I DI T İ İ RSİT Sİ F İ İM Rİ STİT S

YA I TB EŞ M E K E E E N DEPREM PERFORMANSININ DE E END MES

nş. Yük. Müh. Nihan D AMA I AKSOYLAR

F İnşaat Mühendisliği Anabilim Dalı apı rogramında Hazırlanan

DO TORAT Í

Tez Savunma Tarihi: 29 Eylül 2009Tez Danışmanı: Prof. A. Zafer ÖZTÜRKİkinci Tez Danışmanı: Prof. Dr. Amr S. ELNASHAIJüri Üyeleri: Prof. Dr. M. Nuray AYDINU: Prof. Dr. Hasan BDUU: Prof. rahim EK: DoDr. Bülent AKBAŞ

İSTA 2009

İÇİ D İ R

	Say	/fa
SME S	STES	. v
KISA TM	A STES	xi
ŞEK S	STESx	iii
E E	STESxx	vi
ÖNSÖZ		vi
ÖZET		vii
ABSTRAC	СТхххv	'iii
1.	Ş	. 1
1.1 1.2 1.3 1.4 2.	Pro lemin Tanımı Amaç ve Kapsam Tezin Organizasyonu Önceki alışmalar YA I TB EŞ M E	.2 .4 .7 .9 23
2.1 2.1.1 2.1.2	nceki alışmalar Birleşimlerin Modellenmesi Birleşimlerin evrimsel Deneyleri ve D nme Kapasiteleri	23 23 24
2.1.3 2.2 2.2.1	Histeretik Davranışın Modellenmesi Birleşim Tipleri ve Sınıflandırılması Birleşim Tipleri	31 33 33
2.2.2 2.2.2.1 2.2.2.2	Birleşimlerin Sınıflandırılması AIS Y netmeliği Eurocode Y netmeliği	35 35 37
2.3 2.3.1 2.3.2	Birleşim Davranışının Modellenmesi Birleşimlerin modellenmesi Moment d nme iliskilerinin matematiksel ifadesi	38 38 39
2.3.3 2.3.3.1 2.3.3.2	Birleşim davranışının elirlenmesi AISC Yöntemi (Akma i gilerine Dayalı Y ntem) Eurocode Y ntemi (Elemana Dayalı Y ntem)	41 42 48
2.3.3.2 2.4 2.4.1	Dönme Kapasitesi AIS Y netmeliği	51 51
2.4.2 2.5 2.5.1	Eurocode Y netmelığı rnek er evelerde Kullanılan Birleşimler ijit irleşimler	52 53 53
2.5.2 3.	Yarı rijit irleşimler M MENT DAYANIM I E K E E E N TASA IMI	54 57
3.1 3.2	Giriş AISC – LRFD Metodu	57 58

3.2.1	Tasarım Kriterleri	58
3.2.2	Sta ilite Tasarımı	60
3.2.2.1	erekli Dayanımın Hesaplanması	60
3.2.2.2	Efektif U unluk Katsayısı	63
3.2.3	Kapasite Tasarımı	64
3.2.3.1	ekme Tasarımı	64
3.2.3.2	Basın Tasarımı	64
3.2.3.3	Eğilme Tasarımı	65
3.2.3.4	Kesme Tasarımı	
3.2.3.5	Eksenel Kuvvet ve Eğilme Momenti Etkişi	
3.2.4	Kullanıla ilirlik Tasarımı	
3.3	Süneklik Dü evi Yüksek er eveler i in Deprem Tasarım Sartları	
3.3.1	AIS Y netmeliği	71
3311	Kiris ve Kolon Kesitleri (Enkesit Sartları)	72
3312	Kolon Kiris Moment ranı	72 73
3313	Kolon Rirlş Molnent - Talıl	73 74
3.3.1.3	King - Kolon Dineşinileri Kayma Bölgesi (Panel Zone)	74 71
3.3.1.4	rnak Binaların Tasarımı	74 76
3. 4 2.4.1	Tagwa Sistem Tanımı	70 76
5.4.1 2.4.2	Vält va Vältlama Kam inagvanlam	70 70
5.4.2 2.4.2.1	Y UK VE Y UKIEME KOM INASYONIAN	
3.4.2.1	Duşey Yukler	
3.4.2.2		
3.4.2.3	Deprem Yukunun Duşey Dagilimi	
3.4.2.4	Yükleme Kom inasyonlari	
3.4.3	Tasarim Metodu	
3.4.3.1	Sta ilite Tasarimi	
3.4.3.2	Elemanların Dayanım Tasarımı	
3.4.3.3	Kullanıla ilirlik Kontrolleri	
4.	DEP EM PE F MANSININ DE E END MES	95
4.1	Doğrusal lmayan Statik tme Anali i	96
4.1.1	Hedef Deplasman	98
4.2	aman Tanım Alanında Doğrusal Imayan Dinamik Anali	99
4.3	Analiz Platformu ve Modelleme	
4.4	Deprem Yer Hareketleri	
4.4.1	Seçilme Kriterleri	
4.4.1.1	Gerçek Deprem Yer Hareketleri	
4.4.1.2	Yer Hareketi Modelleri (A alım lişkileri)	
4.4.1.3	Yapay Deprem Yer Hareketi Kavıtları	
4.4.2	Normalizasyon ve Ölceklendirme	116
4.5	Davranıs Kriterleri (Sinır Durum Kriterleri)	
4.5.1	Modelleme parametreleri	
4.5.2	okal Davranıs Kriterleri	
4.5.2.1	Akma Sınır Durumu	123
4522	me Sınır Durumu	120
4.5.2.3	Kabul edilebilirlik Kriterleri	121
453	lo al Davranis Kriterleri	124
4531	Akma Sınır Durumu	125
4532	me Sınır Durumu	125 126
4.6	Performans parametreleri	120
	r enternand parameteren	

5.	ANA S NU A I	131
5.1	değer Anali leri	132
5.2	Doğrusal İmayan Statik tme Anali leri	133
5.2.1	Kapasite Eğrileri	133
5.2.2	okal Davranıs Sınır Değerleri	135
5.2.3	lo al Davranis Sınır Değerleri	139
5.2.4	Performans Parametreleri	143
5.2.5	Plastik Mafsal lusum Yerleri ve Sırası	146
5.2.6	Hedef Deplasman	147
5.3	aman Tanım Alanında Doğrusal Imayan Dinamik Anali ler	148
5.3.1	er ek Deprem Yer Hareketleri Kullanılan Anali ler	148
5.3.1.1	Maksimum Kesme Kuvveti – Maksimum Deplasman Değerleri	148
5.3.1.2	Kat Ötelemeleri	151
5.3.1.3	Kiris erilmeleri ve Yav D nmeleri	162
5.3.1.4	Kolon Gerilmeleri ve Yay Dönmeleri	172
5.3.1.5	Kolonlarda lusan Plastik Mafsallar	183
5.3.1.6	Birlesim D nmeleri	186
5.3.2	Yapay Deprem Yer Hareketi Kullanılan Anali ler	195
5.3.2.1	Maksimum Kesme Kuvveti – Maksimum Deplasman Değerleri	195
5.3.2.2	Kat Ötelemeleri	198
5.3.2.3	Kolon Gerilmeleri	214
5.3.2.4	Birlesim D nmeleri	220
5.4	Fourier Analizleri	226
5.4.1	lenen Y ntem.	226
5.4.2	Elastik Ötesi Perivotlar	231
5.5	Tepe Deplasmanı – Elastik Spektral Deplasman lişkişi	235
6	SONLICI AR	244
0.		
6.1	Anali Sonu ları	245
6.1.1	değer Anali leri	245
6.1.2	Statik tme Anali leri	246
6.1.3	Dinamik Analizler	248
6.2	enel Değerlendirme	256
6.3	elecek alışmalara Y nelik neriler	258
KAYNAK	LAR	259
EKLER		266
		0.67
Ek AIS	Y ntemine g re yarı rijit irleşim tasarımı akış şeması	267
Ek 2 Euroc	ode yöntemine göre yarı rijit irleşim tasarımı akış şeması	273
EK 3 AIS	ve Eurocode y ntemlerine g re u atilmiş alın levhali, ulonlu irleşim tasarın	nı 270
rnek hesaj	plari	278
Ek er e	k yer hareketi kayıtları	305
Ek Yapay	y yer hareketi kayıtları	301
Ek Plastil	k matsal oluşum yerleri ve sıraları	350
Ek / Maksi	ımum kat kesme kuvvetı – maksımum kat ötelemeleri	354
Ek a Mak	simum tepe deplasman oranlari ve maksimum kat teleme oranlari	360
Ek Mini	mum, ortalama, maksimum tepe deplasman ve kat teleme oranlari	368
Ek 8c Gerç	ek yer hareketi kayıtları 1 in tepe deplasman ve kat telemeleri karşılaştırması	.372

