirinden bağımsız çift-farkların faz belirsizlik parametreleri, faz verisinin dağılımı ve baz uzunluğuna dayalı eşleme ile orijinal taşıyıcı faz belirsizliklerinden üretilir. Bu eşleme, kısa baz uzunluklarından elde edilen belirsizlik çözümünün daha güvenli olmasının avantajını ağın tamamı içinde kullanarak en kısa bağımsız yola göre birbirinden bağımsız çift-fark kümesini oluşturur. Bir sonraki adım, L1 ve L2 faz gözlemlerini bağımsız olarak kullanarak çift-fark uzun dalga boylu belirsizlik parametreleri için en iyi uyan tamsayıyı iterasyon yaparak hesaplama işlemidir. Uzun dalga boylu belirsizlikler bir kere güvenli bir şekilde çözüldükten sonra doğru tamsayı değerlerine yuvarlanır. Tüm parametreleri saptamak ve ardışık olarak kısa dalga boylu belirsizlikleri çözmek için iyonosferden bağımsız çift-farklı gözlemler üzerinde başka bir dengeleme işlemi yapılır [50], [51], [54], [55].

Yukarıda kısaca anlatılan adımları uygulayabilmek için GAMIT içerisinde birçok küçük program kullanılmaktadır. Ancak bu programların sağlıklı bir şekilde çalışabilmesi için GAMIT girdi dosyalarının doğru hazırlanması gerekmektedir. GAMIT kütüphanesinde veri işlemesi için gerekli olan fiziksel modeller bulunmaktadır. GAMIT yazılımının verileri değerlendirmek için ihtiyaç duyduğu, fiziksel modeller ay ve güneş efemeris bilgileri (luntap, soltab files), istasyonlar hakkında bazı bilgiler (anten ve alıcı tipi, anten yüksekliği, başlangıç koordinatları) gibi bilgiler GAMIT içinde bulunan tables klasöründe bulunmaktadır. Bu klasörü oluşturmak için gerekli klasörünün içine girilip, sh_setup komutu kullanılmalıdır. Bu komut çalıştırılmasıyla GAMIT çalıştırıldığı dizin için tables klasörü için gerekli fiziksel modelleri (luntap, soltap, nutabl, leap.sec) linkleyecektir [53], [54].

GAMIT ilk olarak MAKEXP ve MAKEX programlarını çalıştırmaktadır. MAKEXP programının girdileri olarak; RINEX, Station.info ve Sessions.info dosyalarını kullanmaktadır. RINEX dosyaları alıcı tarafından toplanan gözlem ve navigasyon veri dosyalarıdır. Station.info istasyonlara ve üzerlerinde kurulu olan alıcılara ait bilgileri içeren dosyadır. Sessions.info dosyası ise yapılan oturuma ait bilgileri içeren dosyadır. İçinde, oturumun yapıldığı yıl, gün, oturum sayısı, verilerin kaç saniye aralıklarla toplandığı ölçüye başlama ve bitiş zamanı ve gözlem yapılacak olan uyduların PRN numaraların ait bilgiler bulunmaktadır. MAKEXP programı çalıştıktan sonra GAMIT formatında hazırlanmış gözlem dosyalarını üreterek MAKEX ve diğer programlara girdi dosyası oluşturmaktadır. MAKEX programı girdileri ise L.file, X-files ve K dosyalarıdır. L.file dosyası istasyon koordinatlarını içeren dosyadır. Hassas şekilde elde edilmesi gereken istasyon dosyaları için veri işlemeye başlamadan önce, sabit kabul edilen istasyonun IGS'e (International GNSS Service) ait olmasına ve IERS (International Earth Rotation Service) tarafından koordinatlarının hassas şekilde hesaplanmış olmasına dikkat edilmelidir.

Bu iki programın çalıştırılması ile elde edilen dosyalar FIXDRV' da kullanılmak üzere girdi verisi olacaktır. FIXDRV ile girdi dosyaları düzenlenir, uydu ve alıcı saatine ait değerleri içeren dosyaları B ve I dosyalarını oluşturur. I dosyası her istasyon ve oturum için saat farklarını ve oranlarını, B dosyasıda analiz boyunca kontrolü sağlayan bilgileri içermektedir. ARC ve MODEL programı çalışması ile yörünge efemerisleri ve türevlerine ait dosyalar oluşturularak, gözlenen ve teorik olarak elde edilen ölçme değerlerinin farkları hesaplanır. Daha sonra AUTCLN programında kullanılmak üzere C-dosyalarını oluşturur. AUTCLN programında C dosyaları kullanılarak devir kesiklikleri (cycle-slips) ve kaba hataları otomatik olarak düzenlenmesi işlemlerine geçilir. SOLVE programında tüm parametreler (istasyon konumlarına ve uydu yörüngelerine ait) en küçük kareler yöntemi ile dengelenir ve öncül (prefit) çözümler elde edilir. MODEL, AUTCLN ve SOLVE programlarında öncül çözümler tekrar kullanılarak soncul çözümler elde edilir. GAMIT yazılımı soncul çözümler sonucunda Q ve H sonuç dosyaları oluşturur. Q dosyalarında SOLVE programı sonucu elde edilen tam sayı belirsizliklerinin çözümü ve sonuçların hataları bulunur. Bu dosya sayesinde veri işlemin nasıl gerçekleştirildiği adım adım incelenebilmektedir. H dosyalarında ise dengeleme sonrası türetilmiş ölçüler ve kovaryans matrisleri bulunmaktadır [53], [54], [55], [56]. Yukarıda anlatılan işlem akışı Şekil 2.2'de verilmiştir.

Şekil 2. 2 GAMIT işlem akış şeması

2.4.2 GLOBK Yazılım Modülü

GAMIT modülü tarafından türetilen H dosyaları GLOBK yazılımı için girdi verisi olarak kullanılmaktadır. GLOBK, nokta konumları, yörünge parametreleri ve yerin dönüş parametreleri ile ilgili kovaryans matrislerini veri olarak kabul eder. GLOBK' nın asıl işleyiş algoritmasında Kalman Filtresi kullanılmaktadır [57].

GLOBK veri işlemi aşamasında GAMIT gibi birden fazla program çalıştırmaktadır. Bu programlar HTOGLB, GLRED, GLOBK ve GLORG' dır. GLOBK ilk olarak GAMIT yazılımı SOLVE programı tarafından üretilen H dosyalarını GLOBK formatında kullanılabilecek H dosyalarına dönüşmesi için HTOGLB alt programı kullanır. GAMIT tarafından H dosyaları her bir oturum için ayrı ayrı elde edilir. Bütün kampanya H dosyalarını birleştirmek için global ölçekte değerlendirilmiş ve internet aracılıyla kullanıcılara sunulan H dosyalarından faydalanılır. Global ve lokal H dosyaları yardımıyla çözümler bir araya getirilir. Bu entegrasyon işlemi GLRED programı aracılıyla gerçekleştirilerek her bir istasyona ait uzun dönem ve kısa dönem zaman serileri elde edebilir. Elde edilen günlük birleştirilmiş H dosyaları amaca göre haftalık, aylık ve senelik olarak birleştirilerek tek bir H dosyası elde edebilir. Bu işlemi gerçekleştirebilmek için GLOBK alt programı kullanılır. GLORG programı referans sisteminin tanımlanmasında ve istasyonlara ait hız bilgisinin elde edilmesinde kullanılır.

GAMIT'in nokta ve uydu vektörü sonuçları, büyük varyanslı ve korelasyonlu bir kovaryans matrisine sahip olup, ancak yüksek miktarlarda kısıtlanmış çözümlerin normal geometrik ilişkilerinin sürmesine olanak sağlar. Örneğin, bir durum vektörü, üç nokta konumu üzerinde yüksek miktarla kısıtlanmış bir Kalman filtresi kullanarak birleştirilerek bulunan çözüm vektörü, GAMIT'te kestirilen modele lineer olarak yakın bir apriori modele uygulandığında saptanan çözümün aynısı olmaktadır. Bu teknik, koordinatların eş zamanlı saptanması için birden fazla oturumdan gelen dengelemeleri birleştirmek kapasitesine sahip olup, hem nokta hem de uydu parametrelerindeki farklı apriori kabullerin kullanımının etkisini test etmek için etkin bir yöntemdir. Bu olanaklar özellikle farklı güvenilir ağların kullanılmasından çıkarılan dengelemelerin tek tip olarak birleştirilmesinde kullanışlıdır. Zamana göre noktaların hızlarını tanımlayan parametreler bu çerçeveye kolayca oturtulabilir ve bu oranla ilgili nokta koordinat

kestirimlerinin dağılımı oturumlar arasındaki nokta koordinatlarını serbest bırakmak için stokastik (zamana bağlı) süreçler koyularak kestirilebilir [50], [51], [55], [57].

2.4.3 Kalman Filtreleme Tekniği

Kalman filtresi karışık sistemlerin optimal kestiriminde kullanılan bir yöntemdir. Kalman filtresi genel olarak, hatalı verilerin olması ve sistemin stokastik modelinin bilinmesi durumunda bilinmeyen parametreleri kestirmek için kullanılan bir sistemdir. Ayrıca ilerideki bir ölçme zamanına ilişkin durum vektörünü ve bunun stokastik modelini tanımlaması diğer kestirim yöntemlerine göre avantajlı kılan nedenlerin başında gelir [58], [59].

Sistemin temelinde bir objenin diferansiyel eşitliklerle tanımlanması ile aynı objenin davranışlarını incelemek için yapılan gözlem ölçülerinin eşitliklerinin uygun dengeleme yöntemiyle birleştirilmesi yatmaktadır. Kalman Filtreleme yönteminin matematik modeli incelendiğinde yukarıda bahsedilen temelin fonksiyonlarla ifade edilmesi olduğu görülmektedir. Klasik olarak Kalman Filtrelemenin temelleri aşağıda özetlenmiştir [60].

Bir lineer gözlem eşitlik sistemi,

$$V_i = L_i - A_i X_i P_i \tag{2.23}$$

$$U_i = X_i - F_{i,i-1} X_{i-1}$$
(2.24)

ile ifade edilmektedir.

Burada *L* m boyutlu ölçüler vektörünü, *A* mxn boyutlu katsayılar (dizayn) matrisini, *X* n boyutlu bilinmeyen vektörünü, *P* ağırlık matrisini, *V* m boyutlu ölçü hatalar vektörünü, m ölçü sayısını, n bilinmeyen sayısını, nxn boyutlu dönüşüm matrisini, *U* n boyutlu sistem hatalar vektörünü, *i* ise zamanı göstermektedir. Kalman Filtresi, belli bir zamana (i-1) ilişkin elde edilen ölçüler yardımıyla bilinmeyen X_{i-1} durum vektörünün minimum varyanslı en uygun doğrusal kestirimi için yinelemeli bir algoritma oluşturur [44].

Filtreleme işleminin doğru sonuç vermesi için başlangıçta belirlenen durum vektörü beklenen değere olabildiğince yakın olmalıdır. Ayrıca sistem hatalar vektörü U ve ölçü

hatalar vektörünün V beklenen değerleri sıfır, aralarında ise korelasyon olmadığı kabul edilmelidir. Eşitlik (2.24) de varyans yayılma kuralı kullanılarak

$$Q(X_i) = F_{i,i-1}Q(X_{i-1})(F_{i,i-1})^T + Q_U$$
(2.25)

eşitliği elde edilir. Ayrıca (2.23) eşitliği düzenlenerek sistemin fonksiyonel modeli

$$M_i X_i = B_i \tag{2.26}$$

şekline getirilmektedir. En Küçük Kareler yöntemine göre parametre kestirimine göre

$$\tilde{X}_{i} = Q_{i}, B_{i}, Q_{i} = M_{i}^{-1}$$
 ve $Q_{i} = Q_{i}$ (2.27)

olmaktadır. Eşitlikte \tilde{X}_i ve Q_i hesap değerleridir. Hesap değerleri ve dönüşüm matrisleri kullanılarak bir sonraki zamana ait kovaryans matrisini ve bilinmeyen değerleri kestirilebilmektedir.

$$\underline{X}_{i} = F_{i,i-1}\tilde{X}_{i-1}$$
(2.28)

$$\underline{Q}_{i} = F_{i,i-1} \widetilde{Q}_{i-1} (F_{i,i-1})^{T} + Q_{U}$$
(2.29)

Yukarıdaki eşitliklerde \underline{X}_i ve \underline{Q}_i kestirim değerleri olarak isimlendirilmektedirler. Yeni zamandaki prediksiyon değerlerinin düzeltilmesine ilişkin eşitlikler,

$$\ddot{X}_i = \underline{X}_i + K(L_i - A_i \underline{X}_i)$$
(2.30)

$$\tilde{Q}_i = (E - KA_i)\underline{Q}_i \tag{2.31}$$

$$K = \underline{Q}_i A_i^T (A_i \underline{Q}_i A_i^T + Q_V)^{-1}$$
(2.32)

şeklindedir. Burada *K* kuvvetlendirme matrisidir. Bir sonraki zamanda ki kestirme değerleri iteratif bir işlem uygulanarak Eşitlik (2.28) ve (2.29) dan, prediksiyon değerlerinin düzeltilmesi ise (2.30), (2.31), (2.32) eşitliklerinden hesaplanılmaktadır. Kısaca Kalman filtresi her yeni zamanda başa dönerek çalışmaya devam eder. Klasik bir Kalman filtresinde (2.23) ve (2.24) nolu eşitlik için dönüşüm matrisi $F_{i,i-1}$ ve kofaktör matrisinin Q_U var olduğu kabul edilir. Bu nedenle Kalman filtreleme işleminde hesaplanan değerlerinin doğruluğu $F_{i,i-1}$ ve Q_U büyüklüklerine bağlıdır [44]. Ayrıca kinematik bir problemde teorik sistem eşitlikleri ile kesin olarak bir sonuç elde etmek oldukça zordur.

BÖLÜM 3

YERKABUĞU HAREKETLERİ ve GÜNEYBATI ANADOLUDAKİ TEKTONİK YAPILAR

Geçmişten günümüze yer bilimciler dağların oluşumu, depremler ve yanardağ etkinlikleri gibi jeolojik olayları incelemişlerdir. Bu jeolojik olayların nedenleri ve oluşum mekanizmaları ile ilgili tarihte birçok varsayımlar ve kuramlar ortaya çıkmıştır. Bu kuramlar; 17. yüzyılda Descartes (1664) ve Newton (1681) benimsediği, daha sonraları ünlü Fransız yer bilimci Elie de Beamont tarafından desteklenen Kontraksiyon Kuramı, Ekspansiyon veya Genişleme Büyüme Kuramı, Konveksiyon Akıntıları Kuramı, Kıtaların Kayması ve bunu izleyen Levha Tektoniği Kuramı şeklinde sıralanabilirler. Ancak bu teorilerin en önemlisi Kıtaların kayma teorisi, Alman Jeofizikçi Alfred Wegener tarafından 1912'de ortaya konmuş olan Levha Tektoniği kuramıdır.

3.1 Levha Tektoniği

Alman bilim adamı Alfred Wegener, 1912 yılında yayınladığı "Kıtalar ve Okyanusların Kökeni" isimli eserinde belirttiği Levha Tektoniği Kuramı tektonik kuramlar içinde en önemlilerinden biridir. Wegener eserinde bütün kıtaların Yer'in iç kısmında yer alan ve yer kabuğundan yoğun olan bir madde üzerinde yüzdüğünü, bu nedenle de kıtaların 250 milyon yıl önce tek parça halinde dev bir kıta olduğunu öne sürmüştür. Ona göre bu dev kıta daha sonra küçük kıtalara bölünmüş ve bunlar da zamanla birbirlerinden ayrılmışlardır. Bu teori daha sonraları E. Argand (1922), Du Toit (1921) gibi dönemin ünlü jeologları ile Beniof (1954) Runcorn (1962), Sykes (1968) ve Bullard (1969) gibi yeni zamanların tanınmış jeofizikçileri tarafından da benimsenmiş ve desteklenmiştir [61]. Bu teoriye göre; kıtalar okyanus tabanlarından farklı yapıdadırlar. Onlara sımsıkı

bağlı da değillerdir. Aksine buzdağlarının denizde yüzdükleri gibi kıtalar da derin deniz diplerinde-okyanus tabanlarında- açığa çıkan ve yoğunlukları kendilerinkinden fazla olan ağır maddeler üzerinde kayarlar.

Levha Tektoniği, büyük ölçüde okyanuslardan elde edilen veriler üzerine kurulmuş bir teoridir. Bu özelliği ile kendinden önceki teorilerden ayrılır. Bugün hemen hemen tüm yerbilimciler tarafından benimsenen kuram Levha Tektoniği kuramıdır. Levha tektoniğinin daha iyi anlaşılabilmesi için Dünya'nın içyapısının bilinmesi önemlidir.

Yerküre en dış yüzeyinden iç kısımlarına doğru farklı yapı ve özellikteki bölümlerden oluşmaktadır. Yerküre, dıştan içe doğru Litosfer, Manto ve Çekirdek olarak adlandırılan katmanlardan oluşmaktadır. Manto, üst ve alt Manto olmak üzere 2 kısma ayrılırken Çekirdek dış ve iç Çekirdek olarak alt katmanlara ayrılmaktadır (Şekil 3.1).

Şekil 3. 1 Yerkürenin katmanlı iç yapısı [62]

Çekirdek, yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya'nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km'ler arasındaki kısmına dış çekirdek, 6371-5150 km'ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir [63], [64].

Manto, Litosfer ile çekirdek arasındaki katmandır. 100-2890 km'ler arasında bulunan mantonun yoğunluğu 3.3-5.5 g/cm³ sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum, nikel ve demir bulunmaktadır. Manto'nun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Litosfer; mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır [64]. Litosferin kalınlığı ortalama 100 km'dir. Taşküre'nin ortalama 35 km'lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir [63], [64]. Litosfer birbirine göre hareket eden çeşitli boyutlardaki parçalara ayrılmıştır. Bu litosfer

Günümüzde, Dünya'da tespit edilen 9 tane büyük, çok sayıda da küçük levha vardır (Şekil 3.2). Bu 9 levhanın 6'sı kıta isimleri ile çağrılmaktadırlar. Bunlar Antartika, Avustralya, Avrasya, Afrika, Kuzey Amerika, Güney Amerika levhalarıdır. Diğer 3 levha ise okyanus levhaları olup Pasifik, Kokos ve Nazka levhalarıdır. Hindistan ve Arap levhaları başlıca küçük levhalardandır [66].

Şekil 3. 2 Dünyamızın tektonik levha yapısı [67]

3.2 Depremlerin Oluşumu ve Faylanma Türleri

Yerkabuğunun üst kısımlarında geniş zaman aralıklarında biriken elastik enerjinin aniden boşalarak yeryüzünü sarsılması olayına deprem adı verilir [62]. Diğer bir deyişle deprem; yerkabuğu içindeki kırılmalar nedeniyle ani olarak ortaya çıkan titreşimlerin dalgalar halinde yayılarak geçtikleri ortamları ve yer yüzeyini sarsma olayıdır. Deprem, insanın hareketsiz kabul ettiği ve güvenle ayağını bastığı toprağın da oynayacağını ve üzerinde bulunan tüm yapılarında hasar görüp, can kaybına uğrayacak şekilde yıkılabileceklerini gösteren bir doğa olayıdır [62], [63]. Depremlere neden olan olayların temelinde değişik jeolojik olaylar vardır. Oluşum nedenlerine göre depremler üç ana gruba ayrılır. Bunlar, tektonik nedenli, volkanik nedenli ve çöküntü nedenli depremlerdir.

Tektonik Nedenli Depremler: Bu depremlerin oluşum nedenleri tektonik olaylar sonucunda yerkabuğunun kayması ve kırılmasıdır. Kaliforniya' daki San Andreas fayı ve Kuzey Anadolu fayı üzerinde meydana gelen depremler bu grupta yer almaktadır.

Çöküntü Nedenli Depremler: Bu tür depremler, yer altındaki boşlukların (mağara), kömür ve maden ocaklarında galerilerin, tuz ve jipsli arazilerde erime sonucu oluşan boşlukların tavan bloklarının çökmesi ile oluşurlar. Hissedilme alanları lokal olup enerjileri azdır. Konya bölgesinde meydana gelen depremler bu tür depremlerdir.

Dünya'da meydana gelen depremlerin büyük bir kısmı tektonik nedenli depremlerdir. Levha ve kıta hareketleri ve faylanmaların nedeni de tektoniktir. Buradan da anlaşıldığı gibi deprem olaylarının özünde diri fay hareketleri bulunmaktadır. Levha hareketleri sınırlarındaki bağıl hareketler üç şekilde gerçekleşmektedir. Levhalar ya sınırları boyunca birbirinden uzaklaşırlar, aralarında bir açıklık bırakırlar (diverjant levha sınırları); yada levhalar birbiri ile çarpışırlar, biri diğerinin altına dalar veya üzerine bindirir (konverjan levha sınırları); yahut ta levhalar sınırları boyunca birbirine nazaran kayarlar (Transform Faylı Sınırlar). Bu üç hareketin her birinin kendine özgü jeolojik sonuçları vardır [65] (Şekil 3.3).

Şekil 3. 3 Levha sınırı tipleri [69]

3.2.1 Faylanma Türleri

Hareket eden levhalar birbirleri üzerine kuvvet uygularlar. Bu kuvvet yerkabuğundaki kayaçların direnç göstermesi yüzünden belli bölgelerde enerji birikimine yol açar. Bu enerji, kayaçların kırılma sınırını aştığı anda da kırılma (faylanma) olur. Bu olay sonucunda meydana gelen şekle ise fay denir. Aynı zamanda faylar yerkabuğundaki jeolojik formasyonları hareket ettirerek üzerinde gözlemlenebilen veya ölçülebilen hareket bulunan kırıklardır. Faylarda kayma hareketinin oluştuğu düzleme fay düzlemi (fay aynası) denir. Bununla birlikte kırılma yüzeyinin ayırdığı ve yüzeyin her iki tarafında bulunan kayaç topluluklarına blok adı verilmektedir. Fay düzlemi üzerine yaslanıldığında üstte kalan bloğa tavan, altta kalan bloğa ise taban bloğu denilmektedir. Faylar, blokların hareket yönü ile fay düzlemi arasındaki geometrik ilişkiye göre eğim, doğrultu ve yanal atımlı faylar olarak sınıflandırılırlar.

Eğim Atımlı Faylar: Bu tür faylarda hareket fay düzlemi boyunca aşağı ve yukarı doğrudur. Eğer tavan bloğu fay düzlemi üzerinde tabana göre eğim aşağı doğru veya taban bloğu tavana göre eğim yukarı doğru hareket ederek birbirinden uzaklaşıyorsa bu tür faylar eğim atımlı normal faylar adını alırlar. Bu tür faylar doğada Hors ve Graben yapısı olarak ortaya çıkmaktadır. Ülkemizde Ege Graben Sistemleri bu grubun en büyük temsilcisidir. Eğim atımlı faylarda tavan bloğu taban bloğuna göre fay düzlemi üzerinde eğim yukarı doğru hareket etmiş ya da bunu tam tersine taban bloğu tavana

göre fay düzlemi üzerinde eğim aşağı hareket ederek birbirine yaklaşıyorsa bu tür faylar eğim atımlı ters faylar adını alırlar. Bu tür faylar doğada Bindirme ve Şaryaj yapısı olarak ortaya çıkmaktadır. Bindirme faylarının eğim dereceleri 0° ve 10° arasında olanlarına nap adı verilmektedir [62].

Şekil 3. 4 Eğim atımlı normal faylar (A) ve eğim atımlı ters fayların (B) gösterimi

Doğrultu Atımlı Faylar: Fay düzlemine göre düzlemin her iki tarafındaki blokları, yatay olacak şekilde birbirinden ters yönde hareket etmiş olan faylara doğrultu atımlı fay denir. Doğrultu atımlı faylarda her iki blok birbirinden yatay yönde uzaklaşmaktadırlar. Bu faylarda yatay atım söz konusudur. Kayma ve atım yönüne göre bu faylar sağ veya sol yönlü doğrultu atımlı fay olarak isimlendirilmektedir. Sağ yönlü doğrultu atımlı faylarda durup karşı bloğa bakan bir kimseye göre karşı blok sağa doğru hareket etmektedir. Sol yönlü doğrultu atımlı faya örnek Kuzey Anadolu Fayı (KAF) verilmektedir. Bu fay sağ yönlü ve 1400 km uzunluğundadır [63].

Şekil 3. 5 Doğrultu atımlı fay gösterimi (sağ yönlü)

Yanal Atımlı Faylar: Yanal atımlı faylar eğim atımlı ve doğrultu atımlı fayların bileşkesi şeklindedir. Yani kayma hareketi ne sadece fay düzleminin eğimi yönünde ne de sadece doğrultu istikametindedir. Bu tür faylara yanal, verev, oblik isimleri de verilmektedir. Eğim atımlı faylar gibi tavan ve taban bloğunun birbirine göre hareketiyle normal ve ters fay adını almaktadır. Birçok eğim ve doğrultu atımlı faylar incelendiğinde aslında yanal atımlı fay olukları görülmüştür. Bu tür fayları belirlemek için fay aynalarındaki fay çizikleri dikkatle incelenmelidir [63]. Şekil 3.6'da yanal atımlı bir fayda A eğim atım bileşenini, B yanal atım bileşenini, C net atım bileşenini göstermektedir.

