T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ISI POMPALI KURUTMA SİSTEMLERİNDE SOĞUTKANLARIN PERFORMANSA ETKİSİNİN SAYISAL İNCELEMESİ

SERKAN ERDEM

DOKTORA TEZİ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI ISI PROSES PROGRAMI

DANIŞMAN PROF. DR. HASAN ALPAY HEPERKAN

İSTANBUL, 2013

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ISI POMPALI KURUTMA SİSTEMLERİNDE SOĞUTKANLARIN PERFORMANSA ETKİSİNİN SAYISAL İNCELEMESİ

Serkan ERDEM tarafından hazırlanan tez çalışması 11.06.2013 tarihinde aşağıdaki jüri tarafından Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı'nda **DOKTORA TEZİ** olarak kabul edilmiştir.

Tez Danışmanı

Prof. Dr. Hasan Alpay HEPERKAN Yıldız Teknik Üniversitesi

Eş Danışman

Doç. Dr. Derya Burcu ÖZKAN Yıldız Teknik Üniversitesi

Jüri Üyeleri

Prof. Dr. Hasan Alpay HEPERKAN Yıldız Teknik Üniversitesi

Prof. Dr. Zeynep Düriye BİLGE Yıldız Teknik Üniversitesi

Prof. Dr. İsmail Cem PARMAKSIZOĞLU İstanbul Teknik Üniversitesi

Prof. Dr. Galip TEMİR Yıldız Teknik Üniversitesi

Yrd. Doç. Dr. M. Alper ÖZPINAR İstanbul Ticaret Üniversitesi

Bu çalışma, Yıldız Teknik Üniversitesi ve Arçelik AŞ işbirliği neticesinde TC Bilim, Sanayi ve Teknoloji Bakanlığı'nın 01303.STZ.2012-1 numaralı SAN-TEZ Projesi ile desteklenmiştir.

Tez çalışması kapsamında, ısı pompalı çamaşır kurutucularında CO₂ kullanımı irdelenmiştir. Daha sonra kurutucu sistemi için bir bilgisayar programı geliştirilmiştir.

Doktora tez çalışmam süresince benden bilgilerini esirgemeyen tez danışmanım Sayın Prof. Dr. Hasan A. HEPERKAN'a ve çalışmalarım süresince bana yardımcı olan ikinci tez danışmanım Sayın Doç. Dr. Derya B. ÖZKAN'a teşekkürlerimi sunarım.

Tez izleme komitemde yer alan ve bana hep destek veren Sayın Prof. Dr. Z. Düriye BİLGE'ye ve Sayın Prof. Dr. İ. Cem PARMAKSIZOĞLU'na ve tez jürimde yer alan Sayın Yrd. Doç. Dr. M. Alper ÖZPINAR'a çok teşekkür ederim.

Desteğini hiçbir zaman eksik etmeyen, tez jürimde de yer alan, Termodinamik ve Isı Tekniği Anabilim Dalı Başkanı Sayın Prof. Dr. Galip TEMİR'e teşekkürlerimi sunarım.

Tez çalışmam süresince, San-Tez Projesi kapsamında beraber çalışma imkanı bulduğum değerli Arçelik AŞ çalışanlarına teşekkürü bir borç bilirim.

Her zaman yanımda olan arkadaşım Sayın Arş. Gör. Dr. Cenk ONAN'a çok teşekkür ederim.

Ayrıca, her türlü sıkıntımda yanımda olan ve bugünlere gelebilmemi sağlayan kıymetli aileme en içten şükranlarımı sunarım.

Haziran, 2013

Serkan ERDEM

İÇİNDEKİLER

	Sayfa
SİMGE LİSTESİ	viii
KISALTMA LİSTESİ	xiii
ŞEKİL LİSTESİ	xiv
ÇİZELGE LİSTESİ	xvii
ÖZET	xviii
ABSTRACT	хх
BÖLÜM 1	
GiRiŞ	1
1.1 Literatür Özeti	
1.2 Tezin Amacı	9
1.3 Hipotez	9
BÖLÜM 2	
TEMEL KAVRAMLAR ve TEORİK ANALİZ	10
2.1 Gaz Soğutucu	10
2.1.1 Boru İçi Isı Transferi	
2.1.2 Boru İçi Basınç Kaybı	13
2.1.3 Hava Tarafı İsi Transferi	14
2.1.3.1 Kanat Tiplerine Göre Isı Taşınım Katsayısının Tayini	15
Düz Kanat Kullanılması Durumu	15
Dalgalı Kanat Kullanılması Durumu	18
2.1.4 Hava Tarafı Basınç Kaybı	20
2.1.4.1 Kanat Tiplerine Göre Sürtünme Faktörünün Tayini	20
Düz Kanat Kullanılması Durumu	20
Dalgalı Kanat Kullanılması Durumu	21
2.1.5 Logaritmik Ortalama Sıcaklık Farkı	22
2.2 Evaporatör	24

2.	2.1 Boru İçi Isı Transferi	24
2.	2.2 Boru İçi Basınç Kaybı	34
	2.2.2.1 Boru Boyunca Oluşan Basınç Kaybı	34
	Halka Akışta Sürtünme Basınç Kaybı	35
	Darbeli ve Kesikli Akışlarda Sürtünme Basınç Kaybı	36
	Katmanlı-Dalgalı Akışta Sürtünme Basınç Kaybı	36
	Darbeli/Katmanlı-Dalgalı Akışta Sürtünme Basınç Kaybı	37
	Sisli Akışta Sürtünme Basınç Kaybı	37
	Kuru Bölgedeki Akışta Sürtünme Basınç Kaybı	38
	Katmanlı Akışta Sürtünme Basınç Kaybı	38
	Kabarcıklı Akışta Sürtünme Basınç Kaybı	39
	2.2.2.2 Dirseklerde Oluşan Basınç Kaybı	39
2.	2.3 Hava Tarafı Isı Transferi	40
2.	2.4 Hava Tarafı Kütle Transferi	44
2.	2.5 Hava Tarafı Basınç Kaybı	45
2.3	Kompresör	47
2.4	Tambur	47
2.5	Fan	48
BÖLÜM 3		
MODELLEM	E	49
3.1	Isi Pompali Kurutma Sistemi	49
3.2	Alt Modeller	
3.	2.1 Gaz Soğutucu Modeli	
3.	2.2 Evaporatör Modeli	54
3.	2.3 Kompresör Modeli	60
3.	2.4 Tambur Modeli	61
3.	2.5 Fan Modeli	62
3.3	Genel Kurutucu Modeli	63
3.4	Program Arayüzü	67
BÖLÜM 4		
MODELİN D	OĞRULAMASI	70
4.1	Gaz Soğutucu Modelinin Doğrulaması	
4.2	Evaporatör Modelinin Doğrulaması	
4.3	Genel Kurutucu Modelinin Doğrulaması	
BÖLÜM 5	Ŭ	
MODELIN S	ONUCLARI	
с		
5.1	Gaz Sogutucuya CO ₂ III GIIIş Basıncının Etkisi	88
5.2	Evaporasyon Sicakiiginin Etkisi	89
5.3	Tambur Variminin Etkisi	
5.4	Tampur Verinnin Etkisi	
5.5	Naçak Uldillilli Elkisi	94

5.6	Ortam Havasının Sıcaklığının Etkisi	96
5.7	Ortam Havasının Bağıl Neminin Etkisi	98
BÖLÜM 6		
SONUÇ VE Ö	NERİLER	
6.1	Sonuçlar	
6.2	Öneriler	
KAYNAKLAR		
EK-A		
GAZ SOĞUTI	JCUNUN GEOMETRİSİ	111
EK-B		
EVAPORATÖ	RÜN GEOMETRİSİ	
ÖZGEÇMİŞ		

SIMGE LISTESI

А	Alan
A _b	Taban alanı
A _c	Minimum akış alanı, Dış yüzeyin toplam alanı
A _f	Kanat alanı
A _h	İç yüzeyin toplam alanı
AL	Sıvı tarafından doldurulan kısmın kesit alanı
A _{LD}	Sıvı tarafından doldurulan kısmın boyutsuz kesit alanı
A _o	Toplam dış yüzey alanı
Av	Buhar tarafından doldurulan kısmın kesit alanı
A _{VD}	Buhar tarafından doldurulan kısmın boyutsuz kesit alanı
b _p	Doymuş havanın entalpi değişim eğrisinin, ortalama iç ve dış yüzey sıcaklıkları arasındaki değeri
b _r	Doymuş havanın entalpi değişim eğrisinin, ortalama CO ₂ sıcaklığı ile ortalama boru ic yüzey sıcaklığı arasındaki değeri
b _{w.m}	Doymuş havanın entalpi değişim eğrisinin boru dış yüzeyindeki ortalama su
,	filmi sıcaklığındaki değeri
Ca	Havanın ısıl kapasite debisi
Cp	Özgül ısı
C _{pa}	Havanın özgül ısısı
Cpr	Soğutkanın özgül ısısı
Cr	Soğutkanın ısıl kapasite debisi
D	Çap
D_{AB}	Havada su buharının yayınım katsayısı
D _c	Manşon çapı
D_{eq}	Eşdeğer çap
Do	Dış çap
F	Düzeltme faktörü
f	Sürtünme faktörü
f _A	Halka akışta sürtünme faktörü
f_{LO}	Sadece sıvı faz varsayımı ile sürtünme faktörü
f _M	Sisli akış için sürtünme faktörü
F_{p}	Kanat hatvesi
Fr_{L}	Sıvının Froude sayısı
Fr_V	Buharın Froude sayısı

viii

Fs	Kanat aralığı
f _{str}	Katmanlı akışta sürtünme faktörü
f_{SW}	Katmanlı-dalgalı akışta sürtünme faktörü
f_V	Buhar fazı için tek fazlı akışta sürtünme faktörü
G	Kütle akısı
g	Yerçekimi ivmesi
$G_{a,maks}$	Nemli havanın minimum akış alanındaki maksimum kütle akısı
G _B	Kesikli akıştan kabarcıklı akışa geçiş sınırındaki kütle akısı
G _c	Minimum akış alanındaki kütle akısı
G _{do}	Halka akıştan kuru bölgeye geçiş sınırındaki kütle akısı
GM	Kuru bölgeden sisli akışa geçiş sınırındaki kütle akısı
G _{str}	Katmanlı akıştan katmanlı-dalgalı akışa geçiş sınırındaki kütle akısı
Gw	Katmalı-dalgalı akıştan kesikli/halka akışa geçiş sınırındaki kütle akışı
h	Entalpi, İsi taşınım katsayısı
h _{a.i}	Girişteki nemli havanın entalpisi
h _{a,m}	Ortalama entalpi
h _{a,o}	Çıkıştaki nemli havanın entalpisi
hc	Dış yüzeydeki ısı taşınım katsayısı
h _{c,o}	Nemli havanın ısı taşınım katsayısı
h _{cb}	Konvektif kaynamada ısı taşınım katsayısı
h_{do}	Kuru bölgedeki ısı taşınım katsayısı
h _f	Doymuş suyun entalpisi
h _h	İç yüzeydeki ısı taşınım katsayısı
h∟	Sıvının düşey yüksekliği
h_{LD}	Sıvının boyutsuz düşey yüksekliği
h _m	Kütle transfer katsayısı
hм	Sisli akış için ısı taşınım katsayısı
h _{nb}	Çekirdek kaynaması ısı taşınım katsayısı
h _r	CO ₂ tarafının ısı taşınım katsayısı
h _{s,p,i,m}	Boru iç yüzey sıcaklığındaki doymuş havanın entalpisi
h _{s,p,o,m}	Boru dış yüzey sıcaklığındaki doymuş havanın entalpisi
h _{s,r,i}	CO ₂ giriş sıcaklığındaki doymuş havanın entalpisi
h _{s,r,m}	Ortalama CO ₂ sıcaklığındaki doymuş havanın ortalama entalpisi
h _{s,r,o}	CO ₂ çıkış sıcaklığındaki doymuş havanın entalpisi
h _{s,w,m}	Ortalama su filmi sıcaklığındaki doymuş havanın ortalama entalpisi
h_V	Buhar fazının ısı taşınım katsayısı
h _{wt}	Islak çevredeki ısı taşınım katsayısı
I ₀	Birinci türden düzeltilmiş sıfırıncı mertebe Bessel fonksiyonu
I_1	Birinci türden düzeltilmiş birinci mertebe Bessel fonksiyonu
i	Giriş
j	Colburn faktörü
j _h	Isı transferi için Chilton–Colburn faktörü
k	lsı iletim katsayısı
K ₀	Ikinci türden düzeltilmiş sıfırıncı mertebe Bessel fonksiyonu
К ₁	Ikinci türden düzeltilmiş birinci mertebe Bessel fonksiyonu
k _f	Kanadın ısı iletim katsayısı

k _v	Buhar fazının ısı iletim katsayısı
k _w	Suyun ısıl iletkenliği
L	Borunun uzunluğu, İsi değiştiricinin derinliği
М	Molekül ağırlığı
m _a	Havanın kütlesel debisi
m'r	Soğutkanın kütlesel debisi
N	Sıra sayısı, Kompresörün devri
Nu	Nusselt sayısı
0	Cikiş
Р	Basınç
Pd	Kanat dalgasının yüksekliği
Pi	Giriş basıncı, Arayüzün çevresi
P _{iD}	Arayüzün boyutsuz çevresi
P ₁	Sıralar arasındaki yatay mesafe
P ₁	Sıvı tarafından ıslatılan boru çevresi
- P _{LD}	Sıvı tarafından ıslatılan boyutsuz boru çevresi
Po	Cikis basıncı
p _r	İndirgenmiş basınç
Pr	Prandtl sayisi
Pr	, Sıvı fazının Prandtl sayısı
Prv	Buhar fazının Prandtl sayısı
P _t	Geçişler arasındaki düşey mesafe
Pv	Buharla temasta olan boru çevresi
P _{VD}	Buharla temasta olan boyutsuz boru çevresi
q	Birim kütle için ısı transferi
ġ	lsı akısı
Q	lsı transferi
Q _a	Havayla olan ısı transferi
q _{cr}	Kritik ısı akısı
ġ _₩	Boru cidarı aracılığıyla akışkana doğru olan ısı akısı
R	Isıl direnç, Yarıçap
r	Yarıçap
r _e	Eşdeğer yarıçap
Re	Reynolds sayısı
Re_{Dc}	Manşon çapına göre hesaplanmış Reynolds sayısı
Reн	Homojenize Reynolds sayısı
Re _{LO}	Sadece sıvı faz varsayımı ile Reynolds sayısı
Re _M	Sisli akışta Reynolds sayısı
Rev	Buhar fazının Reynolds sayısı
Reδ	Sıvı filminin Reynolds sayısı
R _{rt}	Borunun bağıl pürüzlülüğü
R _w	Borunun ısıl direnci
S	Çekirdek kaynaması ısı transferi baskılama faktörü
Sc _{AB}	Hava–su buharı için Schmidt sayısı
Т	Sıcaklık
T∞	Akışkan sıcaklığı

Т _b	Taban sıcaklığı
T _{b,a}	Havanın ortalama sıcaklığı
T _{b,r}	CO2'in ortalama sıcaklığı
T _{d,p}	Çiğ noktası sıcaklığı
T _{ia}	Havanın giriş sıcaklığı
T _{ir}	Soğutkanın giriş sıcaklığı
T _{Oa}	Havanın çıkış sıcaklığı
Tor	Soğutkanın çıkış sıcaklığı
Tt	Kanat ucu sıcaklığı
T _{w,i}	Boru iç yüzey sıcaklığı
T _{w,o}	Boru dış yüzey sıcaklığı
U	Toplam ısı transfer katsayısı
Uc	Dış yüzeye göre toplam ısı transfer katsayısı
U _h	İç yüzeye göre toplam ısı transfer katsayısı
uL	Sıvı fazının ortalama hızı
Uv	Buhar fazının ortalama hızı
V	Hız
V _{max}	Maksimum hız
Vs	Kompresörün silindir hacmi
Ŵc	Kompresör gücü
We∟	Sıvının Weber sayısı
Wev	Buharın Weber sayısı
Ŵf	Fan gücü
х	Kuruluk derecesi
x _{de}	Kuru bölgenin bitişindeki kuruluk derecesi
X di	Kuru bölgenin başlangıcındaki kuruluk derecesi
Х _f	Kanat modeli uzunluğu
X _{IA}	Kesikli akıştan halka akışa geçiş sınırındaki kuruluk derecesi
X _r	Soğutkanın kuruluk derecesi
Y	Düzeltme faktörü
у	Kanat kalınlığı
Уw	Su filmi kalınlığı
Г	Birim uzunluktaki boru üzerinden geçen havanın kütlesel debisi
∆h _m	Ortalama entalpi farkı
∆р	Basınç kaybı
Δp _A	Halka akışta sürtünme basınç kaybı
∆рв	Kabarcıklı akışta sürtünme basınç kaybı
∆p _{do}	Kuru bölgedeki akışta sürtünme basınç kaybı
∆p _{eva}	Evaporatörde gerçekleşen toplam basınç kaybı
Δp _f	Fanın yenmesi gereken toplam basınç kaybı
Δp _f	Sürtünme basınç kaybı
∆p _{fl}	Filtre basınç kaybı
∆p _{gs}	Gaz soğutucuda gerçekleşen toplam basınç kaybı
∆p∟	Sıvı akışının sürtünme basınç kaybı
∆p _{LO}	Sadece sıvı faz varsayımı ile sürtünme basınç kaybı
∆p _m	Momentum basınç kaybı

Δрм	Sisli akışta sürtünme basınç kaybı
Δp_{SL+I}	Darbeli ve kesikli akışlarda sürtünme basınç kaybı
$\Delta p_{\text{SL+SW}}$	Darbeli/katmalı-dalgalı akışta sürtünme basınç kaybı
Δp_{st}	Statik basınç kaybı
Δp_{str}	Katmanlı akışta sürtünme basınç kaybı
Δp _{sw}	Katmanlı-dalgalı akışta sürtünme basınç kaybı
Δpt	Toplam basınç kaybı, Tamburda gerçekleşen toplam basınç kaybı
Δp _{tp}	İki fazlı akışta sürtünme basınç kaybı
ΔT_{lm}	Logaritmik ortalama sıcaklık farkı
З	Boşluk oranı
ε _H	Homojenize boşluk oranı
η _f	Fanın verimi, Kanat verimi
η _i	Kompresörün izentropik verimi
η _s	Yüzey verimi
η _t	Tambur verimi
ηv	Kompresörün volümetrik verimi
θ	Dalga açısı, Dirseğin dönüş açısı
θ_d	Kuruluk açısı
θ_{d}^{*}	Boyutsuz kuruluk açısı
θ_{str}	Katmanlılık açısı
θ_{str}^{*}	Boyutsuz katmanlılık açısı
μ	Dinamik viskozite
μ_{H}	Homojenize dinamik viskozite
μ_L	Sıvının dinamik viskozitesi
μ_V	Buharın dinamik viskozitesi
Va	Havanın kinematik viskozitesi
ρ	Yoğunluk
ρ _H	Homojenize yoğunluk
$ ho_L$	Sıvının yoğunluğu
ρ_V	Buharın yoğunluğu
σ	Daralma oranı
Φ_{L}^{2}	İki faz çarpanı
ω _i	Giriş havasının mutlak nemi
ωο	Çıkış havasının mutlak nemi
ω_{ort}	Ortalama mutlak nem
ω	Tambur çıkış havasının mutlak nemi
ω _{w,m}	Ortalama su filmi sıcaklığındaki doymuş havanın mutlak nemi
δ	Sıvı filminin kalınlığı
$\delta_{ m f}$	Kanat kalınlığı
δ_{w}	Boru et kalınlığı

 ξ Yerel basınç kayıp katsayısı

KISALTMA LİSTESİ

- COP Coefficient Of Performance (Sistemin Etkinliği)
- GWP Global Warming Potential (Küresel Isınma Potansiyeli)
- MER Moisture Extraction Rate (Nem Alma Hızı)
- NTU Number of Transfer Units (Geçiş Birimi Sayısı)
- ODP Ozone Depletion Potential (Ozon Tüketme Potansiyeli)
- SDS Sistem Direnç Sabiti
- SMER Specific Moisture Extraction Rate (Özgül Nem Alma Hızı)

ŞEKİL LİSTESİ

Sayfa

Şekil 1. 1	Kurutucu akış şeması [1]	1
Şekil 1. 2	Kurutucu prototipinin akış şeması [2], [3]	2
Şekil 1. 3	Sistemin şematik diyagramı [7]	4
Şekil 1. 4	Kurutucu prototipi (Önden görünüş) [9]	5
Şekil 1. 5	Aşırı kızdırma kontrollü ve kontrolsüz durumdaki ısıtma kapasiteleri [9	9].5
Şekil 1. 6	Üç farklı sistemin çalışma sonuçları [10]	6
Şekil 1. 7	Basınç oranlarının bir fonksiyonu olarak kompresör verimleri [11]	7
Şekil 1. 8	CO ₂ ve R134a çevrimlerinin ekserji kayıpları [11]	8
Şekil 1. 9	Kurutma zamanına bağlı olarak kurutucunun elektrik tüketimi [11]	8
Şekil 2. 1	Sırasıyla kare ve üçgen boru dizilimleri [16]	.12
Şekil 2. 2	Yatay boru içinde iki fazlı katmanlı akışın şematik diyagramı [44]	.28
Şekil 2. 3	Dönüş açısı 90° olan bir dirsek ile aynı basınç kaybını veren eşdeğer	
	uzunluk/boru çapı oranı [90]	.40
Şekil 2. 4	(a) Isı değiştiricisinin küçük segmentlere ayırılması, (b) Eşdeğer çap	
	hesabı [92]	.43
Şekil 3. 1	Isı pompalı çamaşır kurutucusunun proses akış şeması	.49
Şekil 3. 2	Hava tarafının psikrometrik diyagram üzerinde gösterimi	.50
Şekil 3. 3	CO2 tarafının P-h diyagramı üzerinde gösterimi	.50
Şekil 3. 4	EES programından suyun termofiziksel özelliklerinin alınması	.52
Şekil 3. 5	Gaz soğutucu için hazırlanan modelin çözüm algoritması	.55
Şekil 3. 6	Gaz soğutucu için hazırlanan modelde girilen ve hesaplanan çıkış sıcal	dığı
	değerlerinin kesişim grafiği	.56
Şekil 3. 7	Evaporatörün segmentlere ayrılması	.56
Şekil 3. 8	Evaporatör modelinin çözüm algoritması	.58
Şekil 3. 9	Doymuş havanın sıcaklığa bağlı entalpi değişim eğrisi	.59
Şekil 3. 10	MATLAB üzerinden alınan düzeltilmiş Bessel fonksiyonları	.59
Şekil 3. 11	GetData Graph Digitizer v2.25 programı ile görsel verilerin sayısal	
	değerlere dönüştürülmesi	.60
Şekil 3. 12	Kompresör modelinin çözüm algoritması	.61
Şekil 3. 13	Tambur modelinin çözüm algoritması	.62
Şekil 3. 14	Fan modelinin çözüm algoritması	.63
Şekil 3. 15	MATLAB ile genel modelin oluşturulması	.63
Şekil 3. 16	Genel kurutucu modelinin çözüm algoritması	.66
Şekil 3. 17	MATLAB GUI Toolbox ile arayüz oluşturulması	.67

Şekil 3. 18	Veri girişlerinin yapıldığı ekran görüntüsü	68
Şekil 3. 19	Sonuçların alındığı ekran görüntüsü	68
Şekil 3. 20	Bekleme barının ekran görüntüsü	69
Şekil 3. 21	Çeşitli hata, uyarı ve bilgilendirme mesajlarının ekran görüntüsü	69
Şekil 4. 1	Hwang vd. [103]'de verilen deneysel CO2'in gaz soğutucudan çıkış	
	sıcaklığı değerlerinin model sonuçlarıyla karşılaştırması	72
Şekil 4. 2	Hwang vd. [103]'de verilen deneysel CO2'in gaz soğutucudan çıkış	
	basıncı değerlerinin model sonuçlarıyla karşılaştırması	72
Şekil 4. 3	Hwang vd. [103]'de verilen deneysel gaz soğutucuda gerçekleşen ısı	
	transferi sonuçlarının model sonuçlarıyla karşılaştırması	73
Şekil 4. 4	Dang ve Hihara [104]'de verilen taşınım katsayısı değerleri ile model	in
	sonuçlarının karşılaştırması (P=8 MPa, d _i =6 mm, q=12 kW/m ² , G=200)
	kg/m ² s)	73
Şekil 4. 5	Dang ve Hihara [104]'de verilen basınç kaybı değerleri ile modelin	
	sonuçlarının karşılaştırması (P=8 MPa, d _i =2 mm, q=12 kW/m ² , G=800)
	kg/m²s)	74
Şekil 4. 6	Colburn j ve sürtünme f faktörlerinin deneysel (Wongwises ve	
	Chokeman [105]) ve model sonuçları açısından karşılaştırması (Isı	
	değiştirici numarası 1)	75
Şekil 4. 7	Colburn j ve sürtünme f faktörlerinin deneysel (Wongwises ve	
	Chokeman [105]) ve model sonuçları açısından karşılaştırması (Isı	
	değiştirici numarası 2)	75
Şekil 4. 8	Colburn j ve sürtünme f faktörlerinin deneysel (Wongwises ve	
	Chokeman [105]) ve model sonuçları açısından karşılaştırması (İsi	
	degiştirici numarası 3)	76
Şekil 4. 9	Yoon vd. [106]'dan alınan ısı taşınım katsayısı değerlerinin model	2 、
	sonuçlarıyla karşılaştırması (T _{eva} =5 °C, q=18.6 kW/m² ve G=318 kg/m	1⁻s)
	$T = 5^{0} + 40^{2} + 10^{2} + 2^{2} + 20^{2} + 10^{2} +$	//
Şekii 4. 10	$I_{eva}=5$ °C, q=18.6 kW/m° Ve G=318 kg/m°s için CO ₂ in akiş haritasi	l
	(1:Katmanii akiş, 2:darbeli/katmanii-daigaii akiş, 3:katmanii-daigaii a	KIŞ,
	4:darbell akiş, 5:kesikli akiş, 6:naika akiş, 7:kuruluk bolgesi, 8:sisil aki	ş,
Colul 1 11	9:KaDarcikii akiş)	//
Şekii 4. 11	YOON VU. [100] udn dinidii isi taşinini katsayısi degenerinini model sonuclarıyla karçılaştırmaşı (T. -5° C. \dot{a} -12 F. kM/m ² va C-218 kg/m	2
	Sonuçianyia karşılaştırması (T _{eva} =5°C, q=12.5 kvv/m°Ve G=318 kg/m	15) 70
Sokil 1 12	T = 5° C $\dot{\alpha}$ = 1.2 E k//m ² vo C = 21.8 kg/m ² c icin CO 'in akis haritasi	/ 0
ŞEKII 4. 12	1 katmanlı akış. 2 darbali (katmanlı dalgalı akış. 2 katmanlı dalgalı a	kic
	(1. Katinanii akiş, 2. dai beny katinanii-daigan akiş, 3. Katinanii-daigan a Ardarbali akış, 5. kasikli akış, 6. balka akış, 7. kuruluk bölgesi, 8. kabarcı	nış, Idli
	4. uai beli akiş, 5. kesikli akiş, 6. haika akiş, 7. kul uluk bolgesi, 6. kabar ci	الما 78
Sokil 1 13	Voon vd. [106]'dan alinan basing kavbi değerlerinin model sonucları	70 ./la
ŞCKII 4. 15	karsılastırması (T. = 5° C $\dot{\alpha}$ =16.4 kW/m ²)	79
Sekil 4 14	Cho ve Kim [107]'den alınan ısı tasınım katsavısı değerlerinin model	
30KII 7. 17	sonuclariyla karsilastirmasi ($T_{am}=5$ °C $\dot{\alpha}=16$ kW/m ² ve G=424 kg/m ² c) <u>8</u> 0
Sekil 4 15	$T_{\text{eva}} = 5 ^{\circ}\text{C}_{\mu} \dot{\alpha} = 16 \text{kW/m^2} \text{ve G} = 424 \text{kg/m^2} \text{s icin CO}_{\mu} \text{in akus haritas}$,,
3 ci i i 10	(1:katmanlı akıs, 2:darbeli/katmanlı-dalgalı akıs. 3:katmanlı-dalgalı a	kıs.