Ek d Tüm ger ek yer hareketi kayıtları i in kat teleme oranları	
Ek a Maksimum kiriş gerilmeleri	
Ek Minimum, ortalama, maksimum kiriş gerilmeleri	
Ek 9c Maksimum kiriş yay d nmeleri	
Ek d Minimum, ortalama, maksimum kiriş yay d nmeleri	
Ek 10a Maksimum kolon gerilmeleri	
Ek 10b Minimum, ortalama, maksimum kolon gerilmeleri	
Ek 10c Maksimum kolon yay dönmeleri	
Ek 10d Minimum, ortalama, maksimum kolon yay dönmeleri	
Ek Kolonlarda oluşan plastik mafsal sayıları	
Ek 2a Maksimum irleşim d nmesi	
Ek 2 Minimum, ortalama, maksimum irleşim d nmeleri	
Ek 3 Kat teleme oranı - irleşim d nmesi ilişkileri	
Ek 14 Maksimum kat kesme kuvveti – maksimum kat ötelemeleri	
Ek a Maksimum tepe deplasman oranları ve maksimum kat teleme oranları	
Ek Minimum, ortalama, maksimum tepe deplasman ve kat teleme oranları	
Ek c Yapay yer hareketi kayıtları i in tepe deplasman ve kat telemeleri karşılaştı	rması 502
Ek d Tüm yapay yer hareketi kayıtları i in kat teleme oranları	511
Ek 16a Maksimum kolon gerilmeleri	
Ek 16b Minimum, ortalama, maksimum kolon gerilmeleri	
Ek a Maksimum irleşim d nmeleri	547
Ek 17b Minimum, ortalama, maksimum irleşim d nmeleri	559
Ek er evelerin tepe ivmelerinin Fourier gü spektrumları ve elastik tesi periyo	tları 565
Е М Ş	

SİMG	İST Sİ	
A_{e}	Net enkesit alanı	Bölüm 3.2.3.1
A_{g}	Enkesit alanı	Bölüm 3.2.3.1
B_1	<i>P</i> – etkilerini dikkate alan moment üyütme katsayısı	Bölüm 3.2.2.1
B_2	<i>P</i> – etkilerini dikkate alan moment üyütme katsayısı	Bölüm 3.2.2.1
С	Sönüm matrisi	Bölüm 4.3
C_d	Yer değiştirme üyütme katsayısı "Deflection amplification factor"	Bölüm 4.6
C_m	Azaltma katsayısı	Bölüm 3.2.2.1
C_s	Deprem davranış katsayısı "Seismic response coefficient"	Bölüm 3.4.2.2
$C_{_{vx}}$	Düşey dağılım katsayısı	Bölüm 3.4.2.3
C_w	arpılma (arping) katsayısı	Bölüm 3.2.3.3
D	Sabit yük	Bölüm 3.2.1
E	eliğin elastisite modülü	Bölüm 3.2.1
E	Deprem yükü	Bölüm 3.2.1
F_{a}	Kısa periyot emin katsayısı	Bölüm 3.4.2.2
F_{e}	Kritik elastik burkulma gerilmesi	Bölüm 3.2.3.1
F_{cr}	Eğilme urkulma gerilmesi	Bölüm 3.2.3.2
$F_{i,Rd}$	i. Bulon sırasına ait taşıma kapasitesi	Bölüm 2.2.2.1
F_y	Minimum akma gerilmesi	Bölüm 3.2.3.1
$F_{_{yp}}$	Alın levhasının minimum akma gerilmesi	Bölüm 2.3.3.1
F_{u}	Minimum ekme dayanımı	Bölüm 3.2.3.1
F_{v}	Uzun periyot (1 sn periyodu) emin katsayısı	Bölüm 3.4.2.2
F_{x}	Yapının katlarına etkiyen deprem kuvveti	Bölüm 3.4.2.3
Н	Yatay asınca ağlı yük	Bölüm 3.2.1
Н	Kat yüksekliği	Bölüm 3.2.4
K	Efektif u unluk katsayısı	Bölüm 3.2.2.2
K	Başlangı rijitlik matrisi	Bölüm 4.3
K_i	Birleşimin aşlangı rijitliği	Bölüm 2.2.2.1
K_{S}	Birleşimin sekant rijitliği	Bölüm 2.2.2.1

K_{φ}	Başlangı d nme rijitliği	Bölüm 2.2.2.1
$K_{\varphi,p}$	Plastik d nme rijitliği	Bölüm 2.3.2
$K_{\varphi,y}$	Akma sonrası d nme rijitliği	Bölüm 2.3.2
K_1	Eğilme dü lemindeki efektif u unluk katsayısı, konservatif olarak	
	.0 alınabilir (yatay öteleme yapmaması ka ulüne dayanır)	Bölüm 3.2.2.1
<i>K</i> ₂	Eğilme dü lemindeki efektif u unluk katsayısı,	
	(yatay urkulma anali iyle hesaplanır)	Bölüm 3.2.2.1
Ι	Bina nem katsayısı	Bölüm 3.4.2.2
Ι	Eğilme düzlemindeki atalet momenti	Bölüm 3.2.2.1
J	Burulma katsayısı	Bölüm 3.2.3.3
L	Kat yüksekliği	Bölüm 3.2.2.1
L	Hareketli yük	Bölüm 3.2.1
L_b	Kolon aksları arasında kalan kiriş a ıklığı	Bölüm 2.2.2.1
L_{g}	Kirişin mesnetlenmemiş u unluğu	Bölüm 3.2.2.2
L_h	Plastik mafsallar arası mesafe	Bölüm 3.3.1.2
L_n	Akma çizgisi u unluğu	Bölüm 2.3.3.1
L_r	atı hareketli yük	Bölüm 3.2.1
М	Kütle matrisi	Bölüm 4.3
М	Depremin üyüklüğü	Bölüm 4.4.1.1
$M_{j,Rd}$	Plastik moment kapasitesi	Bölüm 2.3.2
$M_{j,y}$	Akma moment kapasitesi	Bölüm 2.3.2
M_{F}	Yatay analizle belirlenen kiriş elemanının u ak u momenti	Bölüm 3.2.2.2
M_{s}	Servis yükleri altında oluşan moment	Bölüm 2.2.2.1
M_{lt}	Sadece çerçevenin yanal deplasmanının se ep olduğu FD yük	
	kom inasyonları kullanılarak hesaplanan irinci merte e momenti	Bölüm 3.2.2.1
M_{N}	Yatay analizle belirlenen kiriş elemanının yakın u momenti	Bölüm 3.2.2.2
M_{fc}	Kolon yü ünde oluşan eğilme momenti	Bölüm 2.3.3.1
M_n	Nominal eğilme dayanımı	Bölüm 3.2.3.3
M_n	Maksimum eğilme momenti	Bölüm 2.2.2.1

M_{nt}	FD yük kom inasyonları kullanılarak hesaplanan irin	ci
	mertebe momenti	Bölüm 3.2.2.1
M_{p}	Plastik eğilme momenti kapasitesi	Bölüm 3.2.3.3
$M_{_{pl}}$	Alın levhasının eğilme momenti	Bölüm 2.3.3.1
M_{r}	kinci merte e eğilme dayanımı	Bölüm 3.2.2.1
P_{e1}	Yatay ötelemesi nlenmiş elemanın, elastik kritik urkulm	ia
	dayanımı	Bölüm 3.2.2.1
P_{c}	Kolon eksenel kapasitesi	Bölüm 3.2.4
P_i	Yapının toplam ağırlığının ir kısmı (lü yük, kalıcı harek	etli yük ve <i>i</i> . kat
	kolonlarına etki eden ge ici hareketli yükün 2 inden ol	uşur) Bölüm 3.2.4
P_{lt}	Sadece er evenin yanal deplasmanının se ep olduğu I	FD yük kom inasyonları
	kullanılarak hesaplanan irinci merte e eksenel kuvveti	Bölüm 3.2.2.1
P_n	Nominal eksenel asın dayanımı	Bölüm 3.2.3.1
P_{nt}	FD yük kom inasyonları kullanılarak hesaplanan irine	ci mertebe
	eksenel kuvveti	Bölüm 3.2.2.1
P_r	erekli eksenel dayanım	Bölüm 3.2.2.1
P_{y}	Eksenel yük kapasitesi	Bölüm 3.3.1.1
P_{u}	Kolonun gerekli eksenel dayanımı	Bölüm 3.3.1.1
$Q_{\scriptscriptstyle E}$	Yatay deprem yükü	Bölüm 3.4.2.4
Q_{ni}	Nominal tasarım yükleri	Bölüm 3.1
R	Taşıyıcı sistem davranış katsayısı	Bölüm 3.4.2.2
R	Yağmur yükü	Bölüm 3.2.1
R_n	Nominal dayanım	Bölüm 3.1
$R_{_M}$	Bir katsayı (moment aktaran çerçeveler için 0.85)	Bölüm 3.2.2.1
R_{u}	erekli dayanım	Bölüm 3.1
S	Kar yükü	Bölüm 3.2.1
S_a	Spektral ivme	Bölüm 3.4.2.2
S_{DS}	Kısa periyotların tasarım spektral ivme parametresi	Bölüm 3.4.2.2
S_{D1}	Bir saniye periyodun tasarım spektral ivme parametresi	Bölüm 3.4.2.2