Şekil 3. 6 Yanal atımlı fay gösterimi

3.3 Güneybatı Anadolu'daki Başlıca Tektonik Yapılar

Güneybatı Anadolu birçok tektonik oluşumu barındıran kompleks bir yapıya sahiptir (Şekil 3.7). Bu nedenle günümüzde de birçok araştırmacının ilgisini çekmiştir [1], [2], [4], [69], [70], [71], [72]. Batı Anadolu'daki yaklaşık K-G yönlü genişleme tektoniğine bağlı olarak oluşan grabenler, Güneybatı Anadolu'da yerini normal ve ters atımlı faylara bırakmaktadır [73], [74], [75], [76], [77], [78]. Helenik yayın doğu kanadını oluşturan Plini-Strabo sisteminin KD'sunun Güneybatı Anadolu'dan geçmesi bölgenin tektonik önemini daha da arttırmaktadır. Bölgenin en önemli tektonik yapıları;

- Fethiye-Burdur Fay Zonu
- Dinar ve Çivril Fayı
- Gökova Grabeni
- Knidos Fayı
- Isparta Açısı (Büklümü)

- Antalya Fay Zonu (Kemer Çizgiselliği)
- Aksu Bindirmesi
- Akşehir Fayı dır.

FBFZ: Fethiye Burdur Fay Zonu, IA: Isparta Açısı, KF: Knidos Fayı, AKB:Aksu Basini, AB: Antalya Basini, AKFZ: Akşehir Fay Zonu, DÇF: Dinar Çivril Fayı, RB: Rodos Basini, PSS: Plini-Strabo Sistemi, KAF: Kuzey Anadolu Fayı, DAF: Doğu Anadolu Fayı

3.3.1 Fethiye-Burdur Fay Zonu

Fethiye-Burdur Fayı, Fethiye Körfezi ile Keçiborlu arasında yaklaşık 300 km boyunca KD-GB yönünde uzanan ve sol yanal atım bileşeni olan normal bir faydır. Bölgenin en büyük fay sistemidir [69]. Bu fay zonu Helenik yayın doğu kanadını oluşturan Plini-Strabo sisteminin Anadolu plakası içindeki KD uzantısı olarak kabul edilmektedir [79], [80], [81]. Fay zonu Kuzey Anadolu fay zonu gibi çoğu yerde tek bir yapısal çizgi halinde değildir. Birbirine paralel gelişmiş kesikli uzanıma sahip segmentlerden oluşmaktadır. Bu segmentler KD doğrultusunda uzanım gösteren ve genişliği 3-10 km arasında değişen bir zon içinde yer alır [82]. Kuzeydoğuya doğru genişleyerek devam eden Fethiye-Burdur Fay Zonunun batı kesiminde KD-GB ve KB-GD yönlerinde olmak üzere birbirine hemen hemen dik yönde gelişmiş fay sistemleri mevcuttur. Kıbrıs ve Helenik yitim zonları Fethiye Körfezi açıklarında bir dirsek oluşturur [78]. Bu dirseğin oluşumu Burdur fayının sol yönlü atımına uygun bir geometrik ilişki gösterir. Fay Senirkent ve Hoyran gölünü kuzeydoğu yönünde takip ederek Afyon Çay yöresinde Akşehir- Simav fayı ile kesişir (Şekil 3.7) [12], [51], [83], [84], [85], [86], [87].

3.3.2 Dinar ve Çivril Fayları

Dinar fayı ilk kez [88] ve [89] tarafından haritalanan KB-GD uzanımlı olup yaklaşık 60 km uzunluğundadır. Dinar fayı eğim atımlı normal faydır. Dinar-Çivril fayı, [7] tarafından Çatmadağ fayı olarak adlandırılmıştır. Bölgedeki Horst-Graben sistemi ile karakterize edilen Ege açılma bölgesinin doğu sınırına yakın, Fethiye- Burdur Fay Zonunun kuzeydoğu sınırına yakın bir bölgede yer alır [69], [82], [90], [91]. Dinar'ın doğusunda başlayan ve eğim atımlı normal fay olarak düşünülen bu fay KB-GD yönünde Çivril kasabasına doğru uzanmaktadır. Bu nedenle bazı kaynaklarda Dinar-Çivril fayı olarak isimlendirilmiştir [90]. Çivril ilçesi yakın çevresinde bu iki fay takımının doğrultusuna paralel iki ana fay bulunur. Bunlardan ilki Çivril-Baklan ovalarının kuzeybatı sınırını oluşturan keskin bir çizgi şeklinde gözlenen KB-GB doğrultulu Çivril birinci faydır. Söz konusu fay Çivril'in kuzey doğusundaki Küfi yatağından başlayıp Kocayaka-Sarılar köylerinin güneyinden geçerek Aşağı Seyit köyüne kadar uzanır. Bu fayın günümüzde de diri (aktif) olduğu görülmektedir. Diğeri ise Çivril Grabeninin doğu sınır fayı olan KD-GB gidişli ikinci faydır. Çivril-Baklan ovasının Güneybatı sınırını oluşturan bu fay ise Çivril'in Güneydoğusundaki Yavaşça çiftliğinden başlayıp Bozdağların ova ile birleştiği kuzey eteklerinden güneybatı yönünde ilerleyerek Baklan'a ulaşır (Şekil 3.8) [92].

Şekil 3. 8 Dinar fayı ve çevresi [91]

3.3.3 Gökova Grabeni

Gökova fay zonu, Gökova körfezi kuzey kenarı boyunca uzanmaktadır ve doğuda Gökova Körfezi doğusundaki Ula kasabası civarından başlar ve İstanköy'ün güneybatısına kadar devam etmektedir [74], [75], [80], [82], [93]. Uzunluğu yaklaşık 180 km kadar olup fay zonu, birbirine paralel birkaç sıra ark şeklinde normal faylardan oluşmaktadır. Yapılan batimetri çalışmaları fayın, Ören batısında tamamen deniz altında devam ettiğini göstermektedir [94], [95]. Bölgedeki en önemli ve en genç yapısal unsur olan D-B doğrultusundaki Gökova Grabeni, Datça Yarımadası ile Bodrum Yarımadası arasında yer alır (Şekil 3.9). Graben'in kuzey kenarı, fay düzlemi oldukça dik normal bir fayla kontrol edilirken güney kenarı kavisli (listrik) karakterdeki Datça fayı ile kontrol edilmektedir [96]. Ayrıca bölgedeki sismik aktivite bu fayın günümüzde de aktif olduğunu göstermektedir [97].

Şekil 3. 9 Gökova Grabeni [97], [98]

3.3.4 Knidos Fayı

Datça Yarımada'sının batı bölümünde KD-GB ve D-B doğrultulu iki tür normal fay sistemi gelişmiştir (Şekil 3.10). Bunlardan D-B olanlar Knidos, Cumalı ve Yaka köy fayları olarak isimlendirilmiş olup basamaklı bir geometri göstermektedirler. Yaklaşık 15 km uzunluğundaki Yakaköy Fayı, Datça Yarımadası'nın batı yarısında yer alan ve D-B uzanıma sahip olan Kocadağ ile Bozdağı'ın güneyini sınırlar. Yazıköy'ün kuzeyinden itibaren izlenen bu fay Yakaköy üzerinden Bozdağ'ın GB'sına kadar devam eder. Diğer KD-GB uzanımlı faylar Knidos çevresinden başlayarak yine basamaklı bir geometri ile Datça yakınlarına kadar uzanmaktadır. Yarımada'nın en batı ucunda, önemli bir antik kent olan Knidos'un da üzerinde yer aldığı bu fay Bozdağ'ın güney kenarını kontrol eden, yaklaşık D-B gidişe sahip eğim atımlı normal bir faydır. Fay üzerinde ve faya bitişik olarak kurulmuş olan Knidos kentindeki deformasyona uğramış harabeler fayın aktif olduğunun önemli bir kanıtıdır. [99] da bu kentin daha önce birkaç kere depremlerle yıkıldığını belirtmiştir [97].

Şekil 3. 10 Knidos Fayı ve çevresi [97, 98]

3.3.5 Isparta Açısı (Büklümü)

GB-Anadolu'da "Isparta Açısı" olarak bilinen ve Antalya Körfezinin geometrisine uyan coğrafik yapı, Batı Toroslar bölgesinin en önemli yörelerinden biridir. Isparta Açısı, ana çizgilerde, batıdan Fethiye-Burdur Fayı, doğudan ise Akşehir-Simav fayları ile sınırlıdır [72], [84], [87], [100], [101], [102], [103], [104], [105]. K-G uzanımlı Eğirdir-Kovada grabeni Isparta Açısını iki farklı simetrik bölgeye ayırır. Isparta Açısının doğu kanadının saat yönünde, batı kanadının ise saatin tersi yönde rotasyon yaptığı söylenmektedir [106].

Isparta Açısı içinde üç önemli fay bulunmaktadır. Bunlar Aksu bindirmesi, Kemer çizgiselliği ve Kırıkkavak faylarıdır. Aksu bindirmesi Isparta ile Serik arasında kuzeybatı yönünde yaklaşık olarak 150 km'lik uzanım gösteren bir faydır [106]. Aksu bindirme fayı Antalya Körfezinden başlayarak kuzeybatı doğrultusunda devam eden ters faydır. Aksu Bindirme Fayı boyunca yüzlerce yıldır herhangi bir hasar yapıcı deprem meydana gelmemiştir. Kemer çizgiselliği Isparta-Antalya arasında yer alan ve Eğirdir-Kovada grabenine paralel gelişmiş K-G gidişli fay sistemleridir [103]. Literatürde Antalya fay zonu olarak ta isimlendirilmektedir [86], [87]. Isparta Açısını doğudan sınırlayan Akşehir fayı egemen olarak KB gidişli ve KD'ya eğimli bir normal faydır. [82] ile [103] Akşehir fayını "Sultandağ Bindirmesi" olarak değerlendirmişlerdir. Ancak, Akşehir fayı boyunca gözlenen kayma düzlemleri yanı sıra, 2000 ve 2002 yılında bu fay üzerinde büyüklüğü 5.9 ve 6.5 Mw olarak meydana gelen depremler, Akşehir fayının normal bir fay olduğunu belgelemiştir [107], [108], [109].

Şekil 3. 11 Isparta Açısı (Büklümü) çevresi faylar [86]

3.4 Güneybatı Anadolu'nun Depremselliği

Türkiye'de 1900–1960 yılları arasında birkaç deprem istasyonu ile depremselliğin belirlendiği dönem, aletsel dönemin ilk yarısını ve 1960'li yıllardan sonra deprem istasyonlarının sayısının artması sonucu depremlerin kaydedilmiş olduğu dönem ise aletsel dönemin ikinci yarısını oluşturmaktadır. 1900–1960 yılları arasında aletsel

dönemin ilk yarısına ait yıllık deprem sayıları düşük değerler vermektedir. Yıllık deprem sayılarının düşük değerlerde olmasının sebebi, deprem istasyon sayısının çok az olmasından kaynaklanmaktadır. Güneybatı Anadolu bulunduğu coğrafya üzerinde son yüzyılda en fazla deprem olan fay zonlarına sahiptir (Şekil 3.12). Bölgedeki depremler tektonik kökenli olup, Ege Denizi ve Kıbrıs sismik yay kuşaklarıyla ilgilidir.

Şekil 3. 12 Güneybatı Anadolu'da büyüklüğü 4 den büyük, son 50 yıldır olan depremlerin yıllara göre dağılımı [110]

Güneybatı Türkiye'de depremselliği en yüksek olan iki alan mevcuttur. Birincisi; Rodos -Fethiye - Burdur boyunca, ikincisi ise Simav - Emet - Gediz - Altıntaş - Afyon boyunca uzanır. Son yıllardaki sismik aktivite bu iki kuşak üzerinde yoğunlaşmaktadır. Bu kuşaklardan ilki kuzeydoğuya doğru Burdur - Acı Göl grabenleriyle, ikincisi ise güneydoğuya doğru olan Afyon – Akşehir grabenleriyle birleşir. Akşehir - Afyon - Gediz -Simav çöküntü alanı ve bu alanın güneybatı kenarını sınırlayan Akşehir fayı sismotektonik bakımından diridir [73].

Son yüzyılda bölgede büyüklüğü 5 Mw üzerinde yüzden fazla deprem olmuştur (Şekil 3.13). Bunlardan Burdur'u etkileyen 3 Ekim 1914 (Mw 7.0), 12 Mayıs 1971 (Mw 6.2), Dinar ve çevresini etkileyen 7 Ağustos 1925 (Mw 6.0), 1 Ekim 1995 (Mw 6.1) depremleri ile 15 Aralık 2000 Akşehir (Mw 5.9), 3 Şubat 2002 Çay (Mw 6.0) ve

Fethiye'yi etkileyen 25 Nisan 1957 (Mw 7.1) depremleri bu bölgedeki sismik aktivitenin son yüzyıldaki önemli belirtilerindendir [111]. Zonda 1914 yılında Burdur'un kuzeyinde meydana gelen depremden sonra 1922–1963 yılları arasında meydana gelen depremler daha çok Burdur'un güneyinde etkili olmuştur. Bu dönemde olan depremler 1922'de Karpathas'ta (Mw 6.7) başlamış, zaman içinde KD yönünde ilerleyerek 1926'da Rodos, 1957 Fethiye, 1963 Tefenni ve 1971'de tekrar Burdur yöresini etkilemiştir [85]. 1957–1992 yılları arasındaki 40 yıllık sürede oluşan Karpathas, Rodos, Fethiye, Tefenni ve Burdur depremleri güneyden kuzeye doğru bir kırık ilerlemesini göstermesi bakımından önemlidir. Bu ilerleme Fethiye-Burdur fay zonundaki fay segmentlerinin birbirini tetiklediğini ve gerilim aktardığını göstermektedir. 6.2 Mw'lik Burdur depreminden sonra fay zonunda önemli bir sismik aktivite gözlenmemiştir. Bununla beraber 1995 yılındaki 6.1 Mw'li Dinar depreminin zon üzerinde gerilimi artıran bir etki oluşturduğu düşünülmektedir [51], [111].

Şekil 3. 13 Ülkemizde son yüzyılda meydana gelen 5 Mw'den büyük depremler [100]

BÖLÜM 4

GERİLME ANALİZİ ve SONLU ELEMANLAR YÖNTEMİ

Alman Jeofizikçi Alfred Wegener tarafından 1912'de ortaya konmuş olan Levha Tektoniği kuramı ile yeryuvarının aslında çeşitli plakalardan oluştuğu ortaya çıkmıştır. Bu plakaların birbirleriyle olan etkileşimden ve hareketlerinden dolayı yer kabuğunda deformasyonlar meydana gelmektedir. Günümüzde yinelenen GNSS gözlemleri ile plakaların bu yer değiştirme miktarları yüksek güvenirlilikte elde edilebilmektedir. Yer değiştirmelerinin yanında yer değiştirmelere sebep olan kuvvetlerde incelenmektedirler. Elde edilen yer değiştirme verileri kullanılarak, deformasyon sonucu ortaya çıkan yamulma (gerinimler-strainler), yani cismin boyutlarında meydana gelen geometrik değişimlerde hesaplanabilmektedir. Bu yamulmalardan yola çıkarak da gerilim (stres) alanları, cisimdeki değişimlere neden olan kuvvet alanları kestirilmektedir. Yamulma analizinde yerkabuğu üzerinde belirli noktalar seçilerek, bölgenin karakteristik hareketleri bu noktalara bağlı olarak ortaya konmaktadır. Bu nedenle yamulma analizi datum tanımından bağımsızdır. Farklı bir deyişle GNSS ölçüleri yardımıyla hesaplanan koordinat farklarının analiz edilmesiyle sistemlerde ortaya çıkabilecek datum bağımlılığı probleminden de kurtulmak için, datumdan bağımsız olan ve fiziksel özellikleri de yansıtan yamulma analizi deformasyonlarının belirlenmesinde kullanılmaktadır.

4.1 Gerilim ve Yamulma

4.1.1 Gerilim

Cisimlerin dış ve iç yüzeylerine iki tip kuvvet etki eder. Dış kuvvetler genellikle, bir cisim başka bir cisim ile karşı karşıya geldiğinde birbiri üstüne kuvvet uygulamasıyla ortaya çıkar. İç kuvvetler ise genellikle merkezkaç etkisi, gravite çekimi ve diğer güçler etkisinde oluşur. Gerilim kavramı katı maddelerin dayanıklılık ve kırılma dayanımlarını araştırma çalışmalarından ortaya çıkmıştır. İşte dış kuvvetlere karşı koymaya yarayan iç kuvvetler sistemine gerilme (stres) adı verilmektedir [63].

Bir dA yüzeyine dF kuvveti etki etmesi sonucunda birim yüzeye etkiyen gerilme T ile, yüzeye dik gerilim vektörü v ile gösterilmektedir (Şekil 4.1). Kısaca gerilim için birim yüzeye etki eden kuvvet denilebilir. dA elemanının sonsuz küçük olduğu düşünülürse gerilim

$$T = \lim_{dA \to 0} \frac{dF}{dA}$$
(4.1)

eşitliği yardımıyla hesaplanır [112].

Şekil 4. 1 dA alan elemanı üzerine etkiyen kuvvetler

Gerilimlerin, herhangi bir arakesitine göre, biri bu düzleme dik diğeri de paralel olmak üzere iki bileşene ayrılırlar. Yüzeye dik olan gerilmeye Asal Normal Gerilim (σ), yüzeye paralel olan ise Kayma Gerilimi (τ) olarak isimlendirilirler. Z ekseni yüzeyin dış normali olmak üzere seçilirse, T_n (gerilim) X, Y ve Z eksenleri boyunca birbirleriyle dik açı yapan üç bileşene ayrılabilir. Bu τ_{zx} ve τ_{zy} kayma gerilmesi bileşenleri, söz konusu yüzeye teğet olarak etki ederken, σ_{zz} normal gerilme bileşeni yüzey normali boyunca etki ederler. Aynı işlemler yüzey dış normalinin pozitif X ve Y doğrultularında seçildiğinde ise τ_{xy} , τ_{xz} , σ_{xx} ve τ_{yx} , τ_{yz} , σ_{yy} dik bileşenleri elde edilir (Şekil 4.2). Bu bileşenler bir matris şeklinde gösterilebilir [113], [114].

 $\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix} \xrightarrow{} diş normali X eksenine paralel \\ \xrightarrow{} diş normali Y eksenine paralel \\ \xrightarrow{} diş normali Z eksenine paralel$

Şekil 4. 2 Bir yüzeye etki eden gerilimin dik bileşenleri

Gerilimleri dört gruba ayrılmaktadır. Bunlar;

- Normal Gerilim
 - Basınç gerilimi
 - Çekme gerilimi
- Teğetsel Gerilim

- Burulma Gerilimi
- Eğilme Gerilimi'dir.

Normal Gerilim: Herhangi bir düzleme dik olarak etkiyen kuvvetin birim alana düşen şiddetidir. Gerilme akıları ile etki yüzeyi arasında 90° lik bir açı bulunur. Eğer etkime düzlemine doğru yönlendirilmiş normal gerilimler ise bunlara Basınç Gerilimi, etkime düzleminden uzaklaşan normal gerilimler ise Çekme Gerilimi olarak isimlendirilirler.

Teğetsel Gerilim: İncelenen kesit yüzeyine paralel olarak etkiyen teğetsel kuvvetlerin birim alandaki değerleridir. Kesme makaslama ve kayma gerilimleri adı altında da bilinir.

Burulma Gerilim: Dönme eksenine dik düzlemler içinde etkiyen zıt yönlü momentlerin cisim içinde oluşturdukları kesme gerilimleridir.

Eğilme Gerilimi: Cisme iki ucundan etkiyen ve aynı eğilme düzlemi içinde bulunan kuvvet çiftinin oluşturduğu eğilme düzlemi içinde yer alan tarafsız eksene dik çekme ve basınç gerilimleridir.

4.1.2 Yamulma

Yamulma kavramı, yer değiştirme (displacement) kavramı ile sıkı sıkıya ilgilidir. Yamulma, cismin komşu noktaları arasında fiziksel ve mekanik bağ kopmadan, gerilmeler etkisiyle meydana gelen yer değiştirmeleridir. Başka bir anlatımla, bir kütle üzerindeki herhangi bir noktanın yaptığı hareketinin vektörel büyüklüğü yer değiştirme olarak adlandırılır. Kütle hareketleri iki kısım olarak düşünülebilir:

- Kütlenin bir bütün olarak yer değiştirmesi (dönmesi, kayması)
- Kütle üzerindeki noktaların birbirlerine göre bağıl olarak hareket etmesi

Kütlenin dönmesi, katı blok hareketi olarak da adlandırılabilir. Bu tür hareket, ya ideal katı bloğa ya da homojen deforme olabilen kütlelerde görülebilir. Kütle üzerindeki noktaların birbirlerine göre hareketleri deformasyon olarak adlandırılır.

Yamulma, kütle üzerindeki noktaların birbirlerine göre bağıl hareketleri ile ilgili geometrik bir büyüklüktür. Gerilim gibi yamulmada da normal ve kayma yamulması

sınıflandırması yapılabilir. Normal yamulma, iki nokta arasındaki uzunluktaki değişimin, orijinal mesafeye bölümüdür [112]. Kayma yamulması ise, başlangıçta birbirlerine dik olan iki doğrultu arasındaki açısal değişimdir. Buradan yola çıkarak yamulmanın boy değişimi ve açı değişimi olarak kendisini iki şekilde göstermektedir. Boyca değişim basınç ve çekme gerilimi etkisi altında cisimde meydana gelen boy değişiminin birim uzunluğa düşen miktarıdır. Basınç değişimi altında boyda kısalma olacak (Şekil 4.3) ve basınç yamulumu ise (4.2) eşitliğinden hesaplanabilir.

Şekil 4. 3 Birim boy kısalması, basınç gerinimi

$$(+)\varepsilon = \frac{\Delta L}{L} \tag{4.2}$$

Çekme gerilimi etkisi altında ise boyda uzama olacak (Şekil 4.4) ve Eşitlik 4.3 ile çekme gerinimi hesaplanacaktır [114], [115].

Şekil 4. 4 Birim boy uzaması, çekme gerinimi

$$(-)\varepsilon = \frac{\Delta L}{L} \tag{4.3}$$

Birim cismin komşu noktalar arasında fiziksel ve mekanik bağ koptuğu takdirde bu parçalar kuvvetlerin etkisinde öteleme hareketi yaparlar. Aynı şekilde cisim bir bütün halinde şekil değiştirmeksizin ötelenebilir [114], [115]. Anlaşılacağı üzere her yer değiştirme mutlaka bir biçim değişikliği doğurmaz. Yer değiştirme; yamulma, birim deformasyon, öteleme, dönme ve biçim değişikliğinin genel adıdır. Birim deformasyon birimsiz olması ve temelde bir oranı ifade edemediği için bu adı almıştır [115].

Yer değiştirmelerin izlenmesi için deformasyon alanını en uygun şekilde temsil edecek noktalar seçilmelidir. Yer değiştirmeler ile hesaplanacak gerinim elemanları için gerinimin homojen olduğu kabul edilmelidir. Bu yaklaşımlar sonucunda gerinim problemi, aslında bir dönüşüm problemine dönecektir. Yer değiştirme, aynı noktanın iki farklı zamanda hesaplanan kartezyen koordinatları arasındaki fark olarak düşünülebilmektedir. Bir noktanın t₁ zamanındaki koordinatının homojen deformasyona uğrayarak t₂ zamanında koordinatına haline gelmesi arasındaki ilişki basit bir afin dönüşüm eşitliği ile açıklanabilmektedir [116].

Bu yaklaşımlar çerçevesinde bağıl konum değişimi,

$$du = (E+w)r + t_0 \tag{4.4}$$

şeklinde elde edilir [117]. Burada E simetrik gerinim tensörü, w ters simetrik yamulma tensörüdür. t_0 tüm noktalar için geçerli olan ötelenme katı blok hareketi, r ise koordinatları göstermektedir. Ayrıca ötelenme,

$$t_0 = \begin{bmatrix} t_1 & t_1 \end{bmatrix}^T$$

$$d_u^T = \begin{bmatrix} u_x & u_y \end{bmatrix}, \ r = \begin{bmatrix} x & y \end{bmatrix}^T$$
(4.5)

(4.6)

ile açıklanabilmektedir. Simetrik gerinim tensörü,

$$E = \begin{bmatrix} \varepsilon_{XX} & \varepsilon_{XY} \\ \varepsilon_{YX} & \varepsilon_{YY} \end{bmatrix}$$
(4.7)

ile ifade edilir.