	4:darbeli akış, 5:kesikli akış, 6:halka akış, 7:kuruluk bölgesi, 8:sisli akış, 9:kabarcıklı akıs)
Şekil 4. :	16 Cho ve Kim [107]'den alınan basınç kaybı değerlerinin model
Şekil 4.∶	 Nem alma şartlarında Colburn j ve sürtünme f faktörlerinin deneysel (Halici ve Taymaz [108]) ve model sonuçları açısından karşılaştırması (1. ısı değistirici)
Şekil 4.∶	18 Nem alma şartlarında Colburn j ve sürtünme f faktörlerinin deneysel (Halici ve Taymaz [108]) ve model sonuçları açısından karşılaştırması (2. ısı değiştirici)
Şekil 4. :	19 Nem alma şartlarında kütle transferi Colburn j _m faktörlerinin deneysel (Pirompugd vd. [109]) ve model sonuçları açısından karşılaştırması (1. ısı değiştirici)
Şekil 4. 2	20 Nem alma şartlarında kütle transferi Colburn j _m faktörlerinin deneysel (Pirompugd vd. [109]) ve model sonuçları açısından karşılaştırması (2. ısı değiştirici)
Şekil 5.	 Sistemin performansının CO₂'in gaz soğutucuya giriş basıncına bağlı değişimi
Şekil 5. 2	 Sistemin enerji tüketiminin ve kurutma süresinin CO₂'in gaz soğutucuya giriş basıncına bağlı değişimi90
Şekil 5. 3	3 Sistemin performansının evaporasyon sıcaklığına bağlı değişimi90
Şekil 5. 4	4 Sistemin enerji tüketiminin ve kurutma süresinin evaporasyon sıcaklığına bağlı değişimi
Şekil 5. !	5 Sistemin performansının havanın kütlesel debisine bağlı değişimi92
Şekil 5. (6 Sistemin enerji tüketiminin ve kurutma süresinin havanın kütlesel debisine bağlı değişimi93
Şekil 5.	7 Sistemin performansının tambur verimine bağlı değişimi
Şekil 5. 8	8 Sistemin enerji tüketiminin ve kurutma süresinin tambur verimine bağlı değişimi
Şekil 5. 9	9 Sistemin performansının kaçak oranına bağlı değişimi
Şekil 5.	10 Sistemin enerji tüketiminin ve kurutma süresinin kaçak oranına bağlı değişimi
Şekil 5.	11 Sistemin performansının ortam havasının sıcaklığına bağlı değişimi97
Şekil 5. :	12 Sistemin enerji tüketiminin ve kurutma süresinin ortam havasının sıcaklığına bağlı değisimi
Sekil 5.	13 Sistemin performansının ortam havasının bağıl nemine bağlı değisimi .99
Şekil 5.	14 Sistemin enerji tüketiminin ve kurutma süresinin ortam havasının bağıl nemine bağlı değişimi

ÇİZELGE LİSTESİ

Sayfa

Çizelge 1. 1 Cizelge 1. 2	CO ₂ ve R134a ile çalışan kurutucuların karşılaştırmalı sonuçları	2 3
Cizelge 1. 3	Sistemin tasarım kosulları	5
Çizelge 1.4	CO ₂ 'li ısı pompalı kurutucunun elektrikli ısıtmalı kurutucuyla	-
	karşılaştırmalı sonuçları	6
Çizelge 1. 5	R134a ve CO ₂ ile çalışan ısı pompalı kurutucuların deneysel sonuçları	6
Çizelge 1. 6	Simülasyondaki bağımsız parametreler [11]	7
Çizelge 2. 1	180° Dirsekler için kayıp katsayıları [21]1	3
Çizelge 2. 2	Re≥5x10 ⁵ ve R/D≤2 iken 180° dirsek için ξ değerleri [22]1	4
Çizelge 2.3	Veri tabanındaki düz kanatlı ısı değiştiricilerinin geometrik ölçüleri [28]	
		5
Çizelge 2.4	Veri tabanındaki dalgalı kanatlı ısı değiştiricilerinin geometrik ölçüleri	
	[36]	8
Çizelge 2. 5	Denklem (2.68)'de kullanılan a, b, c, d, katsayıları [42]2	4
Çizelge 2.6	Akış kaynamasında CO2 ısı transferi veri tabanı [45]2	6
Çizelge 2.7	Buharlaşmada CO2 basınç kaybı veri tabanı [44]3	5
Çizelge 2.8	Test edilen ısı değiştiricilerinin geometrik özellikleri [92]4	1
Çizelge 2. 9	Test edilen ısı değiştiricilerinin geometrik özellikleri [100]4	6
Çizelge 4. 1	Hwang vd. [103]'ün gaz soğutucu test şartları7	1
Çizelge 4. 2	Hwang vd. [103]'de kullanılan gaz soğutucunun geometrik özellikleri7	1
Çizelge 4. 3	Wongwises ve Chokeman [105]'den alınan ve karşılaştırma için	
	kullanılan ısı değiştiricinin geometrik özellikleri7	4
Çizelge 4. 4	Halici ve Taymaz [108]'de kullanılan ısı değiştiricilerinin geometrik	
	özellikleri8	1
Çizelge 4. 5	Pirompugd vd. [109]'dan alınıp doğrulama çalışması için kullanılan ısı	
	değiştiricilerin geometrik özellikleri8	3
Çizelge 4. 6	Klöcker vd. [2] ve [3]'den alınıp doğrulama çalışması için kullanılan	
	kompresörün özellikleri8	4
Çizelge 4. 7	Klöcker vd. [2] ve [3]'den alınıp doğrulama çalışması için kullanılan ısı	
	değiştiricilerinin geometrik özellikleri8	5
Çizelge 4. 8	Klöcker vd. [2] ve [3]'ün çalışması ile model sonuçlarının karşılaştırması	
		5
Çizelge 4. 9	Honma vd. [9]'dan alınıp doğrulama çalışması için kullanılan ısı	
	değiştiricilerinin geometrik özellikleri8	6
Çizelge 4. 10	Honma vd. [9]'un çalışması ile model sonuçlarının karşılaştırması8	6

ISI POMPALI KURUTMA SİSTEMLERİNDE SOĞUTKANLARIN PERFORMANSA ETKİSİNİN SAYISAL İNCELEMESİ

Serkan ERDEM

Makine Mühendisliği Anabilim Dalı Doktora Tezi

Tez Danışmanı: Prof. Dr. Hasan A. HEPERKAN Eş Danışman: Doç. Dr. Derya B. ÖZKAN

Küresel ısınma, ozon tabakasının incelmesi ve enerjinin yüksek maliyeti uzun zamandır dikkatleri çevre dostu ve yüksek enerji verimli sistemler üzerine çekmiştir. Çevresel etkileri sebebiyle kullanılabilecek soğutkanlar da çeşitli protokollerle sınırlandırılmıştır. Çeşitli ısıtma–soğutma sistemlerinde kullanılan soğutkanlar yerlerini yenilerine bırakmaktadır. Bu aşamada, CO₂ doğal olmasından ötürü çevreye zararının olmaması, maliyetinin düşük olması ve kolay temin edilebilmesi sebebiyle ön plana çıkmaktadır.

Isı pompalı çamaşır kurutucularında genel olarak R134a soğutkanı kullanılmaktadır ve Kyoto Protokolü ile kullanımı ciddi anlamda sınırlandırılmıştır. CO₂ termofiziksel etkileri sebebiyle kurutucu işletme şartlarında çalışabilmek için çok uygun gözükmektedir. CO₂'in kurutucularda kullanımı ile hem çevreye verilen zarar asgari seviyeye indirilmekte, hem de sistemin performansı arttırılmaktadır.

Bu çalışmada CO₂ kullanan ve transkritik çevrime göre çalışan ısı pompalı çamaşır kurutma makinesi sistemleri teorik olarak incelenmiştir. Ardından, CO₂ ile çalışan ısı pompalı çamaşır kurutucu modeli geliştirilmiştir. Bir arayüz oluşturularak model, MATLAB altında çalışan bir yazılım haline getirilmiştir.

Tez çalışması altı ana bölümden oluşmaktadır. Birinci bölümde öncelikle konu ile ilgili literatürde yapılmış çalışmaların bir özeti verilmiştir. Ardından tezin yapılış amacı ve ortaya konulmak istenenler belirtilmiştir.

İkinci bölümde, sistemdeki ana bileşenlerin (gaz soğutucu, evaporatör, kompresör, tambur ve fan) her biri için temel kavramlar açıklanarak teorik analiz yapılmış ve hesap metodolojisi ortaya konulmuştur.

Üçüncü bölümde, MATLAB R2011b programı kullanılarak, hesaplamalar bilgisayar ortamına aktarılmıştır. Bu noktada akışkan özellikleri REFPROP v7 programı kullanılarak belirlenmiştir. Evaporatörün CO₂ tarafında iki fazlı akış ve ardından aşırı kızdırma bölgesinde tek fazlı akış gerçekleştiği, hava tarafında ise ısı transferi ile eş zamanlı olarak havadaki su buharının yoğuşması sebebiyle kütle transferi gerçekleştiği için, hassas bir modelin oluşturulması gerekmiştir. Bu sebeple evaporatör çeşitli sayıda segmentlere ayrılarak hesaplamalar yapılmış ve bir segmentin çıkış şartları sonraki segmentin giriş şartları olarak bilgisayara girilmiştir. Geliştirilen çözüm algoritması ile teorik analizi yapılmış olan bileşenler bir araya getirilerek ısı pompalı kurutma makinesi sisteminin genel modeli oluşturulmuştur. Son olarak da oluşturulan kullanıcı arayüzü ile model, MATLAB altında çalışan bir yazılım haline getirilmiştir.

Dördüncü bölümde, literatürden derlenen deneysel verilerle sistem bileşenlerinin doğrulaması yapılmıştır. Bu kısımda gaz soğutucularda boru içerisindeki CO₂ akışı için ısı taşınım katsayısı ve basınç kaybı karşılaştırmaları grafikler halinde verilmiştir. Gaz soğutucunun hava tarafında gerçekleşen ısı transferi ve basınç kaybı doğrulamaları için sırasıyla Colburn (j) ve sürtünme (f) faktörleri literatür ile karşılaştırmalı olarak verilmiştir. Ardından evaporatörde boru içerisinde gerçekleşen CO₂ akışında, kuruluk derecesine bağlı olarak ısı taşınım katsayısının değişimi ve kütle akısına bağlı olarak basınç kaybının değişimi verilmiştir. Bu kısımda boru içerisinde gerçekleşen iki fazlı CO₂ akışı kuruluk derecesinin değişimine bağlı olarak dokuz farklı tipte değerlendirilmiştir. Isı taşınım katsayısının değişimleri akış tiplerinin değişimleri ile beraber gösterilmiştir. Evaporatörün hava tarafında gerçekleşen ısı transferi ve basınç kaybı doğrulamaları için yine sırasıyla Colburn (j) ve sürtünme (f) faktörleri literatür ile karşılaştırmalı olarak verilmiştir. Evaporatörün hava tarafında gerçekleşen ısı transferi ve basınç kaybı doğrulamaları için yine sırasıyla Colburn (j) ve sürtünme (f) faktörleri literatür ile karşılaştırmalı olarak verilmiştir. Evaporatörün hava tarafında gerçekleşen yoğuşma sebebiyle kütle transferi analizleri de literatürdeki veriler ile karşılaştırılarak kütle transferi Colburn faktörü (j_m) Reynolds sayısının değişimine bağlı olarak verilmiştir.

Beşinci bölümde gaz soğutucuya CO₂'in giriş basıncının, evaporasyon sıcaklığının, hava debisinin, tambur veriminin, kaçak oranının, ortam havasının sıcaklığının ve bağıl neminin kurutma sistemini performansına etkileri modelden alınan sonuçlara bağlı olarak irdelenmiştir. Sistemin performansı değerlendirilirken COP, MER ve SMER değerlerinin değişimi gösterilmiştir. Buradan elde edilen sonuçlarla, kurutucunun enerji tüketimi ve kurutma süresi parametrik olarak ortaya konulmuştur.

Altıncı bölümde sonuçlar ve önerilere yer verilmiştir.

Anahtar Kelimeler: Isı pompalı kurutucu, CO₂, transkritik soğutma çevrimi, modelleme

ABSTRACT

NUMERICAL INVESTIGATION OF REFRIGERANTS' EFFECTS ON PERFORMANCE IN HEAT PUMP DRYING SYSTEMS

Serkan ERDEM

Department of Mechanical Engineering Ph.D. Thesis

Advisor: Prof. Dr. Hasan A. HEPERKAN Co-Advisor: Assoc. Prof. Dr. Derya B. ÖZKAN

Global warming, ozone depletion and high cost of energy have long attracted attention to environment friendly and high energy efficient systems. Coolants which can be used due to their environmental effects have also been limited by several protocols. Coolants which are used in several heating-cooling systems have been replaced with the new ones. At this stage, CO₂ comes into prominence because it does not harm the environment due to being natural and because of low cost and easy supply.

Generally, R134a coolants are used in heat pump tumble dryers and its usage has been considerably limited by Kyoto Protocol. CO_2 seems very suitable for working in dryer operating conditions due to its thermophysical effects. With the use of CO_2 in dryers, both the harm to environment is reduced to minimum and the system performance is increased.

In this study, heat pump tumble dryer machine systems which use CO_2 and operate according to transcritical cycle were theoretically examined. Then, a model was developed for CO_2 heat pump dryer. Model was made into a software which runs under MATLAB, by developing a graphical user interface.

The thesis study consists of six main parts. The first part primarily includes a summary of the studies done in literature in relation to the matter. And then the purpose of the thesis and things to be presented are specified.

In the second part, basic concepts for each main component in the system (gas cooler, evaporator, compressor, tumbler and fan) are explained and theoretical analysis is made and calculation methodology is presented.

In the third part, calculations are transferred to the computer by using MATLAB R2011b program. At this point, fluid properties are determined by using REFPROP v7 program. Since two phase flow occurs in the evaporator's CO_2 side and then one phase flow occurs in the superheat area, and mass transfer occurred due to the condensation of water vapour in the air simultaneously with the heat transfer in the air part; creation of a sensitive model was required. Therefore, the evaporator was divided into a number of segments and calculations were made and the exit conditions of a segment were entered in the computer as the inlet conditions of the subsequent segment. The solution algorithm developed and the components which were theoretically analyzed were brought together and the general model of the heat pump dryer machine system was created. And finally, model was made into a software which runs under MATLAB, by developing a graphical user interface.

In the fourth part, system components are validated through the empirical data which is compiled from literature. In this part, heat transfer coefficient and pressure loss comparisons for CO_2 inside the tube in the gas coolers are given in graphics. For the heat transfer which occurs in the air part of the gas cooler and pressure loss validations, Colburn (j) and friction (f) factors are given respectively comparatively with literature. And then, in the CO_2 flow which occurs inside the tube in the evaporator; the change in the heat transfer coefficient based on quality and the change in the pressure loss based on mass flux is given. In this part, the two phase CO_2 flow which occurs inside the tube is evaluated in nine different types based on the change in quality. The changes in heat transfer coefficient are shown together with the changes in flow types. For the heat transfer which occurs in the air part of the evaporator and pressure loss validations; again respectively, Colburn (j) and friction (f) factors are given comparatively with literature. The mass transfer analyses due to the condensation which occurs in the air part of the evaporator are also given according to the change in Colburn factor (j_m) Reynolds number comparatively with the literature.

In the fifth part, the effects of CO₂ inlet pressure to the gas cooler, evaporation temperature, air flow rate, drum efficiency, leakage ratio, temperature and relative humidity of the ambient air on the performance of the dryer system were scrutinized according to the results obtained from the model. While assessing the performance of the system, COP, MER and SMER values' variations were showed. Through the results obtained, the energy consumption and drying time of the dryer have been presented in parametrical terms.

The sixth part includes results and suggestions.

Keywords: Heat pump dryer, CO₂, transcritical cooling cycle, modeling

YILDIZ TECHNICAL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

BÖLÜM 1

GİRİŞ

1.1 Literatür Özeti

Schmidt vd. [1], yaptıkları teorik çalışmada CO₂ kullanılan ve transkritik çevrimle çalışan kurutucu ile R134a kullanılan ve subkritik çevrime göre çalışan kurutucuyu enerji ve ekserji açısından karşılaştırmışlardır. Bypass içermeyen, proses havasının dışarı verilmediği, basit kapalı bir çevrim ele alınmıştır (Şekil 1.1). Sistemin sürekli rejimde çalıştığı varsayılıp tamburun ve fanın enerji tüketimi ihmal edilmiştir. Böylelikle sisteme giren elektrik enerjisi atılan ısıl enerjiye eşit alınmıştır. Sistem havayı 20 °C'den 60 °C'ye ısıtabilecek, nem almayı da 20–30 °C arasında gerçekleştirebilecek şekilde dizayn edilmiştir.

Şekil 1. 1 Kurutucu akış şeması [1]

CO₂ ve R134a ile çalışan çevrimleri aynı çalışma sıcaklık aralığında karşılaştırabilmek için R134a kullanılan çevrimdeki kondenserin çıkışında 35 ^oC aşırı soğutma yapılmıştır. Elde edilen sonuçlar Çizelge 1.1'de verilmiştir.

	CO ₂ çevrimi	R134a çevrimi
Sistemin Etkinliği	5.75	5.38
Kompresör Güç Tüketimine Bağlı Özgül Nem Alma Hızı [kg/kWh]	4.62	4.33
Kurutucunun Toplam Tüketimine Bağlı Özgül Nem Alma Hızı [kg/kWh]	2.95	2.76
Toplam Ekserji Kaybı [kJ/kg]	38.77	41.45

Çizelge 1. 1 CO₂ ve R134a ile çalışan kurutucuların karşılaştırmalı sonuçları

Sonuçta, CO₂ kullanılan ısı pompasında enerji tüketimi değerlerinin R134a'ya yakın olduğunu, CO₂'in kolay bulunabilirliği ve çevreye zararının az olması sebebiyle ısı pompalarında CO₂ kullanılmasına geçilebileceğini ifade etmişlerdir.

Klöcker vd. [2] ve [3] elektrikle ısıtma yapan 12 kW ısıtma kapasiteli ve kapalı hava çevrimli ticari bir kurutucu alıp, ısıtıcı elemanını çıkartmış, yerine de CO₂ ile çalışan ısı pompasının gaz soğutucusunu koymuşlardır. Prototipin akış şeması Şekil 1.2'de görülmektedir.

Şekil 1. 2 Kurutucu prototipinin akış şeması [2], [3]

Ayrıca ısı pompasında da iki farklı kompresörü denemişlerdir. Deneysel sonuçlara bağlı olarak üreticinin verdiği değerlere kıyasla enerji tasarrufu hesaplanmıştır. İkisi de iki

silindirli olan kompresörün özellikleri, sisteme ait bilgiler ve çalışma sonuçları Çizelge 1.2'de verilmiştir.

		Elektrikli Isıtma	CO ₂ Is	I Pompası
Komprosör Markası			Bock	Dorin
	-	-	(Açık Tip)	(Yarı hermetik)
Isıtma Kapasitesi	kW	12	16	12
Nem Alma Hızı	kg _w /h	9	12	5
Hava Giriş Sıcaklığı	°C	130	60	50
Özgül Nem Alma Hızı	kg _w /kWh	0.72	1.54	2.05
Özgül Enerji Tüketimi	kWh/kg _w	1.39	0.65	0.49
Enerji Tasarrufu Potansiyeli	%	-	53	65

Çizelge 1. 2 Sistemin karakteristik parametreleri ve deneysel sonuçları

Sonuç olarak, ısı pompalı kurutucuların elektrikli ısıtıcılara kıyasla büyük oranda (%53– 65 arasında) enerji tasarrufu sağladığı ortaya konulmuştur. Soğutucu akışkan olarak CO₂ kullanımının da çevreye zararsız olması ve uygun termodinamik özellikleri sebebiyle avantajlı olduğu belirtilmiştir. Son olarak da düşük kapasiteli hermetik kompresörlerin gelişmesiyle birlikte, ev tipi kurutucularda kullanılan R134a soğutucu akışkanının yerini CO₂'in alabileceğinden bahsedilmiştir.

Nekså [4], CO₂'li transkritik çevrimlere göre çalışan ısı pompalarının kullanım alanlarını tanıtmıştır. Bu kapsamda; ısı pompalı su ısıtıcıları, mahal ısıtması, evsel ısı pompaları, hava ısıtma sistemleri, ısı pompalı kurutucular vs. hakkında bilgi vermiştir. Çeşitli bilimsel yayınlardan referans vererek, ısı pompalı kurutucularda CO₂ kullanmanın avantajlarından bahsetmiştir.

Nishiwaki vd. [5] ve Tamura vd. [6], CO₂ ile çalışabilen, ekipman yerleşimleri farklı tasarımlara sahip ısı pompalı kurutucular için patent almışlardır.

Sarkar vd. [7] teorik olarak yaptıkları çalışmada, CO₂ ile çalışan ısı pompalı kurutucunun performansını belirleyebilmek için bir matematiksel model oluşturmuşlardır. Modellenen sistemin şematik diyagramı Şekil 1.3'de verilmiştir.

Şekil 1. 3 Sistemin şematik diyagramı [7]

Bu çalışmanın devamı olarak, hazırladıkları modeli deneysel verilerle doğrulamışlardır [8]. Hazırlanan modelin, deneysel sıcaklık verilerini %1, kapasiteleri %15, özgül nem alma hızını %20 sapma aralığının içerisinde belirleyebildiğini belirtmişlerdir. Deneysel ve sayısal veriler arasındaki farkın olası sebepleri de açıklanmıştır.

Honma vd. [9], CO₂ ile çalışan ısı pompalı kompakt bir çamaşır kurutucu prototipi yapmışlardır. Prototip yapılırken aşağıdaki hususlar hesaba katılmıştır;

- Kompakt bir ısı pompalı kurutma sistemi oluşturabilmek için gaz soğutucu, evaporatör ve kompresör gibi yüksek performans cihazları geliştirilmiştir.
- Isı pompası ünitesi, eşanjörlerden geçen havanın optimum dağılımını sağlayabilecek şekilde dizayn edilmiştir.
- COP'yi arttırmak ve kurutma süresini kısaltmak için optimum ısı pompası çevrimi kontrol metodu geliştirilmiştir. Bu amaçla örneğin, genleşme vanasını kullanarak optimum aşırı kızdırma kontrolü yapılmıştır.

Kuru halde iken çamaşırların ağırlığı 4.5 kg'dır. Sistemin tasarım koşulları Çizelge 1.3'de verilmiştir. Kurutucu prototipinin resmi ise Şekil 1.4'de verilmiştir.

Gaz soğutucunun ısıtma kapasitesi	kW	2.7
Su ve soğutucu akışkan arasındaki minimum sıcaklık farkı	°C	2
Gaz soğutucu giriş havası sıcaklığı	°C	18
Gaz soğutucu çıkış havası sıcaklığı	°C	80
Gaz soğutucu soğutkan giriş sıcaklığı	°C	102
Evaporatördeki soğutucu akışkanın doyma sıcaklığı	°C	13
Kompresör verimi	%	60

Çizelge 1. 3 Sistemin tasarım koşulları

Şekil 1. 4 Kurutucu prototipi (Önden görünüş) [9]

Yapılan testlerin sonucunda, elektrikle doğrudan ısıtmalı sisteme göre, elektrik tüketimi %59.2, kurutma zamanı %52.5 azaltılmıştır. Aşırı kızdırma (6–10 °C) kontrolü neticesinde kurutma zamanı %3 azaltılabilmiştir. Aşırı kızdırma kontrolüne bağlı olarak ısıtma kapasiteleri Şekil 1.5'de gösterilmiştir. Çalışmanın genel sonuçları ise Çizelge 1.4'de gösterilmiştir.

Şekil 1. 5 Aşırı kızdırma kontrollü ve kontrolsüz durumdaki ısıtma kapasiteleri [9]

		Elektrikli Isıtma	Isı Pompalı Isıtma
Elektrik Tüketimi	kWh	2.8	1.142
Kurutma Zamanı	dak	200	95
Su tüketimi	L	50	0
Sistemin Etkinliği	_	1	3.76

Çizelge 1. 4 CO₂'li ısı pompalı kurutucunun elektrikli ısıtmalı kurutucuyla karşılaştırmalı sonuçları

Valero ve Zgliczynski [10], R134a kullanarak çalışan bir ısı pompalı kurutucunun kompresörünü CO₂ ile çalışan bir kompresörle değiştirmişlerdir. Çalışmalarında, CO₂'in ısı pompalı kurutucularda kullanımının uygulanabilirliğini doğrulamayı ve enerji verimliliği karşılaştırması yapmayı amaçlamışlardır. Kurutucunun çamaşır kapasitesi 6 kg'dır (kuru ağırlık). Çamaşırdaki su miktarı ise 4.2 kg'dır. Kompresör giriş basıncı 38–58 bar arasında değişmekte, çıkış basıncı ise 130 bar'a kadar ulaşmaktadır. Aynı şekilde testler propan (R290) için de yapılmıştır. Farklı soğutkanlar için yapılan deneylerden elde edilen sonuçlar Çizelge 1.5'de verilmiştir.

Çizelge 1. 5 R134a ve CO₂ ile çalışan ısı pompalı kurutucuların deneysel sonuçları

	R134a	R290	CO ₂
Tüketim [kWh]	2.4	2.28	2.23
Kurutma zamanı [dak]	138	136	144
R134a'ya kıyasla tasarrufu [%]	_	-5	-7

CO₂ ile çalışan sistemin enerji tüketimi açısından %7 tasarruf sağladığı görülmüştür. Kurutma zamanındaki ufak artış ise, testlerde kullanılan CO₂ kompresörünün kapasitesinin biraz küçük olmasına bağlanmıştır. Şekil 1.6'da testi yapılan üç farklı sistemin çalışma sonuçları görülebilmektedir.

Şekil 1. 6 Üç farklı sistemin çalışma sonuçları [10]

Mancini vd. [11], transkritik CO₂ ve subkritik R134a çevrimlerine göre çalışan kurutucuları teorik ve deneysel olarak karşılaştırmışlardır. Transkritik çevrim için optimum yüksek basınç, subkritik çevrim içinse optimum aşırı soğutma miktarı dikkate alınmıştır. Teorik analiz sonucunda sistemin enerji performansı, kurutma havasının sıcaklığının ve kütlesel debisinin fonksiyonu olarak belirlenmiştir. Kompresör verimleri, üretici tarafından verilen basınç oranlarına bağlı polinominal ifadelerden alınmıştır (Şekil 1.7). Çalışmanın teorik kısmında yapılan simülasyonda kullanılan bağımsız parametreler Çizelge 1.6'da verilmiştir.

Şekil 1. 7 Basınç oranlarının bir fonksiyonu olarak kompresör verimleri [11]

Bağımsız Parametre	Değişkenliği	Değeri	Birimi
Hava debisi	Değişken	100-200	kg/h
Evaporatör girişindeki hava sıcaklığı	Değişken	30-50	°C
Gizli ısı transferi	Sabit	1.0	kW
Gaz soğutucudaki yaklaşım sıcaklığı	Sabit	5	°C
Evaporatördeki yaklaşım entalpisi	Sabit	30	kJ/kg
Evaporatör girişindeki havanın bağıl nemi	Sabit	90	%
Evaporatör çıkışındaki havanın bağıl nemi	Sabit	100	%
Kompresör girişindeki aşırı kızdırma	Sabit	10	°C

Çizelge 1. 6 Simülasyondaki bağımsız parametreler [11]

CO₂'li ve R134a'lı çevrimlerin ekserji kayıpları da Şekil 1.8'de verilmiştir.

Şekil 1. 8 CO₂ ve R134a çevrimlerinin ekserji kayıpları [11]

CO₂ ile çalışan kurutucu 7 kg kuru çamaşır kapasiteli olarak tasarlanmıştır. Performans karşılaştırması için R134a ile çalışan eşdeğer bir kurutucu alınmıştır. Testler için her iki kurutucuya da aynı prosedür uygulanmıştır. Zamana bağlı enerji tüketimi Şekil 1.9'da verilmiştir.

Şekil 1. 9 Kurutma zamanına bağlı olarak kurutucunun elektrik tüketimi [11]

Üretilen prototip üzerinde yapılan deneysel çalışmaların sonucunda CO₂'li çevrimin göz ardı edilebilir biçimde (<%1) daha az enerji tükettiği, buna karşın kurutma zamanının ufak bir artış (+%9) gösterdiği belirtilmiştir.

1.2 Tezin Amacı

Küresel ısınma ve ozon tabakasında meydana gelen incelme dolayısıyla, günümüzde soğutucu akışkanların kullanımı konusunda çeşitli kısıtlamalara gidilmiştir. CO₂'in küresel ısınma potansiyeli (GWP) 1 olup, ozon tüketme potansiyeli 0'dır. Mevcut kısıtlamaların ve uygun termofiziksel özelliklerinin sonucunda, doğal bir gaz olan CO₂'in kullanımı giderek ön plana çıkmaktadır.

Bu tez çalışmasında, CO₂ ile çalışan ısı pompalı çamaşır kurutucuları için modelleme yapılarak, bir yazılımın oluşturulması amaçlanmıştır. Hazırlanan yazılım ile; ısı değiştiricilerinin, kompresörün ve kurutucunun özellikleri ile evaporasyon sıcaklığı ve gaz soğutucuya CO_2 'in giriş basıncı girildiğinde, prosesin tüm noktalarının sıcaklık, basınç, nem gibi özellikleri belirlenebilecektir. Ayrıca kurutma süresi ve enerji tüketimi de ortaya konulmuş olacaktır. Ek olarak sistemin performansını etkileyen parametrelerin irdelenmesi amaçlanmıştır. Böylelikle, tasarım aşamasında, en uygun geometrik özellikler ve optimum işletme şartları, program aracılığıyla belirlenebilecektir.

1.3 Hipotez

Isi pompalı çamaşır kurutma makinelerinde CO₂ gazı kullanıldığında enerji tüketimi ve kurutma süreleri açısından, piyasadaki mevcut ısı pompalı kurutucularla rekabet edebilecek sonuçlar alınmaktadır. Optimum işletme şartlarının belirlenmesi ve kurutucunun bu şartlarda çalıştırılması ile enerji tüketim değerleri ve kurutma sürelerinin düşürülmesi de mümkündür. Ayrıca, kompresör üreticilerinin, CO₂ kullanımının artışına bağlı olarak, teknolojilerini geliştirmeleri ve daha verimli kompresörler üretmeleri ile, enerji tüketimi daha da azaltılabilecektir.

9

BÖLÜM 2

TEMEL KAVRAMLAR ve TEORİK ANALİZ

2.1 Gaz Soğutucu

Akışkanlarından en az biri gaz olan ve tipik olarak birim hacimde büyük bir ısı transfer yüzey alanı olan ısı değiştiricilerine kompakt ısı değiştiricileri denilmektedir. Genel olarak yüzey alan yoğunluğu (kompaktlık) 700m²/m³ ise bir ısı değiştiricisi kompakt olarak adlandırılır [12].

Gaz soğutucular, transkritik çevrime göre çalışan CO₂ akışkanlı çevrimlerde kullanılan ısı değiştiricilerdir. Subkritik buhar sıkıştırmalı soğutma çevrimlerinde, soğutucu akışkan sistemin tüm bileşenlerinde kritik nokta basıncının altında çalışmaktadır. Böylelikle, sistemden çevreye ısı atılması prosesinin gerçekleştiği yoğuşturucuda soğutucu akışkan önce sabit basınçta soğutulmakta, ardından da yine sabit basınçta yoğuşmaktadır. CO₂'in kritik nokta sıcaklığı yaklaşık olarak 31 °C olduğundan ısı atımı prosesi genellikle bu sıcaklığın üzerinde olmak zorundadır. Böylelikle sistemin kritik noktanın üzerinde yani süperkritik halde çalışması gerekmektedir. Süperkritik bölgede faz değişimi görülmeyeceğinden, ısı atımı sırasında CO₂ tarafında faz değişimi değil, sabit basınçta soğuma gerçekleşir. Bu nedenle de subkritik buhar sıkıştırmalı çevrimlerdeki yoğuşturucunun yerini gaz soğutucu almaktadır. CO₂'in kritik nokta basıncı 73.8 bar civarında olduğu için, gaz soğutucular bu basıncın da üzerindeki basınçlarda çalışmaktadır.

Bir kurutucudaki gaz soğutucusunun çözümlenmesinde en temel olarak belirlenmesi gereken toplam transfer katsayısıdır. Toplam ısı transfer katsayısı için aşağıdaki ifade yazılabilir [13]:

$$\frac{1}{UA} = \frac{1}{U_c A_c} = \frac{1}{U_h A_h}$$
$$= \frac{1}{\eta_s h_c A_c} + R_w + \frac{1}{h_h A_h}$$
(2.1)

Burada η_s yüzey verimidir. Kanatlı yüzey tarafında kanat verimine (η_f) bağlı olarak hesaplanır [14].

$$\eta_{s} = \frac{Gerçekte \ olan \ isi \ transferi}{B \ddot{u} t \ddot{u} n \ kanat \ ve \ kanatsız \ alan \ taban \ si caklığında \ olsaydı \ gerçekleşecek \ olan \ isi \ transferi}$$
(2.2)
$$\eta_{f} = \frac{Gerçekte \ olan \ isi \ transferi}{B \ddot{u} t \ddot{u} n \ kanat \ taban \ si \ caklığında \ olsaydı \ gerçekleşecek \ olan \ isi \ transferi}$$
(2.3)

h ısı taşınım katsayısının kanat ve taban yüzeyinde üniform olarak dağıldığı kabul edilirse gerçek ısı transferi için (2.4) yazılabilir.

$$\dot{Q} = hA\eta_s(T_b - T_\infty) \tag{2.4}$$

A kanat ve taban alanlarının toplamıdır. Eşitlik şöyle de yazılabilir:

$$\eta_{s} = \frac{\dot{Q}}{hA(T_{b} - T_{\infty})} = \frac{hA_{b}(T_{b} - T_{\infty}) + hA_{f}(T_{b} - T_{\infty})}{hA(T_{b} - T_{\infty})}$$
(2.5)

 $A = A_b + A_f$ olduğundan,

$$\eta_s = \frac{A_b + \eta_f A_f}{A} = 1 - \frac{A_f}{A} \left(1 - \eta_f \right)$$
(2.6)

olarak bulunur. Kanat verimi dairesel kanatlarda aşağıdaki gibi ifade edilmektedir.

$$\eta_f = \frac{\tanh(mr\phi)}{mr\phi} \tag{2.7}$$

Kompakt ısı değiştiricilerinde genellikle tüm borular kanat görevi gören levhaların içerisinden geçtiği için durum dairesel kanattakinden farklıdır. Dolayısıyla (2.7) eşitliği doğrudan kullanılamaz. Böyle bir durumda kanat verimininin belirlenebilmesi için Schmidt [15] kullanışlı bir yöntem geliştirmiştir. Buna göre borunun etrafındaki kanat için eşdeğer bir çap tanımlanır ve hesap bu eşdeğer çapa sahip olan dairesel kanata göre yapılır. Kare ve üçgen dizilim için eşdeğer çaplar sırasıyla;

$$r_e = 1.28\psi(\beta - 0.2)^{0.5}r\tag{2.8}$$

$$r_e = 1.27\psi(\beta - 0.3)^{0.5}r\tag{2.9}$$

denklemleri ile bulunmaktadır. Burada;

 $\psi = \frac{M}{r}$ ve $\beta = \frac{L}{M}$ dir. M ve L değerleri için ölçüler de sırasıyla kare ve üçgen dizilim için Şekil 2. 1'de verildiği gibi alınmaktadır.