S_{j}	Birleşimin aşlangı rijitliği	Bölüm 2.2.2.1
S _{MS}	Kısa periyot i in eklenilen maksimum ivme spektrum parametresi	Bölüm 3.4.2.2
S_{M1}	Bir saniye periyot için beklenilen maksimum ivme spektrum	
	parametresi	Bölüm 3.4.2.2
S_{s}	Kısa periyot parametresi	Bölüm 3.4.2.2
S_V	H1 spektrum eğrisi	Bölüm 4.4.2
S_{x}	ekseni etrafında elastik kesit modülü	Bölüm 3.2.3.3
S_1	Bir saniye periyodu parametresi	Bölüm 3.4.2.2
SI_{H}	Spektral şiddet	Bölüm 4.4.2
Т	Yapının doğal titreşim periyodu	Bölüm 3.4.2.2
T_a	Yaklaşık yapı periyodu	Bölüm 3.4.2.2
T_L	Uzun periyot	Bölüm 3.4.2.2
T_0	$0.2 S_{D1} / S_{DS}$	Bölüm 3.4.2.2
T_s	S_{D1}/S_{DS}	Bölüm 3.4.2.2
V	Deprem taban kesme kuvveti	Bölüm 3.4.2.2
V_n	Nominal kesme dayanımı	Bölüm 3.2.3.4
V_s	Kayma dalgasi hi i	Bölüm 4.4.1.1
V_{u}	erekli kesme dayanımı	Bölüm 3.2.3.4
$V_{_{yi}}$	i. Katın toplam plastik yatay kesme kuvvetini	Bölüm 3.2.4
Y_i	i. Kat seviyesine etkiyen tasarım düşey yükü	Bölüm 3.2.2.1
Z_x	ekseni etrafında plastik kesit modülü	Bölüm 3.2.3.3
W	Rüzgâr yükü	Bölüm 3.2.1
W	Yapının efektif ağırlığı	Bölüm 3.4.2.2
W_{i}	iş (Akma i gisi modelinde)	Bölüm 2.3.3.1
W_{e}	Dış iş (Akma i gisi modelinde)	Bölüm 2.3.3.1
b_{cf}	Kolon aşlık genişliği	Bölüm 3.3.1.4
$b_{_f}$	Kolon veya kiriş kesiti aşlık genişliği	Bölüm 3.2.1
b_p	Alın levhası genişliği	Bölüm 2.3.3.1

$d_{\scriptscriptstyle b}$	Kiriş kesit yüksekliği	Bölüm 3.3.1.4
d_{c}	Kolon kesit yüksekliği	Bölüm 3.3.1.4
8	Bulonların yatayda aralarındaki mesafe	Bölüm 2.3.3.1
g	Yer çekimi ivmesi	Bölüm 1.4
h	Kolon veya kiriş kesit yüksekliği	Bölüm 3.2.1
h_{i}	i.Bulon sırasının asın merke ine olan u aklığı	Bölüm 2.2.2.1
n_b	ekme lgesindeki ulon sıra sayısı	Bölüm 2.3.3.1
m_p	Birim u unluktaki plağın plastik moment kapasitesi	Bölüm 2.3.3.1
p_{fi}	Kiriş ekme aşlığı alt yü üyle en yakın ulon sırası mesafesi	Bölüm 2.3.3.1
p_{fo}	Kiriş ekme aşlığı üst yü üyle en yakın ulon sırası mesafesi	Bölüm 2.3.3.1
r	Kesit atalet yarı apı	Bölüm 3.2.3.1
S	En i teki veya en dıştaki ekme ulon sırasının akma i gisi	
	kenarına olan mesafe	Bölüm 2.3.3.1
t _{cf}	Kolon aşlık kalınlığı	Bölüm 3.3.1.4
t_f	Kolon veya kiriş kesiti aşlık kalınlığı	Bölüm 3.2.1
t _p	Alın levhası kalınlığı	Bölüm 2.3.3.1
t _w	Kolon veya kiriş kesit g vde kalınlığı	Bölüm 3.2.1
$\sum H$	_H değerini hesaplamakta kullanılan, yatay kuvvetlerden dolayı	
	kat kesme kuvveti	Bölüm 3.2.2.1
$\sum P_{e2}$	Katın elastik kritik urkulma dayanımı	
	(yatay burkulma analiziyle belirlenir)	Bölüm 3.2.2.1
$\sum P_{nt}$	Kattaki toplam düşey yük,	
	(FD yük kom inasyonları kullanılarak hesaplanır)	Bölüm 3.2.2.1
α	Bir katsayı, FD i in .0	Bölüm 3.2.2.1
α	Kütle orantı katsayısı	Bölüm 4.3
β	ijitlik orantı katsayısı	Bölüm 4.3
γ_i	Yük katsayıları	Bölüm 3.2
λ_p	Kompakt kesit genişlik / kalınlık oranı sınırı	Bölüm 3.2.1
$\lambda_{_f}$	Kompakt olmayan kesit genişlik / kalınlık oranı sınırı	Bölüm 3.2.1

Н	Birinci mertebe kat ötelemesi	Bölüm 3.2.2.1
i	i. Kat yatay ötelemesi	Bölüm 3.2.4
ϕ	Dayanım katsayısı	Bölüm 3.1
ϕ_c	Basın i in dayanım katsayısı	Bölüm 3.2.3.5
$\phi_{\!_b}$	Eğilme i in dayanım katsayısı	Bölüm 3.2.3.5
$\omega_{_{1}}$	Birinci mod frekansı	Bölüm 4.3
ω_{3}	üncü mod frekansı	Bölüm 4.3
ρ	"Redundancy" katsayısı	Bölüm 3.4.2.4
	Süneklik katsayısı	Bölüm 4.6
ξ	Kritik sönüm	Bölüm 4.3
i	Kat stabilitesi	Bölüm 3.2.4
	Dayanım katsayısı	Bölüm 4.6
i	dayanım katsayısı	Bölüm 4.6
n	Akma çizgisi boyunca rijit plak bölümlerinin dönmesi	Bölüm 2.3.3.1
S	Servis yükleri altında irleşim d nmesi	Bölüm 2.2.2.1
и	Maksimum dönme kapasitesi	Bölüm 2.2.2.1
φ	Birleşim d nmesi	Bölüm 2.3.2

ISA TMA İST Sİ

A03	Am raseys ve Douglas (2003) a alım ilişkisi
A96	Am raseys vd. () a alım ilişkisi
ATC	"Applied Technology Council"
AISC	Amerikan elik Yapılar Enstitüsü
ASCE	Amerikan nşaat Mühendisleri Birliği
ASD	üvenlik erilmeleriyle Tasarım
B97	Boore vd. () a alım ilişkisi
В	Bilineer deali asyon
EP	Elastik Tam Plastik deali asyon
CG	Can üvenliği
COSMOS	"Consortium of Organization for Strong Ground Motion Observation System"
CUREE	Deprem Mühendisliği Araştırmaları için Kaliforniya Üniversiteleri
DA	Dayanım A alması
DBYBHY	Deprem B lgelerinde Yapılacak Binalar Hakkında Y netmelik
ECCS	Avrupa Yapısal elik Konvansiyonu
FEMA	"Federal Emergency Management Agency"
F	Faya u ak yer hareketi kaydı
FMC	Basit ve Yarı ijit Moment Birleşimler
GÖ	Göçmenin Önlenmesi
HFC	Sa it Eksenel Kuvvet Altında Histeretik Eğilme Yayı Modeli (evrimsel davranış
	altında rijitlik a almalı histeretik model)
НК	Hemen Kullanım
IMF	Süneklik Düzeyi Orta Çerçeveler
KÖ	Kat Ötelemesi
LRFD	Yük ve Dayanım Katsayılarıyla Tasarım
MD	Maksimum Deprem
Ν	Faya yakın yer hareketi kaydı
OMF	Süneklik Düzeyi Normal Çerçeveler
PEER	Pasifik Deprem Mühendisliği Araştırma Merke i
PGA	En Büyük Yatay Yer vmesi
PGV	En Büyük Yatay Yer Hı 1
PGD	En Büyük Yatay Yer Deplasmanı

- P70 (%70) Birleşim eğilme kapasitesinin, kiriş kapasitesine oranı 0.7
- P60 (%60) Birleşim eğilme kapasitesinin, kiriş kapasitesine oranı 0.
- P50 (%50) Birleşim eğilme kapasitesinin, kiriş kapasitesine oranı 0.