Simetrik tensörün köşegen elemanları koordinat eksenleri boyunca birim uzunlukta meydana gelen genleşmeyi, köşegen dışındaki elemanlar ise koordinat eksenlerine göre deformasyon sonucu ortaya çıkan küçük açısal bozulmaları tanımlar [58]. Ters simetrik tensör,

$$w = \begin{bmatrix} 0 & w \\ -w & 0 \end{bmatrix}$$
(4.8)

ilgili koordinat eksenlerini içeren düzlemde deformasyon nedeniyle oluşan katı bloğun diferansiyel dönmesini tanımlar. d_u deformasyon vektörü ise bir t_1 ve t_2 epoklarında elde edilen koordinatların afin dönüşümünün sonucu olarak yazılacak olursa,

$$d_{\mu} = Bu \tag{4.9}$$

olarak ifade edilir [116]. B katsayılar matrisi olmak üzere

$$B = \begin{bmatrix} x & y & 0 & y & 1 & 0 \\ 0 & x & y - x & 0 & 1 \end{bmatrix}$$
(4.10)

şeklinde gösterilir. Eşitlik (4.6) ışığında (4.7), (4.8) ve (4.9) yeniden düzenlenip (4.10) da yerine konulursa,

$$\begin{bmatrix} u_{x} \\ u_{y} \end{bmatrix} = \begin{bmatrix} x & y & 0 & y & 1 & 0 \\ 0 & x & y - x & 0 & 1 \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{xy} \\ \varepsilon_{yy} \\ w \\ t_{1} \\ t_{2} \end{bmatrix}$$

(4.11)

elde edilir [58], [115], [116], [118], [119]. Gerinim parametreleri En Küçük Kareler Yöntemine göre belirlenir. Bu parametrelerden yararlanarak da gerinim elips parametreleri aşağıdaki gibi hesaplanır.

Maksimum ve minimum asal gerinimler,

$$\varepsilon_{mak} / \varepsilon_{min} = \frac{1}{2} \left[(\varepsilon_{xx} + \varepsilon_{yy}) \pm \sqrt{(\varepsilon_{xx} - \varepsilon_{yy})^2 + 4\varepsilon_{xy}^2} \right]$$
(4.12)

ile hesaplanır. Gerinim elipsinin büyük ekseni ε_{mak} , küçük ekseni ε_{min} olur. Gerinim için ekstrem değerlerler $\phi ve \phi + \frac{\pi}{2}$ doğrultularında meydana gelir ve

$$\phi = \frac{1}{2} \arctan(2\varepsilon_{xy} / (\varepsilon_{xx} - \varepsilon_{yy}))$$
(4.13)

eşitliği ile hesaplanır.

Hesaplanan bu açı asıl eksen gerinim yönlendirilmesini açıklar. Bu doğrultu gerinim elipsinin büyük ekseninin açıklık açısıdır. Yamulma alanının homojen olması durumunda, deformasyondan önce bir daire üzerinde bulunan noktalar, deformasyondan sonra bir elips üzerinde yer alırlar (Yamulma elipsi). Yamulma elipsinde çıkan pozitif asal yamulma değerleri genleşmeyi, negatif asal gerinim değerleri sıkışmayı belirtir. Deformasyon yamulma parametrelerinin her ikisi de pozitif olacağı gibi biri pozitif diğeri negatif ya da ikisi de negatif olabilmektedir. Asal yamulma değerlerinden herhangi biri negatif ise yamulma elipsi sanal elips şeklindedir. Grafik gösterimde genleşme yönü noktadan dışarıya doğru, sıkışma yönü ise bunun tersi işaretlerle gösterilir [58].

Şekil 4. 5 Yamulma elipsi [58]

4.2 Sonlu Elemanlar Yöntemi

Önceki bölümde anlatıldığı gibi gerinim analizinde iki kabul yapılmaktadır. Bunlardan birincisi yer değiştirmelerin izlenmesi amacı ile oluşturulan jeodezik ağın deformasyon alanını en uygun şekilde temsil ettiği diğeri ise oluşan gerinimin homojen olduğudur. Ancak son yıllarda yapılan çalışmalarda yer kabuğunun homojen olmadığı düşünülerek çeşitli analizler yöntemleri geliştirilmiştir [120]. Bu yöntemlerin en yaygın olanı Sonlu Elemanlar Yöntemidir.

Sonlu Elemanlar Yöntemi, fiziksel bilgiler kullanılarak mühendisler tarafından, temel yöntemleri kullanan matematikçilere oranla daha fazla geliştirilmiştir. Bu yöntem ilk kez gerilme analizi problemlerinde kullanılmıştır. 1943 yılında matematikçiler burkulma problemleri için çok terimli bir çözüm tanımlamışlardır. Bu çalışma mühendisler tarafından pek benimsenmemiş ve bilgisayar teknolojisinin fazla gelişmemiş olması sebebiyle çok pratik bulunmamıştır. 1950'lerde havacılık endüstrisi sonlu elemanlar yönteminin mühendislerin pratiğine sunmuştur. Finite Element Method (FEM) adıyla benimsenmiş ve 1963 yılında matematiksel geçerliliği tanınmıştır. Sonlu Elemanlar Yöntemi karmaşık olan problemlerin daha basit alt problemlere ayrılarak her birinin kendi içinde çözülmesiyle tam çözümün bulunduğu bir çözüm şeklidir [121].

Yöntemde üç temel kabul vardır. İlki, geometrik olarak karmaşık olan çözüm bölgesi sonlu elemanlar olarak adlandırılan geometrik olarak basit alt bölgelere ayrılır. Bu alt bölgeler yapı davranışını temsil edebilecek özellikte seçilmelidir. Her alt bölge düğüm noktası adı verilen noktalarla temsil edilir ve birbirleriyle birleştirilir. İkinci temel kabul ise her elemandaki sürekli fonksiyonlar, cebirsel polinomların lineer kombinasyonu olarak tanımlanabileceği kabul edilir. Bu şekilde cebrik bir denklem takımı elde edilmiş olunur. Gerilme analizinde bu denklem takımları düğüm noktalarındaki denge denklemleridir. Üçüncü kabul ise, aranan değerlerin her eleman içinde sürekli olan tanım denklemlerinin belirli noktalardaki değerleri elde edilmesinin, problemin çözümünde yeterli olmasıdır. Kullanılan yaklaşım fonksiyonları enterpolasyon teorisinin genel kavramları kullanılarak polinomlardan seçilir. Seçilen polinomların derecesi çözülecek problemin tanım denkleminin derecesine ve çözüm yapılacak elemandaki düğüm sayısına bağlıdır [122].

Bu denklem takımı farklı çalışmalarda, farklı matris normu ile gösterilebilmektedir [21], [24], [123], [124], [125], [126]. [21] de Sonlu Elemanlar Yönteminin temel eşitliğinde üçgen elemanların köşe noktalarındaki yer değişimler U ile bu noktalara etki eden kuvvetler F ile göstermişlerdir. Aynı zamanda yer değiştirme ile kuvvet arasındaki ilişkiyi genel matris gösterimi ile,

$$[F] = [K][U]$$
(4.14)

şeklinde tanımlamışlardır. Eşitlikte [K], elemanları oluşturan fiziksel parametrelerin ve ortamın mekanik davranışını gösterir bir ifadedir. Bu matrise stiffness-rijitlik-sertlikdiregenlik matriside denilmektedir. Yine aynı çalışmada rijitlik matrisi,

$$[K] = [B][D][B]^T \Delta t \tag{4.15}$$

eşitliği ile tanımlanır.

Burada [B] elemandaki birim deformasyon ile düğüm noktalarının yer değiştirmeleri arasındaki ilişkiyi belirleyen matris, [D] gerilme-birim deformasyon ilişkisinin belirleyen matris, Δ üçgen elemanın yüzey alanı, t üçgen elemanın birim kalınlığıdır. Bilgisayar çözümlerine daha uygun oluşu nedeniyle, yöntemde içerilen eşitliklerin matris şekilleri kullanılmaktadır [21], [123].

Gerilim - birim deformasyon ilişkisini belirleyen [D] matrisi ise,

$$\begin{bmatrix} D \end{bmatrix} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \begin{vmatrix} 1 & \frac{\nu}{1-\nu} & 0 \\ \frac{\nu}{1-\nu} & 0 & 0 \\ 0 & 0 & \frac{1-2\nu}{2(1-\nu)} \end{vmatrix}$$
(4.16)

şeklinde yazılabilir.

Yukarıdaki eşitlikte *E* elastik modül, ^{*U*} poisson oranıdır. Şekil 4.6'da tipik bir üçgen elemanda x, y köşe noktalarının koordinatlarını, *U* ve *V* köşe noktalarının sırasıyla X ve Y yönündeki yer değişimlerini, *F* bu noktalara etki eden kuvvetleri göstermektedir (Şekil 4.6).

Şekil 4. 6 Sonlu elemanlar sisteminde tipik bir üçgen eleman

Düğüm noktalarındaki yer değiştirmeler problemin bilinmeyeni olarak kullanılmaktadır. Eleman matrislerinden yapı rijitlik matrislerinin elde edilmesiyle,

$$[K]\{\delta\} = \{Q\} \tag{4.17}$$

ile gösterilmektedir.

Bu bağıntıda $\{Q\}$ ve $\{\delta\}$ sırasıyla eleman düğüm noktalarındaki kuvvet ve yer değiştirmeleri, [K] ise yapının efektif rijitlik matrisidir. Eleman düğüm noktalarındaki yer değiştirmelerin bilinmesi ile eleman birim deformasyonu,

$$\{\varepsilon\} = [B]\{\delta_i\} \tag{4.18}$$

```
Eşitlik 4.18 ile hesaplanır.
```

Burada $\{\varepsilon\}$ eleman birim deformasyonu göstermektedir.

Bu eşitlik yamulma konusundaki Eşitlik 4.9 ile aynı yapıya sahiptir. Eşitlikte [B] eleman katsayılar matrisini, $\{\delta_i\}$ ise düğüm noktalarındaki yer değiştirmeyi göstermektedir. Yapının herhangi bir noktasındaki gerilmeler, gerinim ve yer değiştirmelerden aşağıda verilen ilişkiler doğrultusunda hesaplanabilir.

$$\{\sigma\} = [D]\{\varepsilon\} \tag{4.19}$$

$$\{\sigma\} = [D][B]\{\delta_i\} \tag{4.20}$$

Eşitlik 4.18 ve 4.19'da verilen bağıntıdaki yerine konulursa, Eşitlik 4.20 elde edilir. Burada $\{\sigma\}$ eleman gerilmesi, [D] malzeme matrisini göstermektedir [21]. Yukarıdaki bağıntılardan da görüleceği gibi sonlu elemanlar modelinin kurulması için model parametreleri olan yer değiştirme elemanları, malzeme parametreleri (elastik modülü, posion oranı) vb. fiziksel özelliklerin bilinmesi gerekmektedir.

4.3 Elastik Atım Teorisi

Depremlerinin oluşumu ve "Elastik Geri Sekme Kuramı (Elastic Rebound)" adı altında anlatımı, 1911 yılında, Amerikalı H.F. Reid tarafından yapılmış ve laboratuarlarda da denenerek ispatlanmıştır [128]. Reid'in teorisi 1906 San Fransisco depreminden önce ve sonra yapılan jeodezik ölçümlere ve saha gözlemlerine dayanmaktadır. Depremden elastik geri sekme kuramına göre herhangi bir noktada, karşılıklı olan blokların tektonik kuvvetlerin etkisiyle zamana bağımlı olarak yavaş yavaş kaymaları sonucu oluşan elastik deformasyon enerjisi depolanır. Depolanan enerji kritik bir değere ulaştığında fay düzlemi boyunca var olan sürtünme kuvvetini yenerek fay çizgisinin her iki tarafındaki kayaç bloklarının birbirine göreli hareketlerini oluşturarak deprem oluştururlar.p

Elastik Rebound teorisini Şekil 4.7 ile kolayca anlaşılmaktadır. Ortamın tam elastik olduğunu düşünerek deformasyon öncesi faya dik birbirine paralel doğrular çizelim (Şekil 4.7(a)). Ortam deformasyona uğrayınca çizilen doğrularda bir bükülme meydana gelecektir (Şekil 4.7(b)). Deformasyonun zaman içinde ilerlemesi ve gerilmenin artması ile bir kayma meydana gelecektir (Şekil 4.7(c)). Bu kayma bütün fay boyunca meydana gelecektir. Bu ilerleme fay üzerindeki koşullara bağlı olarak tek yönlü (unilateral) olabileceği gibi iki yönlü (bilateral) de olabilir. Depremden hemen sonraki dönemde faylanma ile boşalmamış deformasyonlar da artçı deprem süresince boşalarak Şekil 4.7(d)'de görüldüğü gibi ortam gerilmesiz olan ilk konumuna dönecektir [128]. Farklı bir anlatımla blokların fay sınırının altında belirli bir derinliğe kadar kilitli olması sebebiyle gerinim birikimi süresince fay sınırına yakın bölümler, fay sınırından uzak bölümlerine göre daha az yer değiştirecektir [129].

Şekil 4. 7 Elastik atım teorisi [129]

Elastik atım teorisi bir grafik üzerinden açıklanacak olursa büyük bir deprem ile depolanmış olan deformasyon enerjisi tamamen boşalmış olduğu durumda fayı kesen dik bir doğru şeklindedir (Şekil 4.8(a)'daki aa' doğrusu). Deformasyonun devam etmesi ile bu doğru Şekil 4.8(b)'deki aa' şeklini almaktadır. Zaman içinde deformasyonun ilerlemesi halinde, faylanmadan kısa bir süre önce fayı dik olarak kesen bb' doğrusu Şekil 4.8(b)'deki şeklini almaktadır. Deformasyonun boşalmasından sonra aa' ve bb' doğruları Şekil 4.8(c)'deki gibi oluşmaktadırlar [128].

Şekil 4. 8 Elastik atım teorisi grafik anlatımı

Şekil 4.7(b) ve Şekil 4.8(b)'de önceden çizilen doğruların bükülmesi faylanmayı haber veren bir ön belirti olarak düşünülebilir. Fakat gerçekte deformasyonlar tek bir fayın etrafında oluşmaz. Ana faya paralel veya onu kesen diğer faylarda olabilir [55], [128]. Elastik atılım teorisi en sade şekliyle sayısal olarak,

$$V(x,t) = \frac{V}{\pi} \tan^{-1} \left(\frac{x}{D}\right)$$
(4.21)

şeklinde verilmektedir. Burada v, fayın kilitli olduğu derinlik altında göreli hareket hızı, x fay sınırına göre noktaların dik uzaklıkları D ise sismojenik tabaka kalınlığı göstermektedir [129]. Elastik atılım teorisinin matematiksel modeli GNSS hızlarını fay düzlemlerine dik alınan kesitlere dik ve paralel bileşenlerine ayırmaktır (Şekil 4.9).

Şekil 4. 9 Hızların kesit düzlemine indirgenmesi

Hız kesitleri alınırken Eşitlik 4.22-4.27 arası eşitlikler kullanılmaktadır.

 $Vx_{PAR} = Vx\sin\alpha \tag{4.22}$

$$Vx_{NORM} = Vx\sin\beta \tag{4.23}$$

 $Vy_{PAR} = Vy\sin\beta \tag{4.24}$

$$Vy_{NORM} = Vy\sin\alpha \tag{4.25}$$

$$V_{PAR} = V y_{PAR} + V x_{PAR} \tag{4.26}$$

$$V_{NORM} = V y_{NORM} + V x_{NORM}$$
(4.27)

Yukarıdaki eşitliklerde α kesit açısını, *V* GNSS ölçü noktasının hızını, *Vx* ve *Vy*, *V* hızının yatay bileşenlerinin göstermektedir.

BÖLÜM 5

GÜNEYBATI ANADOLU HIZ ALANININ BELİRLENMESİ

Bu tez kapsamında yapılan iki kampanya GNSS ölçüleri TÜBİTAK 108Y298 Nolu "Güneybatı Anadolu Bölgesi'ndeki Blok Hareketleri ve Gerilim Alanlarının GNSS Ölçümleri İle Belirlenmesi" isimli projeden sağlanmıştır. Projenin konusu, Güneybatı Anadolu'da GNSS ölçme tekniğini kullanılarak bölgedeki faylar çevresindeki yerkabuğu hareketleri ile deformasyon anamolilerinin belirlenmesi için toplanan GNSS verisinin değerlendirilmesi, bölgedeki deprem riskinin tanımlanmasıdır. Bu projede yapılan GNSS ölçüleri Yıldız Teknik Üniversitesi yürütücülüğünde, Afyon Kocatepe Üniversitesinden araştırmacı ve bursiyerlerin katılımlarıyla gerçekleştirilmiştir.

5.1 Çalışma Alanının Tanıtılması

Çalışma bölgesi olan Güneybatı Anadolu doğuda Konya, batıda Aydın, kuzeyde Uşak, ve güneyde Antalya illeri ile toplam 9 ili kapsamaktadır (Afyon, Aydın, Konya, Uşak, Isparta, Denizli, Burdur, Antalya, Muğla). Yaklaşık 150000 km²'lik yüzölçümü ile Türkiye'nin %20'lik kısmını kaplamaktadır (Şekil 5.1). Çalışma bölgesinde 8 milyon kişi ile Türkiye nüfusunun %11'i bu bölgede yaşamaktadır [130]. Bölgenin birçok turistik mekanıda içermesi özellikle yaz aylarında yaşayan nüfus sayısının artmasına sebep olmaktadır.

5.2 GNSS Ağı

Güneybatı Anadolu'da daha önceki yıllarda farklı gruplar tarafından da GNSS ölçüsü yapılmıştır. İlk ölçüler 1992 ve 2002 yılları arasında MIT (Massachussets Institute of Technology) tarafından Doğu Akdeniz Bölgesi GNSS Ölçüleri projesi kapsamında 6 kampanya olarak yapılmıştır. Daha sonra 2003-2006 yılları arasında 104Y035 nolu TÜBİTAK projesi kapsamında 5 kampanya daha GNSS ölçüsü yapılmıştır. Afyon Kocatepe Üniversitesi ile MIT tarafından imzalanan protokol ile 09.MUH.06 nolu Bilimsel Araştırma Projesi hazırlanmıştır. Bu proje ile her iki grubun bölgede yaptıkları GNSS verileri alınarak tez çalışmasında kullanılmıştır. 2009-2010 yıllarında 108Y298 nolu TÜBİTAK projesi kapsamında 2 kampanya daha GNSS ölçüsü yapılmıştır. Geçmiş yıllarda yapılan ölçü noktalarının isimleri ve ölçü yapıldığı yıllar Şekil 5.2 ve Çizelge 5.1' de verilmiştir.

Şekil 5. 1 Çalışma bölgesi

ΝΟΚΤΑ	ΝΟΚΤΑ		м	ΙТ			1	.04Y035			108Y298		
NO	ADI	97	98	00	02	03	04/1	04/2	05	06	09	10	
1	AKSU	х	х	х	х						х	х	
2	BHTL							х	х	х	х	х	
3	BZKT												
4	САМК	х	х		х						х	х	
5	CINE	х	х		х						х	х	
6	CLTK					х	х	х	х	х	х	х	
7	DLMN	х		х	х						х	х	
8	GKPN	х		х	х	х	х	х	х	х	х	х	
9	ISRT					х	х	х	х	х	х	х	
10	KASO	х	х		х			х	х	х	х	х	
11	ΚΑΥΑ							х	х	х	х	х	
12	KNID		х		х						х	х	
13	KOZU										х	х	
14	KROZ										х	х	
15	KYBS	х		х	x	x	х	х	х	х	х	х	
16	KYCZ										х	х	
17	KZLR					x	х	х	х	х	х	х	
18	MARM		х		x			х	х	х	х	х	
19	MULA	х	х	х	х						х		
20	PAMU	х	х								х	х	
21	SIDE										х	х	
22	SIRA		х		х	х	х	х	х	х	х	х	
23	SLVR					х	х	х	х	х	х	х	
24	SNBL										х	х	
25	SRKK					х	х	х	х	х	х	х	
26	SVSL							x	х	х	х	х	
27	TAVA	х		х	х			x	х	х	х	х	
28	TKIN					х	х	х	х	х	х	Х	
29	YSFC	Х		х	х						х	Х	
30	YSLV					х	х	х	х	х	х	х	

Çizelge 5. 1 Geçmiş yıllarda yapılan GNSS ölçüleri ve yılları

GNSS ölçüsü yapılacak noktaların yerlerinin belirlenmesi disiplinler arası ortak bir çalışma ile gerçekleştirilmiştir. Yeni noktalar belirlenirken daha önce bölgede yapılan ve verileri temin edilen noktaların büyük bir bölümü ölçü noktası olarak alınmıştır. Projede görevli jeoloji, jeofizik, ve jeodezi bilimi ile ilgili akademisyenler bir araya gelerek yeni noktaları belirlemişlerdir. Ölçü yapılacak noktaların belirlenmesinde bölgedeki blok sınırları, bölgenin jeolojik yapısının ve ölçme tekniğine uygunluğu göz önünde bulundurulmuştur. Bu noktalar dışında bölgenin tektonik davranışını belirleyebilecek 6 stratejik ölçü noktası daha eklenerek bölgede 30 noktalı bir GNSS ağı kurulmuştur.

Çalışma bölgesinde bulunan TUSAGA-Aktif (CORS-TR) ağına ait 27 adet sürekli gözlem yapan referans istasyonları da kurulan ağa dahil edilerek toplam 57 noktaya sahip Güneybatı Anadolu Tektonik GNSS Ağı (GATGA) kurulmuştur. GNSS ağında bulunan noktalar ve bu noktalara ait tesis bilgileri Çizelge 5.2 de verilmiştir.

Şekil 5. 2 Güneybatı Anadolu Tektonik GNSS Ağı (GATGA)

Nokta Adı	il	İlçe	Enlem(°)	Boylam(°)	Tesis Türü	Tesis Edildiği Proje
AKSU	Isparta	Aksu	37.762	31.121	Kayada Bronz	MIT
BHTL	Antalya	Merkez	36.896	30.589	Pilye	104Y035
BZKT	Denizli	Bozkurt	37.833	29.614	Pilye	108Y298
САМК	Muğla	Milas	37.195	27.836	Kayada Bronz	МІТ
CINE	Aydın	Çine	37.6092	28.080	Kayada Bronz	МІТ
CLTK	Burdur	Çeltikçi	37.539	30.426	Kayada Bronz	104Y035
DLMN	Muğla	Dalaman	36.762	28.826	Pilye	МІТ
GKPN	Isparta	Acıpayam	37.448	29.392	Pilye	МІТ
ISRT	Isparta	Merkez	37.820	30.592	Pilye	104Y035
KASO	Antalya	Kaş	36.194	29.648	Kayada Bronz	МІТ
КАҮА	Konya	Derebucak	37.436	31.443	Pilye	104Y035
KNID	Muğla	Datça	36.681	27.393	Kayada Bronz	МІТ
KOZU	Burdur	Kozluca	37.495	30.099	Pilye	108Y298
KROZ	Antalya	Karaöz	37.191	30.781	Pilye	108Y298
KYBS	Burdur	Söğüt	36.971	29.810	Pilye	МІТ
күсг	Muğla	Köyceğiz	36.978	28.686	Pilye	108Y298
KZLR	Denizli	Beyağaç	37.187	29.003	Pilye	104Y035
MARM	Muğla	Marmaris	36.772	27.963	Kayada Bronz	МІТ
MULA	Muğla	Merkez	37.175	28.427	Kayada Bronz	МІТ
PAMU	Denizli	Pamukkale	37.940	29.136	Kayada Bronz	МІТ
SIDE	Antalya	Manavgat	36.767	31.390	Pilye	108Y298
SIRA	Muğla	Fethiye	36.720	29.439	Kayada Bronz	МІТ
SLVR	Afyon	Çay	38.503	30.720	Kayada Bronz	104Y035
SNBL	Antalya	Sinekçibeli	36.496	29.651	Pilye	108Y298
SRKK	Isparta	Şarkikaraağaç	38.163	31.227	Pilye	104Y035
SVSL	Uşak	Sivaslı	38.458	29.711	Pilye	104Y035
TAVA	Denizli	Tavas	37.566	29.048	Pilye	MIT
TKIN	Afyon	Dinar	38.016	30.114	Pilye	104Y035
YSFC	Burdur	Yusufça	37.185	29.535	Pilye	MIT
YSLV	Burdur	Yeşilova	37.547	29.844	Kayada Bronz	104Y035

Çizelge 5. 2 GATGA noktaları

Nokta Adı	iı	İlçe	Enlem(°)	Boylam(°)	Tesis Türü	Proje
AFYN	Afyon	Merkez	38.738	30.561	Zemin Pilye	CORS_TR
AKSI	Antalya	Akseki	37.048	31.787	Çatı Pilye	CORS_TR
AKHR	Konya	Akşehir	38.369	31.43	Çatı Pilye	CORS_TR
ANMU	Mersin	Anamur	36.069	32.865	Çatı Pilye	CORS_TR
ANTL	Antalya	Merkez	36.888	30.666	Çatı Pilye	CORS_TR
AYD1	Aydın	Merkez	37.841	27.838	Çatı Pilye	CORS_TR
BEYS	Konya	Beyşehir	37.677	31.747	Çatı Pilye	CORS_TR
CAVD	Isparta	Çavdır	37.156	29.69	Çatı Pilye	CORS_TR
CESM	İzmir	Çeşme	38.304	26.373	Çatı Pilye	CORS_TR
CIHA	Konya	Cihanbeyli	38.65	32.922	Çatı Pilye	CORS_TR
DATC	Muğla	Datça	36.709	27.692	Zemin Pilye	CORS_TR
DEIR	Manisa	Demirci	39.035	28.648	Çatı Pilye	CORS_TR
DENI	Denizli	Merkez	37.762	29.092	Çatı Pilye	CORS_TR
DIDI	Aydın	Didim	37.372	27.269	Çatı Pilye	CORS_TR
DINA	Afyon	Dinar	38.069	30.166	Çatı Pilye	CORS_TR
FETH	Muğla	Fethiye	36.626	29.124	Çatı Pilye	CORS_TR
FINI	Antalya	Finike	36.302	30.146	Çatı Pilye	CORS_TR
ISPT	Isparta	Merkez	37.785	30.567	Zemin Pilye	CORS_TR
IZMI	İzmir	Merkez	38.395	27.082	Çatı Pilye	CORS_TR
KAMN	Karaman	Merkez	37.193	33.22	Zemin Pilye	CORS_TR
ΚΝΥΑ	Konya	Merkez	38.022	32.505	Çatı Pilye	CORS_TR
ΚΙΚΑ	Manisa	Kırkağaç	39.106	27.672	Çatı Pilye	CORS_TR
MUGL	Muğla	Merkez	37.216	28.364	Çatı Pilye	CORS_TR
SALH	Manisa	Salihli	38.483	28.124	Çatı Pilye	CORS_TR
SARV	Konya	Sarıveliler	36.697	32.617	Çatı Pilye	CORS_TR
USAK	Uşak	Merkez	38.679	29.405	Çatı Pilye	CORS_TR
YUNK	Копуа	Yunak	38.82	31.726	Çatı Pilye	CORS_TR

Çizelge 5. 3 Kurulan GNSS ağındaki CORS-TR noktaları

5.3 GNSS Ölçüleri

İlk ölçüler 1997 ve 2002 yılları arasında MIT tarafından yapılmıştır. Daha sonraki ölçüler 2003-2006 yılları arasında 104Y035 nolu proje kapsamında, 2009-2010 yılları arasında da 108Y298 nolu proje kapsamında gerçekleştirilmiştir. GNSS Ölçüleri 2-3 gün tekrarlı olarak ölçmüştür. Tüm ölçüler eş zamanlı olarak yapılmış, günlük minimum 8 eş zamanlı saatlik veriler toplanmıştır. Araştırma bölgesinde bulunan 27 TUSAGA-AKTİF istasyonu verileri temin edilerek değerlendirmelerde kullanılmıştır. Ölçülerde kullanılan donanımların bilgileri Çizelge 5.4'de verilmiştir.