Şekil 2. 1 Sırasıyla kare ve üçgen boru dizilimleri [16]

(2.7)'deki m ve ϕ değerleri aşağıdaki denklemler ile bulunmaktadır.

$$m = \sqrt{\frac{2h}{k_f y}} \tag{2.10}$$

$$\phi = \left(\frac{r_e}{r} - 1\right) \left(1 + 0.35 \ln\left(\frac{r_e}{r}\right)\right) \tag{2.11}$$

2.1.1 Boru İçi Isı Transferi

Gaz soğutucularda boru içerisinde ısı transferi süperkritik halde gerçekleşmektedir. CO_2 'in termofiziksel özellikleri sıcaklıkla büyük ölçüde değişmektedir ki bu da ısı transferini önemli oranda etkilemektedir.

Tam gelişmiş türbülanslı akışta zorlamalı taşınım ısı transferi üzerine literatürde çeşitli çalışmalar yapılmıştır. Fang [17], gaz soğutucuları için Gnielinski [18] ile Petrov ve Popov [19] bağıntılarını temel alarak aşağıdaki bağıntıyı önermiştir:

$$Nu = \frac{(f/8)(\text{Re}-1000)Pr}{A+12.7(f/8)^{1/2}(\text{Pr}^{2/3}-1)} \left(1 - 0.001\frac{\dot{q}_W}{G}\right) \left(\frac{\bar{c}_p}{c_p}\right)^n$$
(2.12)

$$A = \begin{cases} 1 + 7 \times 10^{-8} \times \text{Re} & \text{Re} < 10^6 \\ 1.07 & \text{Re} \ge 10^6 \end{cases}$$
(2.13)

(2.12) denkleminin uygulama aralığı 3x10³≤Re≤10⁶ ve -350≤q̇_w/G<0 J/kg'dır. f sürtünme faktörü olup yüzey sıcaklığında Churchill [20] eşitliği ile hesaplanmaktadır:

$$f = 8 \left\{ \left(\frac{8}{Re}\right)^{12} + \left[\left(2.457 ln \frac{1}{(7/Re)^{0.9} + 0.27R_{rt}}\right)^{16} + \left(\frac{37530}{Re}\right)^{16} \right]^{-3/2} \right\}^{1/12}$$
(2.14)

(2.12)'deki \bar{c}_p ve n ise aşağıdaki eşitlikler ile hesaplanmaktadır.

$$\bar{c}_p = \frac{h_m - h_w}{T_m - T_w} \tag{2.15}$$

$$n = \begin{cases} 0.66 - 4 \times 10^{-4} (\dot{q}_w/G) & \bar{c}_p/c_{p_w} \le 1\\ 0.9 - 4 \times 10^{-4} (\dot{q}_w/G) & \bar{c}_p/c_{p_w} > 1 \end{cases}$$
(2.16)

Verilen denklemler ile hesaplanılan Nusselt sayısından h taşınımla ısı transfer katsayısına geçiş yapılabilir.

$$Nu = \frac{hD}{k}$$
(2.17)

2.1.2 Boru İçi Basınç Kaybı

Boru içerisindeki basınç kayıplarının hesabında Darcy-Weisbach eşitliği kullanılmaktadır [17].

$$\Delta p = \frac{G^2}{2\rho} \left(f \frac{L}{D} + \xi \right) \tag{2.18}$$

f sürtünme faktörü (2.14) ile hesaplanır.

Bağlantı elemanlarının yerel basınç katsayısı ξ 'nin hesabı için Darby (3-K) [21] hesap metodu ile Blevins [22] hesap metodunun kullanılması uygun olmaktadır.

Darby [21] literatürdeki çeşitli vanaları, dirsekleri ve T bağlantı elemanlarını incelemiş ve yüksek hassasiyete sahip olan, aşağıdaki 3-K eşitliğini bulmuştur:

$$\xi = \frac{K_1}{Re} + K_i \left(1 + \frac{K_d}{D^{0.3}} \right)$$
(2.19)

K₁, K_i ve K_d değerleri 180° dirsekler için Çizelge 2.1'de verilmiştir. Boru nominal çapı D'nin birimi inç olarak verilmiştir. K₁ değerleri çoğunlukla Hooper [23]'ün (2-K) metodundan alınmıştır. K_i değerleri ise Crane [24]'ün deneysel verilerinden alınmıştır.
3-K metodu tüm Reynolds sayıları ve verilen bağlantı elemanı boyutları için en yüksek hassasiyete sahip metottur [25].

Bağlantı Tipi	R/D	L/D	K1	Ki	K _d
Dişli	1			0.23	
Flanşlı/Kaynaklı	1	50	1000	0.12	4
Hepsi	1.5			0.1	

Çizelge 2. 1 180° Dirsekler için kayıp katsayıları [21]

Burada R dirseğin dönüş yarıçapını, L boru boyunu, D ise boru çapını göstermektedir. 3-K metodu hassas sonuç vermesine rağmen 180° dirsekler için Çizelge 2.1'den de görülebileceği üzere sınırlı R/D oranlarında geçerlidir. Bu aralığın dışındaki değerlerde Blevins [22] hesap metodunun kullanımı uygun olmaktadır [25].

Blevins [22] dirseklerde yerel kayıp katsayısı için Reynolds sayısına bağlı olarak çeşitli ifadeler önermiştir.

Re>4000 iken R/D≥1.8 için,

$$\xi = \begin{cases} 0.0175\alpha f\theta\left(\frac{R}{D}\right) & Re\left(\frac{D}{R}\right)^2 = 0 - 360\\ 0.00431\alpha\theta Re^{-0.17}\left(\frac{R}{D}\right)^{0.84} & Re\left(\frac{D}{R}\right)^2 > 0 - 360 \end{cases}$$
(2.20)

Burada θ ; dirseğin derece cinsinden dönüş açısıdır, f; sürtünme faktörüdür. 180° dirsek için,

$$\alpha = 1.0 + 5.06 \left(\frac{D}{R}\right)^{4.52} \tag{2.21}$$

Re≥5x10⁵ ve R/D≤2 iken 180° dirsek için ξ değerleri Çizelge 2.2'de verilmiştir.

R/D	ξ
0.75	0.70
1.0	0.28
1.5	0.21
2.0	0.19

Çizelge 2. 2 Re≥5x10⁵ ve R/D≤2 iken 180° dirsek için ξ değerleri [22]

Daha düşük Reynolds sayılarında Çizelge 2.2'den bulunan değerler bir çarpan ile değiştirilir. Bu durumda aşağıdaki denklemin kullanılması uygun olur.

$$\xi|_{Re} = \left(\xi|_{Re \ge 5 \times 10^5}\right) \left(\frac{5 \times 10^5}{Re}\right)^{0.17} \tag{2.22}$$

2.1.3 Hava Tarafı Isı Transferi

Kompakt ısı değiştiricilerinde hava tarafının geometrisi çok karmaşık olduğu için matematiksel olarak analiz etmek çok zordur. Bunun yerine çoğunlukla uygun fiziksel parametreler ve çalışma koşulları için literatürde geliştirilmiş bağıntılardan yararlanılmaktadır. Bu çalışmalarda ısı transferi genellikle Colburn j faktörü ile ifade edilmektedir. Buradan ısı taşınım katsayısına aşağıdaki eşitlik ile geçilebilmektedir [26].

$$h = \frac{j\rho V_{max} C_p}{\frac{2}{Pr_3^2}}$$
(2.23)

2.1.3.1 Kanat Tiplerine Göre Isı Taşınım Katsayısının Tayini

Düz Kanat Kullanılması Durumu

Wang vd. [27] ve Wang vd. [28] düz kanatlı kompakt ısı değiştiricilerinin hava tarafında sıra sayısının, kanat adımının ve boru çapının ısı transferi ve basınç kaybı üzerindeki etkilerini araştırmışlardır. Toplam 18 adet ısı değiştiriciyi test etmiş, 56 ısı değiştiricinin verilerini de literatürden almışlardır. Deneysel veri tabanlarında yer alan ısı değiştiricilerinin geometrik ölçüleri Çizelge 2.3'de verilmiştir.

Çizelge 2.3	Veri tabanındaki o	düz kanatlı ısı	değiştiricilerinin	geometrik	ölçüleri	[28]
				0		

No	Kaynak	D _o [mm]	N	F _p [mm]	P _l [mm]	P _t [mm]	j için veri sayısı	f için veri sayısı	$\delta_{ m f}$ [mm]	$\delta_{ m w}$ [mm]
1		6.7	1	1.2	13.6	17.7	10	10	0.115	0.27
2	Wang	6.7	1	1.99	13.6	17.7	10	10	0.115	0.27
3	[29]	6.7	2	1.23	13.6	17.7	10	10	0.115	0.27
4		6.7	2	1.98	13.6	17.7	10	10	0.115	0.27
5	Wang vd.	10.1	1	1.19	22	25.4	10	10	0.115	0.31
6	[30]	10.1	1	2.43	22	25.4	10	10	0.115	0.31
7		8.38	2	1.7	19.05	25.4	10	10	0.115	0.31
8	Wang vd.	8.38	2	3.13	19.05	25.4	10	10	0.115	0.31
9	[31]	8.38	4	1.7	19.05	25.4	10	10	0.115	0.31
10		8.38	4	3.13	19.05	25.4	10	10	0.115	0.31
11		9.97	2	1.82	22	25.4	10	10	0.13	0.35
12		9.97	2	2.24	22	25.4	10	10	0.13	0.35
13		9.97	2	3.2	22	25.4	10	10	0.13	0.35
14		9.97	2	1.77	22	25.4	10	10	0.2	0.35
15		9.97	2	3.21	22	25.4	9	9	0.2	0.35
16		9.97	4	2.03	22	25.4	10	10	0.13	0.35
17		9.97	4	2.23	22	25.4	10	10	0.13	0.35
18	wang vo.	9.97	4	3	22	25.4	10	10	0.13	0.35
19	[32]	9.97	4	1.77	22	25.4	10	10	0.2	0.35
20		9.97	4	3.17	22	25.4	10	10	0.2	0.35
21		9.97	6	1.85	22	25.4	10	10	0.13	0.35
22		9.97	6	2.21	22	25.4	10	10	0.13	0.35
23	1	9.97	6	3.16	22	25.4	10	10	0.13	0.35
24		9.97	6	1.74	22	25.4	10	10	0.2	0.35
25		9.97	6	3.16	22	25.4	10	10	0.2	0.35
			-							
----	-----------	--------	---	------	-------	-------	----	----	-------	-------
26		7.3	4	1.78	12.4	21	10	10	0.115	0.27
27		7.3	4	1.22	12.4	21	10	10	0.115	0.27
28		7.3	2	1.78	12.4	21	10	10	0.115	0.27
29		7.3	2	1.22	12.4	21	10	10	0.115	0.27
30		10	4	1.23	19.05	25.4	10	10	0.115	0.31
31		10	2	1.23	19.05	25.4	10	10	0.115	0.31
32		10	2	2.23	19.05	25.4	10	10	0.115	0.31
33		10	1	2.23	19.05	25.4	10	10	0.115	0.31
34	Wang ve	10	4	1.55	19.05	25.4	9	9	0.115	0.31
35	Chi [27]	10	1	1.23	19.05	25.4	10	10	0.115	0.31
36		8.28	4	1.21	19.05	25.4	10	10	0.115	0.31
37		8.28	4	2.06	19.05	25.4	10	10	0.115	0.31
38		8.28	2	1.23	19.05	25.4	10	10	0.115	0.31
39		8.28	2	2.06	19.05	25.4	10	10	0.115	0.31
40		8.28	4	1.6	19.05	25.4	10	10	0.115	0.31
41		8.28	1	2.04	19.05	25.4	10	10	0.115	0.31
42		8.28	1	1.19	19.05	25.4	10	10	0.115	0.31
43		10	4	2.31	19.05	25.4	10	10	0.115	0.31
44		13.233	1	1.75	27.5	31.75	12	-	0.152	0.35
45		13.233	2	1.75	27.5	31.75	10	_	0.152	0.35
46	D: 1 [00]	13.233	3	1.75	27.5	31.75	11	_	0.152	0.35
47	Rich [33]	13.233	4	1.75	27.5	31.75	9	_	0.152	0.35
48		13.233	5	1.75	27.5	31.75	10	_	0.152	0.35
49		13.233	6	1.75	27.5	31.75	11	_	0.152	0.35
50		13.335	4	8.7	27.5	31.75	10	10	0.152	0.35
51		13.335	4	5.75	27.5	31.75	10	10	0.152	0.35
52		13.335	4	3.81	27.5	31.75	11	11	0.152	0.35
53	D: 1 [24]	13.335	4	3.31	27.5	31.75	10	10	0.152	0.35
54	RICN [34]	13.335	4	2.77	27.5	31.75	10	10	0.152	0.35
55		13.335	4	2.17	27.5	31.75	10	10	0.152	0.35
56		13.335	4	1.75	27.5	31.75	9	11	0.152	0.35
57		13.335	4	1.23	27.5	31.75	8	10	0.152	0.35
58		9.996	1	1.5	32	25.4	5	_	0.12	0.312
59		9.996	1	1.5	22	25.4	7	_	0.12	0.31
60		9.996	1	1.5	20	25.4	5	_	0.12	0.31
61		9.996	1	1.5	18	25.4	6	-	0.12	0.31
62		9.996	1	2.2	17.7	20.4	6	_	0.12	0.31
63		9.996	1	1.8	17.7	20.4	6	_	0.12	0.31
64		9.996	1	1.5	17.7	20.4	8	8	0.12	0.31
65	Seshimo	9.996	1	1.2	17.7	20.4	7	_	0.12	0.31
66	ve Fujii	7.94	1	1.5	17.7	20.4	7	7	0.12	0.31
67	[35]	6.35	1	1.6	17.7	20.4	5	5	0.12	0.31
68		9.996	2	1.5	22	25.4	7	_	0.12	0.31
69		9.996	2	1.5	17.7	20.4	7	_	0.12	0.31
70		7.94	2	1.5	17.7	20.4	5	_	0.12	0.31
71		9.996	3	1.5	17.7	20.4	5	_	0.12	0.31
72		7.94	3	1.5	17.7	20.4	7	_	0.12	0.31
73		9.996	4	1.5	17.7	20.4	7	_	0.12	0.31
74		7 94	4	15	17.7	20.4	7	_	0.12	0.31

Çizelge 2. 3 Veri tabanındaki düz kanatlı ısı değiştiricilerinin geometrik ölçüleri [28] (Devam)

Çalışmanın devamında ısı transferi ile basınç kaybı için korelasyonlar çıkarmışlardır. Korelasyonları oluştururken hem kendi deneysel verilerinden hem de literatürde yer alan diğer deneysel çalışmaların sonuçlarından faydalanmışlardır. Isı transferi korelasyonunun, deneysel verilerin %88.6'sını ±%15 sapma aralığının içerisinde belirleyebildiğini rapor etmişlerdir. Böylelikle, literatür tarandığında, geniş kapsamlı ve yüksek hassasiyetli birer korelasyon verdikleri görülebilmektedir. Korelasyonlarının uygulama aralığı aşağıdaki gibidir.

•	Kanat tipi	: Düz

- Sıra sayısı (N) : 1–6
- Boru dış çapı (D_o) : 6.35–12.7 mm
- Kanat hatvesi (F_p) : 1.19–8.7 mm
- Geçişler arasındaki dikey mesafe (Pt) : 17.7–31.75 mm
- Sıralar arasındaki yatay mesafe (P_I) : 12.4–27.5 mm

Isı transferi için ilgili korelasyonlar aşağıda verilmiştir.

N=1 için,

$$j = 0.108Re_{D_c}^{-0.29} \left(\frac{P_t}{P_l}\right)^{P_1} \left(\frac{F_p}{D_c}\right)^{-1.084} \left(\frac{F_p}{D_h}\right)^{-0.786} \left(\frac{F_p}{P_t}\right)^{P_2}$$
(2.24)

$$P1 = 1.9 - 0.23 \ln(Re_{Dc}) \tag{2.25}$$

$$P2 = -0.236 + 0.126 \ln(Re_{Dc}) \tag{2.26}$$

N≥2 için,

$$j = 0.086Re_{D_c}^{P3}N^{P4} \left(\frac{F_p}{D_c}\right)^{P5} \left(\frac{F_p}{D_h}\right)^{P6} \left(\frac{F_p}{P_t}\right)^{-0.93}$$
(2.27)

$$P3 = -0.361 - 0.042 \frac{N}{\ln(Re_{D_c})} + 0.158 \ln\left(N\left(\frac{F_p}{D_c}\right)^{0.41}\right)$$
(2.28)

$$P4 = -1.224 - 0.076 \frac{\left(\frac{P_l}{D_h}\right)^{1.42}}{\ln(Re_{D_c})}$$
(2.29)

$$P5 = -0.083 + 0.058 \frac{N}{\ln(Re_{D_c})}$$
(2.30)

$$P6 = -5.735 + 1.21 \ln\left(\frac{Re_{D_c}}{N}\right)$$
(2.31)

$$D_h = \frac{4A_cL}{A}$$

$$D_c = D_o + 2y$$
(2.32)
(2.33)

Dalgalı Kanat Kullanılması Durumu

Kompakt ısı değiştiricilerinde ısı transferini arttırabilmek için farklı tiplerde kanatlar kullanılabilmektedir. Bunlardan yaygın olarak kullanılanlardan biri de dalgalı kanatlardır. Burada da, havanın taşınım katsayısını belirleyebilmek için literatürden uygun korelasyonların seçilmesi gerekmektedir. Wang vd. [36]'nın yaptığı bir çalışma, dalgalı kanatlı-borulu ısı değiştiricilerinin ısı transfer ve basınç karakteristiği üzerinedir. Çalışmada, 16 ısı değiştiriciyi test etmiş, 45 ısı değiştiricinin deney sonuçlarını da literatürden almışlardır. Veri tabanında yer alan ısı değiştiricilerinin geometrik özellikleri Çizelge 2.4'de verilmiştir.

Cizelge 2. 4 Veri	i tabanındaki dalgalı	kanatlı ısı değistir	icilerinin geometri	k ölcüleri [36]
3-10-Be =: 1 1 6:			800.000	

	F.	δι	D.	Ρ.	P,	P.		j için	f için	
No	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Ν	veri	veri	Kaynak
	[]	[]	[]	[]	[]	[]		sayısı	sayısı	
1	1.6	0.11	7.66	21	12.7	0.3	2	9	9	
2	1.22	0.11	7.66	21	12.7	0.3	2	9	9	
3	1.24	0.11	10.26	25.4	22	1.3	2	9	9	
4	1.42	0.11	10.26	25.4	22	1.3	3	9	9	
5	1.79	0.11	10.26	25.4	22	1.3	4	9	9	
6	2.01	0.11	10.26	25.4	22	1.3	5	9	9	
7	2.02	0.11	10.26	25.4	22	1.3	2	9	9	
8	2.02	0.11	10.26	25.4	22	1.3	3	9	9	Wang vd.
9	2.2	0.11	10.26	25.4	22	1.3	4	9	9	[28]
10	2.53	0.11	10.26	25.4	22	1.3	5	9	9	
11	3.11	0.15	16.77	36	32	1.5	2	9	9	
12	1.78	0.15	16.77	36	32	1.5	2	9	9	
13	3.11	0.15	16.77	36	32	1.5	4	9	9	
14	1.78	0.15	16.77	36	32	1.5	4	9	9	
15	3.07	0.15	16.77	36	32	1.5	6	9	9	
16	1.79	0.15	16.77	36	32	1.5	6	9	9	
17	3.04	0.12	13.62	31.75	27.5	1.8	1	9	9	
18	4.55	0.18	13.74	31.75	27.5	1.8	1	10	10	
19	6.1	0.25	13.88	31.75	27.5	1.8	1	9	9	
20	3.07	0.12	13.62	31.75	27.5	1.8	2	11	9	
21	6.3	0.18	13.88	31.75	27.5	1.8	2	9	10	
22	3.1	0.12	13.62	31.75	27.5	1.8	4	10	10	Wang [29]
23	4.58	0.18	13.74	31.75	27.5	1.8	4	8	9	
24	6.31	0.25	13.88	31.75	27.5	1.8	4	10	9	
25	3.07	0.12	13.62	31.75	27.5	1.8	6	10	10	
26	6.31	0.25	13.88	31.75	27.5	1.8	6	10	10	
27	3.04	0.12	16.59	38.1	33	1.8	1	9	10	

	9	10	1	1.8	33	38.1	16.71	0.18	4.42	28
	10	9	1	1.8	33	38.1	16.85	0.25	6.3	29
Wang [20]	10	10	2	1.8	33	38.1	16.59	0.12	3.05	30
wang [29]	10	9	2	1.8	33	38.1	16.85	0.25	6.43	31
	10	10	4	1.8	33	38.1	16.59	0.25	2.98	32
	8	9	4	1.8	33	38.1	16.71	0.12	4.45	33
Wang vd. [30]	9	10	4	1.8	33	38.1	16.85	0.25	6.45	34
	10	9	1	1.32	19.05	25.4	8.58	0.115	2.54	35
	10	8	1	1.32	19.05	25.4	8.58	0.115	1.21	36
	10	10	2	1.32	19.05	25.4	8.58	0.115	2.54	37
Wang vd. [31]	10	9	2	1.32	19.05	25.4	8.58	0.115	1.69	38
	10	9	2	1.32	19.05	25.4	8.58	0.115	1.21	39
	10	9	4	1.32	19.05	25.4	8.58	0.115	2.54	40
	10	9	4	1.32	19.05	25.4	8.58	0.115	1.21	41
	10	10	2	1.18	19.05	25.4	8.62	0.12	1.7	42
	10	9	2	1.58	19.05	25.4	8.62	0.12	1.69	43
	10	10	2	1.18	19.05	25.4	8.62	0.12	3.09	44
Mangud [22]	8	7	2	1.58	19.05	25.4	8.62	0.12	3.17	45
wang vu. [52]	10	8	4	1.18	19.05	25.4	8.62	0.12	1.65	46
	6	10	4	1.58	19.05	25.4	8.62	0.12	1.7	47
	10	9	4	1.18	19.05	25.4	8.62	0.12	3.11	48
	9	10	4	1.58	19.05	25.4	8.62	0.12	3.14	49
	10	9	6	1.18	19.05	25.4	10.38	0.12	2.85	50
	10	9	6	1.58	19.05	25.4	8.62	0.12	3.09	51
Rich [33]	9	9	6	1.18	19.05	25.4	10.38	0.12	1.63	52
	10	9	6	1.18	19.05	25.4	10.38	0.12	2.87	53
	9	9	6	1.18	19.05	25.4	10.38	0.12	1.59	54

Çizelge 2. 4 Veri tabanındaki dalgalı kanatlı ısı değiştiricilerinin geometrik ölçüleri [36] (Devam)

Yapılan çalışmaların sonucunda ısı transferi ve sürtünme faktörü için uygun korelasyonlar üretilmiştir. Sonuçta ısı transferi korelasyonunun, deneysel verilerin %91'ini ±%15 sapma aralığının içerisinde belirleyebildiğini belirtmişlerdir. Korelasyonların uygulama aralığı aşağıdaki gibidir.

- Reynolds sayısı (Re_{Dc}) : 300–10000
- Manşon çapı (D_c) : 7.66–16.85 mm
- Sıra sayısı (N) : 1–6
- Kanat hatvesi (F_p) : 1.21–6.43 mm
- Geçişler arasındaki dikey mesafe (P_t) : 21–38.1 mm
- Sıralar arasındaki yatay mesafe (P₁) : 12.7–33 mm
- Dalga açısı (θ) : 5.3–18.5°

• Kanat modeli uzunluğu (X_f) : 3.175–8.25 mm

Isı transferi için ilgili korelasyonlar aşağıda belirtilmiştir.

Re_{Dc}<1000 iken,

$$j = 0.882 \left(Re_{D_c} \right)^{J1} \left(\frac{D_c}{D_h} \right)^{J2} \left(\frac{F_s}{P_t} \right)^{J3} \left(\frac{F_s}{D_c} \right)^{-1.58} (\tan(\theta))^{-0.2}$$
(2.34)

$$J1 = 0.0045 - 0.491 \left(Re_{D_c}\right)^{-0.0316 - 0.0171 \ln(N \tan(\theta))} \left(\frac{P_l}{P_t}\right)^{-0.109 \ln(N \tan(\theta))} \times \left(\frac{D_c}{D_h}\right)^{0.542 + 0.0471N} \left(\frac{F_s}{D_c}\right)^{0.984} \left(\frac{F_s}{P_t}\right)^{-0.349}$$
(2.35)

$$J2 = -2.72 + 6.84 \tan(\theta) \tag{2.36}$$

$$J3 = 2.66 \tan(\theta) \tag{2.37}$$

Re_{Dc}≥1000 iken,

$$j = 0.0646 \left(Re_{D_c} \right)^{j_1} \left(\frac{D_c}{D_h} \right)^{j_2} \left(\frac{F_s}{P_t} \right)^{-1.03} \left(\frac{P_l}{D_c} \right)^{0.432} (\tan(\theta))^{-0.692} N^{-0.737}$$
(2.38)

$$j1 = -0.0545 - 0.0538 \tan(\theta) - 0.302N^{-0.24} \left(\frac{F_s}{P_l}\right)^{-1.3} \left(\frac{P_l}{P_t}\right)^{0.379} \left(\frac{P_l}{D_h}\right)^{-1.35} \times (\tan(\theta))^{-0.256}$$
(2.39)

$$j2 = -1.29 \left(\frac{P_l}{P_t}\right)^{1.77 - 9.43 \tan(\theta)} \left(\frac{D_c}{D_h}\right)^{0.229 - 1.43 \tan(\theta)} N^{-0.166 - 1.08 \tan(\theta)} \times \left(\frac{F_s}{P_t}\right)^{-0.174 \ln(0.5N)}$$
(2.40)

2.1.4 Hava Tarafı Basınç Kaybı

Kompakt ısı değiştiricilerinde genel basınç kaybı ifadesi Kays ve London [41]'den alınmıştır. Buradaki σ, minimum akış alanının ön alana oranıdır.

$$f = \frac{A_c}{A} \frac{\rho_m}{\rho_i} \left(2\Delta p_a \frac{\rho_{ia}}{(G_c)^2} - (1 + \sigma^2) \left(\frac{\rho_i}{\rho_o} - 1\right) \right)$$
(2.41)

2.1.4.1 Kanat Tiplerine Göre Sürtünme Faktörünün Tayini

Düz Kanat Kullanılması Durumu

Düz kanatlı kompakt ısı değiştiricilerinde sürtünme faktörünün belirlenebilmesi için, ısı transferi korelasyonlarının alındığı çalışmadan ([27] ve [28]) faydalanılmaktadır. Bu

çalışmada f sürtünme faktörü korelasyonunun, deneysel verilerin %85.1'ini ±%15 sapma aralığının içerisinde belirleyebildiği belirtilmiştir. Buna göre sürtünme faktörü için aşağıda verilen korelasyon kullanılabilir.

$$f = 0.0267 \left(Re_{D_c} \right)^{F1} \left(\frac{P_t}{P_l} \right)^{F2} \left(\frac{F_p}{D_c} \right)^{F3}$$
(2.42)

$$F1 = -0.764 + 0.739 \frac{P_t}{P_l} + 0.177 \frac{F_p}{D_c} - \frac{0.00758}{N}$$
(2.43)

$$F2 = -15.689 + \frac{64.021}{\ln(Re_{D_c})}$$
(2.44)

$$F3 = 1.696 - \frac{15.695}{\ln(Re_{D_c})}$$
(2.45)

Dalgalı Kanat Kullanılması Durumu

Dalgalı kanatlı kompakt ısı değiştiricilerinde sürtünme faktörünün tayini için ısı transferi korelasyonlarının alındığı Wang vd. [36]'nın çalışmasından yararlanılmaktadır. Çalışmada f sürtünme faktörü korelasyonunun, deneysel verilerin %85'ini ±%15 sapma aralığının içerisinde belirleyebildiği belirtilmiştir. Sonuç olarak, sürtünme faktörü için aşağıdaki korelasyon kullanılabilir.