SAC SEAOC, ATC ve CUREE'nin oluşturduğu Ortak irişim

SEAOC Kaliforniya Yapı Müh. Birliğ

SD Sınır Durum

- SMF Süneklik Düzeyi Yüksek Çerçeveler
- SMTR Simetrik Üç Doğrulu Yay Modeli (Kinematik pekleşmeli model)
- KTKK Karelerinin Toplamının Kare K kü
- SH11 Birleşim pekleşme oranı 0 (0.035*rad* d nme değerindeki taşıma kapasitesinin, plastik moment taşıma kapasitesine oranı)
- SH14 Birleşim pekleşme oranı 0(0.035*rad* dönme değerindeki taşıma kapasitesinin, plastik moment taşıma kapasitesine oranı)
- TD Tasarım Depremi
- UBC "Uniform Building Code"

i ist si

Şekil . er evelerin 0.3 g Taft yer hareketi etkisinde taban kesme kuvveti – yatay
deplasman ilişkisi (Nader ve Astaneh, dan alınmıştır)10
Şekil .2 Yarı rijit irleşimlerin a) 0. g Taft ve b) 0.5g Meksika yer hareketleri altındaki
moment - d nme ilişkisi (Nader ve Astaneh, dan alınmıştır)10
Şekil .3 a) D rt katlı ve) Yedi katlı yapının ta an kesme kuvveti – kat telemesi ilişkisi
(Nader ve Astaneh, 2 den alınmıştır)11
Şekil . Yapıların (d rt katlı ve on katlı) hafif şiddetli, orta şiddetli ve şiddetli depremler
etkisinde kat teleme değerleri (Nader ve Astaneh, 2 den alınmıştır)
Şekil . a) Alt ve üst aşlıkları korniyerli, g vdesi "T ağlantılı,) u atılmış alın levhalı
irleşimlerin moment d nme ilişkisi (Nader ve Astaneh, 2 den alınmıştır) 13
Şekil . Yarı rijit ilk kat irleşimlerinin moment d nme grafikleri
(Elnashai vd., den alınmıştır)15
Şekil . katlı yapının a) ta an kesme kuvveti – tepe noktası,) kat seviyesi - kat öteleme
a 1s1 (Maison vd., 2000a dan alınmıştır)16
Şekil . katlı yapının maksimum toplam d nme – kat teleme a ısı
(Maison vd., 2000a dan alınmıştır)17
Şekil . Yarı rijit irleşimin histeretik davranış modeli
(Maison ve Kasai, 2000 den alınmıştır)
Şekil . 0 katlı yapının ta an kesme kuvveti – tepe öteleme a ısı
(Maison vd., 2000 den alınmıştır)
Şekil . katlı yapının maksimum kat teleme oranları ve irleşimin d nmesi
(Maison vd., 2000 den alınmıştır)
Şekil 2. Birleşimlerin moment d nme ilişkisi (Bernu i vd., dan alınmıştır)25
Şekil 2.2 Toplam ve irleşim d nmesine katkıda ulunan elemanlar
(Bernu i vd., dan alınmıştır)26
Şekil 2.3 Birleşimlerin moment d nme ilişkisi (Bernu i vd., dan alınmıştır)26
Şekil 2. D rt farklı irleşimin moment – d nme ilişkisi
(Kukreti ve Abolmaali, dan alınmıştır)
Şekil 2. Birleşimlerin evrimsel davranışı (alado vd., 2000 den alınmıştır)
Şekil 2. Birleşimlerin moment d nme ilişkisi (Shi vd., 200 den alınmıştır)
Şekil 2. D rt modelle deneysel sonu ların karşılaştırılması
(Kukreti ve A olmaali, dan alınmıştır)

Şekil 2. Değiştirilmiş modelle deneysel sonu ların karşılaştırılması
(Kukreti ve A olmaali, dan alınmıştır)
Şekil 2. Bilineer kinematik pekleşmeli model (Shi vd., 200 den alınmıştır)
Şekil 2. 0 Birleşimin moment-d nme ilişkisi
Şekil 2. Kiriş kolon irleşim tipleri
Şekil 2. 2 Moment d nme diyagramları, (hen ve Toma, den alınmıştır)
Şekil 2. 3 Yarı rijit irleşimin rijitlik, dayanım ve süneklik karakteristikleri (AIS, 200).35
Şekil 2. ijit, yarı rijit ve mafsallı irleşimlerin sınıflandırılması (AIS, 200)
Şekil 2. Birleşimlerin rijitliklerine g re sınıflandırılması
Şekil 2. Birleşim modellemesi i in Kra inkler modeli
Şekil 2. Birleşim modellemesi i in Scissors modeli
Şekil 2. Moment d nme eğrisinin matematiksel ifadeleri40
Şekil 2. U atılmış alın levhalı ulonlu irleşim i in ü doğrulu moment d nme diyagramı
(Eurocode EN1993-1-8, 2005)
Şekil 2.20 D rt ulonlu alın levhalı irleşimin akma i gisi modeli (AISC 2003c)44
Şekil 2.2 Alın levhalı ulonlu irleşimin akma i gileri45
Şekil 2.22 Eşdeğer yarım I profil analojisi (AIS), 2003c)46
Şekil 2.23 Başlık davranış modelleri (AIS, 2003c) 46
Şekil 2.2 Alın levhalı ulonlu irleşim davranışını etkileyen elemanlar
Şekil 2.2 Alın levhalı ulonlu irleşim i in mekanik model
Şekil 2.2 Birleşim d nme rijitliğinin hesaplanma y ntemi
Şekil 2.2 ijit kiriş kolon irleşimi (DBYYHY, 200 den alınmıştır)
Şekil 2.2 U atılmış alın levhalı, ü sıra ulonlu irleşim
Şekil 2.2 Simetrik ü doğrulu yay elemanı (eus-NL, 2008)
Şekil 2.30 Sa it eksenel kuvvet altında histeretik eğilme modeli ($eus N$, 200)56
Şekil 2.3 Sa it eksenel kuvvet altında histeretik eğilme modeli rnek davranışı
Şekil 3. a) .00 <i>m</i> aks a ıklıklı, b) 9.00 <i>m</i> aks a ıklıklı yapının planı ve oy kesiti
Şekil 3.2 Tasarım ivme spektrumu (AS E -0 den alınmıştır)
Şekil . Kapasite eğrisi
Şekil .2 dealleştirilmiş kapasite eğrisi (FEMA 3 dan alınmıştır)
Şekil .3 Anali modelinde kullanılan eliğin gerilme – şekil değiştirme ilişkisi 101
Şekil . Kü ik ü oyutlu elasto plastik kiriş kolon elemanı (eus N , 200) 101
Şekil . Simetrik ü doğrulu yay elemanı (eus-NL, 2008) 102
Şekil . Sa it eksenel kuvvet altında histeretik eğilme modeli (eus N , 200) 102