Kampanya	Alıcı-Anten Bilgileri	Kurumu			
1007 2002	TRIMBLE 4000-TRM14532	NALT			
1997-2002	LEICA SR9500- LEIAT302	IVIII			
2002 2005	THAZMX-THA_ZMAX+RCVR				
2003-2006	ATGD4A -ASH701975.01	AKU-ITU			
2000 2010	THAZMX-THA_ZMAX+RCVR	AKÜ-YTÜ			
2009-2010	ATGD4A -ASH701975.01				

Çizelge 5. 4 GNSS ekipmanları

Kampanyalar boyunca yapılan tüm ölçmelerde 15 sn aralıklı veri kaydı esas alınmıştır. GNSS antenini etkileyen ve ufuk çizgisine yakın olan verileri kaybetmemek ve atmosferik gecikmeleri veya anten faz merkezi değişimlerini modellemede verilerin yetersiz kalmaması için kayıtta minimum yükseklik açısı 5° olarak belirlenmiştir. GNSS ölçülerinde zincirli tripod, alet sehpası ve pilye tesisleri kullanılmıştır (Şekil 5.3). Tüm kampanyalara ait GNSS ölçü günleri Çizelge 5.5'de verilmiştir.

Şekil 5. 3 Zincirli tripod (A), pilye (B), alet sehpası (C)

Yıl	Gün	Yıl	Gün	Yıl	Gün
1997	282	2000	286	2005	228
	283		287		229
	288		289		230
	289		290		231
	297		292		232
	299	2002	279		233
	300		280	2006	238
	302		281		239
	303		282		240
	304		283		241
1998	249		284		242
	250		285		243
	251		286	2009	248
	252		287		249
	253		288		250
	254		289		251
	255		290		252
	257		291		253
	258	2003	237		254
	259		238		255
	260	2004	82		256
	261		83		257
	262		255		258
	263		256		259
	264		257	2010	257
	265		258		258
	266		259		259
	267		260		260
	268				261
					262

Çizelge 5. 5 GNSS ölçü günleri

2010 yılı kampanyasında farklı olarak 2 günlük tekrarlı ölçü yapılmıştır. Son yıllarda efemeris bilgilerinin duyarlılığı 20 m'den, 1 m'ye, IGS Final efemeris verilerinin duyarlılığı 15 cm'den 2.5 cm'e düşmüştür [131]. Bunun sonucu olarak uzun süreli gözlemlerde, ölçü duyarlılığının baz uzunluğunun etkisini yitirdiği gözlenmiştir [132], [133], [134], [135], [136], [137], [138]. Ölçü süresindeki kısalmaların tekrarlılıkların doğruluk üzerine etkisini araştırmak üzere bir test yapılmıştır. Çalışmada, Güneybatı Anadolu'da bulunan 12 adet TUSAGA-AKTİF istasyonun 24, 12, 8 ve 6 saatlik ölçüleri ile 1, 2 ve 3 gün tekrarlı veriler kullanılmıştır. Değerlendirme çalışmasında GNSS gözlem sürelerin konum doğruluğuna olan etkisinin araştırılması için çalışma alanı içerisinde bulunan TUSAGA-AKTİF istasyonlarından elde edilen günlük ölçüler 6 saat, 8 saat ve 12 saatlik alt veri gruplarına bölünmüştür. GNSS verileri GAMIT/GLOBK yazılımı takımı ile 12 adet noktada sırasıyla 24, 12, 8 ve 6 saatlik ölçülerin 1, 2 ve 3 gün tekrarlılıkları değerlendirilmiştir [138]. Kampanya tipi ölçü planlamalarında en ideal olarak kabul edilebilecek 24 saat ve 3 gün tekrarlı ölçü kümesinin sonuçları referans alınarak diğer ölçü gruplarının sonuçları ile karşılaştırılmıştır (Şekil 5.4). Çıkan farkların istatistiksel olarak anlamlılıkları için Kruskal-Wallis ve Kruskal-Wallis ikili karşılaştırma testleri uygulanmıştır. Çalışma istatistiksel olarak % 5 anlamlılık seviyesinde gerçekleştirilmiştir.

Şekil 5. 4 Koordinat farklarının incelenmesi

Sonuç olarak, 2 gün 8 saatlik ölçü ile 3 gün 8 saatlik ölçü değerlendirilmesiyle elde edilen koordinatların kuzey ve doğu bileşenleri arasındaki farkların anlamlı olmadığı görülmüştür.

5.4 GNSS Ölçülerinin Değerlendirilmesi ve GNSS Nokta Hızlarının Hesaplanması

GNSS verilerinin değerlendirilmesi, MIT tarafından geliştirilen GAMIT (GPS Analysis Massachussets Institute of Technology)/GLOBK (GLOBal Kalman) yazılım takımı kullanılarak yapılmıştır [53]. Bu çalışmada 1997-2010 yılları arasında 11 kampanya GNSS ölçüsü değerlendirilmiştir.

5.4.1 GAMIT Modülünde Yapılan İşlem Adımları ve GNSS Verilerin Değerlendirilmesi

Tez çalışmasında GAMIT/GLOBK yazılımı için yapılan işlemler aşağıda adım adım anlatılmıştır. Yapılması gereken ilk iş yazılımda, girdi olarak değişik alıcılardan elde edilen ham verilerin, alıcıdan bağımsız olması için RINEX formatına dönüştürülmesidir. Verileri RINEX formatına çevirmek için geliştirilmiş birçok program bulunmaktadır. Bir çok ticari yazılımların içinde modül olarak bu dönüştürücü programlar yerleştirilmektedir. Bu çalışmada verilerin formatını değiştirirken TEQC ve ASHTECH Office Converter programı kullanılmıştır. GAMIT yazılımın çalışması için gerekli klasör yapısı oluşturulur. Burada oluşturulacak en dış klasöre proje adı verilerek başlanılır. Proje klasörü proje adını ifade eden 4 karakterden oluşmaktadır. Bu klasörün içine ölçüm yıllarına ait klasörler, her yıl klasörünün içine ise bir tane rinex klasörü açılır. Her yıl klasörünün içinde ayrıca tables klasörü olmalıdır (Şekil 5.5).

Şekil 5. 5 GAMIT Klasör yapısı

Tables klasörü GAMIT yazılımının verileri değerlendirmek için ihtiyaç duyduğu, standart girdileri içermektedir. Bu standart girdiler ve içerikleri Çizelge 5.6'da verilmiştir.

Girdi Adı	Girdi İçeriği
gdetic.dat	Jeodezik datum parametreleri
tform.dat	Koordinat dönüşüm parametreleri
antmod.dat	Anten faz merkez değerleri
rcvant.dat	Alıcı ve anten özellikleri
svnav.dat	Uydu tanıma bilgileri
leap.sec	UTC'ye eklenen 1 saniyelik ofsetler
luntab.	Av efemeris tablosu
nutabl.	Nutasyon efemerisi
soltab.	Yer ve günes efemerisi
pole	IFRS bülteni B değerleri
ut1	IERS hülteni LIT1
itirf05.apr	Koordinat değerleri

Çizelge 5. 6 Tables klasörü girdileri

Temel olarak GAMIT yazılımında üç girdi dosyası hazırlanır. Bu üç girdi dosyası da tables klasörü içindeki station.info, process.defaults, site.defaults" dosyalarıdır. "station.info" dosyası IGS istasyonları ve projede GPS ölçü yapılan noktalara ait bilgi dosyasıdır. Bu dosyanın içinde sırası ile nokta adı (4 karakter), nokta tanımı, GPS oturumu başlangıç ve bitiş saati, anten yüksekliği, anten yüksekliği ölçüm noktası, alıcı modeli, anten modeli gibi önemli bilgiler bulunur. "sites.defaults" dosyası içinde tekrarlılık analizi ve stabilizasyon için kullanılabilecek noktaların isimleri bulunur. GAMIT modülü ile değerlendirme aşamasında; günlük nokta koordinatları, her bir nokta için atmosferik gecikmeler ve yörünge bilgileri, değerlendirme aşamasında kullanılan parametrelerin hiçbirinde kısıtlama yapılmadan elde edilir. Bu aşamada, hem lokal ağı global bir ağ ile ilişkilendirmek, hem de milimetre duyarlılığındaki koordinatlardan yararlanarak, yörünge ve Dünya dönme parametrelerinin daha hassas hesaplanmasını sağlamak amacıyla IGS global ağına bağlı noktalardan faydalanılması gerekmektedir [54], [55]. Kullanılacak IGS istasyonlarının seçimi GNSS hızlarının hesaplanması konusunda detaylı olarak anlatılacaktır. Değerlendirmelerde kullanılan IGS istasyonlarının isimleri Çizelge 5.7'de verilmiştir.

Nokta Adı	Şehir/Ülke	Nokta Adı	Şehir/Ülke
MATE	Matera, İtalya	ZECK	Zelenchukskaya Rusya
NICO	Nicosia, Güney Kıbrıs	TRAB	Trabzon Türkiye
NSSP	Yerevan, Ermenistan	SOFI	Sofya Bulgaristan
MERS	Mersin Türkiye	ISTA	İstanbul Türkiye
CRAO	Simeiz Ukrayna	GLSV	Kiev Ukrayna
TEHN	Tahran İran	RAMO	Mitzpe Ramon Israil
ANKR	Ankara Türkiye	BUCU	Bükres Romanya
LAUG	Lübnan	TELA	Telaviv İsrail

Çizelge 5. 7 Değerlendirme için kullanılan IGS istasyonları

GAMIT tables klasöründe hazırlanacak son dosya ise **process.defaults** dosyasıdır. Bu dosyada çok fazla bir değişiklik yapılmamaktadır. Sadece **SYSTEM-DEPENDENT SETTINGS** altında bulunan mail adresi kısmının düzeltilmesi yeterlidir.

Bu girdi dosyaları hazırlandıktan sonra GAMIT programının tüm kontrol aşamasını içeren komutların bulunduğu **sestbl.** dosyası hazırlanmıştır. sestbl. dosyası ile verilerin değerlendirilmesi için gerekli olan stratejiler hazırlanmaktadır. Bu stratejiler kısaca ölçülerin ağırlıklandırılması, tamsayı belirsizliği çözümü, atmosferik parametrelerin ve yörünge parametrelerinin belirlenmesi ve model parametreleri (yer dönüş, yeryuvarı gel-git ve anten faz merkezi parametreleri) için yapılan kestirimlerdir [54], [55].

sestbl. dosyası içinde radyasyon modeli için BERN1, BERN2, SPHRC gibi farklı modeller, çözümü yapılacak ölçme türü içinde L1_ONLY, L2_ONLY, LC_ONLY, L1,L2_INDEPEND ve LC_HELP gibi farklı değerlendirme stratejileri çalışma seçenekleri mevcuttur. Ayrıca sestbl. dosyasının zenit gecikmesi kestirimi büyük ölçekli ağlarda atmosfer parametrelerin özellikle zenit gecikme parametrelerinin kestirimi için gereklidir. Atmosferik gecikmeler, faz merkezi değişimleri ve istasyon nokta yükseklikleri, uydudan alıcıya gelen sinyalin yükseklik açısına bağlı olarak değişirler. GAMIT kontrol dosyası olan oturum tablosunda bu kontrol satırlarının yanı sıra yer dönme parametreleri, uydu yörünge parametreleri ve ölçüleri ağırlıklandırma ile ilgili kontrol satırları bulunmaktadır [54]. Tez çalışması için seçilen ve sestbl. dosyasına girilen çözüm stratejileri Çizelge 5.8 de verilmiştir.

DEĞERLENDİRME STRATEJİSİ								
Veri Toplama Aralığı	15 saniye							
Uydu Yükseklik Açısı	10 °							
Yörünge Bilgisi	IGS-F							
Anten Faz Merkezi Bilgisi	Yüksekliğe Bağlı Model (IGS05_1552_plus.atx)							
Yer Dönme Parametre Bilgisi	USNO_bull_b							
Çözüm İçin İterasyon Sayısı	4							
Kullanılan Troposfer Model	Sastamoinen öncül standart modele dayalı olarak 2 saat aralıklı hesaplandı							
Taşıyıcı Dalga Faz Belirsizliği Çözümü	İyonosferden Bağımsız (Ionosphere-free)							

Çizelge 5. 8 GAMIT değerlendirme stratejisi

Bu aşamadan sonra **Sh_gamit** komutu çalıştırılarak otomatik değerlendirme yapılmıştır. **Sh_gamit** komutu çalıştırıldıktan sonra sonuca ulaşmak için herhangi hata mesajı alınmamalıdır. Bu adımdan sonra gamit otomatik olarak yıl klasörünün içinde aşağıdaki dosyalar oluşacaktır (Şekil 5.6).

Şekil 5. 6 GAMIT klasör yapısı (değerlendirme sonrası)

GAMIT herhangi bir şekilde hata vermesi durumunda gün dosyalarının içinde GAMIT.fatal dosyası oluşacaktır. Bu dosyanın oluşması o güne ait çözümün

tamamlanmadığının bir göstergesidir. Hatanın nerede olduğu bu dosyanın içinde yazmaktadır. Kontrol olarak gün klasörlerinin içinde oluşan **qXXXXa.ddd** dosya ile **autcln.post.sum.XXXX** dosyasına bakılır (XXXX proje adı, ddd yılın günü). Bu dosyalarda kontrol edilecek parametreler ile çözüm için kurulan modelin doğruluğu kontrol edilebilir. İlk olarak gün klasörlerinde bulunan q dosyası içinde (en son satırda) bulunan postfit.nrms değerine bakılır. Analiz sonuçlarının yazdırıldığı q dosyasında bulunan nrms (Chi-kare [χ 2]'nin serbestlik derecesine oranı) değerlerinin 0.15<nrms<0.25 arasında olması gerekmektedir. Bu dosyada normlandırılmış karesel ortalama hata (nrms-Normalized Root Mean Square) bilgisi yanında istasyon koordinatları, yer dönüş parametreleri ve uydu yörünge bilgileri sınırlamaları da bulunmaktadır. GAMIT ile yapılan günlük çözümlerde nrms değeri bu değerler arasında olduğu zaman kurulan modelin doğruluğu ve ölçülerin noise seviyelerinin kabul edilebilir seviyede olduğu anlaşılır [53], [54], [55]. Tez çalışması için yapılan gün çözümlerinden elde edilen nrms değerleri Çizelge 5.9'da verilmiştir.

GAMIT için diğer bir kontrol dosyası da **autcln.post.sum.XXXX** dosyasıdır. Bu dosya içinde GNSS ölçüsü yapılan noktalara ait sonuçlar vardır. İlk yapılacak kontrol **Allan SD@100** değeridir. Her GNSS ölçümü yapılan nokta için bu değerin 50 ppb'den (parts per billion) küçük olması beklenir. Atomik oskilatörlü saatlere sahip alıcıların 1 ppb'den küçük olması beklenir. Bu değerin beklenen değerlerden büyük olması kötü faz ölçüsü anlamına gelmemektedir. Fakat bu değerlerin yüksek olduğu noktalarda faz kesikliklerinin olma ihtimalini ve bu düzeltilememe ihtimallerini arttırdığı bilinmektedir.

Yıl	Gün	nrms	Yıl	Gün	nrms	Yıl	Gün	nrms	Yıl	Gün	nrms	Yıl	Gün	nrms	Yıl	Gün	nrms
1997	282	0.158	1998	257	0.185	2002	279	0.180	2003	237	0.175	2006	239	0.169	2010	257	0.174
	283	0.204		258	0.191		280	0.184		238	0.169		240	0.174		258	0.172
	288	0.201		259	0.184		281	0.184	2004	82	0.176		241	0.172		259	0.171
	289	0.210		260	0.182		282	0.191		83	0.178		242	0.172		260	0.172
	297	0.207		261	0.187		283	0.182		255	0.178		243	0.172		261	0.174
	299	0.197		262	0.181		284	0.185		256	0.176	2009	248	0.174		262	0.172
	300	0.207		263	0.184		285	0.182		257	0.172		249	0.175			
	302	0.188		264	0.188		286	0.184		258	0.171		250	0.172			
	303	0.178		265	0.186		287	0.180		259	0.175		251	0.171			
	304	0.204		266	0.182		288	0.184		260	0.172		252	0.174			
1998	249	0.184		267	0.178		289	0.185	2005	228	0.178		253	0.175			
	250	0.182		268	0.176		290	0.181		229	0.171		254	0.171			
	251	0.185	2000	286	0.183		291	0.179		230	0.173		255	0.171			
	252	0.187		287	0.181					231	0.175		256	0.176			
	253	0.189		289	0.179					232	0.173		257	0.174			
	254	0.181		290	0.182					233	0.176		258	0.177			
	255	0.184		292	0.184				2006	238	0.172		259	0.177			

Çizelge 5. 9 GAMIT gün çözümleri nrms değerleri

İkinci yapılacak kontrol istasyonların **Range rms** değeridir. P kod için bozucu etki olmadan alıcılarda bu değerin metre altında olması beklenir. Bozucu etki altında bu değer 1000-2000 mm arasında olmalıdır [53], [54]. Bu değerlerin üzerinde bir değer varsa o nokta için öncül nokta koordinatlarının gerçek koordinatlarından 10 metreden daha fazla hatalı olduğu ya da noktaya ait rinex dosyasında hata olduğu düşünülmelidir. GAMIT bu noktayı hesaba katmayacak ve ilerleyen safhalarda koordinatları hesaplamayacaktır. Bu durumda hatalı olan noktanın koordinatları düzeltilerek o güne ait işlem tekrar başlatılmalıdır. Tez çalışması için oluşturulan 2009 yılı Autcln.sum.post dosyasından bir örnek aşağıda verilmiştir (Şekil 5.7). Her bir istasyon ve uydunun performansı ve kaba hataları yine bu dosya içinde one-way residual'lere bakılarak tespit edilebilir. Bu aşamada one-way post-fit istatistiklerine bakıldığında, normal olarak 4-8 mm olması beklenir. Beklenenden fazla sinyal yansıması olduğu durumlarda 9-13 mm arasında değerler görülmelidir [53], [54].

AUTCLN SU	JMMARY FILE:	Version	3.29X		
Clock and	Range noise	statist:	ics at iteratio	on 5	
Site/PRN	Allan SD01	100 #	Range rms	#	
	sec (ppb)		(mm)		
AFYN	0.030918	2132	989.9	17855 TRM	í .
AKHR	0.026886	2879	946.9	24147 TRM	i -
AKSI	0.026681	2867	841.5	22658 TRM	í.
ANKR	6.924501	2877	998.1	25385 TPS	
ANTL	0.025947	2836	829.6	23882 TRM	i -
AYD1	0.028679	2841	1042.1	23613 TRM	í.
BEYS	0.028883	2744	979.2	23371 TRM	i -
BUCU	0.026605	2877	674.5	24553 LEI	
CAVD	0.028624	2869	878.3	24048 TRM	í.
CINE	0.124529	1001	604.0	7640 THA	
CRAO	0.044622	2879	923.2	23067 ASH	l -
DATC	1.843887	2879	398352.6	0 TRM	i -
DENI	0.027670	2717	928.4	22811 TRM	i.
DIDI	0.024192	2877	737.2	24020 TRM	l.
FETH	0.027345	2830	872.2	23598 TRM	i.
FINI	0.026148	2868	868.1	23645 TRM	l.
GLSV	0.031166	2877	953.6	24292 NOV	r
ISPT	0.026631	2854	871.1	23867 TRM	i.
ISRT	0.048503	957	385.2	7846 ASH	l –
ISTA	6.922253	2871	1304.6	23851 ASH	l –
KASO	0.152714	1078	631.6	8750 THA	
KAYA	0.317172	1069	551.4	8989 THA	
KNID	0.097726	1013	494.0	8299 THA	
KNYA	0.024784	2877	946.0	24162 TRM	L
KOZU	100.000000	1019	806.7	8582 ASH	
KZLR	1.510246	958	342.7	8094 ASH	1
MATE	0.015582	2877	471.0	23537 LEI	
MERS	0.139741	2877	1120.2	18634 TRB	
MUGL	0.026113	2879	838.2	24036 TRM	
NICO	0.033228	2877	519.4	24860 LEI	
NSSP	0.029505	2879	844.7	24077 ASH	l -
RAMO	1.373894	2854	681.8	24178 LEI	

Şekil 5. 7 Autcln.sum.post dosyası Allan SD@100 ve Range rms değerleri

Bu kontrollerde daha önce belirtilen kriterler sağlanıyorsa GAMIT çözümü tamamlanmıştır. Bundan sonraki ilk aşama GNSS ölçümü yapılan noktalara ait günlük ve yıllık tekrarlılıklar (zaman serileri) üretilmelidir. **Sh_glred** komutu gsoln klasörünün içinde günlük tekrarlılıkları ve GAMIT çözümünde GLOBK çözümüne geçmek için kullanılan H dosyalarını üretmek için kullanılmaktadır. Bu komut çalıştırıldıktan sonra gsoln klasörü içinde gün sayısı kadar glr, org, prt dosyaları oluşmaktadır. Ayrıca GLOBK aşamasına geçmek için kullanılan H dosyaları oluşmaktadır. Ayrıca GLOBK aşamasına geçmek için kullanılan H dosyaları ile zaman seri analizlerini incelemek için psbase_XXXX.SITE dosyaları oluşmaktadır (XXXX proje adı, SITE nokta adı). Tez çalışması için yapılan gün çözümlerinden elde edilen BZKT ve CLTK noktalarının günlük tekrarlılık grafikleri Şekil 5.8'de, karakteristik olarak seçilen bazı noktalara ait günlük tekrarlılık grafikleri EK-A da verilmiştir. Tekrarlılık grafiklerinde her bir noktanın o güne ait konum bileşeni, noktanın üzerinde bulunduğu çubuk ise o konumun belirsizliğinin bilgisini içerir.