Re_{Dc}<1000 iken,

$$f = 4.37 \left(Re_{D_c} \right)^{F1} \left(\frac{F_s}{D_h} \right)^{F2} \left(\frac{P_l}{P_t} \right)^{F3} \left(\frac{D_c}{D_h} \right)^{0.2054} N^{F4}$$
(2.46)

 $F1 = -0.574 - 0.137 (\ln(Re_{D_c}) - 5.26)^{0.245} \times$

$$\left(\frac{P_t}{D_c}\right)^{-0.765} \left(\frac{D_c}{D_h}\right)^{-0.243} \left(\frac{F_s}{D_h}\right)^{-0.474} (\tan(\theta))^{-0.217} N^{0.035}$$
(2.47)

$$F2 = -3.05\tan(\theta) \tag{2.48}$$

$$F3 = -0.192N (2.49)$$

$$F4 = -0.646 \tan(\theta)$$
 (2.50)

Re_{Dc}≥1000 iken,

$$f = 0.228 \left(Re_{D_c} \right)^{f_1} (\tan(\theta))^{f_2} \left(\frac{F_s}{P_l} \right)^{f_3} \left(\frac{P_l}{D_c} \right)^{f_4} \left(\frac{D_c}{D_h} \right)^{0.383} \left(\frac{P_l}{P_t} \right)^{-0.247}$$
(2.51)

$$f1 = -0.141 \left(\frac{F_{s}}{P_{l}}\right)^{0.0512} (\tan(\theta))^{-0.472} \times \left(\frac{P_{l}}{P_{t}}\right)^{0.35} \left(\frac{P_{t}}{D_{h}}\right)^{0.449 \tan(\theta)} N^{-0.049 + 0.237 \tan(\theta)}$$
(2.52)

$$f2 = -0.562 \left(\ln(Re_{D_c}) \right)^{-0.0923} N^{0.013}$$
(2.53)

$$f3 = 0.302 \left(Re_{D_c} \right)^{0.03} \left(\frac{P_t}{D_c} \right)^{0.026}$$
(2.54)

$$f4 = -0.306 + 3.63\tan(\theta) \tag{2.55}$$

2.1.5 Logaritmik Ortalama Sıcaklık Farkı

Isı değiştiricilerinde sıcak ve soğuk akışkanlar arasındaki sıcaklık farkı, ısı değiştiricisi boyunca değişir. Bu sebeple uygun bir sıcaklık farkı olarak logaritmik ortalama sıcaklık farkı tanımlanmıştır. Isı değiştiricilerinde ısı transferi aşağıdaki denklem ile ifade edilebilir.

$$\dot{Q} = UA\Delta T_{lm} \tag{2.56}$$

Burada ΔT_{Im} logaritmik ortalama sıcaklık farkı olup

$$\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$$
(2.57)

olarak ifade edilir. ΔT_1 ve ΔT_2 ısı değiştiricinin iki tarafında (giriş ve çıkış) akışkanlar arasındaki sıcaklık farkını gösterir. ΔT_{Im} logaritmik ortalama sıcaklık farkı bağıntısı, yalnız paralel akışlı ve karşıt akışlı ısı değiştiricilerle sınırlıdır. Farklı tipte ısı değiştiricilerde ΔT_{Im} 'nin kullanılabilmesi için bir F düzeltme faktörü ile çarpılması gerekir. Karşıt akışlı ısı değiştiriciler F=1 durumuna karşılık geldiğinden, çapraz akışlı ve çok geçişli ısı değiştiricileri için F birden küçüktür. Isı değiştiricinin tipine, akış şekline ve giriş çıkış sıcaklıklarına bağlı olarak F düzeltme faktörleri literatürde grafikler halinde sunulmuştur [26].

Sayısal çalışmalarda kullanmak üzere F düzeltme faktörlerinin belirli formüller ile verilebilmesi daha uygun olmaktadır. VDI Heat Atlas [42]'de çapraz akışlı ve çok geçişli ısı değiştiricileri için uygun formülasyonlar verilmiştir.

Burada ilk olarak tanımlanması gereken ifadeler aşağıda verilmiştir.

$$P_1 = \frac{T_{ir} - T_{or}}{T_{ir} - T_{ia}}$$
(2.58)

$$R_1 = \frac{C_r}{C_a} \tag{2.59}$$

$$C_{\rm r} = \dot{m_r} c_{\rm p_r} \tag{2.60}$$

$$C_a = \dot{m_a} c_{p_a} \tag{2.61}$$

İki sıra sayılı ve iki geçişli, ters çapraz akışlı ısı değiştiricileri için,

$$\frac{1}{1-P_1} = \frac{\delta}{2} + \left(1 - \frac{\delta}{2}\right)e^{\left(2\frac{\delta}{R_1}\right)}$$
(2.62)

$$\delta = 1 - e^{\left(-R_1 \frac{NTU_1}{2}\right)} \tag{2.63}$$

Üç sıra sayılı ve üç geçişli, ters çapraz akışlı ısı değiştiricileri için,

$$\frac{1}{1-P_1} = \left(1 - \frac{\delta}{2}\right)^2 e^{3\frac{\delta}{R_1}} + \left(\delta\left(1 - \frac{\delta}{4}\right) - \frac{\delta^2}{R_1}\left(1 - \frac{\delta}{2}\right)\right) e^{\frac{\delta}{R_1}}$$
(2.64)

$$\delta = 1 - e^{\left(-R_1 \frac{NTU_1}{3}\right)} \tag{2.65}$$

Dört sıra sayılı ve dört geçişli, ters çapraz akışlı ısı değiştiricileri için,

$$\frac{1}{1-P_1} = \frac{\delta}{2} \left(1 - \frac{\delta}{2} + \frac{\delta^2}{4} \right) + \delta \left(1 - \frac{\delta}{2} \right) \left(1 - 2\frac{\delta}{R_1} \left(1 - \frac{\delta}{2} \right) \right) e^{2\frac{\delta}{R_1}} + \left(1 - \frac{\delta}{2} \right)^3 e^{4\frac{\delta}{R_1}}$$
(2.66)

$$\delta = 1 - e^{-R_1 \frac{NTU_1}{4}} \tag{2.67}$$

olmaktadır. Spalding ve Taborek [43] sıra sayısının dört olduğu durumda bile karşıt akışlı ısı değiştiricisine çok yaklaşıldığı için daha yüksek sıra sayısına sahip kompakt ısı değiştiricilerinde N=4 için verilen formüllerin kullanılabileceğini belirtmiştir.

Verilen korelasyonlar kullanılarak NTU₁ değeri belirlenir. Buradan da aşağıda verilen formül ile F düzeltme katsayısı hesaplanabilir.

$$F = \frac{1}{\left(1 + aR_1^{db}NTU_1^b\right)^c}$$
(2.68)

a, b, c ve d katsayıları ters çapraz akışlı ısı değiştiricileri için, sıra sayısına bağlı olarak Çizelge 2.5'de verilmiştir [42].

		Sıra Sayısı		
	2	3	4	
а	0.0737	0.0332	0.0188	
b	1.970	2.010	2.010	
С	0.553	0.540	0.540	
d	0.640	0.640	0.650	

Çizelge 2. 5 Denklem (2.68)'de kullanılan a, b, c, d, katsayıları [42]

2.2 Evaporatör

Kurutucularda kullanılan evaporatörlerde, boru içerisinde öncelikle iki fazlı akış gerçekleşmektedir. Akış tipi de kuruluk derecesine göre değişmektedir. Ardından tek fazlı akışın gerçekleştiği aşırı kızdırma işlemi gerçekleşmektedir. Boru dış tarafından ise nemli hava geçmekte ve soğuyarak nemini bırakmaktadır. Bu sebeple hava tarafında hem ısı transferi hem de kütle transferi gerçekleşmektedir.

2.2.1 Boru İçi Isı Transferi

Cheng vd. [44], [45] yaptıkları çalışmada boru içerisinde iki fazlı CO₂ akışını incelemiş ve Cheng vd. [46], [47] akış haritasını temel alarak geliştirilmiş yeni bir akış haritası sunmuşlardır. Bu yeni haritada, halka akıştan kuru bölgeye ve kuru bölgeden sisli akışa geçiş için yeni ifadeler ortaya konulmuştur. Ek olarak, genellikle yüksek kütle akılarında ve düşük kuruluk derecelerinde gerçekleşen kabarcıklı kaynama bölgesi de yeni haritaya eklenmiştir. Akış haritası literatürdeki diğer haritalara kıyasla en geniş uygulama aralığına sahip olanı olup, sınırları aşağıda belirtildiği gibidir.

- Boru iç çapı : 0.6–10 mm,
- Kütle akısı : 50–1500 kg/m²s,
- Isı akısı : 1.8–46 kW/m²,
- Doyma sıcaklığı : -28 +25 °C.

Çalışmada akış dokuz farklı tipe ayrılmaktadır;

- 1. Katmanlı akış,
- 2. Darbeli/katmanlı-dalgalı akış,
- 3. Katmanlı-dalgalı akış,

- 4. Darbeli akış,
- 5. Kesikli akış,
- 6. Halka akış,
- 7. Kuruluk bölgesi,
- 8. Sisli akış,
- 9. Kabarcıklı akış.

[44] ve [45]'de ısı taşınım katsayısının ve basınç kaybının hesap metodolojisi de akış tiplerine bağlı olarak ortaya konulmuştur. Çalışmanın sonunda yeni akış haritalarını literatürdeki bağımsız deneysel verilerle karşılaştırmış ve sonuçların yüksek uyumluluk gösterdiğini belirtmişlerdir. Isı transferi kısmının doğrulaması için 13 bağımsız deneysel çalışmanın sonuçları olan ve toplam 1124 deneysel veriyi içeren bir veri tabanı seçilmiştir (Çizelge 2.6).

Hesaplamalarda dairesel olmayan kanallarda hidrolik çap yerine eşdeğer çap kullanılmıştır. Dairesel kanal için iç çap, eşdeğer çapa eşit olmaktadır.

$$D_{eq} = \sqrt{\frac{4A}{\pi}} \tag{2.69}$$

Bu metoda göre hesaplamalara başlarken öncelikle çeşitli boyutsuz parametrelerin belirlenmesi gerekmektedir [64], [65], [66]. Bu parametrelerin hesabında Şekil 2.2'den de görülebilen çeşitli fiziksel ölçülerden yararlanılmaktadır.

$$h_{LD} = \frac{h_L}{D_{eq}} \tag{2.70}$$

$$P_{LD} = \frac{P_L}{D_{eq}} \tag{2.71}$$

$$P_{VD} = \frac{P_V}{D_{eq}} \tag{2.72}$$

$$P_{iD} = \frac{P_i}{D_{eq}} \tag{2.73}$$

$$A_{LD} = \frac{A_L}{D_{eq}^2} \tag{2.74}$$

$$A_{VD} = \frac{A_V}{D_{eq}^2}$$
(2.75)

		Eşdeğer	Doyma	İndirgenmiş	Kütle			
Kaynak	Kanal Tipi ve	Çap	Sıcaklığı	Basınç	Akısı		Veri	Isıtma
κάγτιακ	Malzemesi	D_{eq}	T _{sat}	p _r	G	q [k]/(m ²]	Sayısı	Yöntemi
		[mm]	[°C]	[-]	[kg/m ² s]	[גייי/ווו]		
Knudsen	Tek dairesel							Yoğuşan
ve Jensen	boru, paslanmaz	10.06	-28	0.21	80	8	16	R22
[48]	celik		_			13	_	buharı ile
,								ısıtma
	Tek dairesel		_		170	10		
Yun vd.	boru, paslanmaz	6	5	0.54	240	15	53	Elektrikli
[49]	çelik		10	0.61	340	20		isitma
				0.47				
	Tok dairosal		0	0.47		12 E		
Yoon vd.	boru paslanmaz	7 5 2	10	0.54	218	16.4	127	Elektrikli
[50]		7.55	15	0.01	510	18.6	127	ısıtma
	ÇElik		20	0.09		10.0		
			20	0.70				
Koyama	Tek dairesel		0.26	0.47	250			Elektrikli
, vd. [51]	boru, paslanmaz	1.8	9.98	0.61	260	32.06	36	ısıtma
	çelik		10.88	0.62				
	25 dairesel		0	0.47	190	5		
Pettersen	kanalı olan çok	0.9	10	0.61	280	10	16	Elektrikli
[52]	kanallı,	0.8	20	0.78	380	15	40	ısıtma
	alüminyum		25	0.87	570	20		
	Dikdörtgen	1.52			200	10		
Yun vd.	şeklinde çok	1.74	5	0.54	300	15	56	Elektrikli
[53]	kanallı, malzeme	1.81			400	20		ısıtma
	belirtilmemiş							
					236			
Gao ve	Tek dairesel				390	10		
Honda	boru, paslanmaz	3	-7	0.39	393	20	150	Elektrikli
[54], [55]	çelik		10	0.61	590	20		ısıtma
					786			
					1179			

Çizelge 2. 6 Akış kaynamasında CO₂ ısı transferi veri tabanı [45]

Kaynak Tanaka vd. [56]	Kanal Tipi ve Malzemesi Tek dairesel boru, paslanmaz çelik	Eşdeğer Çap D _{eq} [mm] 1	Doyma Sıcaklığı T _{sat} [°C] 15	İndirgenmiş Basınç pr [-] 0.69	Kütle Akısı G [kg/m²s] 360	Isı Akısı q [kW/m ²] 9 18 36	Veri Sayısı 119	lsıtma Yöntemi Elektrikli ısıtma
Hihara [57]	Tek dairesel boru, paslanmaz çelik	1	15	0.69	720 1440	9 18 36	150	Elektrikli ısıtma
Shinmura vd. [58]	Dairesel çok kanallı, alüminyum	0.6	5.83	0.55	400	10 20	48	Sıcak su ile ısıtma
Zhao vd. [59], [60]	Üçgen şeklinde çok kanallı, alüminyum	1.15	10	0.61	300	11	11	Elektrikli ısıtma
Yun vd. [61], [62]	Tek dairesel kanal	0.98 2	5 10	0.54 0.61	1000 1500	7.2 7.3 15.9 16.2 20 26 26.5 30 36 46	224	Elektrikli ısıtma
Jeong vd. [63]	Dikdörtgen şeklinde çok kanallı, alüminyum	2.3	0 5 10	0.47 0.54 0.61	450 600 750	4 8 12	88	Elektrikli ısıtma

Çizelge 2. 6 Akış kaynamasında CO_2 ısı transferi veri tabanı [45] (Devam)

Şekil 2. 2 Yatay boru içinde iki fazlı katmanlı akışın şematik diyagramı [44]

Burada P_L ıslak çevre, P_V buharla temasta olan kuru çevre, A_L ve A_V sırasıyla sıvı ve buhar fazlarının kesit alanları, P_i faz ara yüzünün uzunluğu, h_L ise borunun alt tarafından başlayarak sıvı fazının yüksekliğidir.

Uygulamada pratiklik kazandırması ve akış haritası ile akış kaynaması ısı transfer modeli arasında tutarlılık sağlaması için Thome ve El Hajal [67] bir akış haritası geliştirmişlerdir. Rouhani ve Axelsson [68] tarafından ortaya konulan boşluk oranı ifadesi, Thome ve El Hajal [67] tarafından aynen korunmuş olup, Cheng vd. [44], [45] CO₂ için bu ifadeyi şu şekilde sunmuşlardır.

$$\varepsilon = \frac{x}{\rho_V} \left(\left(1 + 0.12(1-x) \right) \left(\frac{x}{\rho_V} + \frac{1-x}{\rho_L} \right) + \frac{1.18(1-x)\left(g\sigma\left(\rho_L - \rho_V\right)\right)^{\frac{1}{4}}}{G\rho_L^{\frac{1}{2}}} \right)^{-1}$$
(2.76)

Boşluk oranı ifadesi iki fazlı akışlarda basınç düşüşünün, ısı taşınım katsayısının ve akış tipinin belirlenmesinde temel teşkil edecek en önemli parametrelerden biridir. En genel şekilde buharın kapladığı kesit alanının toplam kesit alanına oranı ile ifade edilebilmektedir [69].

Böylelikle, daha önce belirlenmiş olan boyutsuz parametreler aşağıdaki şekilde ifade edilebilir:

$$A_{LD} = A \frac{1-\varepsilon}{D_{eq}^2}$$
(2.77)

$$A_{VD} = A \frac{\varepsilon}{D_{eq}^2}$$
(2.78)

$$h_{LD} = 0.5 \left(1 - \cos\left(\frac{2\pi - \theta_{str}}{2}\right) \right) \tag{2.79}$$

$$P_{iD} = \sin\left(\frac{2\pi - \theta_{str}}{2}\right) \tag{2.80}$$

Burada Şekil 2.2'deki θ_d ile aynı olan θ_{str} katman açısı Biberg [70] tarafından verilen aşağıdaki denklem ile hesaplanır.

$$\theta_{str} = 2\pi - 2\left(\pi(1-\varepsilon) + \left(3\frac{\pi}{2}\right)^{\frac{1}{3}} \left(1 - 2(1-\varepsilon) + (1-\varepsilon)^{\frac{1}{3}} - \varepsilon^{\frac{1}{3}}\right) - \frac{1}{200} \times (1-\varepsilon)\varepsilon \left(1 - 2(1-\varepsilon)\right)(1 + 4(1-\varepsilon)^{2} + \varepsilon^{2})\right)$$
(2.81)

Böylelikle katmalı-dalgalı akıştan kesikli/halka akışa geçiş sınırı Kattan vd. [64], [65], [66] tarafından önerilen (2.82) denklemi ile hesaplanabilir.

$$G_{w} = \left(\left(\frac{16A_{VD}^{3}gD_{eq}\rho_{L}\rho_{V}}{x^{2}\pi^{2}(1-(2h_{LD}-1)^{2})^{1/2}} \right) \left(\frac{\pi^{2}}{25h_{LD}^{2}} \left(\frac{Fr_{L}}{We_{L}} \right) + 1 \right) \right)^{1/2} + 50$$
(2.82)

(2.82) denklemindeki Fr_{L} sıvı Froude sayısı, We_{L} ise sıvı Weber sayısı olup aşağıdaki eşitlikler ile hesaplanmaktadır.

$$Fr_L = \frac{G^2}{\rho_L^2 g D_{eq}}$$
(2.83)

$$We_L = G^2 \frac{D_{eq}}{\rho_L \sigma} \tag{2.84}$$

Bu noktada katmanlı-dalgalı akış Wojtan vd. [71], [72]'nin kriterlerine göre kendi içerisinde üçe bölünmektedir. Eğer:

 $G > G_{W(x_{IA})}$ ise darbeli akış,

 $G_{str} < G < G_{w_{(x_{IA})}}$ ve $x < x_{IA}$ ise darbeli/katmanlı-dalgalı akış,

 $x \ge x_{IA}$ ise katmanlı-dalgalı akıştır.

Katmanlı akıştan katmanlı-dalgalı akışa geçiş sınırı Kattan vd. [64], [65], [66]'nın kriterlerine göre (2.85) denklemi ile hesaplanır.

$$G_{str} = \left(\frac{226.3^2 A_{LD} A_{VD}^2 \rho_V (\rho_L - \rho_V) \mu_L g}{x^2 (1 - x) \pi^3}\right)^{1/3}$$
(2.85)

 $x < x_{IA}$ için $G_{str} = G_{str(x_{IA})}$ alınmıştır [44], [45].

Kesikli akıştan halka akışa geçiş sınırı Cheng vd. [46], [47]'nin kriterlerine göre aşağıdaki gibi hesaplanır.

$$x_{IA} = \left(1.8^{1/0.875} \left(\frac{\rho_V}{\rho_L}\right)^{-1/1.75} \left(\frac{\mu_L}{\mu_V}\right)^{-1/7} + 1\right)^{-1}$$
(2.86)

Daha sonra belirlenen geçiş sınırı G_{str} ile kesişene kadar uzatılır.

Halka akıştan kuru bölgeye geçiş sınırı, Wojtan vd. [71]'in formülü revize edilerek CO₂ için aşağıdaki gibi verilir [44], [45].

$$G_{do} = \left(\frac{1}{0.236} \left(\ln\left(\frac{0.58}{x}\right) + 0.52\right) \left(\frac{D_{eq}}{\rho_V \sigma}\right)^{-0.17} \left(\frac{1}{g D_{eq} \rho_V (\rho_L - \rho_V)}\right)^{-0.17} \times \left(\frac{\rho_V}{\rho_L}\right)^{-0.25} \left(\frac{\dot{q}}{\dot{q}_{cr}}\right)^{-0.27} \right)^{1.471}$$
(2.87)

(2.87) denklemi kuru bölgenin başlangıç eşitliği olan (2.88)'den çekilmiştir.

$$x_{di} = 0.58 \,\mathrm{e} \left(0.52 - 0.236 W e_V^{0.17} F r_V^{0.17} \left(\frac{\rho_V}{\rho_L} \right)^{0.25} \left(\frac{\dot{q}}{\dot{q}_{cr}} \right)^{0.27} \right) \tag{2.88}$$

Bu eşitlik, CO₂ verileri kullanılarak elde edilen yeni ampirik parametrelerin haricinde Wojtan vd. [71]'in düşük basınçlı soğutkanlar için geliştirdiği akış haritasındakiyle aynıdır. Eşitliğin revize edilmesindeki amaç, yüksek basınçlar için önceki ifadenin dış değer bulmada hatalı olmasıdır. Buhar Weber sayısı We_V ve buhar Froude sayısı Fr_V Mori vd. [73] tarafından aşağıdaki gibi verilmiştir.

$$We_V = G^2 \frac{D_{eq}}{\rho_V \sigma} \tag{2.89}$$

$$Fr_{V} = \frac{G^{2}}{\rho_{V}(\rho_{L} - \rho_{V})gD_{eq}}$$
(2.90)

Kritik ıs akısı q_{cr} Kutateladze [74] korelasyonu ile hesaplanmıştır.

$$\dot{q}_{cr} = 0.131 \rho_V^{0.5} h_{LV} \left(g\sigma(\rho_L - \rho_V) \right)^{0.25}$$
(2.91)

Kuru bölgeden sisli akışa geçiş sınırı (2.92) denklemi ile verilmiştir [44], [45].

$$G_{M} = \left(\frac{1}{0.502} \left(\ln\left(\frac{0.61}{x}\right) + 0.57\right) \left(\frac{D_{eq}}{\rho_{V}\sigma}\right)^{-0.16} \left(\frac{1}{gD_{eq}\rho_{V}(\rho_{L}-\rho_{V})}\right)^{-0.15} \times \left(\frac{\rho_{V}}{\rho_{L}}\right)^{0.09} \left(\frac{\dot{q}}{\dot{q}_{cr}}\right)^{-0.72} \right)^{1.613}$$
(2.92)

(2.92) denklemi kuru bölgenin tamamlandığı kuruluk derecesini ifade eden x_{de} 'nin G_M için çözülmesiyle elde edilmiştir.

$$x_{de} = 0.61 \, \mathrm{e} \left(0.57 - 0.502 W e_V^{0.16} F r_V^{0.15} \left(\frac{\rho_V}{\rho_L} \right)^{-0.09} \left(\frac{\dot{q}}{\dot{q}_{cr}} \right)^{0.72} \right) \tag{2.93}$$

(2.93) denklemi de tıpkı (2.88) denklemi gibi Wojtan vd. [71]'in düşük basınçlı soğutkanlar için geliştirdiği akış haritasındakiyle aynıdır. Sadece bazı ampirik değerler yüksek basınçlar için CO₂ verilerine bağlı olarak revize edilmiştir. Buhar Weber sayısı We_v ve buhar Froude sayısı Fr_v (2.89) ve (2.90) denklemleri ile hesaplanır.

Kesikli akıştan, yüksek kütle akılarında ve düşük kuruluk derecelerinde gerçekleşen kabarcıklı akışa geçiş sınırı Kattan vd. [64], [65], [66] tarafından verilen (2.94) denklemi ile hesaplanır.

$$G_B = \left(\frac{256A_{VD}A_{LD}^2 D_{eq}^{1.25} \rho_L(\rho_L - \rho_V)g}{0.3164(1-x)^{1.75} \pi^2 P_{iD} \mu_L^{0.25}}\right)^{1/1.75}$$
(2.94)

Eğer $G > G_B$ ve $x < x_{IA}$ ise akış kabarcıklıdır.

Yüksek buhar kuruluk derecelerindeki geçişler için aşağıdaki koşullar uygulanmıştır.

Eğer
$$G_{str}(x) \ge G_{do}(x)$$
 ise, $G_{do}(x) = G_{str}(x)$,
Eğer $G_w(x) \ge G_{do}(x)$ ise, $G_w(x) = G_{do}(x)$,
Eğer $G_{do}(x) \ge G_M(x)$ ise, $G_{do}(x) = G_M(x)$

Yatay boru içerisinde yerel akış kaynaması ısı taşınım katsayısını hesaplamada Kattan vd. [64], [65], [66]'nın verdiği eşitlik temel alınmıştır.

$$h_{tp} = \frac{\theta_d h_V + (2\pi - \theta_d) h_{wt}}{2\pi} \tag{2.95}$$

 θ_d buhar ile temasta olan boru çevresini tanımlamakta kullanılır. Katmanlı akışta θ_d , katmanlılık açısı θ_{str} 'ye eşittir ve (2.81) denklemi ile hesaplanır. Halka akışta, kesikli akışta ve kabarcıklı akışta $\theta_d = 0$ 'dır. Katmanlı-dalgalı akışta θ_d , sıfırdan maksimum değeri olan θ_{str} 'ye kadar değişir. Bu sebepten katmanlı-dalgalı akış, θ_d 'yi belirleyebilmek için kendi içerisinde üçe bölünmüştür.

1- Darbeli akış için;

$$\theta_d = 0 \tag{2.96}$$

2- Katmanlı-dalgalı akış için;

$$\theta_d = \theta_{str} \left(\frac{G_w - G}{G_w - G_{str}} \right)^{0.61} \tag{2.97}$$

3- Darbeli/katmanlı-dalgalı akış için;

$$\theta_d = \theta_{str} \frac{x}{x_{IA}} \left(\frac{G_W - G}{G_W - G_{str}} \right)^{0.61}$$
(2.98)

Kuru çevredeki buhar fazı ısı taşınım katsayısı h_v , Dittus–Boelter [75] korelasyonu ile hesaplanır.

$$h_V = 0.023 R e_V^{0.8} \Pr_V^{0.4} \frac{k_V}{D_{eq}}$$
(2.99)

Buhar fazının Reynolds sayısı,

$$Re_V = Gx \frac{D_{eq}}{\mu_V \varepsilon}$$
(2.100)

denklemi ile hesaplanır.

Islak çevredeki ısı taşınım katsayısı h_{wt} çekirdek kaynaması ve konvektif kaynamanın bir araya getirilmesi ile hesaplanır.

$$h_{wt} = \{(Sh_{nb})^3 + h_{cb}^3\}^{\frac{1}{3}}$$
(2.101)

(2.101) denkleminde S, h_{nb} ve h_{cb} sırasıyla, çekirdek kaynaması ısı transferi baskılama faktörü, çekirdek kaynaması ısı taşınım katsayısı ve konvektif kaynama ısı taşınım katsayısıdır.

Çekirdek kaynaması ısı taşınım katsayısı h_{nb} Cheng vd. [46], [47]'de verilen ve Cooper [76]'nın korelasyonunun CO₂ için değiştirilmiş hali olan korelasyon ile hesaplanır.

$$h_{nb} = 131 p_r^{-0.0063} (-\log_{10} p_r)^{-0.55} M^{-0.5} \dot{q}^{0.58}$$
(2.102)

Cheng vd. [46], [47]'de CO₂ için çekirdek kaynaması ısı transferi baskılama faktörü S'yi, halka şeklindeki sıvı filminin incelmesinden dolayı, çekirdek kaynaması ısı transferinin payını azalmak için uygulamaktadır.

Eğer
$$x < x_{IA}$$
 ise,
 $S = 1$ (2.103)

Eğer $x \ge x_{IA}$ ise,

$$S = 1 - 1.14 \left(\frac{D_{eq}}{0.00753}\right)^2 \left(1 - \frac{\delta}{\delta_{IA}}\right)^{2.2}$$
(2.104)

ile bulunur. Ek olarak eğer D_{eq}>7.53mm ise D_{eq}=7.53mm olarak alınır.

Şekil 2.2'de de gösterilen sıvı filmi kalınlığı δ , El Hajal vd. [77]'nin (2.105) ifadesi ile hesaplanır.

$$\delta = \frac{D_{eq}}{2} - \sqrt{\left(\frac{D_{eq}}{2}\right)^2 - \left(\frac{2A_L}{2\pi - \theta_d}\right)}$$
(2.105)

Konvektif kaynama ısı taşınım katsayısı h_{cb} [66]'daki gibi hesaplanır.

$$h_{cb} = 0.0133 Re_{\delta}^{0.69} \Pr_{L}^{0.4} \frac{k_{L}}{\delta}$$
(2.106)

Sıvı filmi Reynolds sayısı Re_{δ} ,

$$Re_{\delta} = \frac{4G(1-x)\delta}{\mu_L(1-\varepsilon)}$$
(2.107)

ile hesaplanır.

Sisli akış için ısı taşınım katsayısı [44], [45]'de geliştirilen yeni korelasyon ile hesaplanır. Bu korelasyon Groeneveld'in [78] korelasyonunun CO₂'e ait deneysel verilere göre güncellenmesi ile elde edilmiştir.

$$h_M = 2 \times 10^{-8} R e_H^{1.97} \Pr_V^{1.06} Y^{-1.83} \frac{k_V}{D_{eq}}$$
(2.108)

Homojenize Reynolds sayısı ve Y düzeltme faktörü aşağıdaki gibi hesaplanır.

$$Re_{H} = G \frac{D_{eq}}{\mu_{V}} \left(x + \frac{\rho_{V}}{\rho_{L}} (1 - x) \right)$$
(2.109)

$$Y = 1 - 0.1 \left(\left(\frac{\rho_L}{\rho_V} - 1 \right) (1 - x) \right)^{0.4}$$
(2.110)

Kuru bölgede ısı taşınım katsayısın hesabı için Wojtan [72]'de verilen ifade kullanılmıştır.

$$h_{do} = h_{tp(x_{di})} - \frac{x - x_{di}}{x_{de} - x_{di}} \left(h_{tp(x_{di})} - h_{M(x_{de})} \right)$$
(2.111)

(2.111)'deki $h_{tp(x_{di})}$, kuru bölgenin başlangıç kuruluk derecesi olan x_{di} 'de (2.95) denklemi ile hesaplanan iki fazlı akış ısı taşınım katsayısıdır. $h_{M(x_{de})}$ ise, kuru bölgenin bitiş kuruluk derecesi olan x_{de} 'de (2.108) denklemi ile hesaplanan sisli akış ısı taşınım katsayısıdır.

[44] ve [45]'de bütünlüğün sağlanabilmesi için, modele kabarcıklı akış için de ısı transferi modeli eklenmiştir. Bu akış tipi için herhangi bir veri olmadığından, kabarcıklı akış için ısı taşınım katsayısının hesabı, kesikli akıştaki gibi yapılmıştır. Kabarcıklı akışta $\theta_{do} = 0$ 'dır.

Kızgın buhar bölgesindeki ısı transferi hesaplamaları, CO₂ tek fazda olacağı için gaz soğutucudaki gibi yapılabilmektedir [7].

2.2.2 Boru İçi Basınç Kaybı

2.2.2.1 Boru Boyunca Oluşan Basınç Kaybı

Cheng vd. [44], [45] yaptıkları çalışmanın devamı olarak, boru içerisindeki iki fazlı akışta sürtünmeye bağlı basınç kaybı için, Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in R22, R410a ve R134a soğutkanları için geliştirdikleri modeli, CO₂ için revize etmişlerdir. Bu aşamada beş bağımsız deneysel çalışmanın sonuçları olan ve 387 adet deneysel veriyi içeren bir veri tabanı kullanılmıştır (Çizelge 2.7). Sonuçta oluşturdukları yeni modeli de, güncelledikleri akış haritası ile birleştirmişlerdir.

Toplam basınç kaybı, statik basınç kaybının (yerçekimine bağlı basınç kaybı), momentum basınç kaybının (hızlanma basınç kaybı) ve sürtünme basınç kaybının toplamıdır.

$$\Delta p_t = \Delta p_{st} + \Delta p_m + \Delta p_f \tag{2.112}$$

Yatay borular için statik basınç kaybı sıfır olur [44]. Momentum basınç kaybı ise (2.113) ile hesaplanabilir.

$$\Delta p_m = G^2 \left(\left(\frac{(1-x)^2}{\rho_L (1-\varepsilon)} + \frac{x^2}{\rho_V \varepsilon} \right)_o - \left(\frac{(1-x)^2}{\rho_L (1-\varepsilon)} + \frac{x^2}{\rho_V \varepsilon} \right)_i \right)$$
(2.113)

Kızgın buhar bölgesindeki basınç kaybı hesaplamaları, CO₂ tek fazda olacağı için gaz soğutucudaki gibi yapılabilmektedir [7].