Şekil	. Sa it eksenel kuvvet altında histeretik eğilme modeli rnek davranışı	103
Şekil	. eus-NL modeli	103
Şekil	. Faya u ak yer hareketi kayıtları pseudo ivme spektrumu	107
Şekil	. 0 Faya yakın yer hareketi kayıtları pseudo ivme spekrumu	108
Şekil	. Faya u ak ve yakın yer hareketi kayıtlarının pseudo ivme spektrumlarının	
	ortalamaları	109
Şekil	. 2 A alım ilişkilerinden elde edilen faya yakın ve faya u ak davranış spektrumları	114
Şekil	. 3 Yapay kayıt spektrumlarının davranış spektrumuyla karşılaştırması	115
Şekil	. Spektrum şiddeti metoduna g re yer hareketi kaydının 1 eklendirilmesi	118
Şekil.	. enelleştirilmiş yük – deplasman ilişkisi (FEMA 3 , 2000 den alınmıştır.)	120
Şekil	. Yay d nmeleri (FEMA 3 , 2000 den alınmıştır)	121
Şekil	. B 03 kirişinin moment –yay d nmesi ilişkisinin FEMA 3 ile karşılaştırılması	122
Şekil	. 02 kolonunun moment –yay d nmesi ilişkisinin	
	FEMA 3 ile karşılaştırılması	123
Şekil.	. Performans seviyeleri i in ka ul edile ilirlik sınırları	124
Şekil	.20 Yapı seviyesinde akma deplasmanı tanımları	126
Şekil	.2 Dayanım, taşıyıcı sistem davranış katsayısı, süneklik ve dayanım katsayısı	
	arasındaki ilişki (Elnashai ve M) afy, 2002)	128
Şekil	.22 " dayanım katsayısının farklı seviyeleri	
	a) Sünek davranış,) Elastik davranış	129
Şekil	. rnek er evelerin . periyotlarındaki değişim	132
Şekil	.2 er evelerin kapasite eğrileri (.0m a ıklıklı er eveler)	134
Şekil	.3 er evelerin kapasite eğrileri (.0m a ıklıklı er eveler)	134
Şekil	. okal sınır durumlarının ger ekleşme anları a) .0 <i>m</i> - SH11, b) 7.0 <i>m</i> - SH14,	
	c) 9.0m - SH11, d) 9.0m - SH14 çerçeveleri	138
Şekil	. lo al g me sınır durumlarının ger ekleşme anları a) $.0m$ - SH11,	
	b) 7.0m - SH14, c) 9.0m - SH11, d) 9.0m - SH14 çerçeveleri	141
Şekil	. Kapasite eğrisinin ideali asyonu	142
Şekil	. Plastik mafsal yerleri ve sıraları	146
Şekil	. Ta an kesme kuvveti – tepe deplasmanı ilişkileri a) $.0m$ - Rijit, b) $7.0m$ - %70,	
	c) 7.0 <i>m</i> - %60, d) 7.0 <i>m</i> - %50 kapasiteli çerçeveler	149
Şekil	. Ta an kesme kuvveti – tepe deplasmanı ilişkileri a) $.0m$ - Rijit, b) $9.0m$ - %70,	
	c) 9.0 <i>m</i> - %60, d) 9.0 <i>m</i> - %50 kapasiteli çerçeveler	150
Şekil	. 0 Maksimum tepe deplasman oranları (.0 <i>m</i> a ıklıklı er eveler)	152

Şekil	. SHI0 0 yer hareketi kaydı altında maksimum kat teleme oranları 160
Şekil	. 2 S 0 0 yer hareketi kaydı altında maksimum kat teleme oranları 161
Şekil	. 3 Maksimum . kat kiriş gerilmeleri (.0m a ıklıklı er eveler)
Şekil	. Maksimum . kat kiriş yay d nmeleri (.0m a ıklıklı er eveler)168
Şekil	. Maksimum . kat kolon gerilmeleri (.0 <i>m</i> a ıklıklı er eveler)
Şekil	. Maksimum . kat kolon yay d nmeleri (.0 <i>m</i> a ıklıklı er eveler)179
Şekil	0 <i>m</i> a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı
	(Tasarım deprem seviyesi)184
Şekil	. Maksimum . kat irleşim d nmeleri (.0m a ıklıklı er eveler)
Şekil	. Kat teleme oranı – irleşim d nmesi ilişkisi (.0m a ıklıklı er eveler, .kat).194
Şekil	.20 Kat teleme oranı – irleşim d nmesi ilişkisi (.0m a ıklıklı er eveler, .kat).194
Şekil	.2 Maksimum ta an kesme kuvveti – maksimum tepe deplasmanı ilişkisi
	(7.0 <i>m</i> a ıklıklı er eveler)196
Şekil	.22 Maksimum taban kesme kuvveti – maksimum tepe deplasmanı ilişkisi
	(9.0 <i>m</i> a ıklıklı er eveler)197
Şekil	.23 Maksimum tepe deplasman oranları
	(9.0m a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil	.2 $.0m$ a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe
	deplasman oranları
Şekil	.2 $.0m$ a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe
	deplasman oranları
Şekil	.2 er evelerin faya u ak ve yakın kayıtlar altında ortalama kat teleme oranları 208
Şekil	.2 A N faya yakın yer hareketi kaydı altında maksimum kat teleme oranları
	(9.0 <i>m</i> a ıklıklı er eveler)
Şekil	.2 A03F2 faya u ak yer hareketi kaydı altında maksimum kat teleme oranları
	(9.0 <i>m</i> a ıklıklı er eveler)
Şekil	.2 Maksimum . kat kolon gerilmeleri
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil	.30 Maksimum . kat irleşim d nmeleri
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil	.3 Maksimum deprem seviyesinde A N2 faya yakın yer hareketi kaydı altında,
	tepe noktasının yatay ivme tepkisi
Şekil	.32 Maksimum deprem seviyesinde A N2 faya yakın yer hareketi kaydı altında,
	tepe noktasının yatay deplasman tepkisi

Şekil	1 .33 Tepe ivme tepkisinin Fourier anali i	229
Şekil	1 .3 Tepe ivme tepkisinin pencere a lı Fourier anali i	
Şekil	1 .3 .0m A ıklıklı er evelerin elastik ve elastik tesi periyotları	
Şekil	1 .3 .0m A ıklıklı er evelerin elastik ve elastik tesi periyotları	232
Şekil	l .3 Elastik tesi periyot oranı (yarı rijit çerçeve / rijit çerçeve)	233
Şekil	1 .3 Tepe deplasman oranının, elastik tesi periyot oranına ağlı değişimi	233
Şekil	1 .3 HF irleşim modelli er evelerin tepe – spektral deplasman oranı ilişkisi.	
Şekil	l . 0 SMT irleşim modelli er evelerin tepe – spektral deplasman oranı ilişkis	i243
Şekil	1 . $.0m$ a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe	
	deplasman oranları	
Şekil	1 .2 .0 m a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe	
	deplasman oranları	
Şekil	1 .3 Tepe deplasman oranının, elastik tesi periyot oranına ağlı değişimi	254
Şekil	l . Yarı rijit er evelerin tepe – spektral deplasman oranı ilişkisi	255
Şekil	Ek . rnek er evelerin plastik mafsal oluşum yerleri ve sıraları	
	(7.0 <i>m</i> a ıklıklı, 0 irleşim pekleşme oranlı)	350
Şekil	Ek .2 rnek er evelerin plastik mafsal oluşum yerleri ve sıraları	
	(7.0 <i>m</i> a ıklıklı, 0 irleşim pekleşme oranlı)	351
Şekil	Ek .3 rnek er evelerin plastik mafsal oluşum yerleri ve sıraları	
	(9.0 <i>m</i> a ıklıklı, 0 irleşim pekleşme oranlı)	352
Şekil	Ek . rnek er evelerin plastik mafsal oluşum yerleri ve sıraları	
	(9.0 <i>m</i> a ıklıklı, 0 irleşim pekleşme oranlı)	353
Şekil	l Ek . Maksimum kat kesme kuvveti – maksimum kat telemesi ilişkisi	
	(7.0 <i>m</i> a ıklıklı erçeveler, 1. kat)	354
Şekil	1 Ek .2 Maksimum kat kesme kuvveti – maksimum kat telemesi ilişkisi	
	(7.0 <i>m</i> a ıklıklı er eveler, 2. kat)	355
Şekil	1 Ek .3 Maksimum kat kesme kuvveti – maksimum kat telemesi ilişkisi	
	(7.0 <i>m</i> a ıklıklı er eveler, 3. kat)	356
Şekil	l Ek 7.4 Maksimum kat kesme kuvveti – maksimum kat telemesi ilişkisi	
	(9.0 <i>m</i> a ıklıklı er eveler, . kat)	357
Şekil	l Ek . Maksimum kat kesme kuvveti – maksimum kat telemesi ilişkisi	
	(9.0 <i>m</i> a 1kl1kl1 er eveler, 2. kat)	358
Şekil	l Ek . Maksimum kat kesme kuvveti – maksimum kat telemesi ilişkisi	
	(9.0 <i>m</i> a ıklıklı er eveler, 3. kat)	359