Şekil 5. 8 CLTK ve BZKT noktaları 2009 yılı günlük tekrarlılık grafikleri

Günlük tekrarlıklar özellikle aynı ölçü noktasında farklı günlerde yapılan ölçülerin yorumlanmasında önemli rol oynamaktadır. Günlük tekrarlılıklardan elde edilen normlandırılmış karesel ortalama hata ve ağırlıklandırılmış karesel ortalama hata sonuçlarına bakılarak tekrarlı ölçüler hakkında yorum yapılabilinmektedir. GNSS' ten elde edilecek konum belirsizliğine, bilinen hataların yanı sıra anten yüksekliğinin yanlış ölçülmesi veya anten özelliklerinin hatalı girilmesi de etkili olabilmektedir. Şekil 5.8'de CLTK noktasının Yükseklik (Up) bileşenindeki kaba hata dikkat çekmektedir. Bu hata CLTK noktasının anten yüksekliğinin girdi dosyasına (station.info) yanlış girilmesi sonrasında meydana geldiği tespit edilmiş ve hata düzeltilmiştir.

Koordinat belirsizlikleri, 24 saatlik ölçümlerle yatay koordinatlar için wrms değeri 1-2 mm, yüksekliklerde ise, wrms değeri 2-4 mm olarak elde edilir. 8 saatlik ölçümlerde, yatay koordinatlar için wrms değeri 2-4 mm, yüksekliklerde ise, wrms değeri 10-15 mm olmalıdır [53].

Kampanya ölçüleri içinde belirtilen değerlerden yüksek olan noktalara ait Rinex dataları kontrol edilmelidir. Rinex verilerinde ilk kontrol edilmesi gereken nokta oturum süresinin uzunluğudur. Oturum süresi kısa olan noktalarda bu değerlerin yüksek olması normaldir. Şayet oturum süresi belirtilen kriterden az değil ise ikinci olarak autcln.post.sum dosyası içinde silinen ve gürültülü datalarının sayısına bakılmalıdır. Bu kontrollerde herhangi bir sıkıntı görünmüyorsa GNSS' in farklı günlerde aynı nokta üstüne kurulmamasının bir sonucu olduğu düşünülmelidir. Noktalara ait günlük tekrarlılık grafiklerine bakılarak gerekirse ilgili bozuk güne ait rinex verisi silinerek yeniden değerlendirme işlemi yapılmalıdır.

5.4.2 GLOBK Modülünde Yapılan İşlem Adımları

GLOBK farklı zamanlarda yapılan yersel ya da uzaysal ölçüleri Kalman Filtreleme Tekniği kullanarak birleştirme işlemini yapmaktadır. Bileştirme işlemi ile noktaların hızlarını ve istasyon koordinatlarını hesaplama stratejisi [139] da belirtilmiştir. GLOBK aşamasının ilk adımı yıllık tekrarlılıkların yani uzun dönem zaman serilerinin üretilmesidir. Noktalara ait hız analizine geçmeden önce zaman seri grafikleri üretilip noktaların tektonik açıdan yorumlanmaya uygun olup olmadığı kontrol edilmelidir. Zaman serisi çalışmalarını yapmak üzere yıllarla aynı seviyede bir adet **vsoln** klasörü açılmalıdır. Bu

klasörün içine girildikten sonra sh_plotcrd komutu ile serileri zaman üretilebilinmektedir. Özellikle sürekli gözlen yapan GNSS istasyonlarında zaman serisi grafikleri incelenerek noktanın uzun dönem hareketleri hakkında bilgi elde edilebilmektedir. Kalman filtresi kullanılarak yapılan ileri ve geri çözümlerin hataları tüm zaman serileri boyunca yayması nedeniyle serilerden elde edilen her görüntü dikkatle izlenmeli ve yorumlanmalıdır. Çalışma bölgesi Güneybatı Anadolu'da bulunan 27 adet TUSAGA-Aktif istasyonu bulunmaktadır. Çizelge 5.2 incelendiğinde bu istasyonların tesis cinsinin büyük bir bölümünün çatı pilye olduğu görülmüştür. Çatı pilye tesislerinin bölgedeki tektonik hareketin yanında, binada oluşacak lokal hareketlerinden de etkilenebileceği düşünülmektedir. Bu nedenle TUSAGA-Aktif istasyonları verileri 2008-2010 yılları arasında günlük olarak değerlendirilmiştir. Günlük değerlendirme işleminde diğer 11 kampanyada kullanılan IGS istasyonları ile aynı değerlendirme stratejileri kullanılmıştır. TUSAGA-Aktif istasyonlarının günlük değerlendirilmesiyle elde edilen wrms değerleri Şekil 9'da verilmiştir. Oluşturulan zaman serilerinin ve wrms incelenmesi sonucu bu istasyonların uzun dönem hareketleri hakkında bilgi elde edilmiştir.

Şekil 5. 9 TUSAGA-Aktif istasyonları yatay wrms değerleri

Bu bilgiler ışığında tez çalışmasında kullanılabilecek noktalar belirlenmiştir. Şekil 9 incelendiğinde AKSI istasyonun wrms değerleri 3 mm üzerinde ve diğerlerinden daha büyük olduğu görülmektedir. AKSI istasyonunun zaman serisi incelendiğinde istasyonda lokal bir deformasyon olduğu görülmektedir (Şekil 5.10). Yine Şekil 5.10'da USAK istasyonuna ait düzgün bir zaman serisi verilmiştir. Tez çalışması için yapılan tüm gün çözümlerinden elde edilen kampanya tipi zaman serileri örnekleri Şekil 5.11'de, seçilen bazı noktaların zaman seri grafikleri EK-B de verilmiştir. Şekil 5.11 incelendiğinde SLVR noktasının Kuzey ve Doğu değerlerinin wrms değerlerinin belirtilen ölçütlerden büyük ve yıllık hareketinin belirli bir eğilim içinde olmadığı görülmektedir. Bu hareketin SLVR noktasında lokal bir deformasyon olduğunu ya da noktanın tektonik hareketi belirlemek için uygun bir konumda olmadığını göstermektedir.

Şekil 5. 10 AKSI ve USAK (TUSAGA-Aktif) noktaları yıllık tekrarlılık grafikleri

Kullanılan Kalman filtresinin açıklaması ve matematiksel modeli [30] da detaylı olarak anlatılmıştır. GAMIT adımında yapılan çözümlerin yazıldığı h dosyaları GLOBK aşamasının temel girdileridir. GLOBK ile birleştirme işlemi sırasında her bir h dosyası (hfile) bağımsız olarak değerlendirmeye katılır.

Şekil 5. 11 SLVR ve SRKK noktaları yıllık tekrarlılık grafikleri

Çalışma bölgesinde bulunan lokal ağın GAMIT çözümleri (H dosyaları) ile daha büyük ve global bir ağın çözümlerini birleştirmek istenmesi durumda SOPAC veya MIT tarafından IGS istasyonlarının GAMIT çözümleri yapılarak H dosyaları oluşturulan ağlarla birleştirme yapılır. Bu tez çalışması kapsamında yapılan değerlendirmelerde MIT tarafından oluşturulan H dosyaları kullanılmış ve MIT internet sitesinden indirilmiştir [140]. Böylece datum dönüşümünde kullanılacak yer dönme parametreleri ile hassas yörünge parametrelerinin IGS' ten alınarak, bölgesel yörünge modülü ile global yörünge modülünün uyumlu olması sağlanmıştır.

Elde edilen H dosyaları kullanılarak hız çözümlerinin yapmak için oluşturulan Vsoln klasörünün içine proje adı ile başlayan bir gdl uzantılı boş bir metin belgesi oluşturulur. Sh_glred komutu ile günlük tekrarlılıklar üretildikten sonra yıl dosyaları içinde ki glbf klasörleri içinde her ölçü gününe ait bir tane hyymmdd1200_XXXX.glx dosyası oluşur (yy:yıl, mm:ay, dd:gün, XXXX:proje adı). gdl dosyaları oluşturulduktan sonra gamit klasörü altında bulunan tables klasöründen GLOBK modülünü yönetecek olan globk_vel.cmd, glorg_vel.cmd dosyaları kopyalanılır. Bu komut dosyaları sayesinde IGS tarafından belirlenen genel referans sistemine dönüşüm için kullanılan istasyon noktalarına, uydu yörünge parametrelerine ve yer dönüş parametrelerine kısıtlamalar getirilir. GLOBK modülü referans sistemini tanımlamadan birleştirme işlemini yapmaktadır. Bu nedenle globk_vel.cmd dosyasındaki düzenlemelerin başında hızları belirlemek istediğimiz referans çatıyı seçmek gerekir.

5.4.3 Global ve Bölgesel GNSS Hızlarının Hesaplanması

Stablizasyon çalışmaları GLOBK için en önemli aşamadır. Stabilizasyon işleminde global veya bölgesel olarak iki türlü yapılabilir. Global stabilizasyon genellik daha önceden tanımlamaları yapılmış büyük plakalara göre hız belirleme işlemidir. Bölgesel stabilizasyon ise daha çok noktaların birbirlerine göre hızlarını hesaplamak için kurulan bir stabilizasyon yöntemidir.

Global stabilizasyonda GAMIT adımında değerlendirmeye katılan IGS istasyonlarından uygun olanları stabilizasyon işlemi için kullanılmalıdır. Bu nedenle GAMIT adımında IGS istasyonlarının seçimi önemlidir. Bu tez çalışmasında Anadolu plakası merkez olacak şekilde yaklaşık 1000 km çapında bulunan 17 IGS istasyonundan zaman serileri istikrarlı olan (yatay konum için wrms değeri 1-2 mm, nrms değeri 1 mm) 12 istasyonun kullanılması öngörülmüştür.

GLOBK programı stabilizasyon için seçilen tüm noktaları kullanmayabilir. Değerlendirmede gerçekleştirilen 4 iteratif çözüm sonucunda en iyi sonuç veren noktalar stabilizasyon için kullanılmıştır. Hataları 1 mm'den büyük olan ve kampanya günleri verileri kesikli olan TRAB, MERS noktaları stabilizasyon çalışmasında kullanılmamıştır. İterasyon sonucu stabilizasyon için kalan nokta sayısının 7'den az olması önerilmemektedir [141]. GLOBK stabilizasyon sonrası hesaplanan hız değerlerinin post RMS değerleri 1 mm/yıl altında, Avrasya plakası için 0.54 mm/yıl, ITRF05 için 0.67 mm/yıl olarak elde edilmiştir.

81

Nokta	Şehir/Ülke
n –	rfo5/ Avrasya
MATE	Matera, İtalya
NICO	Nicosia, Güney Kıbrıs
NSSP	Yerevan, Ermenistan
CRAO	Simeiz, Ukrayna
ZECK	Zelenchukskaya, Rusya
SOFI	Sofya, Bulgaristan
ISTA	İstanbul, Türkiye
GLSV	Kiev, Ukrayna
RAMO	Mitzpe Ramon, İsrail

Çizelge 5. 10 Stabilizasyonda kullanılan IGS istasyonları

Değerlendirmeler sonucunda elde edilen nokta koordinatlarının değişimleri Şekil 12'de Avrasya plakası sabit kabul edilerek elde edilen hız haritası Şekil 5.13'de ve hız değerleri ise Çizelge 5.11'de verilmiştir. ITRF05 sabit kabul edilerek elde edilen hız haritası EK-C'de verilmiştir.

Hız değerlerinin standart sapmalarının çoğunluğu 1 mm altında hesaplanmıştır. Kullanılan GNSS setlerinin doğruluklarının yatayda 5 mm+1 ppm olduğu bilinmektedir. Hesap sonucu elde edilen doğruluğun bu kadar küçük olmasının temel sebebi ölçü sayısının fazla olmasıdır. Bu nedenle bu doğruluklar GNSS'in doğruluğu değil hesaplanan hız bileşenlerinin iç doğruluğu olduğu unutulmamalıdır.

Şekil 5.12'de KOZU, BKZT, SIDE, KROZ, SNBL, KYCZ noktalarının hata elipslerinin daha büyük olduğu görülmektedir. Bunun sebebi olarak, bu noktaların ağa yeni katılan noktalar olması ve bu noktalarda sadece 2 yıl ölçü yapılmasıdır. AKSI ve SLVR noktaları Bölüm 5.4.2 anlatılan nedenlerden dolayı ilerleyen aşamadaki çalışmalarda kullanılmayacaktır. Gelecek yıllarda yapılacak ölçülerle bu hataların küçüleceği düşünülmektedir. Elde edilen sonuçlar Bölüm 7'de detaylı olarak anlatılmıştır.

Şekil 5. 12 ISRTnoktasının koordinat değişimi.

Şekil 5. 13 Avrasya plakası sabit alınarak elde edilen hızlar.

Nokta	HIZ (mm/yıl)		Hata Mil	ktarı (mm)	Nokta	HIZ (r	nm/yıl)	Hata Mil	ktarı (mm)	Nokta	HIZ (n	nm/yıl)	Hata Mil	tarı (mm)	
No	V _{Doğu}	V _{Kuzey}	V _{Doğu}	V _{Kuzey}	No	V _{Doğu}	V _{Kuzey}	V _{Doğu}	V _{Kuzey}	No	V _{Doğu}	V _{Kuzey}	V _{Doğu}	V _{Kuzey}	
AFYN	-22.6	-3.7	0.1	0.1	DIDI	-19.2	-25.5	0.1	0.1	KZLR	-19.4	-14.9	0.2	0.3	
AKHR	-20.5	-5.4	0.1	0.1	DINA	-21.0	-7.1	0.1	0.1	MARM	-15.1	-28.4	0.1	0.2	
AKSI	-9.3	-6.7	0.1	0.1	DLMN	-16.7	-20.5	0.2	0.2	MUGL	-19.1	-17.4	0.1	0.1	
AKSU	-17.9	-5.6	0.2	0.2	FETH	-16.1	-16.0	0.1	0.1	MULA	-18.5	-21.5	0.2	0.3	
ANMU	-10.4	-1.1	0.1	0.1	FINI	-9.3	-9.3	0.1	0.1	PAMU	-21.9	-8.9	0.4	0.4	
ANTL	-12.9	-6.6	0.1	0.1	GKPN	-20.9	-10.7	0.2	0.2	SALH	-25.5	-10.4	0.1	0.1	
AYD1	-21.4	-16.3	0.2	0.2	ISPT	-22.0	-8.0	0.1	0.1	SARV	-13.1	-2.2	0.1	0.1	
BEYS	-17.1	-3.3	0.1	0.1	ISRT	-20.6	-5.6	0.3	0.3	SIDE	-14.2	-2.1	2.3	2.5	
BHTL	-14.4	-6.9	0.4	0.4	IZMI	-23.1	-16.8	0.1	0.1	SIRA	-16.0	-12.6	0.2	0.3	
BZKT	-23.00	-7.4	2.7	3	KAMN	-12.7	4.3	0.1	0.1	SLVR	-24.4	-3.7	0.4	0.4	
САМК	-18.6	-24.5	0.2	0.2	KASO	-9.6	-10.7	0.2	0.2	SNBL	-18.3	-9.4	2.7	2.9	
CAVD	-17.0	-8.5	0.1	0.1	КАҮА	-15.5	-3.8	0.4	0.4	SRKK	-18.7	-6	0.3	0.3	
CESM	-18.8	-21.5	0.1	0.1	ΚΙΚΑ	-21.6	-10.4	0.1	0.1	SVSL	-22.0	-8.1	0.4	0.5	
CIHA	-19.9	-2.1	0.1	0.1	KNID	-14.8	-30.2	0.1	0.1	TAVA	-22.1	-14.7	0.2	0.2	
CINE	-21.7	-21.3	0.2	0.2	KNYA	-17.8	-1.0	0.1	0.1	TKIN	-21.4	-7.5	0.2	0.3	
CLTK	-17.5	-7.1	0.3	0.4	KOZU	-21.6	1.2	2.1	2.4	USAK	-22.7	-8.7	0.1	0.1	
DATC	-14.5	-28.9	0.2	0.2	KROZ	-14.0	-3.6	2.8	3.1	YSFC	-18.0	-11.8	0.2	0.3	
DEIR	-22.8	-7.6	0.1	0.1	KYBS	-20.1	-9.4	0.2	0.2	YSLV	-18.8	-9.5	0.3	0.4	
DENI	-18.8	-9.1	0.1	0.1	күс	-22.9	-21.4	3.9	4.3	YUNK	-22.1	-2.4	0.1	0.1	

Çizelge 5. 11 Avrasya plakası sabit alınarak hesaplanan hız değerleri

BÖLÜM 6

GÜNEYBATI ANADOLU BLOK MODELİ VE GERİLME ALANININ BELİRLENMESİ

Blok modelin belirlenmesi iki aşamada gerçekleştirilmiştir. İlk aşamada GAMIT GLOBK yazılımı ile elde edilen hızlar kullanılarak noktaların birbirlerine göre hızlarını (bağıl hız) belirlemeye yönelik farklı datum çalışmaları yapılmıştır. Bu çalışmalar sonucu blok model sınırları belirlenmiştir. Daha sonra blok sınırları elastik geri sekme kuramı ile test edilmiştir. Elde edilen modeller Generic Mapping Tools (GMT) ile görselleştirilmiştir [142].

6.1 Blok Modelin Oluşturulması

6.1.1 Sabit Blok Teoremi ile Blok Modelin Belirlenmesi

Bölgesel anlamda noktaların birbirlerine göre hızlarını (bağıl hız) belirlemeye yönelik 7 farklı datum çalışması yapılmıştır. Bu çalışmalarda tez kapsamında hızları belirlenen noktalar [1] de belirtilen blok modeldeki konumlarına göre sabit alınmıştır. Bu yöntem ile elde edilen sonuçlara göre, noktaların bloklar üzerindeki dağılımını ve yerel hız anomalilerini bulmak mümkündür. Çalışma alanı içindeki yerel hız anomalilerini tespit etmek amacıyla Anadolu plakası üzerinde sabit noktalar alınmıştır. Bununla birlikte elde edilen yerel hız anomalilerinin anlamlarını sorgulamak için bu sabit noktalar sistematik olarak doğudan batıya doğru değiştirilmiştir.

Şekil 6.1'de bölgede [1] de belirlenen blok model ve tüm GNSS ölçü noktaları bir arada görülmektedir. Şekil 6.2-6.9 arasında sabit olarak farklı noktalar alınarak diğer noktaların bağıl hareketi (göreli hız-bağıl hız) En Küçük Kareler yaklaşımı ile minimize edilerek belirlenmiştir. Sadece iki kampanya ölçüsü olan 6 nokta yorumlamaya katılmamıştır.

Şekil 6. 1 [1] de kullanılan blok model ve GATGA noktaları

İlk olarak Isparta büklümünün doğu kanadı dışında kalan YUNK, CIHA, KAMN, KNYA noktaları sabit alınmış ve bağıl hızlar hesaplanmıştır (Şekil 6.2).

Şekil 6. 2 YUNK, CIHA, KAMN, KNYA noktaları sabit alınarak hesaplanan bağıl hızlar

Şekil 6.2 incelendiğinde Sultandağı-Akşehir fay zonunun batısında kalan AKHR, BEYS, KAYA, SARV ANTL, SRKK noktalarının bağıl hızlarının 1-2 mm/yıl civarında, çok düşük olduğu görülmüştür. Burada sabit seçilen noktalarla bu noktaların aynı blok üzerinde olduğu düşüncesi oluşmuştur. Ayrıca Sultandağı-Akşehir fay zonunun Isparta Açısının doğu kanadını oluşturduğu literatürlerde geniş olarak yer almaktadır [100], [103], [104], [106], [107]. Bu fay zonu Sultandağı bindirmesi olarak bilinse de 2000 ve 2002 de meydana gelen depremlerden bu fay zonunun doğrultu atımlı normal bir fay olduğu görülmüştür [87], [109], [143]. [109] da Çay 2002 depreminin sismolojik çözümlerinde yanal atım bileşeni olduğu görülmese de, bu faya ilişkin GNSS gözlemlerinde fayın sol yanal atım bileşeni olduğu belirlenmiştir. Aynı yayında Çay 2002 depreminde jeolojik gözlemlerle uyumlu batı doğu uzantılı bir fay tespit ettiklerini de belirtilmiştir. Aynı zamanda noktaların aynı hıza sahip olmaları Sultandağ-Akşehir fay zonunun bir bindirme fay olmadığının göstergesidir.

Yine KASO ve FINI noktalarındaki 1 mm/yıl'dan küçük bağıl hızlarda noktaların aynı blok üzerinde bulunduğunun bir göstergesidir. ISRT, TKIN, DINA, SVSL ve USAK noktalarının aynı yönlü ve aynı büyüklükteki hareketi bu noktalarının kendi içlerinde bir blok üzerinde olma ihtimalini arttırmaktadır. MARM, DATC, KNID noktalarının aynı yönlü hareketinin ise bu noktaların farklı blokta olduğunu ve diğer noktalardan hızla ayrıldığını göstermektedir.

Şekil 6.2'de yapılan yorumları desteklemek için Isparta Açısının içi olarak kabul edilen ve Sultandağı Akşehir faylarının batısında kalan noktalar sabit alınmıştır. Isparta açısı doğu kanadının batı kısmında bulunan (Sultandağı-Akşehir fayının batısı) SRKK, AKSU, BEYS, KAYA, SARV, ANMU noktaları sabit alınarak yapılan çalışmadan hesaplanan bağıl hızlar Şekil 6.3'de verilmiştir.

87

Şekil 6. 3 SRKK, AKSU, BEYS, KAYA, SARV, ANMU noktaları sabit alınarak hesaplanan bağıl hızlar

Literatürde belirtilen Isparta Açısının doğu kanadının Sultandağı-Akşehir fayının oluşturduğu ifadesine sıkça rastlanmaktadır. Şekil 6.3 incelendiğinde yine sabit seçilen noktalarla YUNK, CIHA, KNYA noktalarının bağıl hızlarının 1-2 mm/yıl'dan küçük olduğu görülmüştür. Buradan Sultandağı Akşehir faylarının Isparta Açısın doğu kanadı sınırını oluşturmadığını ya da bu sınırın günümüzde görülmediğini göstermiştir. Yine BHTL, ANTL, KASO, FINI noktalarının çok küçük hızlara sahip olması bu noktalarında seçilen noktalarla aynı blokta olduğunu göstermektedir. Aynı zamanda literatür [106] da değinilen "Isparta açısının doğu kanadının saat yönündeki rotasyon hareketinin" günümüzde görülmediği tespit edilmiştir.

Şekil 6.2'den farklı olarak Şekil 6.3'de KAMN noktasının KD yönlü bir açılma hareketi görülmektedir. Zaman serisi incelendiğinde KAMN noktasında herhangi bir ölçü hatası olmadığı görülmüştür (Şekil 6.4). Bu noktanın hareketinin de lokal bir etkinin olabileceği şüphesini uyandırmaktadır. Bununla birlikte noktanın 22 mm/yıl olan düşey hızı dikkat çekmektedir. Bu hareketin yeraltı su seviyesindeki değişimlerden kaynaklanma olasılığı çok büyüktür. KAMN noktasında ki bu açılma hareketi ilerleyen bölümlerde gerilme analizlerinde de göreceğimiz yaklaşık DB sıkışmalara neden olacaktır.

Şekil 6. 4 KAMN noktasına ait zaman serisi

Isparta açısı batı kanadının doğu kısmı (Fethiye- Burdur Fay Zonunu doğusu) ISRT, ISPT, CLTK, YSFC, CAVD, noktaları sabit alınarak yapılan çalışmada elde edilen bağıl hızlar Şekil 6.5'de verilmiştir.

Şekil 6. 5 ISRT, ISPT, CLTK, YSFC, CAVD, SIRA noktaları sabit alınarak hesaplanan bağıl hızlar

Literatürde Isparta Açısının batı kanadının Fethiye-Burdur Fay Zonu olduğu belirtilmektedir. Şekil 6.5 incelendiğinde sabit alınan noktalar Fethiye-Burdur Fay Zonuna paralel ve doğusundadır. KYBS noktasının batıya doğru olan yaklaşık 4 mm/yıl'lık hareketinin bu noktanın sabit kabul edilen noktalarla aynı blokta olduğu izlenimini vermektedir. Isparta açısının batı kanadının sınırları Fethiye-Burdur Fay Zonunun doğusundan geçtiği görülmektedir. Bölgenin jeolojik yapısı ve çizgiselliği incelendiği zaman Beydağları formasyonu ve Likya napları (bindirmesi) dikkati çekmektedir. Isparta açısının batı kanadının bu iki jeolojik olguya paralel bir yapıya sahip olduğu izlenimini vermektedir (Şekil 6.6). Ancak literatürde batı Torosların tektonik evriminde önemli bir yer tutan Likya bindirmelerin (Naplarının) Kretase-Miyosen arasındaki bir zaman döneminde etkili olduğu sonrasında bu faylar aktivitelerini kaybettikleri belirtilmiştir [144]. Bu nedenle her ne kadar Likya bindirmesi ile uyumlu görünse de batı sınırının bu bindirme olma ihtimali çok düşüktür. Ancak batı sınırında görülen D-B yönlü açılma hareketini açıklayacak jeolojik yapılara ihtiyaç duyulmaktadır. [69] da yaptıkları çalışmada Isparta Açısının batı kanadını, literatürdeki diğer gösterimlerden farklı şekilde jeolojik bulgulara dayanarak Fethiye-Burdur Fay Zonunun doğusunda göstermişlerdir (Şekil 6.7). Bu gösterim Şekil 6.5'den elde edilen sonuçlarla uyum içindedir.