Kaynak	Kanal Tipi ve Malzemesi	Eşdeğer Çap D _{eq} [mm]	Doyma Sıcaklığı T _{sat} [°C]	İndirgenmiş Basınç p _r [-]	Kütle Akısı G [kg/m ² s]	lsı Akısı ġ [kW/m²]	Veri Sayısı	lsıtma Yöntemi
Bredesen vd. [82]	Tek dairesel boru, paslanmaz çelik	7	-25 -10 5	0.21 0.37 0.54	200 300 400	3 6 9	319	Elektrikli ısıtma
Pettersen [83]	25 dairesel kanalı olan çok kanallı, alüminyum	0.8	0 10 20	0.47 0.61 0.78	190 280 380	10	24	Su ile ısıtma
Pettersen ve VestbØstad [84]	25 dairesel kanalı olan çok kanallı, alüminyum	0.8	0 10 20	0.47 0.61 0.78	200 300 400	10	20	Su ile ısıtma
Zhao vd. [85], [86]	Üçgen şeklinde çok kanallı, paslanmaz çelik	1.15	10	0.61	300	11	9	Elektrikli ısıtma
Yun ve Kim [87], [88]	Dikdörtgen şeklinde çok kanallı	1.74	5	0.54	200 300 400	15	15	Elektrikli ısıtma

Çizelge 2. 7 Buharlaşmada CO₂ basınç kaybı veri tabanı [44]

Halka Akışta Sürtünme Basınç Kaybı

Temel denklem Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'de verilen basınç kaybı modelindeki ile aynıdır.

$$\Delta p_A = 4f_A \frac{L}{D_{eq}} \rho_V \frac{u_V^2}{2}$$
(2.114)

Ancak, halka akış için sürtünme faktörü f_A , CO_2 'in deneysel verilerine göre değiştirilmiştir [44].

$$f_A = 3.128 R e_V^{-0.454} W e_L^{-0.0308}$$
(2.115)

Buhar fazının ortalama hızı uv;

$$u_V = G \frac{x}{\rho_V \varepsilon} \tag{2.116}$$

ile hesaplanır. Boşluk oranı ε , (2.76) denklemi ile hesaplanır. Buhar fazının Reynolds sayısı Re_V ve ortalama sıvı fazı hızına (u_L) bağlı olarak sıvı fazının Weber sayısı We_L aşağıdaki gibi hesaplanır.

$$Re_V = Gx \frac{D_{eq}}{\mu_V \varepsilon}$$
(2.117)

$$We_L = \rho_L u_L^2 \frac{D_{eq}}{\sigma} \tag{2.118}$$

$$u_L = G \frac{1-x}{\rho_L(1-\varepsilon)} \tag{2.119}$$

Darbeli ve Kesikli Akışlarda Sürtünme Basınç Kaybı

[44]'de Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in verdiği model aşağıdaki gibi güncellenmiştir.

$$\Delta p_{SL+I} = \Delta p_{LO} \left(1 - \frac{\varepsilon}{\varepsilon_{IA}} \right) + \Delta p_A \left(\frac{\varepsilon}{\varepsilon_{IA}} \right)$$
(2.120)

 Δp_A (2.114) denklemi ile hesaplanmaktadır. Toplam sıvı-buhar iki fazlı akışını, tek faz (sıvı fazı) olarak hesaba katan Δp_{LO} (2.121) denklemi ile hesaplanmaktadır.

$$\Delta p_{LO} = 4 f_{LO} \frac{L}{D_{eq}} \frac{G^2}{2\rho_L}$$
(2.121)

Sürtünme faktörü Blasius eşitliği ile hesaplanır.

$$f_{LO} = \frac{0.079}{Re_{LO}^{0.25}} \tag{2.122}$$

Reynolds sayısı ise,

$$Re_{LO} = G \frac{D_{eq}}{\mu_L} \tag{2.123}$$

ile hesaplanır.

Katmanlı-Dalgalı Akışta Sürtünme Basınç Kaybı

[44]'de Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in basınç kaybı modelinde önerdiği eşitlik aynen korunmuş olup, katmanlı-dalgalı akış için sürtünme faktörü, CO₂ deneysel veri tabanına göre güncellenmiştir.

$$\Delta p_{SW} = 4 f_{SW} \frac{L}{D_{eq}} \rho_V \frac{u_V^2}{2}$$
(2.124)

$$f_{SW} = \theta_d^{*\,0.02} f_V + (1 - \theta_d^*)^{0.02} f_A \tag{2.125}$$

Boyutsuz kuruluk açısı θ_d^* ,

$$\theta_d^* = \frac{\theta_d}{2\pi} \tag{2.126}$$

olup θ_d Şekil 2.2'de gösterilmiştir. θ_d buhar ile temasta olan boru çevresini tanımlamakta kullanılır. Katmanlı-dalgalı akış için aşağıdaki eşitlik önerilmiştir.

$$\theta_d = \theta_{str} \left(\frac{G_w - G}{G_w - G_{str}} \right)^{0.61} \tag{2.127}$$

Buhar fazı için tek fazlı akışta sürtünme faktörü fv,

$$f_V = \frac{0.079}{Re_V^{0.25}} \tag{2.128}$$

olup buhar için Reynolds sayısı Rev (2.117) denklemi ile hesaplanır [44].

Darbeli/Katmanlı-Dalgalı Akışta Sürtünme Basınç Kaybı

Bu tür akış için Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in basınç kaybı modeli aşağıdaki gibi güncellenmiştir [44].

$$\Delta p_{SL+SW} = \Delta p_{LO} \left(1 - \frac{\varepsilon}{\varepsilon_{IA}} \right) + \Delta p_{SW} \left(\frac{\varepsilon}{\varepsilon_{IA}} \right)$$
(2.129)

 $\varDelta p_{LO}$ ve $\varDelta p_{SW}$ sırasıyla (2.121) ve (2.124) denklemleri kullanılarak hesaplanır.

Sisli Akışta Sürtünme Basınç Kaybı

[44]'de Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in basınç kaybı modelindeki (2.130) denklemi aynen korunmuştur.

$$\Delta p_M = 4 f_M \frac{L}{D_{eq}} \frac{G^2}{2\rho_H}$$
(2.130)

Homojenize yoğunluk ρ_H,

$$\rho_H = \rho_L (1 - \varepsilon_H) + \rho_V \varepsilon_H \tag{2.131}$$

ile hesaplanır. Homojenize boşluk oranı ε_H ise,

$$\varepsilon_H = \left(1 + \frac{1 - x}{x} \frac{\rho_V}{\rho_L}\right)^{-1} \tag{2.132}$$

ile hesaplanır. Sisli akış için sürtünme faktörü f_M , CO₂ veri tabanına göre güncellendiğinde, (2.133) denklemi ile bulunmuştur.

$$f_M = \frac{91.2}{Re_M^{0.832}} \tag{2.133}$$

Burada Reynolds sayısı,

$$Re_M = G \frac{D_{eq}}{\mu_H} \tag{2.134}$$

ile hesaplanır. Homojenize dinamik viskozite Ciccitti vd. [89]'un eşitliği kullanılarak hesaplanmıştır.

$$\mu_H = \mu_L (1 - x) + \mu_V x \tag{2.135}$$

Kuru Bölgedeki Akışta Sürtünme Basınç Kaybı

Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in basınç kaybı modelindeki lineer interpolasyon ifadesi [44]'de aynen korunmuştur.

$$\Delta p_{do} = \Delta p_{tp(x_{di})} - \frac{x - x_{di}}{x_{de} - x_{di}} \left(\Delta p_{tp(x_{di})} - \Delta p_{M(x_{de})} \right)$$
(2.136)

 $\Delta p_{tp(x_{di})}$ kuru bölgenin başlangıç kuruluk derecesi olan x_{di}'deki sürtünme basınç kaybı olup halka akıştaki (2.114) denklemi ile hesaplanır. $\Delta p_{M(x_{de})}$ ise kuru bölgenin bitiş kuruluk derecesi olan x_{de}'deki sürtünme basınç kaybı olup (2.130) denklemi ile hesaplanır. x_{di} ve x_{de} değerleri de sırasıyla (2.88) ve (2.93) denklemleri ile hesaplanır.

Katmanlı Akışta Sürtünme Basınç Kaybı

[44]'de kullanılan deneysel veri tabanında yer alan verilerin hiçbiri bu akış rejiminde değildir. Buna rağmen, analizde bütünlüğü sağlamak için Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in basınç kaybı modeli aynen alınmıştır. $x \ge x_{IA}$ için,

$$\Delta p_{str(x \ge x_{IA})} = 4 f_{str(x \ge x_{IA})} \frac{L}{D_{eq}} \rho_V \frac{u_V^2}{2}$$
(2.137)

Buhar fazının ortalama hızı u_v (2.116) denklemi ile hesaplanır. Katmanlı akış için sürtünme faktörü $f_{str(x \ge x_{IA})}$,

$$f_{str(x \ge x_{IA})} = \theta_{str}^* f_V + (1 - \theta_{str}^*) f_A$$
(2.138)

ile hesaplanır. Buhar fazının tek fazlı sürtünme faktörü f_v ve halka akış için iki fazlı sürtünme faktörü sırasıyla (2.128) ve (2.115) denklemleri ile hesaplanır. Boyutsuz katmanlılık açısı θ_{str}^* ,

$$\theta_{str}^* = \frac{\theta_{str}}{2\pi} \tag{2.139}$$

ile hesaplanır. Katmanlılık açısı θ_{str} (2.81) denklemi ile hesaplanır.

$$x < x_{IA}$$
 için,

$$\Delta p_{str(x < x_{IA})} = \Delta p_{LO} \left(1 - \frac{\varepsilon}{\varepsilon_{IA}} \right) + \Delta p_{str(x \ge x_{IA})} \left(\frac{\varepsilon}{\varepsilon_{IA}} \right)$$
(2.140)

ile hesaplanır. Burada Δp_{LO} ve $\Delta p_{str(x \ge x_{IA})}$ sırasıyla (2.121) ve (2.137) denklemleri ile hesaplanır.

Kabarcıklı Akışta Sürtünme Basınç Kaybı

[44]'de kullanılan deneysel veri tabanında bu akış rejimi için veri yoktur. Moreno Quibén vd. [79], [80] ve Moreno Quibén [81]'in basınç kaybı modelinde de bu rejim için ifade bulunmamaktadır. Bunlara rağmen bütünlüğü sağlamak ve komşu akış rejimleriyle ani bir yükseliş olmadan tutarlı bir sürtünme faktörü bulabilmek için aşağıdaki ifade kullanılmıştır [44].

$$\Delta p_B = \Delta p_{LO} \left(1 - \frac{\varepsilon}{\varepsilon_{IA}} \right) + \Delta p_A \left(\frac{\varepsilon}{\varepsilon_{IA}} \right)$$
(2.141)

Burada Δp_{LO} ve Δp_A sırasıyla (2.121) ve (2.114) denklemleri ile hesaplanır.

2.2.2.2 Dirseklerde Oluşan Basınç Kaybı

İki faz çarpanı kullanılarak dirseklerdeki iki fazlı akışın basınç kaybını hesaplayabilmek için, göz önüne alınan fazın tek fazlı akıştaki basınç kaybını belirlemek gerekmektedir.

Dirseklerde tek fazlı akışta oluşan basınç kaybını belirlemenin bir yolu, dirseği aynı çaptaki, ancak eşdeğer bir uzunluktaki düz bir boru ile kıyaslamaktır [42]. Şekil 2.3'e göre eşdeğer uzunluk, dirseğin dönüş yarıçapının boru çapına oranına bağlıdır. Şekil 2.3'de verilen grafik 90°C dirsekler için geçerlidir.

90° dirseklerde iki faz çarpanını bulmak için Chistolm [91]'in B tipi denklemini kullanmak uygun olmaktadır [42]. İki faz çarpanı kullanılarak, sıvı akışının basınç düşüşüne bağlı olarak iki fazlı akışın basınç düşüşü:

$$\Delta p_{tp} = \Delta p_L \varphi_L^2 \tag{2.142}$$

ile bulunur. Δp_{L} ve ϕ_{L}^{2} aşağıdaki gibi hesaplanır.

Şekil 2. 3 Dönüş açısı 90° olan bir dirsek ile aynı basınç kaybını veren eşdeğer uzunluk/boru çapı oranı [90]

$$\Delta p_L = \frac{\xi}{2\rho_L} \left(\frac{x}{d}\right) \left(\frac{m_r}{\frac{\pi d^2}{4}}\right)^2 \tag{2.143}$$

$$\Phi_L^2 = 1 + \left(\frac{\rho_L}{\rho_V} - 1\right) \left[Bx_r(1 - x_r) + x_r^2\right]$$
(2.144)

m_r ve x_r sırasıyla akışkanın toplam debisi ve kuruluk derecesidir. B;

$$B = 1 + \frac{2.2}{\xi(\frac{x}{d})(2 + \frac{r}{d})}$$
(2.145)

ile hesaplanır. 180° dirsekler için,

$$B|_{180} = 0.5(1+B|_{90}) \tag{2.146}$$

denklemi ile geçiş yapılabilir [91].

2.2.3 Hava Tarafı Isı Transferi

Pirompugd vd. [92] yaptıkları çalışmada dalgalı kanatlı-borulu ısı değiştiricilerinde, ıslak yüzey şartlarında eş zamanlı ısı ve kütle transferini incelemişlerdir. Çalışmalarında ısı değiştiricisini küçük segmentlere ayırmış ve her bir segmentin yüzeyinin ıslaklık durumunu ayrı ayrı ele almışlardır. Toplam 18 adet farklı geometriye sahip ısı değiştiricisini test etmişlerdir. Bu ısı değiştiricilerinin özellikleri Çizelge 2.8'de verilmiştir.

No	F _p [mm]	F _s [mm]	$\delta_{\rm f}$ [mm]	D _c [mm]	P _t [mm]	P _I [mm]	P _d [mm]	X _f [mm]	Ν
1	1.6	1.48	0.12	10.38	25.4	19.05	1.18	4.7625	1
2	1.64	1.52	0.12	8.62	25.4	19.05	1.58	4.7625	1
3	2.82	2.7	0.12	10.38	25.4	19.05	1.18	4.7625	1
4	2.92	2.8	0.12	8.62	25.4	19.05	1.58	4.7625	1
5	3.54	3.42	0.12	8.62	25.4	19.05	1.58	4.7625	1
6	3.63	3.51	0.12	8.62	25.4	25.4	1.68	6.35	1
7	1.69	1.57	0.12	8.62	25.4	19.05	1.18	4.7625	2
8	1.71	1.59	0.12	8.62	25.4	19.05	1.58	4.7625	2
9	3.12	3.00	0.12	8.62	25.4	19.05	1.58	4.7625	2
10	3.17	3.05	0.12	8.62	25.4	19.05	1.18	4.7625	2
11	1.64	1.52	0.12	8.62	25.4	19.05	1.58	4.7625	4
12	1.7	1.58	0.12	8.62	25.4	19.05	1.18	4.7625	4
13	3.07	2.95	0.12	8.62	25.4	19.05	1.58	4.7625	4
14	3.14	3.02	0.12	8.62	25.4	19.05	1.18	4.7625	4
15	1.57	1.45	0.12	10.38	25.4	19.05	1.18	4.7625	6
16	1.65	1.53	0.12	8.62	25.4	19.05	1.58	4.7625	6
17	2.82	2.7	0.12	10.38	25.4	19.05	1.18	4.7625	6
18	3.06	2.94	0.12	8.62	25.4	19.05	1.58	4.7625	6

Çizelge 2. 8 Test edilen ısı değiştiricilerinin geometrik özellikleri [92]

Deney şartları aşağıda verildiği gibidir [92].

- Havanın kuru termometre sıcaklığı : 27±0.5 °C
- Giriş havasının bağıl nemi : %50–90
- Giriş havasının hızı : 0.3–4.5 m/s
- Boru içerisindeki suyun giriş sıcaklığı : 7±0.5 °C
- Boru içerisindeki suyun hızı : 1.5~1.7 m/s

Eş zamanlı ısı ve kütle transferinin gerçekleştiği durumda entalpi potansiyeli esaslı toplam ısı transfer katsayısı (2.147) denkleminden bulunur.

$$\dot{Q} = UA_o \Delta h_m F \tag{2.147}$$

 Δh_m ortalama entalpi farkı olup, çapraz akışlı ısı değiştirici için:

$$\Delta h_m = h_{a,m} - h_{s,r,m} \tag{2.148}$$

ile hesaplanır. Bump [93] ve Myers [94]'e göre çapraz akışlı ısı değiştirici için ortalama entalpi:

$$h_{a,m} = h_{a,i} + \frac{h_{a,i} - h_{a,o}}{\ln\left(\frac{h_{a,i} - h_{s,r,o}}{h_{a,o} - h_{s,r,i}}\right)} - \frac{(h_{a,i} - h_{a,o})(h_{a,i} - h_{s,r,o})}{(h_{a,i} - h_{s,r,o}) - (h_{a,o} - h_{s,r,i})}$$
(2.149)

$$h_{s,r,m} = h_{s,r,o} + \frac{h_{s,r,o} - h_{s,r,i}}{\ln\left(\frac{h_{a,i} - h_{s,r,o}}{h_{a,o} - h_{s,r,i}}\right)} - \frac{(h_{s,r,o} - h_{s,r,i})(h_{a,i} - h_{s,r,o})}{(h_{a,i} - h_{s,r,o}) - (h_{a,o} - h_{s,r,i})}$$
(2.150)

denklemleri kullanılarak hesaplanır.

Düzeltme faktörü olan F, bir akışkanın karıştığı, diğer akışkanın karışmadığı, tek geçişli, çapraz akışlı ısı değiştiricisi için Kuehn [95]'den alınmıştır. Isıl dirençlere bağlı olarak toplam ısı transfer katsayısı:

$$U = \frac{1}{\frac{b_{r}A_{o}}{h_{r}Ai} + \frac{b_{p}A_{o}\ln\left(\frac{D_{c}}{D_{i}}\right)}{2\pi k_{t}L} + \frac{b_{w,m}(1-\eta_{f})}{h_{o,w}\left(\frac{Ab}{Af} + \eta_{f}\right)} + \frac{b_{w,m}}{h_{o,w}}}$$
(2.151)

olup, h_{o,w}:

$$h_{o,w} = \frac{1}{\frac{C_{p,a}}{b_{w,m}h_{c,o}} + \frac{y_w}{k_w}}$$
(2.152)

ile hesaplanmaktadır. [95]. Su filmi kalınlığı olan y_w sabit olarak 0.127mm alınabilir [96]. (2.151) denklemindeki entalpi–sıcaklık oranları olan b_r ve b_p aşağıdaki gibi hesaplanır [92].

$$b_r = \frac{h_{s,p,i,m} - h_{s,r,m}}{T_{w,i} - T_{b,r}}$$
(2.153)

$$b_p = \frac{h_{s,p,o,m} - h_{s,p,i,m}}{T_{w,o} - T_{w,i}}$$
(2.154)

b_{w,m}; doymuş havanın entalpi değişim eğrisinin ortalama su filmi sıcaklığındaki değeridir [95]. Ortalama su filmi sıcaklığındaki doymuş havanın entalpisi:

$$h_{s,w,m} = h_{a,i} - \frac{c_{p,a}h_{o,w}\eta_f}{b_{w,m}h_{c,o}} \left(1 - \frac{b_r UA}{h_r Ai}\right) \left(h_{a,i} - h_{s,r,m}\right)$$
(2.155)

denklemi ile hesaplanır [95].

Sabit kesit alanlı, L uzunluğundaki bir kanat için kanat üzerindeki sıcaklık dağılımı, kanat ucundan taşınımla ısı transferi şartı uygulandığında:

$$T(x) = \frac{\cosh(m(L-x)) + \left(\frac{h}{mk_f}\right) \sinh(m(L-x))}{\cosh(mL) + \left(\frac{h}{mk_f}\right) \sinh(mL)} \left(T_{w,o} - T_{b,a}\right) + T_{b,a}$$
(2.156)

genel denklemi ile bulunabilir [13]. (2.156) denklemindeki m ve h, ıslak yüzeyler için sırasıyla m_{o,w} ve h_{o,w}, kuru yüzeyler içinse sırasıyla m_{c,o} ve h_{c,o} değerlerini alır. Böylelikle,

$$m_{o,w} = \sqrt{\frac{2h_{o,w}}{k_f y}}$$
 (2.157)

$$m_{c,o} = \sqrt{\frac{2h_{c,o}}{k_f y}}$$
 (2.158)

denklemleri yazılabilir [92].

Kanatlı-borulu çapraz akışlı ısı değiştiricilerinde, kanat boyu olan L'yi doğrudan belirtmek mümkün değildir. Çünkü tüm borular bir levha içerisine girmektedir. Bu boyu belirleyebilmek için, borunun içine girdiği levhayı sanal parçalara ayırmak uygun bir yaklaşımdır (Şekil 2.4). Hesaplamalarda bu parçaların eşdeğeri olan daireler göz önüne alınabilir [92].

Şekil 2. 4 (a) Isı değiştiricisinin küçük segmentlere ayırılması, (b) Eşdeğer çap hesabı [92]

Kanat ucu sıcaklığına T_t, segmentteki havanın ortalama çiğ noktası sıcaklığına T_{dp}, borunun dış yüzey sıcaklığına da T_{w,o} denilecek olursa segmentin dış yüzeyinin ıslaklık durumu aşağıdaki gibi belirlenir.

Eğer;

Tt < Tdp ise Islak yüzey,

 $T_{w,o} > T_{dp}$ ise kuru yüzey şartları geçerlidir.

(2.151) ve (2.155) denklemlerindeki η_f , dairesel kanatlarda ıslak yüzeyler için:

$$\eta_f = \frac{2r_i}{m_{o,w}(r_o^2 - r_i^2)} \left[\frac{K_1(m_{o,w}r_i)I_1(m_{o,w}r_o) - K_1(m_{o,w}r_o)I_1(m_{o,w}r_i)}{K_1(m_{o,w}r_o)I_0(m_{o,w}r_i) + K_0(m_{o,w}r_i)I_1(m_{o,w}r_o)} \right]$$
(2.159)

ile hesaplanır [97]. Buradaki I₀ ve K₀ sırasıyla birinci ve ikinci türden düzeltilmiş sıfırıncı mertebe Bessel fonksiyonlarıdır. I₁ ve K₁ ise, sırasıyla birinci ve ikinci türden düzeltilmiş birinci mertebe Bessel fonksiyonlarıdır. Kuru yüzeyler için n_f dairesel kanatlarda:

$$\eta_f = \frac{2r_i}{m_{c,o}(r_o^2 - r_i^2)} \left[\frac{K_1(m_{c,o}r_i)I_1(m_{c,o}r_o) - K_1(m_{c,o}r_o)I_1(m_{c,o}r_i)}{K_1(m_{c,o}r_o)I_0(m_{c,o}r_i) + K_0(m_{c,o}r_i)I_1(m_{c,o}r_o)} \right]$$
(2.160)

denklemi ile bulunur [98].

Pirompugd vd. [92] çalışmalarının sonunda ıslak yüzey şartlarında ısı transferini belirleyebilmek için aşağıdaki korelasyonu önermişlerdir.

$$j_h = 6.6412 \left(\frac{P_l}{D_c}\right)^{-0.00085} \left(\frac{P_t}{D_c}\right)^{-2.1461} Re_{D_c}^{-0.2636\frac{F_s}{D_c} - 0.00091\frac{P_l}{D_c} + 0.1558\frac{P_t}{D_c} - 0.8865}$$
(2.161)

Verilen bu korelasyon N=1 ve 300<Re_{Dc}<5000 aralığında geçerlidir ve deneysel verilerin %95.63'ünü %15 sapma aralığının içerisinde tespit edebilmiştir. Chilton-Colburn benzeşimi ile,

$$j_h = \frac{h_{c,o}}{G_{a,maks}C_{p,a}} P_r^{2/3}$$
(2.162)

ile ifade edilir.

2.2.4 Hava Tarafı Kütle Transferi

Evaporatörün hava tarafında ısı ve kütle transferi eş zamanlı olarak gerçekleşmektedir. Evaporatörün hava ile temas eden yüzeylerinin sıcaklığı, havanın çiğ noktası sıcaklığının altında olduğu zaman havadaki su buharı yoğuşmaktadır. Böylelikle,

$$\dot{Q}_{a} = \dot{m}_{a} [(h_{a,i} - h_{a,o}) - (\omega_{i} - \omega_{o}) h_{f}]$$
(2.163)

eşitliği yazılabilir. hf doymuş suyun entalpisidir. Kütle dengesi için ise,

$$\dot{m}_a(\omega_i - \omega_o) = h_m \eta_s A_o \left(\omega_{ort} - \omega_{w,m} \right)$$
(2.164)

yazılabilir. Yüzey verimi η_s (2.6) ile hesaplanır. Su filmi kalınlığının boru ve kanat üzerinde eşit olarak dağıldığı varsayılabilir [7]. Pirompugd vd. [92] eş zamanlı ısı ve kütle transferini inceledikleri ve bir önceki bölümde ayrıntıları verilen çalışmalarında dalgalı kanatlı-borulu ısı değiştiricilerinde hava tarafında gerçekleşen kütle transferi için aşağıdaki korelasyonu önermişlerdir:

$$j_m = 1.00006 \left(\frac{P_l}{D_c}\right)^{-1.6741} \left(\frac{P_t}{D_c}\right)^{-0.6715} Re_{D_c}^{-0.4252\frac{F_s}{D_c} + 0.1398\frac{P_l}{D_c} + 0.1408\frac{P_t}{D_c} - 0.8472}$$
(2.165)

Bu korelasyon, N=1 ve 300<Re_{Dc}<5000 aralığında geçerli olup deneysel verilerin %95.14'ünü %20 sapma aralığının içerisinde tespit edebilmiştir [92]. Chilton-Colburn benzeşimi ile,

$$j_m = \frac{h_m}{G_{a,maks}} S c_{AB}^{2/3}$$
(2.166)

yazılabilir. Sc_{AB} hava-su buharı için Schmidt Sayısı olup,

$$Sc_{AB} = \frac{v_a}{D_{AB}}$$
(2.167)

denklemi ile hesaplanır. Burada D_{AB} havada su buharının yayınım katsayısı olup Marrero ve Mason [99] eşitliği kullanılarak hesaplanabilir.

$$D_{AB} = 1.87 \times 10^{-10} \frac{T^{2.072}}{P}$$
(2.168)

(2.168) denkleminde P, atm birimli basınç; T ise K birimli sıcaklıktır ve bu eşitlik 280K<T<450K iken geçerlidir.

2.2.5 Hava Tarafı Basınç Kaybı

Wang vd. [100] dalgalı kanatlı-borulu ısı değiştiricilerinde, nem alma şartlarında ısı transferi ve basınç düşüşü üzerine çalışmışlardır. Geometrik özellikleri Çizelge 2.9'da verilen 18 adet ısı değiştiricisini test etmişlerdir.

Deney şartları aşağıda verildiği gibidir [100].

•	Havanın kuru termometre sıcaklığı	: 27±0.5 °C
•	Giriş havasının bağıl nemi	: %50–90
•	Giriş havasının hızı	: 0.3–3.5 m/s
•	Boru içerisindeki suyun giriş sıcaklığı	: 7±1 °C
•	Boru içerisindeki suyun hızı	: 1.5~2.0 m/s

No	F _p [mm]	$\delta_{ m f}$ [mm]	D _c [mm]	P _t [mm]	P _I [mm]	P _d [mm]	Ν
1	2.85	0.12	10.38	25.4	19.05	1.18	1
2	2.95	0.12	8.62	25.4	19.05	1.58	1
3	1.65	0.12	8.62	25.4	19.05	1.58	1
4	3.58	0.12	8.62	25.4	19.05	1.58	1
5	1.62	0.12	10.38	25.4	19.05	1.18	1
6	3.66	0.12	8.62	25.4	25.4	1.68	1
7	1.70	0.12	8.62	25.4	19.05	1.18	2
8	1.69	0.12	8.62	25.4	19.05	1.58	2
9	3.09	0.12	8.62	25.4	19.05	1.18	2
10	3.17	0.12	8.62	25.4	19.05	1.58	2
11	1.65	0.12	8.62	25.4	19.05	1.18	4
12	1.70	0.12	8.62	25.4	19.05	1.58	4
13	3.11	0.12	8.62	25.4	19.05	1.18	4
14	3.14	0.12	8.62	25.4	19.05	1.58	4
15	2.85	0.12	10.38	25.4	19.05	1.18	6
16	3.09	0.12	8.62	25.4	19.05	1.58	6
17	1.59	0.12	10.38	25.4	19.05	1.18	6
18	1.67	0.12	8.62	25.4	19.05	1.58	6

Çizelge 2. 9 Test edilen ısı değiştiricilerinin geometrik özellikleri [100]

Wang vd. [100]'de sürtünme faktörünün bulunması için aşağıdaki korelasyonu önermişlerdir.

$$f = 0.149001Re_{D_c}^{f_1} \left(\frac{P_t}{P_l}\right)^{f_2} N^{f_3} \ln\left(3.1 - \frac{Pd}{X_f}\right)^{f_4} \left(\frac{F_p}{D_c}\right)^{f_5} \left(2\frac{\Gamma}{\mu}\right)^{0.0769}$$
(2.169)

(2.169) denklemindeki f1, f2, f3, f4 ve f5 katsayıları aşağıdaki gibi verilmiştir.

$$f1 = -0.067 + {\binom{P_d}{F_s}} {\binom{1.35}{\ln(Re_{D_c})}} - 0.15 {\binom{N}{\ln(Re_{D_c})}} + 0.0153 {\binom{F_s}{D_c}}$$
(2.170)

$$f2 = 2.981 - 0.082 \ln(Re_{D_c}) + \frac{0.127N}{4.605 - \ln(Re_{D_c})}$$
(2.171)

$$f3 = 0.53 - 0.0491 \ln(Re_{D_c}) \tag{2.172}$$

$$f4 = 11.91 \left(\frac{N}{\ln(Re_{D_c})}\right)^{0.7}$$
(2.173)

$$f5 = -1.32 + 0.287 \ln(Re_{D_c})$$
(2.174)

Γ, birim uzunluktaki boru üzerinden geçen havanın kütlesel debisidir.

Hava tarafındaki toplam basınç kaybı (2.41) denklemi ile bulunur.

2.3 Kompresör

Isı pompası sistemlerinde akışkanın basıncını artırmaya yarayan kompresördeki akışkan debisi;

$$\dot{m}_r = \rho_i \eta_v V_s \frac{N}{60}$$
(2.175)

denklemi ile hesaplanır. Kompresörün volümetrik verimi olan η_v ve izentropik verimi olan η_{is} ise;

$$\eta_{\nu} = 0.9207 - 0.0756 \left(\frac{P_o}{P_i}\right) + 0.0018 \left(\frac{P_o}{P_i}\right)^2$$
(2.176)

$$\eta_{is} = -0.26 + 0.7952 \left(\frac{P_o}{P_i}\right) - 0.2803 \left(\frac{P_o}{P_i}\right)^2 + 0.0414 \left(\frac{P_o}{P_i}\right)^3 - 0.0022 \left(\frac{P_o}{P_i}\right)^4$$
(2.177)

denklemleri ile hesaplanır [101]. Kompresör gücü;

$$W_c = \dot{m}_r (h_o - h_i)$$
 (2.178)

ile hesaplanır.