Sekil Ek d. A Şekil Ek d.3 B Şekil Ek d. Şekil Ek d. Şekil Ek d. Şekil Ek d. Şekil Ek d. D Şekil Ek d. D Sekil Ek d. Sekil Ek d. 2 E E Şekil Ek d. HB Şekil Ek d. 230 yer hareketi kaydı altında maksimum kat teleme oranları 395 HB Şekil Ek d. HE Şekil Ek d. Şekil Ek d. KD 0 yer hareketi kaydı altında maksimum kat teleme oranları 398 Şekil Ek d. KD 2 0 yer hareketi kaydı altında maksimum kat teleme oranları 399 Şekil Ek d.20

Şekil Ek	a.2 Maksimum 2. kat kiriş gerilmeleri (.0m a ıklıklı er eveler)
Şekil Ek	a.3 Maksimum 3. kat kiriş gerilmeleri (.0m a ıklıklı er eveler)
Şekil Ek	a. Maksimum . kat kiriş gerilmeleri (9.0m a ıklıklı er eveler)
Şekil Ek	a. Maksimum 2. kat kiriş gerilmeleri (.0 <i>m</i> a ıklıklı er eveler)410
Şekil Ek	a. Maksimum 3. kat kiriş gerilmeleri (.0 <i>m</i> a ıklıklı er eveler)411
Şekil Ek	c. Maksimum . kat kiriş yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	c.2 Maksimum 2. kat kiriş yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	c.3 Maksimum 3. kat kiriş yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	c. Maksimum . kat kiriş yay d nmeleri (.0m a ıklıklı çerçeveler)
Şekil Ek	c. Maksimum 2. kat kiriş yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	c. Maksimum 3. kat kiriş yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0a. Maksimum . kat kolon gerilmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0a.2 Maksimum 2. kat kolon gerilmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0a.3 Maksimum 3. kat kolon gerilmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0a. Maksimum . kat kolon gerilmeleri (.0m a ıklıklı erçeveler)
Şekil Ek	0a. Maksimum 2. kat kolon gerilmeleri (.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	0a. Maksimum 3. kat kolon gerilmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0c. Maksimum . kat kolon yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0c.2 Maksimum 2. kat kolon yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0c.3 Maksimum 3. kat kolon yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0c. Maksimum . kat kolon yay d nmeleri (.0m a 1kl1kl1 er eveler)
Şekil Ek	10c.5 Maksimum 2. kat kolon yay dönmeleri (9.0m a ıklıklı er eveler)
Şekil Ek	0c. Maksimum 3. kat kolon yay d nmeleri (.0m a ıklıklı er eveler)
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı
	(Tasarım deprem seviyesi)
Şekil Ek	.2 .0 <i>m</i> a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı
	(Maksimum deprem seviyesi)
Şekil Ek	.3 .0 <i>m</i> a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı
	(1.33xMaksimum deprem seviyesi)
Şekil Ek	0m a ıklıklı er evelerin 2.kat kolon u larında oluşan plastik mafsal sayısı
	(Tasarım deprem seviyesi)445
Şekil Ek	0m a ıklıklı er evelerin 2.kat kolon u larında oluşan plastik mafsal sayısı
	(Maksimum deprem seviyesi)

Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 2.kat kolon u larında oluşan plastik mafsal sayısı
	(1.33xMaksimum deprem seviyesi)
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 3.kat kolon u larında oluşan plastik mafsal sayısı
	(Tasarım deprem seviyesi)
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 3.kat kolon u larında oluşan plastik mafsal sayısı
	(Maksimum deprem seviyesi)
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 3.kat kolon u larında oluşan plastik mafsal sayısı
	(1.33xMaksimum deprem seviyesi)
Şekil Ek	. 0 $.0m$ a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı
	(Tasarım deprem seviyesi)451
Şekil Ek	. $.0m$ a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı
	(Maksimum deprem seviyesi)
Şekil Ek	. 2 $.0m$ a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı
	(1.33xMaksimum deprem seviyesi)
Şekil Ek	. 3 .0 <i>m</i> a ıklıklı er evelerin 2.kat kolon u larında oluşan plastik mafsal sayısı
	(Tasarım deprem seviyesi)
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 2.kat kolon u larında oluşan plastik mafsal sayısı
	(Maksimum deprem seviyesi
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 2.kat kolon u larında oluşan plastik mafsal sayısı
	(1.33xMaksimum deprem seviyesi)
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 3.kat kolon u larında oluşan plastik mafsal sayısı
	(Tasarım deprem seviyesi)
Şekil Ek	0 <i>m</i> a ıklıklı er evelerin 3.kat kolon u larında oluşan plastik mafsal sayısı
	(Maksimum deprem seviyesi)
Şekil Ek	0m a ıklıklı er evelerin 3.kat kolon u larında oluşan plastik mafsal sayısı
	(1.33xMaksimum deprem seviyesi)
Şekil Ek	2a. Maksimum . kat irleşim d nmesi (.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	2a.2 Maksimum 2. kat irleşim d nmeleri (.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	2a.3 Maksimum 3. kat irleşim d nmeleri (.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	2a. Maksimum . kat irleşim d nmeleri (9.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	2a. Maksimum 2. kat irleşim d nmeleri (.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	2a. Maksimum 3. kat irleşim d nmeleri (.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	3. Kat teleme oranı – irleşim d nmesi ilişkisi
	(7.0 <i>m</i> a ıklıklı er eveler, . kat)

Şekil Ek	3.2 Kat teleme oranı – irleşim d nmesi ilişkisi
	(9.0 <i>m</i> a 1kl1kl1 er eveler, . kat)
Şekil Ek	3.3 Kat teleme oranı – irleşim d nmesi ilişkisi
	(7.0 <i>m</i> a 1kl1kl1 er eveler, 2. kat)
Şekil Ek	3. Kat teleme oranı – irleşim d nmesi ilişkisi
	(9.0 <i>m</i> a 1kl1kl1 er eveler, 2. kat)
Şekil Ek	3. Kat teleme oranı – irleşim d nmesi ilişkisi
	(7.0 <i>m</i> a ıklıklı er eveler, 3. kat)
Şekil Ek	3. Kat teleme oranı – irleşim d nmesi ilişkisi
	(9.0 <i>m</i> a ıklıklı er eveler, 3. kat)
Şekil Ek	. Maksimum . kat kesme kuvveti – maksimum kat telemesi oranı ilişkisi
	(7.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	.2 Maksimum 2. kat kesme kuvveti – maksimum kat telemesi oranı ilişkisi
	(7.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	.3 Maksimum 3. kat kesme kuvveti – maksimum kat telemesi oranı ilişkisi
	(7.0m a 1 klikli er eveler)
Şekil Ek	. Maksimum . kat kesme kuvveti – maksimum kat telemesi oranı ilişkisi
	(9.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	. Maksimum 2. kat kesme kuvveti – maksimum kat telemesi oranı ilişkisi
	(9.0 <i>m</i> a ıklıklı er eveler)
Şekil Ek	. Maksimum 3. kat kesme kuvveti – maksimum kat telemesi oranı ilişkisi
	(9.0m a 1 klikli er eveler)
Şekil Ek	a. Maksimum tepe deplasman oranları ($.0m$ a ıklıklı er eveler, faya u ak yer
	hareketleri)
Şekil Ek	a.2 Maksimum tepe deplasman oranları
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a.3 Maksimum tepe deplasman oranları
	(9.0 <i>m</i> a 1klikli er eveler, faya uzak yer hareketleri)
Şekil Ek	a. Maksimum tepe deplasman oranları
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum .kat teleme oranları
	(7.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. Maksimum .kat teleme oranları
	(7.0m a ıklıklı er eveler, faya yakın yer hareketleri)

Şekil Ek	a. Maksimum 2.kat teleme oranları
	(7.0m a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. Maksimum 2.kat teleme oranları
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum 3.kat teleme oranları
	(7.0m a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. 0 Maksimum 3.kat teleme oranları
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum .kat teleme oranları
	(9.0m a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. 2 Maksimum .kat teleme oranları
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. 3 Maksimum 2.kat teleme oranları
	(9.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. Maksimum 2.kat teleme oranları
	(9.0m a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum 3.kat teleme oranları
	(9.0 <i>m</i> a ıklıklı çerçeveler, faya uzak yer hareketleri)
Şekil Ek	a. Maksimum 3.kat teleme oranları
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	d. A03F yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d.2 A03F2 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d.3 A03F3 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. A F yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. A F2 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. A F3 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. B F yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. B F2 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. B F3 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. 0 A03N yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. A03N2 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. 2 A03N3 yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. 3 A N yer hareketi kaydı altında maksimum kat teleme oranları
Şekil Ek	d. A N2 yer hareketi kaydı altında maksimum kat teleme oranları