Şekil 6. 6 Antalya bölgesindeki önemli jeolojik oluşumlar [145]

Şekil 6. 7 Isparta Açısı gösterimi [69]

Şekil 6.5'e ilişkin en önemli yorumlardan biri de Güneybatı Anadolu'nun en önemli tektonik yapısı olan Fethiye-Burdur Fay Zonuna ilişkin yorumlardır [146]. Bu zon genişleme tektoniğinin egemen olduğu Ege levhasını Batı Toroslardan ayıran önemli bir

yapısal çizgidir. Bir başka deyişle Fethiye-Burdur Fay Zonu iki farklı tektonik rejim bölgesini birbirinden ayıran önemli bir aktif zondur. Son yüzyıla ait sismik veriler ve bunların yansıttığı KD yönlü episantır dizilimi, bu fayın Fethiye Körfezi altından Rodos Adası açıklarına kadar devam ettiğini göstermekte olduğu literatürlerde geçmektedir [78], [147], [148]. Ancak Şekil 6.5 incelendiğinde YSLV ve GKPN noktalarında düşük bağıl hızları ile DLMN ve FETH noktalarındaki büyük bağıl hızlar dikkat çekmektedir. Özellikle YSLV ve GKPN noktalarının zonun karşı tarafında olması nedeniyle sol yönlü bir hareket beklenmektedir. Sol yönlü bir hareketin bu noktalarda çok küçük görülmesi duruma ilişkin iki farklı yorum düşünülmektedir. Bunlardan ilki Fethiye-Burdur Fay Zonunun aslında bir zon olarak kabul edilemeyeceği bunun temel sebebinin de zonun orta ve batı kısımları arasında farklı hız alanlarının olmasıdır. İkinci yorum ise YSLV ve GKPN bölümlerinde kilitlenmeler olduğu için bu fay zonunun özelliğini göstermediğidir. [149] da Fethiye-Burdur Fay Zonunun Cibyra segmenti, zonun tartışmalı davranışını açıklığa kavuşturmaya katkı sağlayacak doğrudan arazi kanıtları ile incelemiştir. Cibyra Fayı'nın yöneliminin FBFZ ile uyumlu olduğunu ve sol yanal atım bileşenine sahip olduğunu görmüştür. Bu hareketin Şekil 6.5 ile uyum içinde olduğu görülmektedir.

KNID, MARM, DATC ve CESM, IZMI, SALH, AYD1 noktaları sabit alınarak yapılan çalışmada elde edilen bağıl hızlar Şekil 6.8 ve 6.9'da verilmiştir. Şekil 6.8 ve 6.9 yukarıdaki bölümlerde Isparta Açısı için yapılan yorumların tamamını kanıtlar niteliktedir. Okların yönleri takip edilerek Isparta Açısının batı kanadının sınırı görülmektedir.

Şekil 6.8 KNID, MARM, DATC noktaları sabit alınarak hesaplanan bağıl hızlar

Şekil 6.9 IZMI, SALH, AYD1 noktaları sabit alınarak hesaplanan bağıl hızlar

DIDI, CINE, CAMK, MULA, MUGL noktaları sabit alınarak yapılan çalışmada elde edilen bağıl hızlar Şekil 6.10'da verilmiştir.

Şekil 6. 10 DIDI, CINE, CAMK, MULA, MUGL noktaları sabit alınarak hesaplanan bağıl hızlar

Isparta Açısının sınırlarını belirledikten sonra çalışma alanının batısında bulunan blokların davranışlarını belirlemek için bağıl hız çalışmaları yapılmıştır. Diğer şekillerde de görüldüğü gibi hangi nokta sabit alınırsa alınsın MARM, DATC ve KNID noktaları GB yönlü ve diğer noktalardan bağımsız olarak hareket etmektedir. Buda bu üç noktanın farklı bir blokta olduğunu kanıtlamaktadır. Bu üç noktanın GB yönlü kaçış hareketinin temel sebebinin bölgede etkin olan dalma batma zonu olduğu düşünülmektedir. Sabit alınan noktalar dışında KZLR, YSFC, TAVA noktalarının bağıl hızlarının sıfır olması bu noktalarla sabit alınan noktaların aynı zonda olduğu görülmektedir. AYD1, DENI ve PAMU noktalarının KD yönlü hareketi bu noktaların farklı zonda olduğunun göstergesidir. Ayrıca IZMI ve SALH noktalarının yine KD yönlü ve daha büyük hızla hareketi bu noktaların AYD1, DENI ve PAMU noktalarından da farklı zonda olduğunu göstermektedir. CESM noktasının bütün bağıl hız denemelerinde IZMI ve SALH noktalarından farklı hareketi noktada lokal bir deformasyon olabileceği düşüncesini getirmektedir. Bu nedenle CESM noktasına ait iki yıllık zaman serileri incelenmiştir (Şekil 6.11). Zaman serilerinde herhangi bir lokal deformasyon etkisi gözlenmemektedir. Bu nedenle CESM noktasının IZMI ve SALH noktalarına göre hareketinin tektonik olarak bir anlamı olduğu düşünülmektedir. Nitekim [13], [150] de çalışmalarında Çeşme İzmir arasında KD-GB yönlü doğrultu atımlı aktif fayların olduğunu göstermişlerdir.

Şekil 6. 11 CESM noktasına ait zaman serisi

Yukarıda verilen bütün bağıl hız çalışmalarından, bölgenin çizgiselliğinden ve bölgedeki fay (süreksizlik) düzlemlerinden yola çıkılarak bölgeye ilişkin oluşturulan blok modeli Şekil 6.12'de verilmiştir.

Şekil 6. 12 Sabit blok teorimi ile Güneybatı Anadolu'nun blok modeli

6.1.2 Elastik Atım Teorisi ile Blok Modeli

Şekil 6.12 de ileri sürülen blok modeli doğrulamak amacıyla çalışma bölgesinde bulunan faylara dik olarak alınan 6 farklı kesit ile elastik atım modeli incelenmiştir. Hesaplamaların yapılabilmesi için gerekli olan sismojenik tabaka (kabuk) kalınlığı farklı yöntemlerle belirlenebilmektedir. Bu yöntemlerin en basiti bölgede olan depremlerin derinlik dağılımına bakmaktır. Ayrıca havadan ölçülen manyetik verilerin spektral analizinden geçirilerek de tabaka kalınlığı elde edilebilmektedir. Bu yöntemin temel prensibi mağnetik anomali örneklerinin istatistiksel özelliklerinin incelenmesi sonucu, zaman ortamındaki veriler frekans ortamına dönüştürülerek anomalilerin spektrumu ile mağnetik kaynağın derinliği arasında bir ilişki belirlenmesidir [151]. Tez çalışmasında 108Y298 nolu TÜBİTAK projesi kapsamında manyetik verilerin analizinde elde edilen tabaka kalınlığı kullanılmıştır (Şekil 6.13).

Şekil 6.13 Güneybatı Anadolu'nun elastik kabuk derinliği haritası [152]

Bu çalışmadaki elastik atılım model uygulamasında derinlik ortalama 10 km olarak alınmıştır. Alınan kesitlerin yaklaşık yerleri Şekil 6.14'de gösterilmiştir. Bu kesitlerden 4 tanesi bölgenin en önemli fay zonu olan Fethiye-Burdur Fay Zonu üzerindedir. Diğer kesitler ise sırasıyla Gökova körfezi, Menderes grabenleri üzerinde ve Fethiye-Burdur Fay Zonuna paraleldir.

Şekil 6. 14 Çalışma bölgesinde alınan kesitlerin yaklaşık yerleri

Elastik atılım modelinin gösterildiği şekillerde yukarı eksen noktaların faya paralel veya dik hızlarını sağ eksen ise noktanın faydan uzaklığını göstermektedir. FBFZ Fethiye-Burdur Fay Zonunu göstermektedir. FBFZ'nin solunda kalan noktalar fay zonun kuzey batısında kalan noktaları, sağında kalan noktalar ise zonun güney doğusunda kalan noktaları göstermektedir. Çizgilerin kırılma noktaları ise temsil ettikleri süreksizlik düzlemlerinin yerini göstermektedir. Ayrıca sarı noktalar GNSS noktalarını, nokta üzerindeki sarı çizgiler ise nokta hızlarının doğruluklarını (hata çubuklarını) temsil etmektedir. Yine kesitlerde sağ ve sol eksenler arasındaki hız farkı fay üzerindeki birikim miktarını göstermektedir. Şekil 6.15-6.18 arası kesitler Fethiye-Burdur Fay Zonuna dik olarak çizilmiştir. Kesitlerde kırmızı kesikli çizgi süreksizlik düzlemi olarak [1] de belirtilen blok sınırını, mavi kesikli çizgi süreksizlik düzlemi olarak Fethiye-Burdur Fay Zonunu, yeşil düz çizgi ise süreksizlik düzlemi olarak Likya napları kabul edilerek çizilen elastik atım modelidir. Yine Şekil 6.19'da Gediz grabeni ile Gökova Grabeni arasında kalan bölümü göstermektedir. Şekil 6.20 ise Fethiye-Burdur Fay Zonuna paralel çizilen kesitte kesite paralel ve dik hızlar gösterilmiştir.

Şekil 6.15 den 6.17'ye kadar incelendiğinde Fethiye-Burdur Fay Zonunun kuzeyinde kalan noktaların faya paralel hızları yaklaşık 22 mm/yıl olduğu, faya yaklaşıldıkça bu hızların azaldığı görülmektedir. Fayın güney kısmında ise bu hızın 14- 16 mm/yıl'a kadar düştüğü görülmektedir. Yine Şekil 6.15-17 arasında Fethiye-Burdur Fay Zonunun doğu ve orta tarafında yaklaşık 6 mm'lik bir birikim olduğu görülmektedir.

Şekil 6. 15 Çalışma bölgesinde alınan Kesit 1'e ait elastik atım modeli

Şekil 6. 16 Çalışma bölgesinde alınan Kesit 2'ye ait elastik atım teorisi

Şekil 6. 17 Çalışma bölgesinde alınan Kesit 3'e ait elastik atım teorisi

Bu zonun batı tarafında ise bu birikimin yaklaşık 10 mm'ye ulaştığı gözlenmektedir (Şekil 6.18). MARM, KNID, DATC noktaları bölgenin en güneybatı ucu ve en hızlı noktalarıdır. Bu üç noktanın farklı bir blokta olduğu çizilen kesitlerden de görülmektedir. Şekil 6.15-6.18 arası incelendiğinde farklı süreksizlik düzlemleri için uygulanan elastik atım teorisinin Likya Napları olarak çizilen blok sınırı (yeşil kesit) ile daha uyumlu olduğu görülmüştür.

Şekil 6. 18 Çalışma bölgesinde alınan Kesit 4'e ait elastik atım teorisi

Şekil 6.19 incelendiğinde batı Anadolu'da bulunan Gediz Grabeni, Büyük Menderes Grabeni ve Gökova fayları için çizilen yeni blok sınırlarının uyumu görülmektedir. Yine Şekil 6.20 incelendiğinde Fethiye-Burdur Fay Zonuna çizilen paralel kesit görülmektedir. Elde edilen sonuçlar sabit blok teoremindeki sonuçları destekler niteliktedir.

Şekil 6. 19 Çalışma bölgesinde alınan Kesit 5'e ait elastik atım teorisi

Şekil 6. 20 Çalışma bölgesinde alınan Kesit 6'ya ait elastik atım teorisi

6.2 Gerilme Alanının Belirlenmesi

6.2.1 Yamulma Analizi

Bölgedeki gerilme alanlarını hesaplamak için yamulma analizi yapılmıştır. Bu tez çalışmasında yamulma analizi grid_strain yazılımı ile yapılmıştır [153]. Grid_strain yazılımı 2 boyutlu yamulma alanlarının hızlı ve çabuk hesaplayabilen Matlab ortamında

yazılmış bir programdır. Programın temel girdileri elde edilen hızlar ve hızlara ait karesel ortalama hatalardır. Grid_strain yazılımı [14] de verilen En Küçük Kareler yaklaşımı kullanarak yamulma analizi parametrelerini hesaplamaktadır. Bu hesaplamalar Bölüm 4'de verilmiştir. Bu yazılım ile 2 ve 3 boyutlu yamulma analizi yapılabilmekte ve çalışma bölgesi istenilen büyüklüklerde gridlere bölünebilmektedir.

Bu çalışmada 2 boyutlu yamulma analizi yapılmıştır. Bunun temel sebebi GNSS teknolojisinin henüz üçüncü boyutta istenilen doğruluğu vermemesidir. Çalışma bölgesi 15 x 15 km'lik gridlere ayrılarak her grid köşesine ilişkin yamulma alanları hesaplanıştır. Elde edilen yamulma alanları Şekil 6.21'de gösterilmektedir.

Şekil 6. 21 Güneybatı Anadolu yamulma alanı

Şekil 6.21'de görülen mavi oklar açılmayı kırmızı oklar sıkışmayı kırmızı çizgiler ise aktif fayları göstermektedir. Grid_strain yazılımı GNSS noktaları arasındaki yamulma miktarını iteratif olarak hesaplamaktadır. Şekil 6.21'de verilen açılma ve sıkışma yönlerinde, veri yoğunluğu ve yamulma büyüklüğü iteratif sonucu etkiler büyüklüklerdir. Bu nedenle elde edilen yamulma alanlarına her bölgede anlam yüklemek yanlış olacaktır. grid_strain programı yardımı ile anlamlı yamulma alanları tespit edilerek Şekil 6.22'de verilmiştir. Turkuaz renkli alanlar Şekil 6.21'de verilen yamulma alanlarının istatistiksel olarak anlamlı olduğu bölgeleri göstermektedir.

Şekil 6. 22 Güneybatı Anadolu anlamlı yamulma alanı.

Yamulma alanlarının büyüklükleri ve yönleri, olan ve olabilecek depremlerin izlerini taşıdığı bir gerçektir. Bu nedenle bölgede daha önce meydana gelen depremlerin deprem çözümleri hesaplanan anlamlı yamulma alanları ile karşılaştırılmıştır. Deprem odak mekanizması çözümü, meydana gelen depremin merkez üssünden kayıt istasyonlarına gelen P ve S dalgaları kullanılarak yapılmaktadır. Farklı kurum ve kişiler tarafından yapılan odak mekanizma çözümleri farklı sonuçlar verebilmektedir. Bu nedenle bu çalışmada deprem çözümlerinin kişisel farklılıklar içermemesi için tek bir kaynağa ait (Prof. Dr. Ali Pınar) deprem çözümleri kullanılmıştır (Şekil 6.23).

Şekil 6. 23 Bölgede meydana gelen deprem çözümleri

Marmaris, Datça bölgesi depremlerin çözümleri yine K-G yönlü hareketi gösterirken Şekil 6.21 yamulma analizi de aynı yönlü açılmaları destekler niteliktedir. Çameli bölgesi deprem çözümlerinde ise KD-GB açılma hareketi ile KB-GD sıkışma hareketi görülmektedir. Şekil 6.21 yamulma analizinde KYBS, YSFC, SIRA, CAVD bölgesinde görülen yamulmalarla uyum içinde olduğu net şekilde görülmektedir.

Şekil 6.23'de mavi deprem çözümleri Burdur ve Antalya bölgesi depremlerini göstermektedir. Burdur bölgesi deprem çözümleri KB-GD yönlü açılmaları gösterirken Antalya civarında bu çözümler K-G yönlü olarak görülmektedir. Şekil 6.21'de Burdur civarında bulunan YSLV, CLTK, TKIN noktalarında görülen açılmalar küçük miktarda da olsa KB-GD yönündedir. Tarihte birçok yıkıcı depreme neden olan Burdur fayında yamulmaların (CAVD, YSLV. BZKT civarı) çok küçük olması dikkat çekmektedir. Yine Şekil 6.21 incelendiğinde Antalya bölgesinde açılma yönünün D-B şeklinde olduğu fark edilmektedir. Şekil 6.23'de görülen kırmızı deprem çözümleri Denizli bölgesi depremlerini, yeşil deprem çözümleri Isparta bölgesi depremlerini göstermektedir. Bu çözümler açılmanın Denizli bölgesinde KD-GB yönlü olduğunu göstermektedir. Şekil 6.21'de görülen PAMU DENI ve TAVA noktalarında görülen açılmaların aynı yönlü ve çok büyük olması ve PAMU noktasının hemen kuzey doğusunda bu açılmanın görülmemesi, bölgenin Anadolu bloğundan ayrıldığının göstergesidir. Yine Isparta bölgesi deprem çözümleri (yeşil çözümler) D-B yönlü açılmaları gösterirken, bu hareketi Şekil 6.21'de ISRT, ISPT, AKSU noktalarında görmek mümkündür.

Şekil 6.23 incelendiğinde Sultandağı bölgesinde meydana gelen depremlerde KB-GD yönlü açılmalar, Akşehir bölgesi deprem çözümlerinde de KD-GB yönlü açılmalar, görülmektedir. Şekil 6.21'de görülen yamulma alanları Sultandağı bölgesi açılmalarını doğrularken, Akşehir civarındaki KD-GB deprem çözümleri D-B yönlü olarak görülmektedir.

Şekil 6.23'de ki mor renkli İzmir ve Çeşme depremleri çözümleri K-G açılma göstermektedir. Bu çözümler Şekil 6.21 ile çelişmektedir. Ancak 26.03.2010 tarihinde meydana gelen (ML=4.7) kırmızı renkli Çeşme depremi çözümü K-G açılma D-B yönünde sıkışmalar ile bölgede doğrultu atımlı fayların olduğunu göstermektedir [154]. Şekil 6.21'de ise bu hareketleri destekler açılma ve sıkışmaları görmek mümkündür.

6.3 Sonlu Elemanlar Yöntemi ile Gerilme Analizi

Sonlu elemanlar yöntemi kullanılarak gerilimin hesaplanması için ANSYS programı kullanılmıştır. ANSYS genel amaçlı sonlu elemanlar paket programıdır ve mekanik problemlerin nümerik çözümünde kullanılır. Bu problemler; statik/dinamik yapısal analizler (lineer veya non-lineer), ısı transferi ve akış problemleri gibi problemleri içerir. ANSYS ile sonlu elemanlar analizleri genel olarak, üç aşamada gerçekleştirilir. Bu aşamaların ilkinde (preprocessing) problemin tanımlamaları yapılmaktadır. İkinci aşamada çözüm (solution) işleminin yapılabilmesi için tanımlanan probleme ilişkin sınır şartları belirlenmekte ve yüklerin girilme işlemleri gerçekleştirilmektedir. Son aşamada (postprocessing) ise elde edilen sonuçların listelenmesi ve görselleştirilmesi yer almaktadır [155]. Sonlu elemanlar analizinin temel amacı, bilinen yükler altında sistemin nasıl davrandığının belirlenmesi ve modellenmesidir. Bunun için ANSYS programında problem tanımının yapıldığı ilk aşamada öncelikle modeli oluşturacak olan nokta (keypoint), çizgi (line), alan (area) tanımlarının yapılması gerekmektedir. Daha sonra problem tanımlamasında kullanılacak olan eleman tipi ve malzeme özelliklerinin belirlenerek çözüm için gerekli olan parametreler girilmelidir. Bu aşamada son olarak tanımlanan problemin sonlu elemanlara bölünme işlemi gerçekleştirilmektedir.

ANSYS çözüm aşamasında ise problem tanımında kullanılan sınır şartları ve kuvvet yüklemeleri gerçekleştirilmektedir. Tektonik amaçlı çalışmalarda yüklemeler olarak bölgesel yer değiştirmeler kullanılabileceği gibi (Anadolu plakasının batıya doğru yıllık 20 mm'lik hareketi gibi) noktasal bazlı (GNSS noktalarının hızları gibi) yüklemelerde yapılabilmektedir.

Tez çalışmasında sonlu elemanlar yöntemi ile yapılacak gerilme analizi problem tanımı için GNSS ölçüsü yapılan noktalar kullanılmıştır. Bu noktalar ANSYS programında nokta (keypoint) olarak tanımlandıktan sonra, bu noktalara göre üçgen alanlar oluşturulmuştur. Çalışma alanın için malzeme parametreleri daha önce bölgede yapılan çalışmalardan alınarak belirlenmiştir [124]. Poisson oranı 0.25, Young modülü ise 30 GPa seçilmiştir. Bölgede çok detaylı çalışmalar yapılmadığı için bölgenin yapısal özellikleri elastik ve izotropik olarak seçilerek tüm çalışma bölgesinde aynı parametreler kullanılmıştır. Sonlu elemanlar ağı için eleman tipi olarak 6 düğüm noktalı üçgen elemanlar seçilmiştir. Bu elemanların kenar uzunlukları ise maksimum 20 km olarak seçilmiştir. Çalışmada sınır şartı olarak serbest düğüm noktaları kullanılarak noktasal bazlı yüklemeler yapılmıştır. Noktasal yükleme için, Avrasya plakası sabit olarak GNSS ölçülerinden elde edilen hızlar yer değiştirme olarak girilerek çözüm yapılmıştır. Yapılan sonlu eleman çözümü sonunda, elde edilen hız alanı Şekil 6.24'de, Y yönünde gerilmeler Şekil 6.25'de, X yönünde gerilmeler Şekil 6.26'da, makaslama gerilimleri ise Şekil 6.27'de verilmiştir. Şekil 6.24 incelendiğinde Şekil 5.21'de verilen noktasal hızların iteratif olarak tüm bölgeye yayılarak çizilen hız alanı haritası olduğu görülmektedir. Bölgenin doğudan batıya doğru hızlandığı KNID noktasının yaklaşık 34 mm/yıl ile bölgenin en hızlı noktası, ANMU noktasının da 10 mm/yıl ile en yavaş noktası

olduğu görülmüştür. Şekil 6.25'de ise Anadolu bloğu üzerinde, Y ekseni yönünde 1000-2000 Pascal kuvvetle bir açılma olduğu görülmektedir.

Şekil 6. 24 Sonlu elemanlar yöntemiyle elde edilen hız alanı

Şekil 6. 25 Y yönünde elde edilen asal gerilme alanları

Şekil 6.26'da X (K-G) yönündeki gerilme oranları incelendiğinde Ege bloğunun 1000-3000 Pascal bir kuvvetle açılarak yamulma analizini desteklediği görülmektedir. Gerilme analizinin en önemli sonucu ise KYBS KZLR noktaları arasında 3500 Pascal bir kuvvetle kayma gerilmesi belirlenmesidir. Bu bölgede bulunan KB-GD yönlü fayların bu etkiyi oluşturduğu düşünülmektedir.

Şekil 6. 26 X yönünde elde edilen asal gerilme alanları

Şekil 6. 27 XY yönünde (kayma-makaslama) elde edilen asal gerilme alanları

BÖLÜM 7

SONUÇ VE ÖNERİLER

Güneybatı Anadolu'daki hız ve gerilme alanı ile bölgenin blok modelini belirlemek için geçmiş yıllarda yapılan çalışmaların noktalarınıda kapsayan 30 noktalı bir GNSS ağı kurulmuş ve 2009 -2010 yıllarında GNSS ölçüleri yapılmıştır. Bölgede 2008 yılında kurulan 27 tane TUSAGA-Aktif istasyonu da bu ağa dahil edilmiştir. Böylece toplam 57 noktaya sahip Güneybatı Anadolu Tektonik GNSS Ağı (GATGA) kurulmuştur. Farklı gruplar tarafından bölgede geçmiş yıllarda yapılan GNSS ölçüleri kullanılarak 1997-2010 yılları arasında 11 kampanya ölçü GAMIT/GLOBK yazılım takımıyla değerlendirilmiştir.

Elde edilen hız alanı (Şekil 5.13) incelendiğinde çalışma bölgesinin Avrasya referans sistemine göre yıllık 15–35 mm'lik hızla güneybatı yönünde bir hareket sergilediği görülmüştür. Güneybatıya doğru hız değerlerinin büyüdüğü ve KNID noktasında maksimum 35 mm/yıl'a ulaştığı görülmektedir. Bu hareketin birçok çalışmada belirttiği gibi Anadolulun saat hareketinin tersi yönünde yaptığı dönüş hareketini desteklemektedir [1], [4]. Bu sonuçlar bölgede yapılan diğer çalışmalarla uyum içinde olunduğunu göstermektedir. 1986-2002 yılları arasında yapılan bölgenin ilk GNSS ölçüleri olan ve [4] de belirtilen 8 ortak noktanın (MARM, KASO, SIRA, PAMU, MULA, KNID, CINE, CAMK) hızları arasında 1-5 mm arasında farklılık olduğu görülmektedir. Buradan her iki grubun benzer çözüm stratejileri uyguladıkları anlaşılmaktadır.