2.4 Tambur

Kurutucunun tamburunda, girişten çıkışa kadar havanın bağıl nemi ve mutlak nemi artmakta, böylece çamaşırdaki nem, havaya transfer olmaktadır. Bu proses esnasında hava, sabit yaş termometre sıcaklığı doğrusu üzerinde hareket etmekte ve tambur verimine bağlı olarak doyma sıcaklığına yaklaşmaktadır. Bu durumda tambur verimi;

$$\eta_t = \frac{T_i - T_o}{T_i - T_s} = \frac{\omega_o - \omega_i}{\omega_s - \omega_i} \tag{2.179}$$

ile sıcaklıklar ve mutlak nemler cinsinden ifade edilebilir [102].

Tambur içerisine gönderilen sıcak havanın bir kısmı sızıntı şeklinde tambur dışına çıkmaktadır. Çıkan bu havanın yerine de ortam havası girmektedir. Böylelikle tambur içerisindeki sıcak hava ile tambur içine giren ortam havası bir karışım oluşturmaktadır. Bu karışımdaki ortam havasının miktarı kurutucunun fiziksel özelliklerine bağlı olarak belirlenen bir kaçak oranı ile ifade edilir.

Tambur içerisinden geçen havanın basınç kaybı;

$$\Delta p = \text{SDS}\,\rho\,V^2\tag{2.180}$$

ile bulunur [2]. Burada SDS, deneysel olarak belirlenen sistem direnç sabitidir ve tamburun hava akışına gösterdiği direnci ifade eder. Birimi m⁻⁴/dür.

2.5 Fan

Kurutucunun hava tarafında sirkülasyonu sağlamak amacıyla fan kullanılmaktadır. Bu fanın yenmesi gereken toplam basınç kaybı;

$$\Delta p_f = \Delta p_{eva} + \Delta p_{gs} + \Delta p_t + \Delta p_{fl} \tag{2.181}$$

ile belirlenir. Buradaki basınç kayıpları sırasıyla, evaporatör, gaz soğutucu, tambur ve filtrede gerçekleşen kayıplarıdır.

Bu basınç kaybını yenmesi gereken fanın gücü;

$$\dot{W}_f = \frac{1}{\eta_f} \frac{\dot{m}_a}{\rho} \Delta p_f \times 100 \tag{2.182}$$

ile bulunur [7]. Bu güç, duyulur ısı olarak fandan geçen havaya transfer edilmektedir. Böylelikle;

$$\dot{W}_f = \dot{m}_a (h_o - h_i)$$
 (2.183)

yazılabilir.

BÖLÜM 3

MODELLEME

3.1 Isı Pompalı Kurutma Sistemi

Modellenen ısı pompalı çamaşır kurutucusunun elemanlarının yerleşimi ve proses akış şeması Şekil 3.1'de görülmektedir.

Şekil 3. 1 Isı pompalı çamaşır kurutucusunun proses akış şeması

Sistemin hava tarafının psikrometrik diyagram üzerinde gösterimi Şekil 3.2'de, CO₂ tarafının P-h diyagramında gösterimi ise Şekil 3.3'de verilmiştir.

Kuru Termometre Sıcaklığı

Şekil 3. 2 Hava tarafının psikrometrik diyagram üzerinde gösterimi

Şekil 3. 3 CO₂ tarafının P-h diyagramı üzerinde gösterimi

A1 noktasında tambura giren hava, nemli çamaşırların üzerinden geçerken çamaşırların nemini almakta ve A2' noktasına yaklaşmaktadır. Bir miktar havanın dışarı kaçması sebebiyle, kaçan havanın yerini dış ortam havası almaktadır. Böylece dış ortam ile oluşan karışım havası A2 noktasında tamburdan ayrılmaktadır. A2'de evaporatöre giren hava, çiğ noktası sıcaklığının altında bir değere kadar soğutulmakta ve nemini bırakarak A3 noktasında evaporatörden çıkmaktadır. Ardından gaz soğutucusuna giren hava duyulur olarak ısıtılmakta ve A4 noktasında gaz soğutucudan ayrılmaktadır. Daha sonra fandan geçen hava, fan ısısını almakta ve sıcaklığı bir miktar daha artarak A1 noktasına gelmektedir.

C1 noktasında kompresöre giren CO₂, C2 noktasında kompresörden ayrılmaktadır. Ardından gaz soğutucusuna giren CO₂, havaya ısı vererek soğumaktadır. Bu sırada basıncı da düşen CO₂, C3 noktasında gaz soğutucusundan çıkmaktadır. Kısılma valfine gelen CO₂, sabit entalpide kısılarak C4 noktasına ulaşmaktadır. Daha sonra evaporatöre giren CO₂, havadan ısı alarak C1 noktasına yaklaşmaktadır. Bu esnada da bir miktar basınç kaybı gerçekleşmektedir.

3.2 Alt Modeller

CO₂ gazını kullanan ısı pompalı çamaşır kurutucusu modeli hazırlanırken öncelikle sistemin bileşenleri ayrı ayrı modellenmiştir. Bu etapta;

- Gaz soğutucu
- Evaporatör
- Kompresör
- Tambur
- Fan

için ayrı ayrı çalışabilen beş alt model oluşturulmuştur. Birbirinden bağımsız olarak çalışabilen bu alt modeller daha sonra birleştirilerek genel kurutucu modeli oluşturulmuştur.

Modelleme çalışması MATLAB R2011b yazılımı kullanılarak yapılmıştır. Hesaplamalarda havanın ve CO₂'in termofiziksel özelliklerini belirleyebilmek için Refprop V7 yazılımı
kullanılmıştır. Refprop-MATLAB bağlantısı kurulmuş ve tüm değerler MATLAB üzerinden alınmıştır. Suyun, boru ve kanat malzemesi olarak kullanılabilecek olan bakırın, paslanmaz çeliğin ve alüminyumun özellikleri ise EES V9 yazılımı kullanarak belirlenmiştir. EES V9 yazılımdan Şekil 3.4'deki gibi tablolar halinde alınan değerler için *"waterprop.mat"* ve *"solidprop.mat"* isimli iki dosya oluşturulmuş ve sırasıyla su ve katı maddelerin özelliklerinin belirlenmesinde kullanılmak üzere modele girilmiştir.

Şekil 3. 4 EES programından suyun termofiziksel özelliklerinin alınması

Çalışmada Intel CORE i7 işlemcili, 8 GB RAM'li ve 64 Bit Windows 7 işletim sistemli bir bilgisayar kullanılmıştır.

3.2.1 Gaz Soğutucu Modeli

Gaz soğutucu modelinde, kanatlı-borulu bir ısı değiştiricisi göz önüne alınmıştır. Isı değiştiricisinin geometrisi sisteme girdi olarak verilmiştir. Geometri ile ilgili girdiler aşağıda verilmiştir;

- Sıra sayısı
- Düşey boru sayısı
- Boru dış çapı
- Boru et kalınlığı
- Kanat kalınlığı
- Kanat aralığı
- Borular arasındaki yatay mesafe
- Borular arasındaki düşey mesafe
- Boru dizilimi (kare ya da üçgen)
- Kanat şekli (düz ya da dalgalı)
- Dalgalı kanat kullanılması durumunda dalga açısı
- Boru malzemesi
- Kanat malzemesi
- Isı değiştiricisinin uzunluğu

Bölüm 2.1'de anlatılan teorik altyapıya uygun olarak aşağıdaki işletme parametreleri sisteme girdi olarak verilmektedir;

- Hava tarafı için;
 - o Giriş sıcaklığı
 - o Giriş bağıl nemi
 - o Debi
 - o Basınç

- CO₂ tarafı için;
 - o Giriş sıcaklığı
 - Giriş basıncı
 - o Debi

Bu girdilere bağlı olarak, Şekil 3.5'de çözüm algoritması verilen program hazırlanmıştır.

Programda iç içe çeşitli iterasyonlar ve döngüler yer almaktadır. Ancak temel olarak öncelikle hava çıkış sıcaklığı dengeye oturtulmaktadır. Bu amaçla çıkış sıcaklığı belirli bir aralıkta değiştirilerek programa girdi olarak verilmekte ve sonuçta yeniden hesaplatılmaktadır. İki değerin birbirini kestiği andaki sıcaklık değeri, kabul edilen CO₂ basınç kaybı için gerçek hava çıkış sıcaklık değeri olmaktadır (Şekil 3.6). Bu adımdan sonra CO₂ için basınç kaybı iterasyonu başlatılmaktadır. Değişen basınç kaybı değeri için hava çıkış sıcaklığı da değişmektedir. Sonuçta tanımlanan hata oranların göre, belirli bir noktadan sonra hem basınç kaybı hem de çıkış havasının sıcaklığı gerçek değerlerine ulaşmakta ve bu noktadan sonra değişmemektedir.

3.2.2 Evaporatör Modeli

Evaporatördeki boruların içerisinde başlangıçta iki fazlı akış gerçekleşmektedir ve bu akış süresince ısı taşınım katsayısı ve basınç kaybı akış tipine bağlı olarak değişmektedir. Akışın tipini belirleyebilmek için de kuruluk derecesinin değişimini hassas olarak belirleyebilmek gerekmektedir. Bu amaçla modelleme çalışmasında evaporatör, "düşey boru sayısı × sıra sayısı" kadar segmentlere ayırılmıştır (Şekil 3.7). Bir segmentin çıkış şartları akış yoluna bağlı olarak, takip eden segmentin giriş şartlarını belirlemiştir.

Sisteme girdi olarak verilen evaporatör geometrisinin özellikleri aşağıda verilmiştir;

- Sıra sayısı
- Düşey boru sayısı
- Boru dış çapı
- Boru et kalınlığı

Şekil 3. 5 Gaz soğutucu için hazırlanan modelin çözüm algoritması

Şekil 3. 6 Gaz soğutucu için hazırlanan modelde girilen ve hesaplanan çıkış sıcaklığı değerlerinin kesişim grafiği

Şekil 3. 7 Evaporatörün segmentlere ayrılması

- Kanat kalınlığı
- Kanat aralığı
- Borular arasındaki yatay mesafe
- Borular arasındaki düşey mesafe
- Kanat şekli (düz ya da dalgalı)
- Dalgalı kanat kullanılması durumunda dalga açısı
- Boru malzemesi
- Kanat malzemesi
- Isı değiştiricisinin uzunluğu

Bölüm 2.2'de verilen teorik altyapıya uygun olarak aşağıdaki işletme parametreleri sisteme girdi olarak verilmektedir;

- Hava tarafı için;
 - o Giriş sıcaklığı
 - o Giriş bağıl nemi
 - o Debi
 - o Basınç
- CO₂ tarafı için;
 - Giriş sıcaklığı
 - Giriş kuruluk derecesi
 - o Debi

Evaporatör modelinin çözüm algoritması Şekil 3.8'de verilmiştir.

Evaporatörün hava tarafı için, doymuş havanın entalpi değişim eğrisinin ortalama su filmi sıcaklığındaki değeri olan b_{w,m} hesaplanırken bir modül oluşturulmuş ve değerler bu modülden alınmıştır. 101.325 kPa hava basıncı için, bu modülden alınan sonuçlar Şekil 3.9'da verilmiştir.

Şekil 3. 8 Evaporatör modelinin çözüm algoritması

Evaporatörün hava tarafı için kanat verimi belirlenirken kullanılan düzeltilmiş Bessel fonksiyonlarının sayısal değerleri MATLAB'de hesaplatılmıştır (Şekil 3.10).

Şekil 3. 10 MATLAB üzerinden alınan düzeltilmiş Bessel fonksiyonları

Evaporatörün iki fazlı akış bölgesindeki boru dönüşlerinde gerçekleşen basınç kaybının hesabında kullanılan, dönüş açısı 90° olan bir dirsek ile aynı basınç kaybını veren eşdeğer uzunluk/boru çapı oranı grafiğinin [90] (Şekil 2.3), modelde kullanılmak üzere sayısal verilere dönüştürülmesi gerekmiştir. Bu amaçla "GetData Graph Digitizer v2.25" programı kullanılmıştır. Programın kullanımına dair görsel, Şekil 3.11'de verilmiştir.

Şekil 3. 11 GetData Graph Digitizer v2.25 programı ile görsel verilerin sayısal değerlere dönüştürülmesi

3.2.3 Kompresör Modeli

Bölüm 2.3'de anlatıldığı üzere, kompresörün izentropik ve volümetrik verimlerinin ve ayrıca CO₂ debisinin hesaplanması için bir model oluşturulmuştur. Modelin girdileri aşağıdaki gibidir;

- Kompresör bilgileri;
 - o Silindir hacmi
 - o Devir
- CO₂ için;
 - Giriş sıcaklığı ve basıncı
 - Çıkış basıncı

MATLAB'de yazılan bu programın çözüm algoritması Şekil 3.12'de verilmiştir.

Şekil 3. 12 Kompresör modelinin çözüm algoritması

3.2.4 Tambur Modeli

Tamburda çamaşırların üzerinden nemin alınması prosesi için, Bölüm 2.4'de anlatılan teori kullanılarak bir model oluşturulmuştur. Bu modelin girdileri aşağıda verilmiştir;

- Tamburun özellikleri;
 - o Tambura konulan çamaşırdaki toplam su miktarı
 - o Tambur verimi
 - o Kaçak oranı
 - Basınç kaybı hesabı için direnç sabiti
- Giriş havasının özellikleri;
 - o Sıcaklık
 - Bağıl nem
- Dış ortam şartları;
 - o Sıcaklık
 - o Bağıl nem

o Basınç

Tambur modeli için hazırlanan programın çözüm algoritması Şekil 3.13'de verilmiştir.

Şekil 3. 13 Tambur modelinin çözüm algoritması

3.2.5 Fan Modeli

Kurutucunun hava tarafındaki sirkülasyonu sağlamakla görevli fan için, Bölüm 2.5'de anlatılan teoriye uygun olarak bir model oluşturulmuştur. Modelin girdileri aşağıda verilmiştir;

- Fan verimi
- Filtre basınç kaybı
- Giriş havasının özellikleri;
 - o Sicaklik
 - o Bağıl nem

Hazırlanan programın çözüm algoritması Şekil 3.14'de verilmiştir.

Şekil 3. 14 Fan modelinin çözüm algoritması

3.3 Genel Kurutucu Modeli

Bölüm 3.2'de açıklanan ve MATLAB kullanılarak oluşturulan tüm alt modeller, Şekil 3.1'deki proses akış şemasına göre birleştirilmiş (Şekil 3.15) ve bir bileşenin çıkış şartlarının takip eden bileşenin giriş şartları olması sağlanmıştır.

Şekil 3. 15 MATLAB ile genel modelin oluşturulması

Genel modelin girdileri aşağıda verilmiştir.

- Hava debisi
- Evaporasyon sıcaklığı (CO₂)
- Gaz soğutucu giriş basıncı
- Gaz soğutucunun geometrisi
 - Sıra sayısı
 - Düşey boru sayısı
 - o Boru dış çapı
 - o Boru et kalınlığı
 - o Kanat kalınlığı
 - o Kanat aralığı
 - Borular arasındaki yatay mesafe
 - Borular arasındaki düşey mesafe
 - Boru dizilimi (kare ya da üçgen)
 - Kanat şekli (düz ya da dalgalı)
 - o Dalgalı kanat kullanılması durumunda dalga açısı
 - o Boru malzemesi
 - o Kanat malzemesi
 - o Isı değiştiricisinin uzunluğu
- Evaporatörün geometrisi
 - Sira sayisi
 - Düşey boru sayısı
 - o Boru dış çapı
 - o Boru et kalınlığı

- o Kanat kalınlığı
- Kanat aralığı
- Borular arasındaki yatay mesafe
- Borular arasındaki düşey mesafe
- Kanat şekli (düz ya da dalgalı)
- o Dalgalı kanat kullanılması durumunda dalga açısı
- o Boru malzemesi
- o Kanat malzemesi
- Isı değiştiricisinin uzunluğu
- Dış ortam şartları;
 - o Sicaklik
 - o Bağıl nem
 - o Basınç
- Kompresör bilgileri;
 - o Silindir hacmi
 - o Devir
- Tamburun özellikleri;
 - o Tambura konulan çamaşırdaki toplam su miktarı
 - Tambur verimi
 - o Kaçak oranı
 - Basınç kaybı hesabı için direnç sabiti
- Fan verimi
- Filtre basınç kaybı

Hazırlanan genel modelin çözüm algoritması Şekil 3.16'da verilmiştir.

Şekil 3. 16 Genel kurutucu modelinin çözüm algoritması

3.4 Program Arayüzü

Hazırlanan ısı pompalı kurutucu modelinin, kullanımını kolaylaştırmak amacıyla bir arayüz oluşturulmuştur. Bu arayüz sayesinde, veri girişleri ve sonuç alma işlemleri, kod satırlarından değil, oluşturulan görsel alanlardan yapılabilecektir. Arayüzün hazırlanmasında MATLAB GUI Toolbox kullanılmıştır (Şekil 3.17).

Şekil 3. 17 MATLAB GUI Toolbox ile arayüz oluşturulması

Burada "Static Text" ile verilerin isimleri ve birimleri oluşturulmuştur. Verilerin girişleri "Edit Text" ve "Pop-up Menu" ile oluşturulan kutucuklara yapılmaktadır. Programa komutlar "Push Button" ile verilmektedir. Verilerin gruplandırılması ise "Panel" komutu ile yapılmıştır.

Veri girişlerinin yapıldığı ekran görüntüsü Şekil 3.18'de, sonuçların alındığı ekran görüntüsü ise Şekil 3.19'da verilmiştir. Girişler ve sonuçlar kendi içerisinde ana başlıklar altında gruplandırılmıştır.

Veri Girişleri Ortamın Özellikleri Sıcaklık 23 C	- Gaz Soğutucu Sıra Sayısı	Sonuçlar		
Ortamın Özellikleri Sıcaklık 23 C	Gaz Soğutucu Sıra Sayısı			
Bağıl Nem 55 % Basınç 101.325 kPa Hava Tarafi	Düşey Boru Sayısı Boru Dış Çapı Boru Et Kalınlığı Kanat Kalınlığı Kanat Aralığı Bonular Arasındaki Yatay Mesafe	8 6 9.52 mm 0.12 mm 2 mm	Evaporatör Sıra Sayısı Düşey Boru Sayısı Boru Dış Çapı Boru Et Kalınlığı Kanat Kalınlığı Kanat Aralığı	3 6 9.52 mm 1 mm 0.12 mm 3 mm
CO2 Tarafı Evaporasyon Sıcaklığı 10 C Gaz Soğutucu Basıncı 120 bar	Borular Arasındaki Düşey Mesafe Boru Dizilimi Dalga Açısı Boru Mətəməni	25.4 mm Üçgen ▼ 18 Derece	Borular Arasındaki Yatay Mesafe Borular Arasındaki Düşey Mesafe Dalga Açısı Boru Malzemesi	21mm25.4mm18DereceBakır•
Kompresör Silindir Hacmi 3.5 cc Devir 2900 d/dak	Kanat Malzemesi Uzunluk	Alüminyum 238 mm	Kanat Malzemesi Uzunluk	Alüminyum v 238 mm
Tambura İlişkin Bilgiler Çamaşırdaki Su Miktan Yerim 90 Kaçak Oranı 15 Direnç Sabiti 10000 Fan Verim 60 Fitre Basınç Kaybı 200 Pa	Hesaplamalar İçin Başlangıç De Gaz Soğutucu Hava Tarafı Minimum Sıcaklık Artışı Tarama Hassasiyeti Evaporatör (Hava Tarafı) Bir Sıradaki Minimum Sıcaklık Tarama Hassasiyeti	ğerleri ve Tarama Hı CO2 Taı CO2 Taı Basınç H İki Fazlı Bölge Düşüşü 1.5 0.1	assasiyetleri rafı Kaybı 10 kPa e Aşırı Kızdırma Bölgesi 0.001 C 0.03 C	Yükle Hesapla

Şekil 3. 18 Veri girişlerinin yapıldığı ekran görüntüsü

Şekil 3. 19 Sonuçların alındığı ekran görüntüsü

"Veri Girişleri" ve "Sonuçlar" ekranları arasında geçiş için sekmeli yapı kullanılmıştır. Programın çalışabilmesi için evaporatör ve gaz soğutucuya ait tahmini sıcaklık farkı, basınç kaybı gibi özelliklerin girilmesi gerekmektedir. Hesaplamalar bu değerler üzerinden başlayarak, tarama hassasiyetlerine bağlı olarak yapılmakta ve iterasyonlar sonunda gerçek değerlerine ulaşılmaktadır. Programın sonuç verme süresi tüm veri girişlerine bağlı olarak 10 dakika ile birkaç saat arasında değişmektedir. Süre çeşitli şartlarda bir günü de aşabilmektedir. *"Hesaplamalar İçin Başlangıç Değerleri ve Tarama Hassasiyetleri"* bölümüne girilen değerler, çözüm süresini belirgin olarak etkilemektedir. Çözüm için geçen işlem süresi de program çıktıları arasında verilmiştir.

Hesaplamanın tamamlanabilmesi için gereken yakınsama kriterleri, modele ait kodun içerisinde gömülü olarak bulunmaktadır.

Hesaplama neticesinde elde edilen sonuçlar kaydedilip, sonradan tekrar açılabilmektedir. Hesaplama başlatıldığında anlık çözüm sonuçlarını gösteren grafik ve sayısal değerler görsel karmaşayı önlemek için kaldırılmış, yerine işlem sürecini anlık olarak gösteren bekleme barı konulmuştur (Şekil 3.20).

Şekil 3. 20 Bekleme barının ekran görüntüsü

Programın kullanılması süresince belirli şartlar gerçekleştiğinde ya da gerçekleşmediğinde kullanıcıyı bilgilendirme amacıyla çeşitli hata, uyarı ve bilgilendirme ekranları oluşturulmuştur (Şekil 3.21).

Şekil 3. 21 Çeşitli hata, uyarı ve bilgilendirme mesajlarının ekran görüntüsü

BÖLÜM 4

MODELİN DOĞRULAMASI

CO₂ kullanılan ısı pompalı çamaşır kurutma sistemi için oluşturulan modelin doğrulanması amacıyla literatürden alınan uygun deneysel veriler kullanılmıştır. Bu amaçla öncelikle gaz soğutucu ve evaporatör modellerinin ayrı ayrı doğrulaması yapılmıştır. Daha sonra ise genel kurutucu modelinin doğrulaması yapılmıştır.

4.1 Gaz Soğutucu Modelinin Doğrulaması

Hwang vd. [103] CO₂ kullanılan gaz soğutucuların testlerini yapabilmek için bir düzenek oluşturmuş ve farklı işletme şartları için testler yapmışlardır. Test şartları Çizelge 4.1'de, kullanılan gaz soğutucunun geometrik özellikleri ise Çizelge 4.2'de verilmiştir.

Geometrik özellikler ve işletme şartları gaz soğutucu alt modeline girilip, 36 deney için ayrı çalıştırılmış ve Şekil 4.1, Şekil 4.2 ve Şekil 4.3'de verilen sonuçlar alınmıştır.

Modelin boru içi ısı transferi ve basınç kaybı kısmının doğrulamasını yapmak için Dang ve Hihara [104]'ün çalışmasından faydalanılmıştır. Dairesel kesitli bir boruda, süperkritik bölgede CO₂ akışının incelendiği bu çalışmada, farklı boru çapları, ısı ve kütle akıları ile farklı basınçlarda çalışılmıştır.

8 MPa giriş basıncı, 6 mm boru iç çapı, 12 kW/m² ısı akısı ve 200 kg/m²s kütle akısı değerleri için ortalama CO₂ sıcaklığının değişimine bağlı olarak ısı taşınım katsayısının değişimi Şekil 4.4'de verilmiştir. Çalışmada basınç kaybı için 1 ve 2 mm boru iç çapında deneyler yapılmıştır. Bu sebepten basınç kaybı karşılaştırması için 8 MPa giriş basıncı, 2 mm boru iç çapı, 12 kW/m² ısı akısı ve 800 kg/m²s kütle akısı değerleri için yapılan deneyin sonuçları kullanılmıştır (Şekil 4.5). Modelden elde edilen sonuçlar da ±%30 hata çubukları ile aynı grafikler üzerinde verilmiştir.

Test	Hava Giriş	Hava Hızı	CO ₂ 'in Giriş	CO ₂ 'in Giriş	CO₂'in Kütlesel
Test No	Sıcaklığı [°C]	[m/s]	Sıcaklığı [°C]	Basıncı [MPa]	Debisi [kg/s]
1	29.4	1	118.1	9	0.038
2	29.4	2	109.5	9	0.038
3	29.4	3	113.5	9	0.038
4	29.4	1	124	10	0.038
5	29.4	2	118	10	0.038
6	29.4	3	117.1	10	0.038
7	29.4	1	128.8	11	0.038
8	29.4	2	123.5	11	0.038
9	29.4	3	123.1	11	0.038
10	35	1	121.3	9	0.038
11	35	2	119.4	9	0.038
12	35	3	118.8	9	0.038
13	35	1	127.7	10	0.038
14	35	2	122.6	10	0.038
15	35	3	122.2	10	0.038
16	35	1	133.3	11	0.038
17	35	2	128.9	11	0.038
18	35	3	128.4	11	0.038
19	29.4	1	94.8	9	0.076
20	29.4	2	90.8	9	0.076
21	29.4	3	86.9	9	0.076
22	29.4	1	103.3	10	0.076
23	29.4	2	94.8	10	0.076
24	29.4	3	90.7	10	0.076
25	29.4	1	110.6	11	0.076
26	29.4	2	100.7	11	0.076
27	29.4	3	97.1	11	0.076
28	35	1	92.5	9	0.076
29	35	2	90	9	0.076
30	35	3	88.4	9	0.076
31	35	1	104.1	10	0.076
32	35	2	98.4	10	0.076
33	35	3	93.9	10	0.076
34	35	1	109.6	11	0.076
35	35	2	101.9	11	0.076
36	35	3	98.4	11	0.076

Çizelge 4. 1 Hwang vd. [103]'ün gaz soğutucu test şartları

Cizelge 4.	2 Hwang vd.	[103]'de kulla	nılan gaz soğutucı	unun geometrik	özellikleri
30		[

Genişlik × Yükseklik × Derinlik	m	$0.61\times0.46\times0.05$
Ön alan	m ²	0.281
Kanat şekli		Arttırılmış yüzeyli
Kanat hatvesi	mm	1.5
Kanat kalınlığı	mm	0.13
Sıra sayısı	-	3
Bir sıradaki boru sayısı	-	18
Boru dış çapı	mm	7.9
Boru iç çapı	mm	7.5
Boru şekli	_	Düz

Şekil 4. 1 Hwang vd. [103]'de verilen deneysel CO₂'in gaz soğutucudan çıkış sıcaklığı değerlerinin model sonuçlarıyla karşılaştırması

Şekil 4. 2 Hwang vd. [103]'de verilen deneysel CO₂'in gaz soğutucudan çıkış basıncı değerlerinin model sonuçlarıyla karşılaştırması

Şekil 4. 3 Hwang vd. [103]'de verilen deneysel gaz soğutucuda gerçekleşen ısı transferi sonuçlarının model sonuçlarıyla karşılaştırması

Şekil 4. 4 Dang ve Hihara [104]'de verilen taşınım katsayısı değerleri ile modelin sonuçlarının karşılaştırması (P=8 MPa, d_i=6 mm, q=12 kW/m², G=200 kg/m²s)

Şekil 4. 5 Dang ve Hihara [104]'de verilen basınç kaybı değerleri ile modelin sonuçlarının karşılaştırması (P=8 MPa, d_i =2 mm, \dot{q} =12 kW/m², G=800 kg/m²s)

Wongwises ve Chokeman [105]'de dalgalı kanatlı-borulu ısı değiştiricilerinin hava taraflarının ısı transferi ve basınç kaybı üzerine deneysel olarak çalışmışlardır. Deney sisteminin ısı transferi üzerindeki belirsizliği %3 olarak verilmiştir. Seçilen üç farklı geometri için (Çizelge 4.3), Colburn j faktörünün ve sürtünme faktörü f'nin Reynolds sayısına göre değişimi, hem deneysel olarak hem de modelin sonuçlarını içerecek biçimde sırasıyla Şekil 4.6, Şekil 4.7 ve Şekil 4.8'de gösterilmiştir. Modelin sonuçları ±%30 hata çubukları ile verilmiştir.

Çizelge 4. 3 Wongwises ve Chokeman [105]'den alınan ve karşılaştırma için kullanılan ısı değiştiricinin geometrik özellikleri

No	Do	D _c	Pt	PI	Fp	δ_{f}	Ν
NO	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[-]
1	9.53	9.76	25.4	19.05	1.41	0.115	2
2	9.53	9.76	25.4	19.05	2.54	0.115	2
3	9.53	9.76	25.4	19.05	2.54	0.115	4

Şekil 4. 8 Colburn j ve sürtünme f faktörlerinin deneysel (Wongwises ve Chokeman [105]) ve model sonuçları açısından karşılaştırması (Isı değiştirici numarası 3)

4.2 Evaporatör Modelinin Doğrulaması

Evaporatör alt modelinin boru içi ısı transferi ve basınç kaybı kısmını doğrulamak için öncelikle Yoon vd. [106]'nın çalışmasının sonuçlarından faydalanılmıştır. Bu çalışmada yatay düz bir boru içerisinde CO₂'in buharlaşması prosesinde ısı transferi ve basınç kaybı deneysel olarak incelenmiştir. Deney düzeneğinde 9.53 mm dış çaplı, 7.53 mm iç çaplı, 5 m uzunluğunda paslanmaz çelik boru kullanılmıştır. Boru dışarıdan elektrikli ısıtıcı ile ısıtılmıştır. Kuruluk derecesinin değişimine bağlı olarak ısı taşınım katsayısının değişimi grafikler halinde verilmiştir.

Şekil 4.9 ve 4.11'de, iki farklı işletme şartı için [106]'da verilen, ısı taşınım katsayısının kuruluk derecesine bağlı olarak değişimi sunulmuştur. Modelin sonuçları da aynı grafikler üzerinde ±%30 hata çubukları ile verilmiştir. Bu grafiklerin hemen altlarında ise ısı taşınım katsayısının belirlenmesinde kullanılan akış haritaları çıkartılmıştır. Bu akış haritaları (Şekil 4.10 ve 4.12) ile CO₂'in kütle akısına ve kuruluk derecesine bağlı olarak, hangi akış tiplerinden geçtiği görülebilmektedir.