Şekil Ek	d. A N3 yer hareketi kaydı altında maksimum kat teleme oranları	525
Şekil Ek	d. B N yer hareketi kaydı altında maksimum kat teleme oranları	526
Şekil Ek	d. B N2 yer hareketi kaydı altında maksimum kat teleme oranları	527
Şekil Ek	d. B N3 yer hareketi kaydı altında maksimum kat teleme oranları	528
Şekil Ek	a. Maksimum . kat kolon gerilmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)	529
Şekil Ek	a.2 Maksimum . kat kolon gerilmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)	530
Şekil Ek	a.3 Maksimum 2. kat kolon gerilmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)	531
Şekil Ek	a. Maksimum 2. kat kolon gerilmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)	532
Şekil Ek	a. Maksimum 3. kat kolon gerilmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)	533
Şekil Ek	a. Maksimum 3. kat kolon gerilmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)	534
Şekil Ek 1	16a.7 Maksimum 1. kat kolon gerilmeleri	
	(9.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)	535
Şekil Ek	a. Maksimum . kat kolon gerilmeleri	
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)	536
Şekil Ek	a. Maksimum 2. kat kolon gerilmeleri	
	(9.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)	537
Şekil Ek	a. 0 Maksimum 2. kat kolon gerilmeleri	
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)	538
Şekil Ek	a. Maksimum 3. kat kolon gerilmeleri	
	(9.0 <i>m</i> a ıklıklı er eveler, faya uzak yer hareketleri)	539
Şekil Ek	a. 2 Maksimum 3. kat kolon gerilmeleri	
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)	540
Şekil Ek	a. Maksimum . kat irleşim d nmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)	547
Şekil Ek	a.2 Maksimum . kat irleşim d nmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)	548
Şekil Ek	a.3 Maksimum 2. kat irleşim d nmeleri	
	(7.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)	549

Şekil Ek	a. Maksimum 2. kat irleşim d nmeleri
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum 3. kat irleşim d nmeleri
	(7.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. Maksimum 3. kat irleşim d nmeleri
	(7.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum . kat irleşim d nmeleri
	(9.0m a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. Maksimum . kat irleşim d nmeleri
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum 2. kat irleşim d nmeleri
	(9.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. 0 Maksimum 2. kat irleşim d nmeleri
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	a. Maksimum 3. kat irleşim d nmeleri
	(9.0 <i>m</i> a ıklıklı er eveler, faya u ak yer hareketleri)
Şekil Ek	a. 2 Maksimum 3. kat irleşim d nmeleri
	(9.0 <i>m</i> a ıklıklı er eveler, faya yakın yer hareketleri)
Şekil Ek	. Am raseys (2003) faya u ak yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	.2 Am raseys (2003) faya yakın yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	.3 Am raseys () faya u ak yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	. Am raseys () faya yakın yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier güç spektrumu (7.0m a ıklıklı er eveler)
Şekil Ek	. Boore () faya u ak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier
	gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	. Boore () faya yakın yer hareketleri etkisinde oluşan tepe ivmesinin Fourier
	gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	. Am raseys (2003) faya u ak yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	. Am raseys (2003) faya yakın yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)

Şekil Ek	. Am raseys () faya u ak yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	. 0 Am raseys () faya yakın yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	. Boore () faya u ak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier
	gü spektrumu (.0m a ıklıklı er eveler)
Şekil Ek	. 2 Boore () faya yakın yer hareketleri etkisinde oluşan tepe ivmesinin
	Fourier gü spektrumu (.0m a ıklıklı er eveler)

Çİ G İST Sİ

i elge 2. Birleşim rijitliğine ağlı sınıflandırma
i elge 3. Elemanların genişlik kalınlık oranı sınırları (AIS, 200 den uyarlanmıştır) 59
i elge 3.2 teleme sınırları (AS E -0 den alınmıştır)
i elge 3.3 Ka ul edilen düşey yükler78
Çizelge 3.4 F_a emin katsayısı
Çizelge 3.5 F_{ν} emin katsayısı
i elge 3. rnek inaların tasarımında kullanılan yükleme kom inasyonları
i elge . Faya u ak yer hareketi kayıtları107
i elge .2 Faya yakın yer hareketi kayıtları
i elge .3 Am raseys vd., alışmasında verilen katsayıların değerleri
i elge . Boore vd., alışmasında kullanılan emin sınıfları
i elge . Am raseys ve Douglas, 2003 alışmasında verilen katsayıların değerleri 112
Çizelge . Faya yakın ve faya u ak davranış spektrumları i in deprem parametreleri 113
i elge . Yer hareketi kayıtlarının 1 eklendirme katsayıları 119
Çizelge 4.8 Çelik elemanlar için modelleme parametreleri
(FEMA 3 , 2000 den alınmıştır)121
Çizelge 4.9 Çelik elemanlar için kabul edilebilirlik kriterleri
(FEMA 3 , 2000 den alınmıştır)125
i elge .2 rnek er evelerin elastik periyotları
i elge .3 okal akma sınır durumlarının ger ekleşme deplasmanları
i elge . okal g me sınır durumlarının ger ekleşme deplasmanları
i elge . okal ka ul edile ilirlik kriterlerinin ger ekleşme deplasmanları
i elge . lo al g me sınırlarının ger ekleşme deplasmanları
i elge . lo al akma deplasmanlari142
Çizelge 5.8 %3 Kat ötelemesi g me sınır durumu i in performans parametreleri 143
i elge . me mekani ması g me sınır durumu i in performans parametreleri
i elge . 0 lk eleman dayanım a alması g me sınır durumu i in
performans parametreleri144
Çizelge 5.11 Kolonlarda dayanım a alması g me sınır durumu i in
performans parametreleri144
i elge . 2 Hedef deplasman değerleri147
i elge . 3 Ka ul edile ilirlik sınırının aşıldığı anali sayıları
Çizelge 5.14 7.0m a ıklıklı er evelerin ortalama tepe deplasman oranları

Çizelge 5.15 9.0m a ıklıklı er evelerin ortalama tepe deplasman oranları	154
Çizelge 5.16 7.0m a ıklıklı er evelerin ortalama .kat teleme oranları	155
Çizelge 5.17 9.0m a ıklıklı er evelerin ortalama .kat teleme oranları	155
Çizelge 5.18 7.0m a ıklıklı er evelerin ortalama 2.kat teleme oranları	156
Çizelge 5.19 9.0m a ıklıklı er evelerin ortalama 2.kat teleme oranları	156
Çizelge 5.20 7.0m a ıklıklı er evelerin ortalama 3.kat teleme oranları	157
Çizelge 5.21 9.0m a ıklıklı er evelerin ortalama 3.kat teleme oranları	157
Çizelge 5.22 7.0m a ıklıklı er evelerin ortalama .kat kiriş gerilmeleri (MPa)	164
Çizelge 5.23 9.0m a ıklıklı er evelerin ortalama . kat kiriş gerilmeleri (MPa)	164
Çizelge 5.24 7.0m a ıklıklı er evelerin ortalama 2. kat kiriş gerilmeleri (MPa)	165
Çizelge 5.25 9.0m a ıklıklı er evelerin ortalama 2. kat kiriş gerilmeleri (MPa)	165
Çizelge 5.26 7.0m a ıklıklı er evelerin ortalama 3. kat kiriş gerilmeleri (MPa)	166
Çizelge 5.27 9.0m a ıklıklı er evelerin ortalama 3. kat kiriş gerilmeleri (MPa)	166
Çizelge 5.28 7.0 <i>m</i> a ıklıklı er evelerin ortalama	
.kat kiriş yay d nmesi akma yay d nmesi oranları	169
Çizelge 5.29 9.0 <i>m</i> a ıklıklı er evelerin ortalama	
. kat kiriş yay d nmesi akma yay d nmesi oranları	169
Çizelge 5.30 7.0 <i>m</i> a ıklıklı er evelerin ortalama	
2.kat kiriş yay d nmesi akma yay d nmesi oranları	170
Çizelge 5.31 9.0 <i>m</i> a ıklıklı er evelerin ortalama	
2. kat kiriş yay d nmesi akma yay d nmesi oranları	170
Çizelge 5.32 7.0 <i>m</i> a ıklıklı er evelerin ortalama	
3.kat kiriş yay d nmesi akma yay d nmesi oranları	171
Çizelge 5.33 9.0 <i>m</i> a ıklıklı er evelerin ortalama	
3. kat kiriş yay d nmesi akma yay d nmesi oranları	171
Çizelge 5.34 Örnek çerçevelerin kolon kesitleri	172
Çizelge 5.35 7.0m a ıklıklı er evelerin ortalama .kat kolon gerilmeleri (MPa)	174
Çizelge 5.36 9.0m a ıklıklı er evelerin ortalama . kat kolon gerilmeleri (MPa)	174
Çizelge 5.37 7.0m a ıklıklı er evelerin ortalama 2.kat kolon gerilmeleri (MPa)	175
Çizelge 5.38 9.0m a ıklıklı er evelerin ortalama 2. kat kolon gerilmeleri (MPa)	175
Çizelge 5.39 7.0m a ıklıklı er evelerin ortalama 3.kat kolon gerilmeleri (MPa)	176
Çizelge 5.40 9.0m a ıklıklı er evelerin ortalama 3. kat kolon gerilmeleri (MPa)	176
Çizelge 5.41 7.0m a ıklıklı er evelerin ortalama	
	100