Bölgedeki blok modelini belirlemek için iki farklı çalışma yapılmıştır. Sabit blok teoremi için 7 farklı datum çalışması yapılmıştır. Anadolu bloğu üzerinde bulunan noktalar sabit alınarak yapılan (Şekil 6.2) çalışmada AKHR, BEYS, KAYA, SARV ANTL, SRKK, KASO ve FINI noktalarının bağıl hızlarının çok düşük olduğu görülmüştür. Buradan bu noktaların Anadolu bloğunun üzerinde olduğu düşüncesi oluşmuştur. Sultandağı-Akşehir fayının bu çalışma ile bir bindirme fay zonu olmadığı izlenimi uyanmıştır. 2000 ve 2002 yıllarında meydana gelen depremlerden bu fay zonunun doğrultu atımlı normal bir fay olduğu görülmüştür [87, 109, 143].

Şekil 6.3 incelendiğinde yine sabit seçilen noktalarla YUNK, CIHA, KNYA noktalarının bağıl hızlarının çok küçük olduğu görülmüştür. Buradan Sultandağı Akşehir faylarının Isparta Açısının doğu kanadı sınırın oluşturmadığını ya da bu sınırın günümüzde görülmediğini göstermiş yani Isparta Açısının doğu kanadının saat yönündeki rotasyon hareketinin günümüzde görülmediği tespit edilmiştir.

Şekil 6.5 incelendiğinde SIRA ve KYBS noktalarının bağıl hızlarının düşüklüğü nedeniyle bu noktaların sabit kabul edilen noktalarla aynı blok üzerinde olduğu görülmektedir. Şekil 6.5'deki göstergeler blok sınırının [1], [2], [51] de belirtilenden farklı olarak Fethiye-Burdur Fay Zonunun doğusundan geçtiği görülmektedir. Bölgenin jeolojik yapısı ve çizgiselliği incelendiği zaman Beydağları formasyonu ve Likya naplarının blok sınırı ile daha uyumlu olduğu görülmüştür. Yeni blok sınırı ile Likya naplarının uyumu farklı yorumlara sebep olmaktadır. Bu yorumlardan ilki Likya naplarının Fethiye-Burdur Fayı ile etkileşim içinde olduğudur. Diğer yorum ise Likya naplarının neotektoniğinin, bölgenin kinematiğine uygun olarak, evrimlerini sürdüren hortlak yapı grubundan olabileceğidir. Ayrıca Isparta Açısının batı kanadının Fethiye-Burdur Fay Zonundan çok Likya napları olduğu düşüncesi oluşmuştur.

Sabit blok uygulamasının bulgularından birisi de Güneybatı Anadolu'nun en önemli tektonik yapısı olan Fethiye-Burdur Fay Zonu üzerindeki YSLV ve GKPN noktalarının düşük sol yönlü bağıl hızları ile DLMN ve FETH noktalarındaki büyük son yönlü bağıl hızlarıdır (Şekil 6.5). Fethiye-Burdur Fay Zonunun sol yanal atım bileşeninin YSLV ve GKPN noktalarında çok küçük görülmesi, duruma ilişkin iki farklı yorum akla getirmektedir. Bunlardan ilki Fethiye-Burdur Fay Zonunun aslında bir zon olarak kabul edilemeyeceği bunun temel sebebinin de zonun orta ve batı kısımları arasında farklı hız alanlarının olmasıdır. İkinci yorum ise YSLV ve GKPN bölümlerinde kilitlenmeler olduğu için bu fay zonunun özelliğini göstermediğidir. Bütün datum çalışmalarında ortak sonuç olarak MARM, DATC ve KNID noktalarının diğer noktalardan farklı kendi içinde benzer

110

hareket etmesidir. Bu üç noktanın farklı blok üzerinde olduğu net biçimde görülmüştür. Diğer bir ortak sonuç ise CESM noktasının bütün bağıl hız denemelerinde IZMI ve SALH noktalarından farklı hareket etmesidir. Bu noktanın hareketinin lokal bir deformasyondan kaynaklanmadığı zaman serilerinden görülmüştür (Şekil 6.11). CESM noktasının Batı Anadolu'da farklı bir blokta olduğu kanısını uyandırmaktadır. Böyle bir bloğun daha önce literatürde tanımlanmaması ve sadece o blok üzerinde tek CESM noktasının olması bu kanıyı desteklemekte yetersiz kalmaktadır.

Şekil 6.12'de verilen blok modelin testi için elastik atım teorisi uygulanmıştır. Şekil 6.15 den 6.17'ye kadar şekiller incelendiğinde Fethiye-Burdur Fay Zonunun kuzeyinde kalan noktaların faya yaklaşıldıkça bu hızların azaldığı görülmektedir. Yine Şekil 6.15-17 Fethiye-Burdur Fay Zonunun doğu ve orta tarafında yaklaşık 6 mm'lik bir birikim olduğu görülmektedir. MARM, KNID, DATC noktaları bölgenin en güneybatı ucu ve en hızlı noktaları olup bu üç noktanın farklı bir blokta olduğu çizilen kesitlerden de görülmektedir. Farklı süreksizlik düzlemleri için uygulanan elastik atım teorisinin Likya Napları olarak çizilen blok sınırı (yeşil kesit) ile daha uyumlu olduğu görülmüştür. Batı Anadolu'da bulunan Gediz Grabeni, Büyük Menderes Grabeni ve Gökova fayları için çizilen yeni blok sınırlarının uyumu görülmektedir (Şekil 6.19). Bu kesitte faya paralel ve dik hızlar için uygulanan elastik atım teorisinin birbirine paralel olması burada yanal atımlı bir fay yapısı olduğunun bir işaretidir.

Yapılan yamulma analizinin anlamlı yamulma alanları Şekil 6.22'de verilmiştir. Güneybatı Anadolu'da ki neotektonik dönemi başlatan hareket, Afrika levhasının Girit adasının güneyinde Ege ile Anadolu levhalarının altına dalması sonucu bu hareket, Ege bölgesinde K-G açılma ile karşılanmaya çalışılmıştır. Ege civarında K-G açılmalar MUGL noktası civarında yerini KD-GB açılmalara bırakmaktadır. CESM civarında meydana gelen D-B yönlü anlamlı sıkışmalar dikkat çekmektedir. Yamulma oklarının yönlerinin Şekil 6.12'de verilen blok model sınırları ile değişimi dikkat çekmektedir. KYBS, CAVD noktaları civarında KD-GB yönlü yamulma okları doğuya doğru ilerledikçe D-B yönlü olmaktadır. Bölgede meydana gelen depremlerin çözümleri Şekil 6.23'de verilmiştir. Burdur, Marmaris, Isparta, İzmir deprem çözümlerindeki açılma ve sıkışma yönlerinin yamulma analizi ile uyumu dikkat çekmektedir. Yukarıda ki açıklamalarda da görüldüğü gibi GNSS hızlarından elde edilen yamulma alanları ile deprem odak çözümlerinin büyük ölçüde uyum içinde olduğu görülmektedir. Bu uyum, elde edilen yamulma alanlarından, deprem çözümü olmayan bölgelere ilişkin yapılacak yorumların doğruluğunun da oldukça yüksek olacağının bir göstergesidir. Yapılan gerilme analizinde pozitif değerler açılmayı negatif değerler sıkışmayı göstermektedir. Gerilme analizinin en önemli sonucunun ise KYBS KZLR noktaları arasında 3500 Pascal bir kuvvetle kayma gerilmesine maruz kalmasıdır. Bu bölgede bulunan KB-GD yönlü fayların bu etkiyi yarattığı düşünülmektedir. 2007 Çameli deprem etkinliğinin bu bölgede olması dikkat çekmektedir. Sonlu Elemanlar Metodu ile yapılan gerilme analizlerinin daha doğru sonuç vermesi için bölgenin malzeme parametrelerinin çok iyi bilinmesi gerekmektedir. Bu nedenle Sonlu Elemanlar Metodu ile gerilim analizinden fazla yorum yapılamamıştır.

Tez çalışması sonucunda elde edilen bilgiler ışığında tektonik amaçlı yapılacak GNSS ölçmelerinde dikkat edilmesi gereken hususlar ve bölgenin tektoniği ile ilgili öneriler aşağıda sıralanmıştır.

- Yapılan çalışmalar sonucunda elde edilen günlük ve yıllık tekrarlılıklar incelendiğinde, zorunlu merkezlendirme olan pilye tesislerinde yapılan ölçülerin zemin tesislerinde alet sehpasıyla yapılan ölçülerden daha stabil olduğu görülmüştür. Bu nedenle ölçülerde zorunlu merkezlendirme türü tesislerin kullanılması sonuçların kalitesini doğrudan etkilemektedir.
- Zemin tesislerinde GNSS ölçüsü yapılacaksa alet sehpası yerine zorunlu merkezlendirmeli ve anten yüksekliği sabit zincirli tripot türü sehpa kullanılmalıdır.
- Yapılacak GNSS ölçüleri mutlaka üç gün tekrarlı yapılmalıdır. Uzun dönem geçmişe sahip noktalarda 2 gün tekrarlılıklar da yeterli olmaktadır.
- Günlük gözlem süresi minimum 6 saat olmalıdır. Aynı noktada 8 saat den fazla yapılan ölçülerin doğruluklarında 6 saatlik ölçülere göre yatay bileşenlerde anlamlı bir değişikliğin olmadığı görülmüştür.

- Güneybatı Anadolu'da bulunan TUSAGA-Aktif istasyonlarının verileri günlük değerlendirilerek noktaların davranışları belirlenmelidir. Yapılan değerlendirmeler sonucunda çatı tesislerinin de zemin tesisleri kadar sağlıklı ölçü topladığı görülmektedir.
- Gerilmeleri fazla olan Isparta, Burdur, Denizli il ve ilçelerinde son 40 yıldır
 6.0 Mw den büyük deprem olmaması bölgedeki sismik tehlikenin devam ettiğini göstermektedir. Bu bölgelerde ilgili kurumların olası depremlere karşı önlem almaları konusunda bilgilendirilmelidir.
- Bölgede kurulan GATGA'da yeni tesis edilen noktaların sonuçlarının iyileştirilmesi için GNSS ölçülerine devam edilmelidir.
- Sürekli gözlem yapan GNSS istasyonlarının bölgede sıklaştırılması ile online izleme ağları, kampanya ağları ile desteklenmelidir.

KAYNAKLAR

- [1] Reilinger, R., Mcclusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S.V., Gomez, F., Al-Ghazzi, R. ve Karam, G., (2006). "GPS constraints on continental deformation in the Africa-Arabia- Eurasia continental collision zone and implications for the dynamics of plate interactions", Tectonics, 111:1-26.
- [2] Aktuğ, B., Nocquet, J. M., Cingo, A., Parsons, B., Erkan, Y., England, P. ve Lenk,
 O. (2009). "Deformation of Western Turkey From A Combination of Permanent And Campaign GPS Data: Limits to Block-Like Behavior", Journal of Geophysical Research, 114:1-22.
- [3] Kahle, H.-gert, Straub, C., Reilinger, R., Mcclusky, S., King, R., Hurst, K., Veis, G., Kastens, K. ve Cross, P., (1998). "The Strain Rate Field in The Eastern Mediterranean Region, Estimated by Repeated GPS Measurements", Jet Propulsion, 294:237-252.
- [4] McClusky, S., Balassanian, S., Barka, A.,Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Mahmoud, S., Mishin, A., Nadriya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N. ve Veis, G., (2000). "Global Positioning System Constraints On Plate Kinematics and Dynamics in The Eastern Mediterranean and Caucaus", Journal of Geophysical Research, 105:5695-5719.
- [5] Kahle, H.-G., Muller, M.V., Geiger, A., Danuser, G., Mueller, S., Veis, G., Billiris,
 H. ve Paradissis, D., (1995). "The Strain Field in NW Greece and The Ionian Islands: Results inferred From GPS Measurements", Tectonophysics, 249:41– 52.
- [6] Taymaz, T., Eyidoğan, H. ve Jackson, J., (1991). "Source Parameters of Large Earthquakes in the East Anatolian Fault Zone (Turkey)", Geophys. J. Int., 106: 537–550.
- [7] Westaway, R., (1994). "Present-Day Kinematics of the middle East and Easternmediterranean", Journal of Geophysical Research, 99 (12):071–090.

- [8] Le Pichon, X., Chamot-Rooke, N., Lallemant, S., Noomen, R. ve Veis, G., (1995). "Geodetic Determination of the Kinematics of Central Greece with Respect to Europe: Implications for Eastern Mediterranean Tectonics" Journal of Geophysical Research, 100:12675–12690.
- [9] McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., ve Tealeb A., (2003).
 "GPS Constraints on Africa (Nubia) and Arabia Plate Motions", Geophys. J. Int., 155:126–138.
- [10] Reilinger, R., ve Mcclusky, S. (2011). "Nubia Arabia Eurasia Plate Motions and the Dynamics of Mediterranean and Middle East Tectonics", Geophysical Journal International, 971-979.
- [11] Erdoğan, S., Şahin, M., Yavaşoğlu, H., Tiryakioğlu, İ., Erden, T., Karaman, H., Tarı, E., E., Bilgi, S., Okan, Tüysüz O., Baybura, T.,Güllü, M., Taktak, F., Telli, A.K., Yılmaz, İ. ve Boz, Y., (2008). "Monitoring of Deformations Along Burdur-Fethiye Fault Zone with GPS", J Earthquake Eng 12(2):109–118.
- [12] Erdoğan, S., Şahin, M., Tiryakioğlu, İ., Gülal, E. ve Telli, A. K., (2009). "GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements", Sensors, 9: 2017-2034.
- [13] Aktuğ, B., ve Kılıçoglu, A., (2006). "Recent Crustal Deformation of İzmir, Western Anatolia And Surrounding Regions as Deduced from Repeated GPS Measurements and Strain Field", Journal of Geodynamics, 41(5):471-484.
- [14] Shen, Z.-K., Jackson, D.D. ve Ge, X.B., (1996). "Crustal Deformation Across and Beyond the Los Angeles Basin from Geodetic Measurements", Journal of Geophysical Research, 101: 27957–27980.
- [15] Lenk, O., Türkezer, A., Ergintav, S., Kurt, A.İ. ve Belgen, A., (2003). "Monitoring the Kinematics of Anatolia Using Permanent GPS Network Stations", Turkish Jour. Of Earth Sci., 12:55-65
- [16] Öncel, A. O. (2004). "Correlation of Seismotectonic Variables and GPS Strain Measurements in Western Turkey", Journal of Geophysical Research, 109(B11):1-13.
- [17] Kahle, H. G., Cocard, M., Peter, Y., Geiger, A., Reilinger, R., Barka, A. ve Veis, G., (2000). "GPS-Derived Strain Rate Field Within The Boundary Zones of the Eurasian, African, and Arabian Plates", Journal of Geophysical Research, 105(B10):353–370.
- [18] Gutenberg, B. ve Richter C. F., (1954). Seismicity of the Earth and Associated Phenomena, Princeton Univ. Press, Princeton
- [19] Provost, A.S., Chery, J. ve Hassani, R., (2003)." 3D Mechanical Modeling of the GPS Velocity Field Along the North Anatolian Fault", Earth. planet. Sci. Lett., 209:361–377.
- [20] Vernant, P. ve Chéry, J., (2006). "Mechanical Modelling of Oblique Convergence in the Zagros, Iran", Geophysical Journal International, 165(3): 991–1002.

- [21] Kasapoğlu, K.E. ve Toksöz M.N., (1983). "Tectonic Consequebces of the Collision of the Arabian and Eurasian Plates: Finite Element Models", Tectonophysics, 100:71-95.
- [22] Cianetti, S., Gasperini, P., Boccaletti, M. ve Giunchi, C., (1997). "Reproducing the Velocity and Stress Fields in the Aegean Region", Geophys. Res. Lett., 24(16): 2087–2090.
- [23] Kiamehr, R. ve Sjoberg, L. (2005). "Analysis of Surface Deformation Patterns Using 3D Finite Element Method: A Case Study in The Skåne Area, Sweden", Journal of Geodynamics, 39(4):403-412.
- [24] Šliaupa, S. ve Zakarevičius, A. (2006). "Strain and stress fields of the Ignalina NPP area from GPS data and thin-shell finite element modelling", NE Lithuania Geology, 56:27-35.
- [25] Jimenez-Munt, I., Sabadini, R., Gardi, A. ve Bianco, G., (2003). "Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data", Journal of Geophysical Research, 108(B1):2006.
- [26] Mantovani, E., Cenni, N., Albarello, D., Viti, M., Babbucci, D., Tamburelli, C. ve Onza, F. D. (2001). "Numerical simulation of the observed strain field in the central-eastern Mediterranean region", Journal of Geodynamics, 31:519-556.
- [27] Ergintav, S., Burgmann, R., McClusky, S., Cakmak, R., Reilinger, R., Lenk, O, Barka, A. ve Ozener, H., (2002). "Postseismic Deformation Near the Izmit Earthquake (08/17/1999, M = 7.5) Rupture Zone", Bull. Seismol. Soc. Amer., 92:194-207.
- [28] Feigl, K.L., King, R.W. ve Jordan, T.H., (1990). "Geodetic measurement of tectonic deformation in the Santa Maria fold and thrust belt", California, Journal of Geophysical Research, 95(B3):2679–2699.
- [29] Uzel, T., Eren, K., Gülal, E., Dindar, A., Tiryakioğlu, i. ve Yılmaz, H., (2011).
 "TUSAGA-Aktif (Cors-Tr) Verileri İle Tektonik Plaka Hareketlerinin İzlenmesi", TMMOB Harita ve Kadastro Mühendisleri Odası 13. Türkiye Harita Bilimsel ve Teknik Kurultayı, 18-22 Nisan 2011, Ankara
- [30] Herring, T. A., (1999). "Geodetic Applications Of GPS", IEEE, 87:1
- [31] Kaplan, D. E. ve Hegarty, C. J., (2006). Understanding GPS Principles and Application, Artech House, Second Edition, Boston.
- [32] Derelioğlu, B., (2007). GPS ve GPRS Tabanlı Geniş Alan Uygulaması, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara
- [33] Pany, T., (2007). Navigation Signal Processing for GNSS Software Receivers, Artech House, Boston.
- [34] Yalçın, B., (2007). Yerel Bir Ağda GPS Ölçü Süresinin Nokta Konum Doğruluğuna Etkisinin Araştırılması, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya

- [35] Revnivykh, S., GLONASS Status and Progress, Minutes of the 47th CGSIC Meeting, <u>http://www.navcen.uscg.gov/pdf/cgsicMeetings/47/%5B21%5D%20</u> <u>GLONASS</u> <u>%20CGSIC%20September%2024%20Fort%20Worth.pdf</u>, 15 Aralık 2011
- [36] Federal Space Agency Information Analytical Centre,<u>http://www.glonass-</u> <u>center.ru/frame.html</u>, 15 Aralık 2011
- [37] Kazantsev, V., (1995). "The GLONASS and GLONASS-M Programs", Proceedings of the 8th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1995), Eylül 1995, Palm Springs, Kaliforniya
- [38] Boykov, V. V., Galazin, V. F., Kaplan B. L., Maximov, V. G., ve Bazlov, Yu, A., (1993). "Experimental of Compiling the Geocentric System of Coordinates PZ-90", Geodeziya i Katografiya, 18–21
- [39] Levine, J., Time and frequency distribution using satellites <u>http://tf.nist.gov/general/pdf/1602.pdf</u>, 15 Aralık 2011
- [40] Salgın, Ö., (2007). Farklı Uzunluktaki Bazlarda Ticari Gps Yazımlarının Bernesse Yazılımı İle Karşılaştırılması, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya
- [41] Seeber, G., (2003). Satellite Geodesy, Walter de Gruyter, Berlin
- [42] Pratt, A. R. ve Owen, J. J. R., (2004)." Performance of GPS/Galileo Receivers Using m-PSK BOC Signals", Proceedings of the 2004 National Technical Meeting of The Institute of Navigation, 26 - 28 Ocak 2004, San Diego
- [43] Report on the Development of BeiDou (COMPASS) Navigation Satellite System,<u>www.beidou.gov.cn/attach/2011/11/29/201111292061d0391c074ed</u> <u>Obee7493617237c88.pdf</u>, 15 Aralık 2011
- [44] Xu, G., (2007). GPS Theory, Algorithms and Applications, Springer, Berlin.
- [45] Melchior, P., (1978). The Tides of the Planet Earth. p. 609, Pergamon Press, Oxford.
- [46] McCarthy, D., (1996). "IERS Conventions", IERS Tech. Note 21, IERS Cent. Bur.,Obs. Paris.
- [47] Yıldız, F. ve Kahveci, M., (2009). GPS/GNSS Uydularla Konum Belirleme Sistemleri, Nobel Yayınları, Ankara
- [48] Kahveci, M., (2010). "GPS/GNSS Gözlemlerini Değerlendirme Yöntemlerinde Son Gelişmeler", Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi, 102:3-9
- [49] Blewitt, G., (1998). IGS densification program, in IGS Annual Report 1997, p. 24-25, IGS Central Bureau, Pasadena, Kalifornia.
- [50] Yavaşoğlu, H., (2009). Kuzey Anadolu Fayının Orta Anadolu Bölümündeki Güncel Tektonik Aktivitenin Jeodezik Yöntemler Ve Elastik Yarı Uzay Modelleme İle Belirlenmesi, Doktora Tezi, İ.T.Ü., Fen Bilimleri Enstitüsü, İstanbul.

- [51] Erdoğan, S., (2005). Burdur Fethiye Fay Zonunun GPS ile İzlenmesi, Doktora Tezi, İ.T.Ü., Fen Bilimleri Enstitüsü, İstanbul.
- [52] UNAVCO, <u>http://facility.unavco.org/software/processing/gipsy/gipsy.html</u>, 15 Aralık 2011
- [53] Herring T.A., King, R.W. ve McClusky, S.C., (2009). Introduction to GAMIT/GLOBK, Release 10.4. Department of Earth, Atmospheric and Planetary Sciences, Mass. Inst. of Technol. <u>http://chandler.mit.edu/~simon/gtgk/Intro GG 10.4.pdf</u>, 15 Aralık 2011.
- [54] Herring T.A., King, R.W. ve McClusky, S.C., (2009). GAMIT reference manual, Release 10.4. Department of Earth, Atmospheric and Planetary Sciences, Mass. Inst. Of Technol. <u>http://chandler.mit.edu/~simon/gtgk/GAMIT_Ref</u> <u>10.4.pdf</u>, 15 Aralık 2011.
- [55] Poyraz, F., (2009). Kuzey Anadolu Fay Zonu Doğu Kesiminde Yatay Yerkabuğu Hareketleri Ve Gerilme Birikiminin Araştırılması, Doktora Tezi, Y.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- [56] Çakmak, R., (2001). Marmara Bölgesi'nde Kabuk Deformasyonlarının GPS Yardımıyla İzlenmesi, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- [57] Herring T.A., King, R.W. ve McClusky, S.C., (2009). GLOBK reference manual, Release 10.4. Department of Earth, Atmospheric and Planetary Sciences, Mass. Inst. Of Technol. <u>http://chandler.mit.edu/~simon/gtgk/GLOBK_Ref</u> <u>10.4.pdf</u>, 15 Aralık 2011.
- [58] Doğan, U., (2002). 17 Ağustos 1999 İZMİT Depreminden Kaynaklanan Deformasyonların Kinematik Modellerle Araştırılması, Y.T.Ü. Fen Bilimleri Enstitüsü, Doktora Tezi, İstanbul.
- [59] Chui, C. K., Chen, G., (1991). Kalman Filtering: With Real-Time Applications, Springer, Berlin.
- [60] Yang, Y.; He H. ve Xu, T. (1999). "Adaptively Robust Filtering for Kinematic Geodetic Positioning", Journal of Geodesy, 75:109-116
- [61] Mark, V., James H., (2004). Foundations of Biogeography: Classic Papers with Commentaries, University of Chicago Press, Chicago
- [62] Kibici, Y., (2005). Deprem, A.K.Ü. Yayınları No:59, Afyonkarahisar
- [63] Karaman, E., (2006). Yapısal Jeoloji ve Uygulamaları, Gelişim Yayınevi, Ankara
- [64] Yerin İç Yapısı, <u>http://www.cografya.gen.tr/egitim/fiziki/yerin-ic-yapisi.htm</u>, 15 Aralık 2011.
- [65] Tüysüz, O., (1999). Yeryuvarının iç Yapısı Depremler ve Türkiye, Ders Notları, Avrasya Yer Bilimleri Enstitüsü, İstanbul.
- [66] Tektonik Plates, <u>http://www.platetectonics.com/book/page 2.asp</u>, 15 Aralık 2011.