Şekil 4. 9 Yoon vd. [106]'dan alınan ısı taşınım katsayısı değerlerinin model sonuçlarıyla karşılaştırması (T_{eva}=5 °C, q=18.6 kW/m² ve G=318 kg/m²s)

Şekil 4. 10 T_{eva}=5 ^oC, q=18.6 kW/m² ve G=318 kg/m²s için CO₂'in akış haritası (1:katmanlı akış, 2:darbeli/katmanlı-dalgalı akış, 3:katmanlı-dalgalı akış, 4:darbeli akış, 5:kesikli akış, 6:halka akış, 7:kuruluk bölgesi, 8:sisli akış, 9:kabarcıklı akış)

Şekil 4. 11 Yoon vd. [106]'dan alınan ısı taşınım katsayısı değerlerinin model sonuçlarıyla karşılaştırması (T_{eva}=5 °C, q=12.5 kW/m² ve G=318 kg/m²s)

Şekil 4. 12 T_{eva}=5 ^oC, q=12.5 kW/m² ve G=318 kg/m²s için CO₂'in akış haritası (1:katmanlı akış, 2:darbeli/katmanlı-dalgalı akış, 3:katmanlı-dalgalı akış, 4:darbeli akış, 5:kesikli akış, 6:halka akış, 7:kuruluk bölgesi, 8:kabarcıklı akış)

[106]'da verilen kütle akısına bağlı olarak basınç kaybının değişimi, model sonuçlarıyla karşılaştırmalı olarak Şekil 4.13'de görülmektedir. Modelin sonuçlarına ±%30 hata çubukları eklenmiştir.

Şekil 4. 13 Yoon vd. [106]'dan alınan basınç kaybı değerlerinin model sonuçlarıyla karşılaştırması (T $_{\rm eva}$ =5 °C, q=16.4 kW/m²)

Cho ve Kim [107] tarafından [106]'dakine benzer bir deney düzeneği kullanılarak boru içerisinde CO₂'in buharlaşması, ısı transferi ve basınç kaybı açısından incelenmiştir. Bu çalışmanın sonuçları da ısı taşınım katsayısı ve basınç kaybı açısından model sonuçları ile karşılaştırmalı olarak sırasıyla Şekil 4.14 ve Şekil 4.16'da verilmiştir. Şekil 4.15'de, Şekil 4.14'de verilen ısı taşınım katsayılarının hesabı için hazırlanan akış haritası verilmiştir.

Evaporatör modelinin hava tarafının ısı transferi ve basınç kaybı hesabının doğrulaması için Halici ve Taymaz [108]'in çalışması kullanılmıştır. Kanatlı-borulu ısı değiştiricilerinde nem alma şartlarında, hava tarafı için ısı transferi ve basınç kaybını inceledikleri deneysel çalışmalarında Çizelge 4.4'de özellikleri verilen iki tip ısı değiştiricisi kullanmışlardır. Isı transferi Colburn j faktörünün hesaplanmasında deney düzeneğinin belirsizliğini ±%7 olarak vermişlerdir.

Şekil 4. 14 Cho ve Kim [107]'den alınan ısı taşınım katsayısı değerlerinin model sonuçlarıyla karşılaştırması (T_{eva}=5 °C, q=16 kW/m² ve G=424 kg/m²s)

Şekil 4. 15 T_{eva}=5 °C, q=16 kW/m² ve G=424 kg/m²s için CO₂'in akış haritası (1:katmanlı akış, 2:darbeli/katmanlı-dalgalı akış, 3:katmanlı-dalgalı akış, 4:darbeli akış, 5:kesikli akış, 6:halka akış, 7:kuruluk bölgesi, 8:sisli akış, 9:kabarcıklı akış)

Şekil 4. 16 Cho ve Kim [107]'den alınan basınç kaybı değerlerinin model sonuçlarıyla karşılaştırması (T_{eva}=5 °C, q=12 kW/m²)

Çizelge 4. 4 Halici ve Taymaz [108]'de kullanılan ısı değiştiricilerinin geometrik özellikleri

Özellik	Birimi	1. Isı Değiştirici	2. Isı Değiştirici
Kanat tipi	_	Düz	Düz
Ön alan	m×m	0.38×0.375	0.38×0.375
Derinlik	m	0.0866	0.050
Boru dış çapı	m	0.0107	0.0107
Boru iç çapı	m	0.0095	0.0095
Sıra sayısı	-	4	4
Boru dizilimi	-	Üçgen	Üçgen
Boru malzemesi	-	Bakır	Bakır
Kanat malzemesi	-	Alüminyum	Alüminyum
Sıralar arasındaki yatay mesafe	m	0.0216	0.0125
Geçişler arasındaki dikey mesafe	m	0.025	0.025
Kanat kalınlığı	m	0.00012	0.00012
Kanat hatvesi	m	0.00207	0.00207

1. ve 2. ısı değiştiricilerinde ıslak yüzey şartları için [108]'den alınan, Colburn j ve sürtünme f faktörleri, model sonuçlarıyla karşılaştırmalı olarak sırasıyla Şekil 4.17 ve Şekil 4.18'de verilmiştir. Model sonuçlarına ±%30 hata çubukları eklenmiştir.

Şekil 4. 17 Nem alma şartlarında Colburn j ve sürtünme f faktörlerinin deneysel (Halici ve Taymaz [108]) ve model sonuçları açısından karşılaştırması (1. ısı değiştirici)

Şekil 4. 18 Nem alma şartlarında Colburn j ve sürtünme f faktörlerinin deneysel (Halici ve Taymaz [108]) ve model sonuçları açısından karşılaştırması (2. ısı değiştirici)

Evaporatör alt modelinin hava tarafında gerçekleşen kütle transferini doğrulamak için Pirompugd vd. [109]'un çalışması kullanılmıştır. Bu çalışmada, kanatlı-borulu ısı değiştiricilerinde nem alma şartlarında ısı ve kütle transferini incelemişlerdir. Kütle transferi Colburn faktörü j_m'deki belirsizlik Re_{Dc}=400 iken ±11.4, Re_{Dc}=5000 iken ±5.9 olarak verilmiştir. Karşılaştırma yapmak üzere kullanılan iki tip ısı değiştiricinin geometrik özellikleri Çizelge 4.5'de verilmiştir.

Çizelge 4. 5 Pirompugd vd. [109]'dan alınıp doğrulama çalışması için kullanılan ısı değiştiricilerin geometrik özellikleri

No	Fp	δ_{f}	D _c	Pt	PI	Ν
NO	[m]	[m]	[m]	[m]	[m]	[-]
1	0.00224	0.000130	0.01023	0.0254	0.0220	2
2	0.00320	0.000130	0.01023	0.0254	0.0220	2

Reynolds sayısına bağlı olarak her iki ısı değiştirici geometrisi için kütle transferi Colburn faktörlerinin değişimi Şekil 4.19 ve Şekil 4.20'de model sonuçlarıyla (±%30 hata çubuklarıyla birlikte) karşılaştırmalı olarak verilmiştir.

Şekil 4. 19 Nem alma şartlarında kütle transferi Colburn j_m faktörlerinin deneysel (Pirompugd vd. [109]) ve model sonuçları açısından karşılaştırması (1. ısı değiştirici)

Şekil 4. 20 Nem alma şartlarında kütle transferi Colburn j_m faktörlerinin deneysel (Pirompugd vd. [109]) ve model sonuçları açısından karşılaştırması (2. ısı değiştirici)

4.3 Genel Kurutucu Modelinin Doğrulaması

Genel kurutucu modelinin doğrulaması için Bölüm 1'de bahsedilen Klöcker vd. [2] ve [3] çalışmalarından yararlanılmıştır. Doğrulama çalışması için [2] ve [3]'den alınıp kullanılan kompresörün özellikleri Çizelge 4.6'da verilmiştir.

izelge 4. 6 Klöcker vd. [2] ve [3]'den alınıp doğrulama çalışması için kullanılar,
kompresörün özellikleri

Üretici	Dorin İtalya
Model	CD 4.017 S
Тір	Yarı hermetik
Silindir sayısı	2
Strok	11 mm
Silindir çapı	34 mm
Süpürme hacmi	1.7 m ³ /h'e kadar

Çalışmada gaz soğutucu ve evaporatör için Çizelge 4.7'deki geometrik özellikler verilmiştir.

Karşılaştırmada kullanılan kriterlerden sistemin etkinliği (COP), nem alma hızı (MER) ve özgül nem alma hızı (SMER) aşağıdaki gibi tanımlanır.

Özellik	Birim	Gaz Soğutucu	Evaporatör
Boru malzemesi	_	Çelik	Çelik
Kanat malzemesi	_	Alüminyum	Alüminyum
Kanat tipi	_	Düz	Düz
Boru iç çapı	mm	8	8
Boru et kalınlığı	mm	0.8	0.8
Kanat kalınlığı	mm	0.3	0.3
Sıralar arasındaki yatay mesafe	mm	22	22
Geçişler arasındaki dikey mesafe	mm	25.4	25.4
Hava tarafı toplam ısı transfer alanı	m²	118	30.1

Çizelge 4. 7 Klöcker vd. [2] ve [3]'den alınıp doğrulama çalışması için kullanılan ısı değiştiricilerinin geometrik özellikleri

 $COP = \frac{gaz \, soğutucuda \, havaya \, verilen \, \imathsi}{kompresör \, güç \, girişi}$

(4.1)

$$MER = \dot{m}_a(\omega_o - \omega_i) \tag{4.2}$$

 ω_o ve ω_i sırasıyla tambur çıkış ve giriş havasının mutlak nemleridir.

$$SMER = \frac{MER}{\dot{W}_c + \dot{W}_f} \tag{4.3}$$

W_c ve W_f sırasıyla kompresör ve fanın güçleridir.

Klöcker vd. [2] ve [3]'ün deneysel sonuçları, genel modelden elde edilen sonuçlar ile karşılaştırmalı olarak Çizelge 4.8'de verilmiştir.

		Deneysel Sonuçlar Klöcker vd. [2] ve [3]	Model Sonuçları	Sapma (%)
Soğutma Yükü	kW	10.15	10.7	5.4
Isıtma Yükü	kW	12	13.0	8.3
Kompresör Gücü	kW	1.85	2.28	23.2
СОР	-	6.5	5.70	12.3
MER	kg _w /h	5	5.90	18.0
SMER	kg _w /kWh	2.05	1.99	2.9

Çizelge 4. 8 Klöcker vd. [2] ve [3]'ün çalışması ile model sonuçlarının karşılaştırması

 $Sapma = \frac{|Deneysel Sonuçlar - Model Sonuçları|}{Deneysel Sonuçlar} \times 100$

Genel kurutucu modelinin doğrulama çalışması için, ikinci bir bağımsız deney olan ve Bölüm 1'de anlatılan, Honma vd. [9]'un çalışması kullanılmıştır. Prototipte 1.32 cc silindir hacminde bir kompresör kullanılmışlardır. Kullanılan ısı değiştiricilerinin geometrik özellikleri Çizelge 4.9'da verilmiştir.

Özellik	Birim	Gaz Soğutucu	Evaporatör
Genişlik	mm	85	51
Yükseklik	mm	220	230
Derinlik	mm	140	150
Kanat tipi	_	Yarıklı	Yarıklı
Kanat sayısı	FPI	24	24
Boru çapı	mm	5	5
Sıra sayısı	_	10	6
Düşey boru sayısı	_	14	14

Çizelge 4. 9 Honma vd. [9]'dan alınıp doğrulama çalışması için kullanılan ısı değiştiricilerinin geometrik özellikleri

Sistemin CO₂ tarafının işletme şartları verilen P-h diyagramından Refprop v7 programı aracılığı ile 7 ^oC olarak bulunmuştur. Kompresör çıkış basıncı ise 11.3 MPa olarak okunmuştur.

1.5 kg suyun çamaşırlardan alınması suretiyle gerçekleştirilen kurutma işlemi için yapılan deneylerin sonuçları, model sonuçlarıyla karşılaştırmalı olarak Çizelge 4.10'da verilmiştir.

		Deneysel Sonuçlar Honma vd. [9]	Model Sonuçları	Sapma (%)
Sistemin Elektrik Tüketimi	Wh	1142	856	25.0
Kurutma süresi	dak	95	99	4.2
СОР	-	3.76	4.32	14.9

Çizelge 4. 10 Honma vd. [9]'un çalışması ile model sonuçlarının karşılaştırması

 $Sapma = \frac{|Deneysel \ Sonuçlar - Model \ Sonuçlar \imath|}{Deneysel \ Sonuçlar} \times 100$

BÖLÜM 5

MODELİN SONUÇLARI

Oluşturulan model kullanılarak farklı parametrelerin sistemin performansı üzerindeki etkileri incelenmiştir. Bu noktada, sistemin performansı aşağıda belirtilen üç temel kriter üzerinden değerlendirilmiştir:

1. Sistemin etkinlik katsayısı (COP);

$$COP = \frac{\dot{Q}_{gaz \ soğutucu}}{\dot{W}_{kompres\"ör}}$$
(5.1)

2. Nem alma hızı (MER);

$$MER = \dot{m}_{hava} \left(\omega_{tambur \, \varsigma \iota k \iota \varsigma \iota} - \omega_{tambur \, g i r i \varsigma i} \right) \tag{5.2}$$

3. Özgül nem alma hızı (SMER);

$$SMER = \frac{MER}{\dot{W}_{kompres\"or}}$$
(5.3)

Tüm sonuçlar aynı geometrideki evaporatör, gaz soğutucu ve kompresör için alınmıştır. Böylelikle, geometrik özelliklerin değişiminin sonuçlara etkisi ortadan kaldırılmıştır. Modele girilen gaz soğutucunun geometrik özellikleri EK-A'da, evaporatörün özellikleri ise EK-B'de verilmiştir. Kurutma süresi ve enerji tüketimi hesaplamalarında 8 kg kapasiteli (kuru ağırlık) ve %60 su barındıran ıslak çamaşırları kurutma prosesi göz önüne alınmıştır. Kurutma süresi ve enerji tüketimi,

$$Kurutma \ s\"{u}resi = \frac{\varsigma_{amaşırlardaki \ su \ miktarı}}{_{MER}}$$
(5.4)

$$Enerji \ t \ddot{u} ketimi = Kurutma \ s \ddot{u} resi \times \dot{W}_{kompres\"or}$$
(5.5)

ile hesaplanmıştır.
5.1 Gaz Soğutucuya CO₂'in Giriş Basıncının Etkisi

Subkritik çevrimlerde kondenserdeki soğutucu akışkanın basıncı azaldıkça COP artmaktadır. Ancak süperkritik bölgede gerçekleşen ısı atımında, yaş buhar bölgesindekinin aksine basınç ve sıcaklık birbirinden bağımsızdır. Bu yüzden de COP ve gaz soğutucu basıncı arasında doğrusal bir bağlantı yoktur. Bu bilgiler ışığında hazırlanan model, CO₂'in gaz soğutucuya farklı giriş basınçlarında çalıştırılarak, sistem performansına etkisi Şekil 5.1'de verilmiştir.

Şekil 5. 1 Sistemin performansının CO₂'in gaz soğutucuya giriş basıncına bağlı değişimi Şekil 5.1'de görüleceği üzere COP değeri yaklaşık 100 bar gaz soğutucu giriş basıncında maksimum değerine ulaşmış ve sonrasında düşmeye başlamıştır. 80 bar'dan 100 bar basınca kadar gaz soğutucuda atılan ısı %59 artarken, kompresör gücü %37 artmıştır. Bu durum COP değerinde %16 artışa sebep olmuştur. Ancak 100 bar'dan 120 bar'a kadar gaz soğutucuda atılan ısı %13 artarken, kompresör gücü %21 artmıştır. Bu noktadan sonra da kompresörün tüketimindeki artış hep daha fazla olmuştur. Bu nedenle 100 bar'ın üzerindeki basınçlarda COP değeri düşmektedir.

Saatteki nem alma değeri olan MER değeri, sistemin maksimum COP ile çalıştığı 100 bar basınca kadar hızlı bir artış göstermiştir. Ancak COP değerinin aksine 100 bar'dan sonra değeri azalmaya başlamamış, sadece artış hızı düşmüştür. Bu sebeple, gaz soğutucu giriş basıncı yükseldikçe alınan nem miktarı da artmıştır. 80 bar'dan 100 bar'a kadar havanın tambura giriş sıcaklığı %26 (13.6 °C) artmış, tambura giriş bağıl nemi ise %7 azalmıştır. Gaz soğutucuya CO₂'in giriş basıncının artması ile tambura daha sıcak ve daha kuru hava gönderilmeye başlanmıştır. Daha sıcak ve daha kuru olan havanın nem taşıma potansiyeli daha fazla olduğu için de çamaşırlardan alınan nem miktarı (MER) artmıştır. 100 bar'dan 120 bar'a kadar ise havanın tambura giriş sıcaklığı %8 (5.4 °C) artmış, tambura giriş bağıl nemi ise %2 azalmıştır. Bu da havanın nem taşıma potansiyelinin artış hızını yavaşlatmıştır. Bu nedenle de 100'bar basınçtan daha yukarıdaki basınçlarda, MER artsa da, artış hızı düşmüştür.

Harcanan enerjiye karşılık çamaşırdan alınan su miktarı olan SMER değeri de 100 bar basınca kadar yükselmiş, sonrasında sistemin enerji verimliliğinin düşmesi ile beraber azalmaya başlamıştır. 80 bar'dan 100 bar basınca kadar MER %80 artarken, kompresör gücü %37 artmıştır. Bu da SMER değerinde %31 artışa sebep olmuştur. Ancak açıklandığı üzere, 100 bar'dan 120 bar basınca kadar MER %14 artarken, kompresör gücü %21 artmıştır. Böylelikle SMER değerinde %6 düşüş gerçekleşmiştir.

Yapılan analizden anlaşıldığı üzere, sistemin optimum gaz soğutucu giriş basıncı 100 bar'dır. Optimum basıncın üzerindeki basınçlarda çalışmak; MER değerinin artmasından dolayı kurutma süresini kısaltırken, COP ve SMER değerlerinin düşmesinden dolayı işletme maliyetini arttırmaktadır. Sistemin kurutma süresi ve kompresöre bağlı enerji tüketimi, çalışma basıncına bağlı olarak Şekil 5.2'de verilmiştir.

5.2 Evaporasyon Sıcaklığının Etkisi

Evaporasyon sıcaklığının değişimine bağlı olarak sistemin performansı değerlendirilmiştir (Şekil 5.3). Evaporasyon sıcaklığının artması kompresör giriş basıncını arttırmaktadır. Bu da kompresör girişindeki CO₂'in yoğunluğunu dolayısıyla da kütlesel debisini arttırmaktadır. Evaporasyon sıcaklığının yükselmesiyle beraber ısı değiştiricilerinde gerçekleşen giriş–çıkış sıcaklık farkları azalmakta ve evaporatör girişindeki kuruluk derecesi yükselmektedir ki bu durumda da bileşenlerin giriş–çıkış entalpi farkları azalmaktadır. Böylelikle kütlesel debideki artış bileşenlerdeki ısı ve iş geçişlerini arttırmaya çalışırken, entalpi farklarının azalması ısı ve iş geçişlerini azaltma yönünde etki etmektedir.

Şekil 5. 2 Sistemin enerji tüketiminin ve kurutma süresinin CO₂'in gaz soğutucuya giriş basıncına bağlı değişimi

gerçekleşen entalpi farkı ise %26 azalmaktadır. Böylelikle gaz soğutucuda transfer olan ısı %11 artmaktadır. Kompresördeki entalpi farkı ise %31 azaldığından, kompresör gücü %2 artmaktadır. Bu da sistemin COP değerinin yaklaşık olarak %9.5 artmasına neden olmaktadır. Gaz soğutucudaki ısı transferinin artmasıyla, tambura gönderilen havanın sıcaklığı artmakta, bağıl nemi düşmektedir. Daha kuru ve sıcak olan bu hava tamburda daha fazla nem aldığından, MER ve SMER değerleri de sırasıyla %10 ve %8.5 artmaktadır.

Evaporasyon sıcaklığı 10 °C'den 20°C'ye çıktığında ise, gaz soğutucunun giriş–çıkış entalpi farkındaki düşüş (%43), kütlesel debideki yükselmeyi (%52) baskılayarak, gaz soğutucuda gerçekleşen ısı transferini %13 azaltmaktadır. Kompresörde gerçekleşen entalpi farkı ve kütlesel debi artışına bağlı olarak kompresör gücü %9 azalmaktadır. Böylelikle, sistemin COP değeri %5 azalmaktadır. Gaz soğutucuda gerçekleşen ısı transferinin azalması, tambura giden havanın sıcaklığını düşürmekte ve bağıl nemini arttırmaktadır. Bu da MER ve SMER değerlerini sırasıyla %18 ve %10 azaltmaktadır. Bu nedenle sistemin optimum evaporasyon sıcaklığı 10 °C'dir.

Evaporasyon sıcaklığının değişimine bağlı olarak, sistemin enerji tüketiminin ve kurutma süresinin değişimi Şekil 5.4'de verilmiştir.

Şekil 5. 4 Sistemin enerji tüketiminin ve kurutma süresinin evaporasyon sıcaklığına bağlı değişimi

5.3 Hava Debisinin Etkisi

Hazırlanan model, farklı hava kütlesel debilerinde çalıştırılıp sonuçlar alınarak Şekil 5.5 oluşturulmuştur. Sistemde dolaşan havanın kütlesel debisinin artması, gaz soğutucu ve evaporatörde transfer olan ısının artmasına, kompresör giriş ve çıkış sıcaklıklarının düşmesine yol açmaktadır. Azalan sıcaklıklar CO₂'in kütlesel debisinin artmasına neden olmaktadır. Evaporatör ve gaz soğutucuda gerçekleşen ısı transferleri yaklaşık olarak aynı miktarda arttığı için kompresör gücü, çok az miktarda artmakla birlikte havanın kütlesel debisinin değişiminden çok fazla etkilenmemekte bu da COP ve SMER değerlerinin artmasına neden olmaktadır.

Havanın kütlesel debisinin artması, tambur girişindeki havanın sıcaklığının düşmesine, bağıl neminin ise artmasına neden olmaktadır. Tamburdaki nem alma prosesi sabit tambur veriminde ve sabit yaş termometre sıcaklığında gerçekleştiğinden tamburdaki havanın çıkış–giriş mutlak nem farkı da azalmaktadır. 150 kg/h hava debisinden, 300 kg/h hava debisine geçildiğinde tambur girişindeki sıcaklık %20 azalmakta, bağıl nem ise %39 artmaktadır. Tambur çıkış–giriş mutlak nem farkı ise %19 azalmaktadır. Mutlak nem farkındaki bu azalmaya rağmen hava debisindeki %100'lük artış, alınan nem miktarının da (MER) artmasına neden olmaktadır. Havanın kütlesel debisinin artması COP, MER ve SMER değerlerinin üçünü birden arttırırken, artış hızları giderek düşmektedir. Gaz soğutucuda atılan ısının artış hızındaki düşüş ve tamburdaki havanın çıkış–giriş mutlak nem farkının düşüş hızındaki artış; COP, MER ve SMER değerlerinin de artış hızını azaltmaktadır. Örneğin, 150 kg/h hava debisinden, 200 kg/h hava debisine geçildiğinde COP %22, MER %29 artarken; 200 kg/h hava debisinden, 250 kg/h hava debisine geçildiğinde COP %12, MER %15 artmaktadır.

Havanın kütlesel debisinin artması basınç kaybını da arttırmaktadır. Bu durum fanın gücünün de artmasına neden olmaktadır. 150 kg/h hava debisinden, 200 kg/h hava debisine geçildiğinde fanın gücü %60 artmaktadır. Ancak bu şartlarda dahi fan gücü kompresör gücünün sırasıyla %5'i ile %8'i kadardır.

Havanın kütlesel debisinin artmasına bağlı olarak sistemin kurutma süresinin ve enerji tüketiminin değişimi Şekil 5.6'da verilmiştir.

Şekil 5. 6 Sistemin enerji tüketiminin ve kurutma süresinin havanın kütlesel debisine bağlı değişimi

5.4 Tambur Veriminin Etkisi

Tambur veriminin etkisini görebilmek için model farklı verim değerlerinde çalıştırılıp sonuçlar alınmıştır (Şekil 5.7). Tambur verimi arttıkça, tamburdan çıkan havanın bağıl nemi de artmaktadır. Tambur verimi %70'den %100'e çıktığında, çıkış havasının bağıl nemi %68 artmakta (%57.4'den %96.4'e), sıcaklığı ise %6 (4 °C) azalmaktadır. Bu sıcaklık düşüşü kompresör girişindeki sıcaklığı da düşürmektedir. Kompresör girişindeki sıcaklığın düşmesi ile beraber CO₂'in yoğunluğu arttığından, sistemde dolaşan CO₂'in kütlesel debisi de artmaktadır. Bu da gaz soğutucuda transfer olan ısıyı arttırmaktadır. Evaporatörde transfer olan ısının da artması sebebiyle, kompresör gücü yaklaşık olarak sabit kalmaktadır. Bu sebeple sistemin COP değeri %26 artış göstermiştir. Evaporatöre daha yüksek oranda neme sahip havanın girmesiyle, yoğuşturulan su miktarı (MER) %66 artış göstermiştir. MER değerine bağlı olarak SMER değeri de %66 artış göstermiştir.

Şekil 5. 7 Sistemin performansının tambur verimine bağlı değişimi

Tambur veriminin artmasına bağlı olarak enerji tüketiminin ve kurutma süresinin değişimi Şekil 5.8'de verilmiştir.

5.5 Kaçak Oranının Etkisi

Hazırlanan model farklı kaçak oranlarında çalıştırılarak sistemin performansına etkileri incelenmiştir (Şekil 5.9). Kaçak oranının artmasıyla, gaz soğutucuda ısıtılan havanın daha büyük bir bölümü tamburdan dışarı kaçmaktadır. Kaçak oranı %15'den %40'a çıktığında kompresör girişindeki sıcaklığın düşmesi, CO₂'in kütlesel debisini arttırmaktadır. Bu artış gaz soğutucudaki ısı transferini %14, kompresör gücünü de yaklaşık %1 arttırmaktadır. Böylelikle COP değerinde %13'lük bir artış gerçekleşmektedir.

Şekil 5. 8 Sistemin enerji tüketiminin ve kurutma süresinin tambur verimine bağlı değişimi

Şekil 5. 9 Sistemin performansının kaçak oranına bağlı değişimi

Kaçak oranı %15'den %40'a çıktığında, tambura giren havanın sıcaklığı %10 (6.4 °C), bağıl nemi ise %35 azalmaktadır. Bu durumda tamburdaki havanın çıkış-giriş mutlak nem farkı %13 azalmaktadır. Bu da alınan nem miktarının (MER) düşmesine sebep olmaktadır. MER değerinin düşmesi ile birlikte, kompresör gücündeki küçük artış sonucunda SMER değeri de düşmektedir.

Kaçak oranının artması sistemin COP değerini arttırırken, MER değerinin düşmesine neden olduğundan, kurutma süresi uzamaktadır. Böylelikle, SMER değerinin de düşmesinden görülebileceği üzere enerji tüketimi artmaktadır. Sistemin enerji tüketiminin ve kurutma süresinin değişimi Şekil 5.10'da verilmiştir.

Şekil 5. 10 Sistemin enerji tüketiminin ve kurutma süresinin kaçak oranına bağlı değişimi

5.6 Ortam Havasının Sıcaklığının Etkisi

Ortam havasının sıcaklığının sistemin performansının üzerindeki etkilerini görebilmek için, model farklı ortam sıcaklıklarında çalıştırılıp sonuçlar alınmıştır (Şekil 5.11). Ortam havasının sıcaklığı arttıkça, tamburda gerçekleşen kaçak sonrası oluşan karışım havasının sıcaklığı da artmaktadır. Ortam havasının sıcaklığı 20 °C'den 30 °C'ye çıktığında, kompresör girişindeki CO₂ sıcaklığı da 3.1 °C artış göstermektedir. Kompresör girişindeki CO₂'in yoğunluğu sıcaklık arttıkça azaldığından, sistemde dolaşan CO₂'in kütlesel debisi azalmaktadır. Azalan debi ısı transfer miktarlarını da azaltacağından evaporatör ve gaz soğutucuda gerçekleşen ısı transferleri de azalmaktadır. Gaz soğutucuda ve evaporatörde gerçekleşen CO₂ giriş–çıkış sıcaklık farkları yaklaşık olarak aynı miktarda arttığından, kompresör gücü de yaklaşık olarak sabit kalmaktadır. Bu durum da sistemin COP değerinin %4 azalmasına sebep olmaktadır.

Şekil 5. 11 Sistemin performansının ortam havasının sıcaklığına bağlı değişimi

Ortam havasının sıcaklığı 20 °C'den 30 °C'ye çıktığında, tambura giren havanın sıcaklığı %3 (2.2 °C), bağıl nemi ise %10 artmaktadır. Bu durumda tamburdaki havanın çıkış-giriş mutlak nem farkı %5 artmaktadır. Bu da alınan nem miktarının (MER) %5 artmasına sebep olmaktadır. MER değerinin artması ile birlikte, SMER değeri de %5 artmaktadır.

Ortam havasının sıcaklığının artması, COP değerinde düşüşe sebep olsa da, MER ve SMER değerlerini arttırdığı için, kurutma süresini ve kurutma maliyetini az da olsa düşürmektedir (Şekil 5.12).

Şekil 5. 12 Sistemin enerji tüketiminin ve kurutma süresinin ortam havasının sıcaklığına bağlı değişimi

5.7 Ortam Havasının Bağıl Neminin Etkisi

Model, ortam havasının farklı bağıl nem değerlerinde çalıştırılarak sonuçlar alınmıştır (Şekil 5.13). Ortam havasının bağıl nemi arttıkça, tamburda gerçekleşen kaçak sonrası oluşan karışım havasının bağıl nemi ve sıcaklığı artmaktadır. Böylelikle, ortam havasının sıcaklığının artmasındaki proses benzer şekilde işlemektedir. Ortam havasının bağıl nemi %20'den %80'e çıktığında COP %2 azalmaktadır.

Ortam havasının sıcaklığı %20'den %80'e çıktığında, tambura giren havanın sıcaklığı %1 (0.9 °C), bağıl nemi ise %14 artmaktadır. Bu durumda tamburdaki havanın çıkış-giriş mutlak nem farkı artmakta, bu da alınan nem miktarının (MER) %14 artmasına sebep olmaktadır. MER değerinin artması ile birlikte, SMER değeri de %14 artmaktadır.

Ortam havasının bağıl neminin artmasıyla birlikte COP değeri düşmekte, ancak MER ve SMER değerleri arttığı için, kurutma süresi ve kurutma maliyeti az da olsa düşmektedir (Şekil 5.14).

Şekil 5. 13 Sistemin performansının ortam havasının bağıl nemine bağlı değişimi

Şekil 5. 14 Sistemin enerji tüketiminin ve kurutma süresinin ortam havasının bağıl nemine bağlı değişimi

BÖLÜM 6

SONUÇ VE ÖNERİLER

6.1 Sonuçlar

Bu tez çalışmasında CO₂ ile transkritik çevrime göre çalışan ısı pompalı çamaşır kurutucusu sayısal olarak incelenmiştir. Bu amaçla bilgisayar ortamında bir model oluşturulmuş ve bu model, arayüzü ile birlikte bir bilgisayar programı haline getirilmiştir. Isı değiştiricilerin geometrisi, kompresörün özellikleri, ortam şartları, evaporasyon sıcaklığı, gaz soğutucuya CO₂'in giriş basıncı vb. bilgiler programa girildiğinde, sistem içerisindeki tüm noktaların, sıcaklık, basınç, nem vb. özellikleri hesaplanabilmekte ve ısı transferleri, güç girişleri, kurutma süresi vb. sonuç olarak verilebilmektedir. Programın girdilerinin ve çıktılarının yer aldığı ekran görüntüleri sırasıyla Şekil 3.18 ve Şekil 3.19'da verilmiştir.