- [67] Interactive Dynamic Earth, Plate and Boundaries, <u>http://www.learner.org/interactives/dynamicearth/plate.html</u>, 15 Aralık 2011.
- [68] Levha Hareketleri, <u>http://www.baktabul.net/jeoloji-yer-bilimi/161266-levha-hareketleri-jeoloji.html</u>, 15 Aralık 2011.
- [69] Ten Veen, J. H. ten, Boulton, S. J. ve Alçiçek, M.C., (2009). "From Palaeotectonics To Neotectonics In The Neotethys Realm: The Importance Of Kinematic Decoupling and Inherited Structural Grain In SW Anatolia (Turkey)", Tectonophysics, 473(1-2): 261-281.
- [70] Över, S., Pinar, A., Ozden, S., Yilmaz, H., Can, U. ve Kamaci, Z., (2010). "Late Cenozoic Stress Field in The Cameli Basin, SW Turkey". Tectonophysics, 492(1-4):60-72.
- [71] Reilinger, R., Mcclusky, S., Paradissis, D., Ergintav, S. ve Vernant, P., (2010). "Tectonophysics Geodetic Constraints on the Tectonic Evolution of the Aegean Region and Strain Accumulation Along The Hellenic Subduction Zone", Tectonophysics, 488(1-4):22-30.
- [72] Şapaş, A. ve Boztepe Güney, A., (2009). "SKS splitting in the Isparta Angle, Southwestern Turkey: Anisotropic Complexity in the Mantle", Journal of Earth System Science, 118:71-80.
- [73] Ketin, İ., (1969). T"ürkiye'nin Genel Tektonik Durumu İle Başlıca Deprem Bölgeleri Arasındaki İlişkiler", I.T.Ü. Maden Fakültesi
- [74] McKenzie, D.P., (1978). "Active Tectonics of the Alpine-Himalayan belt: the Aegean Sea and Surrounding Regions". Geophys. Jour. Royal Astro. Soc., 55:217-254
- [75] Dewey, J. F. ve Şengör, A. M. C., (1979). "Aegean And Surrounding Regions. Complex Multiplate and continuum Tectonics in a Convergent Zone", Geol. Soc. Of America Bull., 90:84-92.
- [76] Jackson, J. ve McKenzie, D., (1988). "The Relationship Between Plate Motions And Seismic Moment Tensors, And The Rates Of Active Deformation in The Mediterranean And The Middle East", Geophys. J.R. Astron. Soc. 93:45–73.
- [77] Şengör, A. M. C., ve Yılmaz, Y., (1981). "Tethyan Evolution of Turkey: A Plate Tectonic Approach", Tectonophysics, 75:181-241.
- [78] Hall, J., Aksu, A. E., Yaltırak, C. ve Insor, J. D. (2009). "Structural Architecture Of The Rhodes Basin: A Deep Depocentre That Evolved Since The Pliocene At the Junction of Hellenic And Cyprus Arcs, Eastern Mediterranean", Marine Geology, 258(1-4):1-23.
- [79] Dumont, J. F., Uysal, S., Simsek, S., Karamanderesi, H., ve Letouzey, J., (1979).
 "Formation of the Grabens in Southwestern Anatolia", Bull. Min. Res. Explor. Ins. Turk., 92: 7-18.
- [80] Şaroğlu, F. Boray, A. ve Emre, O., (1987). "Active faults of Turkey", Mineral Res. Explor. Inst. Turkey. Unpubl. Report, 8643, 394.

- [81] Price, S. ve Scott, B., (1994). "Fault-Block Rotations at the Edge of a Zone of Continental Extension; Southwest Turkey", J. Struc. Geol., 16: 381-392.
- [82] Barka, A., Reilinger, R., Şaroğlu, F., ve Şengör, A. M. C., (1996). "The Isparta Angle: Its Importance in the Neotectonics of the Eastern Mediterranean Region", IESCA-1995, İzmir
- [83] Karaman, M. E., (1986). "Burdur ve Dolaylarının Genel Stratigrafisi", Akdeniz Üniversitesi, Isparta Mühendislik Fakültesi Dergisi, 2:23-26.
- [84] Koçyiğit, A., (1983). "Hoyran Gölü (Isparta büklümü) Dolayının Tektoniği", Türkiye Jeol. Kur. Bülteni, 26:1-10.
- [85] Taymaz, T.ve Price, S., (1992). "The 1971, Burdur Earthquake Sequence, SW Turkey: A Synthesis of Seismological and Geological Observations", Geophys. J. Int. 108: 589–603.
- [86] Yağmurlu, F., Bozcu, M. ve Şentürk, M., (2005). Burdur Fethiye Arasındaki Bölgede Burdur Fayının Sismoteknik Özellikleri; Teknik Rapor TÜBİTAK, 101Y027, Çevre Atmosfer Yer ve Deniz Bilimleri Araştırma Grubu.
- [87] Yağmurlu, F. ve Şentürk, M., (2005). "GB-Anadolu ve Isparta Açısının Temel Tektonik Yapıları", TURQUA-V, 2-3 Haziran 2005, İstanbul.
- [88] Öztürk, A., (1981). "Ophiolitic Melange and the Young Autochton Units in the Homa-Dinar Region", Bull. Selçuk Uni. Fac. Sci., 1:47-65.
- [89] Koçyiğit, A., (1984). "Güneybatı Türkiye ve yakın dolayında levha içi yeni tektonik gelişimi", TJK Bülteni, 27:1-16,
- [90] Demirtaş, R., Karakısa, S., Demir, M., İravul, Y., Baran, B., Bağcı, G., Yatman, A., Zünbül, S. ve Yılmaz, R., (1995). "1 Ekim 1995 Dinar Depremi", Deprem Araştırma Bülteni,72:5-38,
- [91] Altunel, E., Barka, A. ve Akyüz, H.S., (1999). "Palaeoseismicity of the Dinar Fault, SW Turkey", Terra Nova, 11(6): 297-302.
- [92] Denizli İli Yeşil Çivril İlçesi Özel Web Sitesi, Jeolojik Yapı ve Depremler, <u>http://ccc.domaindlx.com/yesilcivril/beseri yapi.asp</u>, 15 Aralık 2011.
- [93] Kalafat, D., (1996). Anadolu'nun Tektonik yapılarının Deprem mekanizmaları Açısından İrdelenmesi, Doktora Tezi, İst. Üni. Fen Bilimleri Enstitüsü, İstanbul
- [94] Yolsal, S. ve Taymaz, T., (2010). "Gökova Körfezi Depremlerinin Kaynak Parametreleri ve Rodos-Dalaman Bölgesinde Tsunami Riski", Transform, İ.T.Ü. Fen Bilimleri Dergisi, 212:53-65.
- [95] Uluğ, A., Duman, M., Ersoy, Ş., Özel, E. ve Avcı, M., (2005). "Late Quaternary Sea-Level Change, Sedimentation and Neotectonics of the Gulf of Gökova: Southeastern Aegean Sea", Marine Ge- ology, 221:381-395.
- [96] Kurt, H., Demirbağ, E. ve Kuşcu, İ., (1999)."Investigation of Submarine Active Tectonism in the Gulf of Gökova, SW Anatolia - SE Aegean Sea, By Multi-Channel Seismic Reflection Data", Tectonophysics, 305:477-496.

- [97] Dirk, K., Türkmenoğlu, A., Tuna, N. ve Dirican, M., (2003). Datça Yarımadası'nın Neotektoniği, Jeomorfolojisi ve Bunların Eski Medeniyetlerin Yerleşimi ve Gelişimi Üzerindeki Etkisi", O.D.T.Ü. AFP-00-07-03-13 Kod Nolu Proje, Ankara
- [98] Allen, S.R. ve Cas, R.A.F., (2002). "Transport of Pyroclastic Flows Across the Sea During the Explosive, Rhyolitic Eruption of the Kos Plateau Tuff, Greece", Bulletin of Volcanology, 62(6-7): 441-456
- [99] Ambraseys, N., (1970). "Some Characteristic Features of the Anatolian Fault Zone." Tectonophysics, 9: 143-165.
- [100] Blumenthal, M. M., (1963). Le systeme structural du Taurus sud Anatolien. Paul Fellot, 2, Soc. Geol. France, 611-662.
- [101] Koçyiğit, A. ve Özacar, A., (2003). "Extensional Neotectonic Regime Through the NE Edge of Outer Isparta Angle, SW Turkey:New Field and Seismic Data", Turkish J. Earth Sci., 12:67-90.
- [102] Koçyiğit, A. ve Deveci, Ş., (2007). "A N–S-Trending Active Extensional Structure, the Şuhut (Afyon) Graben: Commencement Age of the Extensional Neotectonic Period in the Isparta Angle, SW Turkey. Turk. J. Earth Sci. 16:391– 416.
- [103] Glover, C.P. ve Robertson, A.H.F., (1998). "Role of Regional Extension and Uplift in the Plio-Pleistocene Evolution of the Aksu Basin, SW Turkey", Geol. Soc. London 155:365–387.
- [104] Pe-Piper, G. ve Piper, D.J.W., (2002). The Igneous Rocks of Greece: The Anatomy of an Orogen. Gebrüder Borntraeger, Berlin.
- [105] Dolmaz, M. N., (2007). "An aspect of the Subsurface Structure of the Burdur-Isparta Area, SW Anatolia, Based on Gravity and Aeromagnetic Data, and Some Tectonic Implications", Earth Planets Space, 59:5-12.
- [106] Poisson, A., Yağmurlu, F., Bozcu, M. ve Şentürk, M., (2003). "New insights on the Tectonic Setting and Evolution Around the Apex of the Isparta Angle (SW Turkey)", Geol. J., 38: 257-282.
- [107] Koçyiğit, A., Bozkurt, E., Kaymakçı, N. ve Şaroğlu, F., (2002). "3 subat 2002 Çay (Afyon) Depreminin Kaynağı ve Ağır Hasarların Nedenleri: Akşehir Fay Zonu, Jeolojik Ön Rapor, Ortadoğu Teknik Üniversitesi Mühendislik Fakültesi Jeoloji Mühendisliği Tektonik Araştırma Birimi, Ankara, <u>http://www.metu.edu.tr/~akoc/Afyon.pdf</u>, 15 Aralık 2011.
- [108] Ergin, M., Aktar, M., Özalaybey, S., Tapirdamaz, M. C., Selvi, O., ve Tarancioglu, A., (2009). "A High-Resolution Aftershock Seismicity Image of the 2002 Sultandaği-Çay Earthquake (Mw = 6.2), Turkey", Journal of Seismology, 13(4): 633-646.
- [109] Aktuğ, B., Kaypak, B. ve Çelik, R. N., (2009). "Source Parameters for the Mw = 6.6, 03 February 2002, Çay Earthquake (Turkey) and Aftershocks from GPS, Southwestern Turkey", Journal of Seismology, 14(3):445-456.

- [110] Deprem Haritası, <u>http://www.sayisalgrafik.com.tr/deprem/tr_frames.htm</u>, 15 Aralık 2011.
- [111] Yağmurlu, F., (2000). "Burdur Fayının Sismotektonik Özellikler", Batı Anadolu'nun Depremselliği Sempozyumu, Mayıs 2000, İzmir.
- [112] Means, W. D., (1976). Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists, Springer-Verlag, Berlin
- [113] Houer W. G. ve Vreeland, T., (1966). The Analysis Of The Stres And Deformation, The Macmillan Company, Newyork
- [114] Strain and Stres, <u>http://strengthandstiffness.com/3_stress/page_3-0.htm</u>, 15 Aralık 2011
- [115] Lambeck, K., (1988). Geophysical Geodesy the Slow Deformation of the Earth, Oxford University Pres. Oxford
- [116] Brunner, F.K., (1979). "On the Analysis of Geodetic Networks for the Determination of the Incremental Strain Tensor", Survey Review, XXV(192): 56–67.
- [117] Kakkuri, J. ve Chen, R., (1992). On Horizontal Crustal Strain in Finland", Bull Geiod, 66:12–20.
- [118] Deniz, R., (1990). "Jeodezik Ölçmelerden Yerkabuğundaki Lokal Gerilimlerin Belirlenmesi", İTÜ Dergisi, 48(4).
- [119] Prescott, W. H., (1976). "An Extension of Frank's Method for Obtaining Crustal Shear Strains from Survey Data", Bull. Seismol. Soc. Am., 66(6):1847-1853.
- [120] Bathe K.J., (1996). Finite Element Procedures. Prentice Hall, New Jersey.
- [121] Kasımzade, A. A., (2004). Sonlu Elemanlar Metodu Temelleri ve Yapı Mekaniğinde Uygulamaları, Birsen Yayınevi, İstanbul
- [122] Topcu, M. ve Taşgetiren, S., (1998). Mühendisler için Sonlu Elemanlar Metodu, PAÜ Mühendislik Fakültesi Matbaası, Denizli
- [123] Öztürk, E., (2007). Marmara Bölgesi İçin Önerilen Tektonik Modellerin Sonlu Elemanlar Yöntemiyle İrdelenmesi, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
- [124] Aydan, Ö., (2000). "GPS Ölçümlerine Dayanılarak Türkiye'nin Yıllık Birim Deformasyon ve Gerilim Hızı Dağılımının Değerlendirilmesi", Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni, 22:21-31.
- [125] Aydan, Ö., (2004), "Implications of GPS-Derived Displacement, Strain and Stress Rates on the 2003 Miyagi-Hokkubu Erathquakes", Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni, 30:91-102.
- [126] Aydan, Ö., (2006), "GPS'in Deprem Tahmininde Uygulanabirliği", TUJK 2006 Tektonik ve Jeodezik Ağlar Çalıştayı, 16-18 Kasım 2006, İstanbul.
- [127] Zakarevicius, A. ve Aksamitauskas, C., (2007). "Research Of Spatial Tectonic Stresses Based On Results Of Geodetic Observations", International

Symposium On Modern Technologies, Education And Professional Practice In Geodesy And Related Fields, (November), 08-09 Kasim 2007, Sofya

- [128] Karagöz, Ö., Depremler ve Depremlerin Oluşumu, Deprem Bilgisi, http://deivil.comu.edu.tr/, 15 Aralık 2011
- [129] Turcotte, D. L., Schubert, G., (1982). Geodynamics: Applications of Continuum Physics to Geological Problems, John Wiley&Sons, New York.
- [130] Türkiye İstatistik Kurumu, <u>http://tuikapp.tuik.gov.tr/adnksdagitapp/adnks.zul</u>, 15 Aralık 2011
- [131] Kouba, J., (2003). A Guide To Using International GNSS Service (IGS) Products, <u>http://gravpantherssf.igs.org/igscb/resource/pubs/UsingIGSProductsVer21.pd</u> <u>f</u>, 15 Aralık 2011
- [132] Eckl, M.C., R. Snay, Soler, T., Cline M.W. ve Mader, G.L., (2001). "Accuracy Of GPS-Derived Relative Positions As A Function Of Interstation Distance and Observing-Session Duration", Journal of Geodesy, 75(12):633-640.
- [133] Aktuğ, B. ve Lenk, O., (2010). "Yeni Gelişmeler Işığında Ağ Hiyerarşisi, Ölçü Süreleri ve Duyarlık Ölçütlerinin İncelenmesi", Harita Dergisi, 135: 40-50.
- [134] Snay, R.A., Soler T. ve Eckl, M., (2002). "GPS Precision With Carrier Phase Observations: Does Distance And/Or Time Matter?", Professional Surveyor, 22(10): 20-24
- [135] Doğan, U., (2007). "Accuracy Analysis of Relative Positions of Permanent GPS Stations the Marmara Region, Turkey", Survey Review, 39(304): 156-165.
- [136] Soler, T., Michalak, P., Weston, N.D., Snay R.A. ve Foote, R.H., (2006). "Accuracy Of OPUS Solutions For 1- To 4-H Observing Sessions", GPS Solutions, 10(1): 45-55.
- [137] Weston, N.D., Soler, T. ve Mader, G.L., (2009). "Rover Station Positional Accuracies From OPUS As A Function Of Reference Station Spacing And Rover Station Occupation Time", Proc. FIG Working Week, 3-8 Mayıs 2009, Eilat.
- [138] Tiryakioglu, İ., Dereli, M. A., Gülal, E. ve Erdoğan, S., (2010). Tektonik Hareketlerin Belirlenmesine Yönelik Ölçü Kampanyalarında GNSS Gözlem Sayı ve Sürelerinin Konum Doğruluğuna Olan Etkilerinin Araştırılması, Harita Teknolojileri Elektronik Dergi, 1: 32-38.
- [139] Dong,D., Herring, T. A. ve King, R.W., (1998). "Estimating Regional Deformation From A Combination of Space and Terrestrial Geodetic Data", J. Geod., 72: 200–214.
- [140] MIT Global H files, ftp://everest.mit.edu/pub/MIT_GLL, 15 Aralık 2011
- [141] Mcclusky, S., (2009). Kişisel Görüşme, GAMIT/GLOBK Workshop, MIT, Boston
- [142] Wessel, P. ve Smith, W.H.F., (1998). New, Improved Version of the Generic Mapping Tools Released, Eos (Transactions, American Geophysical Union), 79: 579,

- [143] Taymaz, T. ve Tan, O., (2001). "Source parameters of June6, 2000 Orta–Çankırı (Mw = 6.0) and December 15, 2000 Sultandav–Akşehir (Mw = 6.0) Earthquakes Obtained from Inversion of Teleseismic P- and SH- Body-Waveforms", Symposia on Seismotectonics of the North-western Anatolia– Aegean and recent Turkish earthquakes. 8 May 2001, İstanbul.
- [144] Aksoy, R. ve Aksarı, S., (2008). "Elmalı (Antalya, Batı Toroslar) Kuzeyinde Likya Naplarının Jeolojisi", S.Ü. Müh.-Mim. Fak. Derg., 23(2):45-58
- [145] Hayward, A. B., 1982, Türkiye'nin güneybatısındaki Beydağları ve Susuzdağ masiflerinde Miyosen yaşlı kırıntılı tortulların stratigrafisi. Türkiye Jeoloji Bülteni, (25), (2), 109–123.
- [146] Barka, A.A., ve Reilinger, R., (1997). Activite Tectonics of the Eastern Mediterranean Region: Deduced from GPS, Neotectonics and Seismicity Data, Anali di Geofisica, 6(3), 587-610.
- [147] Woodside, J., Mascle, J., Huguen, C. ve Volkonskaia, A., (2000). The Rhodes Basin: a post-Miocene tectonic trough. Mar Geol 165:1–12
- [148] Ocakoğlu, N., (2011). Investigation of Fethiye-Marmaris Bay (SW Anatolia): Seismic and Morphologic Evidences From The Missing Link Between The Pliny Trench and The Fethiye-Burdur Fault Zone. Geo-Marine Letters. doi:10.1007/s00367-011-0234-2
- [149] Karabacak, V., (2011). Geological, Geomorphological And Archeoseis-Mological Observations Along The Cibyra Fault And Their İmplications On The Regional Tectonic Of SW Turkey. Turk J Eart Sci. doi:10.3906/yer-0911-51
- [150] Ocakoğlu, N., Demirbağ, E. ve Kuşçu, İ., (2005). Neotectonic Structures in İzmir Gulf and Surrounding Regions (Western Turkey): Evidences of Strike-Slip Faulting With Compression İn The Aegean Extensional Regime. Mar Geol 219:155–171
- [151] Spector, A. ve Grant, F. S., (1970). Statistical models for interpreting aeromagnetic data, Geophysics, 35, 293–302
- [152] 108Y295 nolu Tübitak Projesi, (2011). Ara Rapor 5,
- [153] Pesci, A. ve Teza, G., (2007). Strain rate analysis over the central Apennines from GPS velocities: the development of new free software. Boll. Geodesia Sc. Aff. 2007, 56, 69-88.
- [154] Akçığ, Z., Polat, O., Çeken, U. ve Gök, E., (2010). 26 Mart 2010 Çeşme-İzmir Depremi (MI=4.7) Sismolojik Ön Değerlendirme Raporu,<u>http://web.deu.edu.tr/daum/DEU DAD 26 03 2010 18h35 M4 7 C</u> <u>esme</u> <u>Depremi On Raporu OP.pdf</u>
- [155] Ansys 12.1 Kullanma Kılavuzu, <u>http://www1.ansys.com/customer/content/</u> <u>documentation/121/ans_tut.pdf</u>, 15 Aralık 2011

EK-A

TÜM GNSS KAMPANYALARI GÜNLÜK TEKRARLILIK ÖRNEKLERİ

A-1 1997 Yılı Günlük Tekrarlılıkları

126

TAVA North Offset 4181817.129 m

A-2 1998 Yılı Günlük Tekrarlılıkları

128

A-3 2000 Yılı Günlük Tekrarlılıkları

A-4 2002 Yılı Günlük Tekrarlılıkları

A-5 2003Yılı Günlük Tekrarlılıkları

KYBS North Offset 4115637.277 m

A-7 2004/2 Yılı Günlük Tekrarlılıkları

A-8 2005 Yılı Günlük Tekrarlılıkları

BHTL North Offset 4107261.270 m

A-10 2009 Yılı Günlük Tekrarlılıkları

SNBL North Offset 4062594.272 m

A-11 2010 Yılı Günlük Tekrarlılıkları

EK-B

ZAMAN SERİLERİ ÖRNEKLERİ (YILLIK TEKRARLILIK)

EK-C

ITRF05 GÖRE HESAPLANAN HIZ ALANI

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı	:İbrahim TİRYAKİOĞLU
Doğum Tarihi ve Yeri	:17.06.1978-UŞAK
Yabancı Dili	:İngilizce
E-posta	:itiryakioglu@aku.edu.tr

ÖĞRENİM DURUMU

Derece	Alan	Okul/Üniversite	Mezuniyet Yılı
Y. Lisans	Jeodezi ve Fotog.	A.K.Ü.	2005
Lisans	Jeodezi ve Fotog. Müh.	. Selçuk Ü.	2000
Lise	Fen-Matematik	Uşak Lisesi	1995

İŞ TECRÜBESİ

Yıl	Firma/Kurum	Görevi
2010	A.K.Ü. Mühendislik Fakültesi	Öğretim Görevlisi
2001	A.K.Ü. Mühendislik Fakültesi	Araştırma Görevlisi
2000	Uşak Tatar Belediyesi	Fen Memuru

YAYINLARI

Makale

- Erdoğan, S., Şahin, M., Yavaşoğlu, H., Tiryakioğlu, İ., Erden, T., Karaman, H., Tarı, E., Bilgi, S., Okan, Tüysüz O., Baybura, T.,Güllü, M., Taktak, F., Telli, A.K., Yılmaz, İ., Boz, Y., (2008). "Monitoring of Deformations Along Burdur Fethiye Fault Zone With GPS", Journal of Earthquake Eng., 12:109-118.
- Erdoğan S., Şahin M., Tiryakioğlu İ., Gülal E., Telli A., (2009). "GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements", Sensors, 9(3):2017-2034.

Bildiri

- 1. E., Gülal, S., Erdoğan, **İ., Tiryakioğlu**, M., Şahin, T., Baybura, H., Erdoğan, M., Soycan, İ., Yılmaz, Ü.Y., Kalyoncuoğlu, M.N., Dolmaz, Ö., Elitok, F., Taktak, A.K., Telli, T., Öcalan¹ and K., Gümüş, "Identification of the Block Movements and Stress Zones in Southwestern Anatolia Through GNSS Measurements, Seismicity, and Coulomb Stress Distribution", *Proceedings of TIEMS 2009 Annual Conference Istanbul, 9 – 11, June, 2009.*
- E., Gülal, İ., Tiryakioğlu, S., Erdoğan, N. O., Aykut, B., Akpınar, T., Baybura, İ., Yılmaz, E., Ata, K., Gümüş, F., Taktak, A.K., Telli, T., Öcalan, M., Soycan, H., Erdoğan, Ü.Y., Kalyoncuoğlu, M.N., Dolmaz, Ö., Elitok, 2010. Güneybatı Anadolu'nun Güncel Hız Alanı, 5. Ulusal Mühendislik Ölçmeleri Sempozyumu, 20-22 Ekim, Zonguldak

Kitap

1. **Tiryakioğlu, İ**., Erdoğan, S., (2011). Bilgisayar Destekli Haritalama I, Anadolu Üniversitesi Yayınları, ISBN: 978-975-06-0988-6, Eskişehir. Tiryakioğlu, İ., Erdoğan, S., (2011). Bilgisayar Destekli Haritalama II,
Anadolu Üniversitesi Yayınları, ISBN: 978-975-06-0974-9, Eskişehir.

Proje

- 1. Gülal, E., Erdoğan, S., **Tiryakioğlu, İ**., Baybura, T., Erdoğan H., Soycan, M., Yılmaz, İ., Kalyoncuoğlu, Ü.Y., Dolmaz, M.N., Elitok, Ö., Taktak, F., Telli,A.K., Öcalan, T., Gümüş, K., Güneybatı Anadolu Bölgesi'ndeki Blok Hareketleri Ve Gerilim Alanlarının GNSS Ölçümleri İle Belirlenmesi, TÜBİTAK Projesi (108Y298), 2009
- Erdoğan, S., Sahin, M., Güllü, M., Baybura, T., Tiryakioğlu, İ., Erdogan, O., Taktak, F., Yavaşoğlu, H., Karaman, H., Erden, T., Bilgi, S., Ruzgar, G., Tari, E., Coskun, Z., Tuysuz, O., Burdur Fethiye Fay Zonu Tektonik Hareketlerinin GPS ile Belirlenmesi, TÜBİTAK Projesi (104Y035), 2007 (Tamamlandı)