Modelin doğrulaması literatürden derlenen uygun deneysel verilerle yapılmıştır. Öncelikle gaz soğutucu ve evaporatör alt modellerinin doğrulaması tek başlarına yapılmıştır. Ardından genel kurutucu modelinin doğrulaması tüm sistem için yapılmıştır. Sonuçlar Bölüm 4'de ayrıntılı olarak verilmiş olup, uygun bir sapma aralığının içerisinde yer almaktadır.

Farklı parametrelerin sistemin performansı üzerindeki etkileri de araştırılmıştır. Bu aşamada özellikleri belirli olan bir kompresör, gaz soğutucu ve evaporatör için sistemin kurutma süresi ve enerji tüketimi ortaya konulmuştur. Modele girilen gaz soğutucunun geometrik özellikleri EK-A'da, evaporatörün özellikleri ise EK-B'de verilmiştir.

 Gaz soğutucuya CO₂'in giriş basıncına bağlı olarak sistemin enerji tüketimi ve kurutma süresi belirgin biçimde etkilenmektedir. Şekil 5.2'de verilen sonuçlardan görülebileceği gibi, optimum gaz soğutucu giriş basıncı olarak belirlenen 100 bar basınçta çalışmak, enerji tüketimini 80 bar'da çalışmaya kıyasla %24 oranında düşürmektedir. Daha yüksek gaz soğutucu giriş basınçlarında sistemin enerji tüketimi tekrar artışa geçmektedir. Kurutma süresi ise, gaz soğutucu giriş basıncı yükseldikçe kısalmaktadır. 80 bar gaz soğutucu giriş basıncından 100 bar basınca çıkıldığında kurutma süresi %44 oranında kısalmaktadır.

- Evaporasyon sıcaklığı değiştikçe sistemin enerji tüketimi ve kurutma süresi değişmektedir (Şekil 5.4). 0 °C evaporasyon sıcaklığından, sistemin optimum evaporasyon sıcaklığı olarak belirlenen 10 °C'ye çıkıldığında, enerji tüketimi %8, kurutma süresi ise %9 düşmektedir. Daha yüksek sıcaklıklara çıkıldığında hem enerji tüketimi, hem de kurutma süresi artışa geçmektedir.
- Havanın kütlesel debisinin artması, Şekil 5.6'da görülebileceği üzere enerji tüketimini ve kurutma süresini kısaltmaktadır. 150 kg/h hava debisinden, 300 kg/h debiye çıkıldığında enerji tüketimi ve kurutma süresi sırasıyla %35 ve %39 oranlarında düşmektedir. Artan hız basınç kaybını, dolayısıyla fan gücünü de arttırmaktadır. Ancak, fan gücü çoğu durumda, kompresör gücüne kıyasla düşük (%5–%18 arasında) kalmaktadır.
- Tambur verimi arttıkça (%70'den %100'e), kurutucunun çamaşırlardan nem alma kabiliyeti arttığından sistemin performansı artmakta; enerji tüketimi ve kurutma süresi sırasıyla %40 ve %40 oranlarında düşmektedir (Şekil 5.8).
- Kaçak oranı arttıkça, sıcak hava tamburdan dışarıya daha yüksek miktarda kaçtığından, sistemdeki sıcaklıklar düşmektedir. Bu durumda sistemin COP değeri artmakta ancak nem alma performansı düşmektedir (Şekil 5.9). Enerji tüketimi ve kurutma süresi açısından bakıldığında; kaçak oranın artması (%15'den %40'a) bu iki değeri sırasıyla %13 ve %13 oranlarına arttırmaktadır (Şekil 5.10).
- Ortam havasının sıcaklığı arttıkça, tamburda gerçekleşen kaçak, sistemdeki sıcaklıkları arttırmaktadır. Bunun sonucu olarak, sistemin COP değeri azalmakta, ancak nem alma performansı artmaktadır (Şekil 5.11). Sonuç olarak, ortam

havasının sıcaklığının artması (20 °C'den 30 °C'ye) sistemin enerji tüketimini %4, kurutma süresini %4 düşürmektedir (Şekil 5.12).

 Ortam havasının bağıl neminin artması (%20'den %80'e), ortam sıcaklığının artmasına benzer bir etki yaparak, sistemin COP değerini düşürmekte ancak nem alma performansını arttırmaktadır (Şekil 5.13). Bu da, enerji tüketimini %12, kurutma süresini ise %12 düşürmektedir (Şekil 5.14).

6.2 Öneriler

Bölüm 5'de ayrıntıları verildiği üzere, gaz soğutucuya CO₂'in giriş basıncının ve evaporasyon sıcaklığının, kurutucunun enerji tüketimi ve kurutma süresi üzerinde belirgin etkileri vardır. Sistemden maksimum performansı alabilmek için kurutucunun, optimum gaz soğutucu basıncında ve optimum evaporasyon sıcaklığında çalıştırılması gerekmektedir. Bu bilgiler ışığında,

- Kurutucu prototipi kurulup, optimum gaz soğutucu giriş basıncı ve evaporasyon sıcaklığının belirlenebilmesi için deneysel bir çalışma yapılabilir.
- Deneysel verilerden hareketle, optimum şartları belirleyebilmek için uygun korelasyonlar türetilebilir.
- Elde edilen korelasyonlar, tez çalışması kapsamında hazırlanan programa adapte edilerek, optimum çalışma şartlarını, programın kendisinin belirlemesi sağlanabilir.

KAYNAKLAR

- [1] Schmidt, E.L., Klöcker, K., Flacke, N. ve Steimle, F., (1998). "Applying the CO₂ transcritical process to a drying heat pump", Int. J. Refrigeration 21:202-211.
- [2] Klöcker, K., Schmidt, E.L. ve Steimle, F., (2001). "Carbon dioxide as working fluid in drying heat pumps", Int. J. Refrigeration 24:100-107.
- [3] Klöcker, K., Schmidt, E.L. ve Steimle, F., (2002). "A drying heat pump using carbon dioxide as working fluid", Drying Technology 20 (8):1659–1671.
- [4] Nekså , P., (2002). "CO₂ heat pump systems", Int. J. Refrigeration 25 (4):421-427.
- [5] Nishiwaki, F., Yakumaru, Y. ve Tamura, T., Drying Apparatus, Avrupa Patent No: WO 2004/029516, 2004.
- [6] Tamura, T., Yakumaru, Y. ve Nishiwaki, F., Heat Pump Type Drying Apparatus Drying Apparatus and Drying Method, Avrupa Patent No: WO 2005/031231, 2005.
- Sarkar, J., Bhattacharyya, S. ve Ramgopal, M., (2006). "CO₂ heat pump dryer: Part 1. Mathematical model and simulation", Drying Technology, 24 (12):1583–1592.
- [8] Sarkar, J., Bhattacharyya, S. ve Ramgopal, M., (2006). "CO₂ heat pump dryer: Part 2. Validation and simulation results", Drying Technology, 24 (12):1593– 1600.
- [9] Honma, M., Tamura, T., Yakumaru, Y. ve Nishiwaki, F., (2008). "Experimental Study on Compact Heat Pump System for Clothes Drying Using CO₂ as a Refrigerant", Proc: 7th IIR Gustav Lorentzen Conference on Natural Working Fluid, IIR, 28–31 May 2006, Norway.
- [10] Valero, P. ve Zgliczynski, M., (2009). "Heat Pump Laundry Dryer: R134a and Environment Friendly Alternatives", 7. International Conference on Compressors and Coolants, 30 Sep–2 Oct 2009, Papiernička, Slovakia.
- [11] Mancini, F., Minetto, S. ve Fornasieri, E., (2011). "Thermodynamic analysis and experimental investigation of a CO₂ household heat pump dryer", Int. J. Refrigeration 34:851-858.
- [12] Genceli, O.F., (1999). Isı Değiştiricileri, Birsen Yayınevi, İstanbul.

- [13] Incropera, F.P ve DeWitt, D.P., (1996).Fundamentals of Heat and Mass Transfer, 4th Edition, John Wiley & Sons, Inc., New York.
- [14] McQuiston, F.C., Parker, J.D. ve Spitler, J.D., (2005). Heating, Ventilating, and Air Conditioning, Analysis and Design, Sixth Edition, John Wiley & Sons, Inc., USA.
- [15] Schmidt, T.E., (1949). "Heat transfer calculations for extended surfaces". Refrigerating Engineering 4:351-57.
- [16] ASHRAE, (2009). Fundamentals (SI Edition).
- [17] Fang, X., (1999). "Modeling and Analysis of Gas Coolers", ACRC CR-16, Air Conditioning and Refrigeration Center, Department of Mechanical and Industrial Engineering, University of Illionis at Urbana-Champaign, USA, (217) 333-3115.
- [18] Gnielinski, V., (1976). "New equations for heat and mass transfer in turbulent pipe and channel flow", International Chemical Engineering, 16(2):359-368.
- [19] Petrov, N.E., ve Popov, V.N., (1985). "Heat transfer and resistance of carbon dioxide being cooled in the supercritical region", Thermal Engineering, 32(3):131-1985.
- [20] Churchill, S.W., (1977). "Friction-factor equation spans all fluid-flow regimes", Chemical Engineering, 7:91-92.
- [21] Darby, R., (2001). Chemical Engineering Fluid Mechanics, Second Edition, Revised and Expanded, Marcel Dekker, Inc., New York.
- [22] Blevins, R.D., (1992). Applied Fluid Dynamics Handbook, Reprint Edition, Krieger Publishing Company, Florida.
- [23] Hooper, W.B., (1981). "The Two-K Method Predicts Head Losses in Pipe Fittings", Chemical Engineering, 84:91-92.
- [24] Crane Co., (1991). Flow of Fluids through Valves, Fittings and Pipe, Paper No:410, New York.
- [25] Kilkovský, B., Jegla, Z. ve Stehlík, P., (2011). "Comparison of Different Methods for Pressure Drop Calculation in 90° and 180° Elbows", Chemical Engineering Transactions, 25:243-248.
- [26] Çengel, Y., (2007). Heat and Mass Transfer: A Practical Approach, Third Edition, The McGraw-Hill Companies, Inc., New York; Çeviren: Tanyıldızı, V. ve Dağtekin, İ., (2011). Isı ve Kütle Transferi: Pratik Bir Yaklaşım, Üçüncü Basım, Güven Bilimsel, İzmir.
- [27] Wang, C.C. ve Chi, K.Y., (2000). "Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data", International Journal of Heat and Mass Transfer, 43:2681-2691.
- [28] Wang, C.C., Chi, K.Y. ve Chang, C.J., (2000). "Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: Correlation", International Journal of Heat and Mass Transfer, 43:2693-2700.

- [29] Wang, C.C., (1998). Unpublished data of airside performance for four plain finand-tube heat exchangers.
- [30] Wang, C.C., Lee, C.J. ve Chang, C.T., (1999). "Some aspects of the fin-and-tube heat exchangers: with and without louvers", J. of Enhanced Heat Transfer, 6:357-368.
- [31] Wang, C.C., Jang, J.Y. ve Chiou, N.F., (1999). Effect of waffle height on the airside performance of wavy fin-and-tube heat exchangers", Heat Transfer Engineering, 20(3):45-56.
- [32] Wang, C.C., Hsieh, Y.C., Chang, Y.J. ve Lin, Y.T., (1996). "Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins", Int. J. of Refrigeration, 19(4):223-230.
- [33] Rich, D.G., (1973). "The effect of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and-tube heat exchangers", ASHRAE Transactions, 79(2):135-145.
- [34] Rich, D.G., (1975). "The effect of the number of tubes rows on heat transfer performance of smooth plate fin-and-tube heat exchangers", ASHRAE Transactions, 81(1):307-317.
- [35] Seshimo, Y. ve Fujii, M., (1991). "An experimental study of the performance of plate fin and tube heat exchangers at low Reynolds number", Proceeding of the 3rd ASME/JSME Thermal Engineering Joint Conference, 4:449-454.
- [36] Wang, C.C., Hwang, Y.M. ve Lin, Y.T., (2002). "Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers", International Journal of Refrigeration, 25:673-680.
- [37] Wang, C.C., Lin, Y.T., Lee, C.J. ve Chang, Y.J., (1999). "An investigation of wavy fin-and-tube heat exchangers; a contribution to databank", Experimental Heat Transfer, 12:73-89.
- [38] Wang, C.C., Tsi, Y.M. ve Lu, D.C., (1998). "A comprehensive study of convexlouver and wavy fin-and-tube heat exchangers", AIAA J of Thermophysics and Heat Transfer, 12(3):423-30.
- [39] Wang, C.C., Jang J.Y. ve Chiou, N.F., (1999). "Effect of waffle height on the airside performance of wavy fin-and-tube heat exchangers", Heat Transfer Engineering, 20(3):45-56.
- [40] Wang, C.C., Jang, J.Y. ve Chiou, N.F., (1999). "A heat transfer and friction correlation for wavy fin-and-tube heat exchangers", Int J Heat and Mass Transfer, 42(10):1919-24.
- [41] Kays, W.M. ve London, A.L., (1998). Compact Heat Exchangers, Third Edition (Reprint Edition), Krieger Publishing Company, Florida.
- [42] VDI, (2010). Heat Atlas Second Edition.
- [43] Spalding, D.B. ve Taborek, J., (1983). Heat Exchanger Design Handbook: Heat Exchanger Theory, Volume 1, Hemisphere Publishing Corporation, USA.

- [44] Cheng, L., Ribatski, G., Quibén, J.M. ve Thome, J.R., (2008). "New prediction methods for CO₂ evaporation inside tubes: Part I – A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops", International Journal of Heat and Mass Transfer, 51:111-124.
- [45] Cheng, L., Ribatski, G. ve Thome, J.R., (2008). "New prediction methods for CO₂ evaporation inside tubes: Part II – An updated general flow boiling heat transfer model based on flow patterns", International Journal of Heat and Mass Transfer, 51:125-135.
- [46] Cheng, L., Ribatski, G., Wojtan, L. ve Thome, J.R., (2006). "New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes", Int. J. Heat Mass Transfer, 49(21-22):4082-4094.
- [47] Cheng, L., Ribatski, G., Wojtan, L. ve Thome, J.R., (2007). Erratum to: "New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes" [Heat Mass Transfer, 49(21-22):4082-4094], Int. J. Heat Mass Transfer, 50:391.
- [48] Knudsen, H.J. ve Jensen, R.H., (1997). "Heat transfer coefficient for boiling carbon dioxide", Workshop Proceedings – CO₂ Technologies in Refrigeration, Heat Pumps and Air Conditioning Systems, Trondheim, Norway, 319-328.
- [49] Yun, R., Kim, Y., Kim, M.S. ve Choi, Y., (2003). "Boiling heat transfer and dryout phenomenon of CO₂ in a horizontal smooth tube", Int. J. Heat Mass Transfer, 46:2353-2361.
- [50] Yoon, S.H., Cho, E.S., Hwang, Y.W., Kim, M.S., Min, K. ve Kim, Y., (2004). "Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development", Int. J. Refrig. 27:111-119.
- [51] Koyama, S., Kuwahara, K., Shinmura, E. ve Ikeda, S., (2001). "Experimental study on flow boiling of carbon dioxide in a horizontal small diameter tube", IIR Commission B1 Meeting, Paderborn, Germany, 526-533.
- [52] Pettersen, J., (2004). "Flow vaporization of CO₂ in microchannel tubes", Exp. Therm. Fluid Sci., 28:111-121.
- [53] Yun, R., Kim, Y. ve Kim, M.S., (2005). "Convective boiling heat transfer characteristics of CO₂ in microchannels", Int. J. Heat Mass Transfer 48:235-242.
- [54] Gao, L. ve Honda, T., (2005). "Effects of lubricant oil on boiling heat transfer of CO₂ inside a horizontal smooth tube", 42nd National Heat Transfer Symposium of Japan, 269-270.
- [55] Gao, L. ve Honda, T., (2005). "An experimental study on flow boiling heat transfer of carbon dioxide and oil mixtures inside a horizontal smooth tube", IIR 2005 Vicenza Conference-Thermophysical Properties and Transfer Processes of Refrigerants, Vicenza, Italy, 237-243.

- [56] Tanaka, S., Daiguji, H., Takemura, F. ve Hihara, E., (2001). "Boiling heat transfer of carbon dioxide in horizontal tubes", 38th National Heat Transfer Symposium of Japan, 899-900.
- [57] Hihara, E. (2000). "Heat transfer characteristics of CO₂", Workshop Proceedings – Selected Issues on CO₂ as working Fluid in Compression Systems, Trondheim, Norway, 77-84.
- [58] Shinmura, E., Take, K. ve Koyama, S., (2006). "Development of highperformance CO2 evaporator", JSAE Automotive Air-Conditioning Symposium, 217-227.
- [59] Zhao, Y., Molki, M., Ohadi, M.M. ve Dessiatoun, S.V., (2000). "Flow boiling of CO₂ in microchannels", ASHRAE Trans. 106(Part I):437-445.
- [60] Zhao, Y., Molki, M. ve Ohadi, M.M., (2000). "Heat transfer and pressure drop of CO₂ flow boiling in microchannels", Proceedings of the ASME Heat Transfer Division, vol. 2:243-249.
- [61] Yun, R., Choi, C. ve Kim, Y., (2002). "Convective boiling heat transfer of carbon dioxide in horizontal small diameter tubes", IIR/IIF-Commission B1, B2, E1 and E2-Guangzhou, China, 293-303.
- [62] Yun, R., Kim, Y. ve Kim, M.S., (2005). "Flow boiling heat transfer of carbon dioxide in horizontal mini tubes", Int. J. Heat Fluid Flow, 26:801-809.
- [63] Jeong, S., Cho, E. ve Kim, H., (2005). "Evaporative heat transfer and pressure drop in a microchannel tube", Proceedings of the 3rd International Conference on Microchannels and Minichannels, Toronto, Ontario, Canada, Part B, 103-108.
- [64] Kattan, N., Thome, J.R. ve Favrat, D., (1998). "Flow boiling in horizontal tubes.
 Part 1: Development of a diabatic two-phase flow pattern map", J. Heat Transfer, 120:140-147.
- [65] Kattan, N., Thome, J.R. ve Favrat, D., (1998). "Flow boiling in horizontal tubes: Part 2-new heat transfer data for five refrigerants", J. Heat Transfer, 120:148-155.
- [66] Kattan, N., Thome, J.R. ve Favrat, D., (1998). "Flow boiling in horizontal tubes: Part-3: Development of a new heat transfer model based on flow patterns", J. Heat Transfer, 120:156-165.
- [67] Thome, J.R. ve El Hajal, J., (2002). "Two-phase flow pattern map for evaporation in horizontal tubes: Latest version", first International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Kruger Park, South Africa, 8–10 April, 182-188.
- [68] Rouhani, Z. ve Axelsson, E., (1970). "Calculation of volume void fraction in a subcooled and quality region", Int. J. Heat Mass Transfer, 17:383-393.
- [69] Ağra, Ö., (2007). Soğutucu Akışkanların Yatay Boru İçinde Halka Akış Şartlarında Yoğuşmasının İncelenmesi, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

- [70] Biberg, D., (1999). "An explicit approximation for the wetted angle in two phase stratified pipe flow", Can. J. Chem. Eng., 77:1221-1224.
- [71] Wojtan, L., Ursenbacher, T. ve Thome, J.R., (2005). "Investigation of flow boiling in horizontal tubes: Part I – A new diabatic two-phase flow pattern map", Int. J. Heat Mass Transfer, 48:2955-2969.
- [72] Wojtan, L., Ursenbacher, T. ve Thome, J.R., (2005). "Investigation of flow boiling in horizontal tubes: Part II – Development of a new heat transfer model for stratified-wawy, dryout and mist flow regimes", Int. J. Heat Mass Transfer, 48:2970-2985.
- [73] Mori, H., Yoshida, S., Ohishi, K. ve Kokimoto, Y., (2000). "Dryout quality and post dryout heat transfer coefficient in horizontal evaporator tubes", Proceedings of the 3rd European Thermal Sciences Conference, 839-844.
- [74] Kutateladze, S.S., (1948). "On the transition to film boiling under natural convection", Kotloturbostroenie, 3:10-12.
- [75] Dittus, F.W. ve Boelter, L.M.K., (1930). "Heat transfer in automobile radiator of the tubular type", Univ. Calif. Publ. Eng., 2:443-461.
- [76] Cooper, M.G., (1984). "Saturation nucleate pool boiling: a simple correlation", 1st UK National Conference on Heat Transfer, 3-5 July 1984, vol. 2:785-793.
- [77] El Hajal, J., Thome, J.R. ve Cavallini, A. (2003). "Condensation in horizontal tubes, Part 2: New heat transfer model based on flow regimes", Int. J. Heat Mass Transfer, 46:3365-3387.
- [78] Groeneveld, D.C., (1973). "Post dry-out heat transfer at reactor operating conditions", ANS Topical Meeting on Water Reactor Safety, Salt Lake City.
- [79] Moreno Quibén, J. ve Thome, J.R., (2007). "Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part I: Diabatic and adiabatic experimental study", Int. J. Heat Fluid Flow, 28(5):1049-1059.
- [80] Moreno Quibén, J. ve Thome, J.R., (2007). "Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part II: New phenomenological model", Int. J. Heat Fluid Flow, 28(5):1060-1072
- [81] Moreno Quibén, J., (2005). Experimental and analytical study of two-phase pressure drops during evaporation in horizontal tubes, Ph.D. Thesis, Swiss Federal Institute of Technology (EPFL), Lausanne.
- [82] Bredesen, A., Hafner, A., Pettersen, J., Nekså, P. ve Aflekt, K., (1997). "Heat transfer and pressure drop for in-tube evaporation of CO₂", Proceedings of the International Conference on Heat Transfer Issues in Natural Refrigerants, University of Maryland, USA, 1-15.
- [83] Pettersen, J., (2004). "Flow vaporization of CO₂ in microchannel tubes", Exp. Therm. Fluid Sci., 28:111-121.
- [84] Pettersen, J. ve VestbØstad, K., (2000). "Heat transfer and pressure drop for flow of supercritical and subcritical in microchannel tubes", Workshop

Proceedings-Selected Issue on CO_2 as Working Fluid in Compression System, Trondheim, Norway, 101-114.

- [85] Zhao, Y., Molki, M., Ohadi, M.M. ve Dessiatoun, S.V., (2000). "Flow boiling of CO₂ in microchannels", ASHRAE Trans., 106(Part I):437-445.
- [86] Zhao, Y., Molki, M. ve Ohadi, M.M., (2000). "Heat transfer and pressure drop of CO₂ flow boiling in microchannels", Proceedings of the ASME Heat Transfer Division, Vol. 2:243-249.
- [87] Yun, R. ve Kim, Y., (2003). "Two-phase pressure drop of CO₂ in mini tubes and microchannels", First International Conference on Microchannels and Minichannels, Rochester, NY, 507-511.
- [88] Yun, R. ve Kim, Y., (2004). "Two-phase pressure drop of CO₂ in mini tubes and microchannels", Microscale Therm. Eng., 8:259-270.
- [89] Ciccitti, A., Lombardi, C., Silvestri, M., Soldaini, G. ve Zavattarelli, R., (1960). "Two-phase cooling experiments-pressure drop, heat transfer and burnout measurements", Energia Nucleare, 7(6):407-425.
- [90] Chisholm, D., (1983). Two phase flow in pipelines and heat exchangers, George Godwin, London/New York.
- [91] Chisholm, D., (1980). "Two phase pressure drop in bends", Int J. Multiphase Flow, 6(4):363-367
- [92] Pirommpugd, W., Wang, C.C. ve Wongwises, S., (2008). "Finite circular fin method for wavy fin-and-tube heat exchangers under fully and partially wet surface conditions", International Journal of Heat and Mass Transfer, 51:4002-4017.
- [93] Bump, T.R., (1963). "Average temperatures in simple heat exchangers", ASME J. Heat Transfer 85(2):182-183.
- [94] Myers, R.J., (1967). "The effect of dehumidification on the air-side heat transfer coefficient for a finned-tube coil", M.S. Thesis, University of Minnesota, Minneapolis.
- [95] Kuehn, T.H., Ramsey, J.W. ve Threlkeld, J.L., (1998). Thermal Environmental Engineering, Third Edition, Prentice-Hall, Inc., New Jersey.
- [96] Myers, R.J., (1967). The effect of dehumidification on the air-side heat transfer coefficient for a finned-tube coil, M.S. Thesis, University of Minnesota, Minneapolis.
- [97] Wang, C.C., Hsieh, Y.C. ve Lin, Y.T., (1997). "Performance of plate finned tube heat exchangers under dehumidifying conditions", J. Heat Transfer, 119:109-117.
- [98] Kern, D.Q. ve Kraus, A.D., (1972). Extended Surface Heat Transfer, First Edition, McGraw-Hill, New York.
- [99] Marrero, T.R. ve Mason, E.A., (1972). "Gaseous Diffusion Coefficients", Journal of Phys. Chem. Ref. Data, 1:3-118.

- [100] Wang, C.C., Du, Y.J., Chang, Y.J. ve Tao, W.H., (1999). "Airside Performance of Herringbone Fin-and-Tube Heat Exchangers in Wet Conditions", The Canadian Journal of Chemical Engineering, 77:1225-1230.
- [101] Ortiz, T.M., Li, D. ve Groll, E.A., (2003). "Evaluation of the Performance Potential of CO₂ as a Refrigerant in Air-to-Air Air Conditioners and Heat Pumps: System Modelling and Analysis", ARTI Final Report, No. 21CR/610-10030.
- [102] Prasertsan, S., Saen-Saby, P., Ngamsritrakul, P. ve Prateepchaikul, G., (1996).
 "Heat pump dryer Part 1: Simulation of the models", International Journal of Energy Research, 20:1067-1079.
- [103] Hwang Y., Jin, D.H., Radermacher, R. ve Hutchins, J.W., (2005). "Performance Measurement of CO₂ Heat Exchangers", ASHRAE Transactions 306-316.
- [104] Dang, C. ve Hihara, E., (2004). "In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement", International Journal of Refrigeration, 27:736-747.
- [105] Wongwises, S. ve Chokeman, Y., (2005). "Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers", Energy Conversion and Management, 46:2216-2231.
- [106] Yoon, S.H., Cho, E.S., Hwang, Y.W., Kim, M.S., Min, K. ve Kim, Y., (2004). "Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development", International Journal of Refrigeration, 27:111-119.
- [107] Cho, J.M. ve Kim, M.S., (2007). "Experimental studies on the evaporative heat transfer and pressure drop of CO₂ in smooth and micro-fin tubes of the diameters of 5 and 9.52 mm", International Journal of Refrigeration, 30:986-994.
- [108] Halici, F. ve Taymaz, I., (2006). "Experimental study of the airside performance of tube row spacing in finned tube heat exchangers", Heat Mass Transfer, 42: 817-822.
- [109] Pirompugd, W., Wang, C.C. ve Wongwises, S., (2007). "Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions", International Journal of Heat and Mass Transfer, 50:552-565.

GAZ SOĞUTUCUNUN GEOMETRİSİ

Sıra sayısı	8	-
Düşey boru sayısı	6	-
Boru dış çapı	9.52	mm
Boru et kalınlığı	1	mm
Kanat kalınlığı	0.12	mm
Kanat aralığı	2	mm
Borular arasındaki yatay mesafe	21	mm
Borular arasındaki düşey mesafe	25.4	mm
Boru dizilimi	Üçgen	-
Dalga açısı	18	Derece
Boru malzemesi	Bakır –	
Kanat malzemesi	Alüminyum –	
Uzunluk	238 mm	

EVAPORATÖRÜN GEOMETRİSİ

Sıra sayısı	3	-
Düşey boru sayısı	6	-
Boru dış çapı	9.52	mm
Boru et kalınlığı	1	mm
Kanat kalınlığı	0.12	mm
Kanat aralığı	3	mm
Borular arasındaki yatay mesafe	21	mm
Borular arasındaki düşey mesafe	25.4	mm
Dalga açısı	18	Derece
Boru malzemesi	Bakır	-
Kanat malzemesi	Alüminyum –	
Uzunluk	238	mm

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı	: Serkan ERDEM
Doğum Tarihi ve Yeri	: 21.05.1983 İstanbul
Yabancı Dili	: İngilizce
E-posta	: serdem@yildiz.edu.tr / serkanerdem83@yahoo.com

ÖĞRENİM DURUMU

Derece	Alan	Okul/Üniversite	Mezuniyet Yılı
Y. Lisans	Makine Müh.	Yıldız Teknik Üniversitesi	2007
Lisans	Makine Müh.	Yıldız Teknik Üniversitesi	2005
Lise	Sayısal	Yakacık Lisesi	2001

İŞ TECRÜBESİ

Yıl	Firma/Kurum	Görevi
2005 -	Yıldız Teknik Üniversitesi	Araştırma Görevlisi

YAYINLARI

Makale

1. Onan C., Özkan D.B. ve Erdem S., (2010). "Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications", Energy, 35(12):5277-5285.

- Onan C. ve Erdem S., (2009). "TS 825 Binalarda Isı Yalıtımı Kuralları Standardındaki Değişikliklerin Analizi", Tesisat Mühendisliği Dergisi, 109:49-52.
- 3. Özkan D.B., Onan C. ve Erdem S., (2009). "Yalıtım Malzemesi Kalınlığının Isı Yalıtımına Etkisi", Sigma, 2009(3):190-196.
- 4 Özkan D.B., Onan C., Tural M. ve Erdem S., (2007). "Yapılarda Yalıtım Uygulamasının Ekonomik Analizi", İzolasyon Dünyası, 66:55-59.

Bildiri

- 1. Erdem S., Onan C., Özkan D.B. ve Bedirli E., "The Effect of Insulation on Energy Savings and Costs for the Current Building Inventory in Turkey", Asme Imece2012, November 2012, p. 1-9, Houston, USA.
- Erdem S., Özkan D.B. ve Onan C., (2010). "Economic Analysis of Solar Assisted Ground Source Heat Pump System in Heating and Cooling a Villa in Mardin", Humboldt Kolleg Istanbul, 21-24 October 2010, Turkey.
- 3. Erdem S., Özkan D.B. ve Onan C., (2008). "Economic Analysis of Solar Assisted Ground Source Heat Pump System by Comparing Conventional System in Heating and Cooling a Villa", 46th International Congress AICARR, 12-13 March, 2008, p. 319-333, Milano, Italy.
- 4. Onan C., Özkan D.B. ve Erdem S., (2008). "Economic Analysis of Solar Assisted Absorption Cooling Systems in Climatization of the Villas", 46th International Congress AICARR, 12-13 March, 2008, p. 335-350, Milano, Italy.

Proje

1. "Isı Pompalı Kurutma Sistemlerinde Alternatif Soğutkanların Performansa Etkisinin Sayısal ve Deneysel İncelemesi" başlıklı ve "01303.STZ.2012-1" kodlu SAN-TEZ Projesi.

ÖDÜLLERİ

1. 2011, TÜBİTAK Bilimsel Yayınları Teşvik Ödülü