Çizelge 5.42 9.0m a ıklıklı er evelerin ortalama

. kat kolon yay d nmesi akma yay d nmesi oranları	180
Çizelge 5.43 7.0 <i>m</i> a ıklıklı er evelerin ortalama	
2.kat kolon yay d nmesi akma yay d nmesi oranları	181
Çizelge 5.44 9.0 <i>m</i> a ıklıklı er evelerin ortalama	
2. kat kolon yay d nmesi akma yay d nmesi oranları	181
Çizelge 5.45 7.0 <i>m</i> a ıklıklı er evelerin ortalama	
3.kat kolon yay d nmesi akma yay d nmesi oranları	182
Çizelge 5.46 9.0 <i>m</i> a ıklıklı er evelerin ortalama	
3. kat kolon yay d nmesi akma yay d nmesi oranları	182
Çizelge 5.47 7.0 <i>m</i> a ıklıklı er eve kolonlarında oluşan ortalama plastik mafsal sayısı	185
Çizelge 5.48 9.0 <i>m</i> a ıklıklı er eve kolonlarında oluşan ortalama plastik mafsal sayısı	185
i elge . Ka ul edile ilirlik sınırının aşıldığı anali sayıları	186
i elge . 0 Dayanım a alması sınırının aşıldığı anali sayıları	188
Çizelge 5.51 7.0 <i>m</i> a ıklıklı er evelerin ortalama .kat irleşim d nme oranları	190
Çizelge 5.52 9.0 <i>m</i> a ıklıklı er evelerin ortalama .kat irleşim d nme oranları	190
Çizelge 5.53 7.0 <i>m</i> a ıklıklı er evelerin ortalama 2.kat irleşim d nme oranları	191
Çizelge 5.54 9.0 <i>m</i> a ıklıklı er evelerin ortalama 2.kat irleşim d nme oranları	191
Çizelge 5.55 7.0 <i>m</i> a ıklıklı er evelerin ortalama 3.kat irleşim d nme oranları	192
Çizelge 5.56 9.0 <i>m</i> a ıklıklı er evelerin ortalama 3.kat irleşim d nme oranları	192
i elge . Kat telemesi ve irleşim d nmesi i in ka ul edile ilirlik sınırları	193
i elge . Ka ul edile ilirlik sınırının aşıldığı anali sayıları	198
i elge0m a ıklıklı er evelerin, faya u ak kayıtlar altında,	
ortalama tepe deplasman oranları	202
Çizelge 5.60 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında,	
ortalama tepe deplasman oranları	202
i elge0m a ıklıklı er evelerin, faya u ak kayıtlar altında,	
ortalama tepe deplasman oranları	203
Çizelge 5.62 9.0 <i>m</i> a ıklıklı er evelerin, faya yakın kayıtlar altında,	
ortalama tepe deplasman oranları	203
Çizelge 5.63 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama .kat teleme oranları	205
Çizelge 5.64 7.0 m ve 9.0 m a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama 2.kat teleme oranları	206

Çizelge 5.65 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama 3.kat teleme oranları2	07
Çizelge 5.66 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama 1.kat kolon gerilmeleri (MPa)2	16
Çizelge 5.67 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama 2.kat kolon gerilmeleri (MPa)2	17
Çizelge 5.68 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama 3.kat kolon gerilmeleri (MPa)2	18
i elge . Ka ul edile ilirlik sınırının aşıldığı anali sayıları	20
Çizelge 5.70 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama .kat irleşim d nmeleri (rad)2	23
Çizelge 5.71 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama 2.kat irleşim d nmeleri (rad)2	24
Çizelge 5.72 7.0 <i>m</i> ve 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak ve faya yakın kayıtlar altında,	
ortalama 3.kat birleşim d nmeleri (rad)2	25
Çizelge 5.73 7.0m A ıklıklı er evelerin elastik tesi periyotları (sn)	31
Çizelge 5.74 9.0m A ıklıklı er evelerin elastik tesi periyotları (sn)	31
i elge . Faya u ak kayıtlar altında, HF irleşim modelli er evelerin spektral	
deplasman oranları ve tepe deplasman oranları2	36
i elge . Faya u ak kayıtlar altında, SMT irleşim modelli er evelerin spektral	
deplasman oranları ve tepe deplasman oranları2	37
i elge . Faya yakın kayıtlar altında, HF irleşim modelli çerçevelerin spektral	
deplasman oranları ve tepe deplasman oranları2	38
i elge . Faya yakın kayıtlar altında, SMT irleşim modelli er evelerin spektral	
deplasman oranları ve tepe deplasman oranları2	39
i elge0m A ıklıklı, HF irleşim modelli çerçevelerin, spektral deplasman	
oranlarına g re sıralı tepe deplasman oranları	41
i elge . 0 .0m A ıklıklı, HF irleşim modelli er evelerin, spektral deplasman	
oranlarına g re sıralı tepe deplasman oranları2	41
i elge0m A ıklıklı, SMT irleşim modelli er evelerin, spektral deplasman	
oranlarına g re sıralı tepe deplasman oranları	42
i elge . 2 .0m A ıklıklı, SMT irleşim modelli er evelerin, spektral deplasman	
oranlarına g re sıralı tepe deplasman oranları24	42
Çizelge 6.1 Çerçeve ağırlıkları ve tepe deplasman oranları	57

Çizelge Ek 8b.1 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
tepe deplasman oranları	368
Çizelge Ek 8b.2 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
tepe deplasman oranları	368
Çizelge Ek 8b.3 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
. kat teleme oranları	369
Çizelge Ek 8b.4 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
. kat teleme oranları	369
Çizelge Ek 8b.5 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat teleme oranları	370
Çizelge Ek 8b.6 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat teleme oranları	370
Çizelge Ek 8b.7 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat teleme oranları	371
Çizelge Ek 8b.8 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat teleme oranları	371
Çizelge Ek 8c.1 7.0m a ıklıklı yarı rijit er evelerin tepe deplasmanlarının rijit er eve	
tepe deplasmanına oranı	373
Çizelge Ek 8c.2 7.0m a ıklıklı yarı rijit çerçevelerin 1. kat ötelemelerinin rijit çerçeve	
. kat telemelerine oranı	374
Çizelge Ek 8c.3 7.0m a ıklıklı yarı rijit er evelerin 2. kat telemelerinin rijit er eve	
2. kat telemelerine oranı	375
Çizelge Ek 8c.4 7.0m a ıklıklı yarı rijit er evelerin 3. kat telemelerinin rijit er eve	
3. kat telemelerine oranı	376
Çizelge Ek 8c.5 9.0m a ıklıklı yarı rijit er evelerin tepe deplasmanlarının rijit er eve	
tepe deplasmanına oranı	377
Çizelge Ek 8c.6 9.0m a ıklıklı yarı rijit er evelerin . kat telemelerinin rijit er eve	
. kat telemelerine oranı	378
Çizelge Ek 8c.7 9.0m a ıklıklı yarı rijit er evelerin 2. kat telemelerinin rijit er eve	
2. kat telemelerine oranı	379
Çizelge Ek 8c.8 9.0m a ıklıklı yarı rijit erçevelerin 3. kat ötelemelerinin rijit çerçeve	
3. kat telemelerine oranı	380
Çizelge Ek 9b.1 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
. kat kiriş gerilmeleri (<i>MPa</i>)	412

Çizelge Ek 9b.2 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
. kat kiriş gerilmeleri (<i>MPa</i>)	
Çizelge Ek 9b.3 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat kiriş gerilmeleri (MPa)	
Çizelge Ek 9b.4 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat kiriş gerilmeleri (MPa)	
Çizelge Ek 9b.5 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat kiriş gerilmeleri (MPa)	414
Çizelge Ek 9b.6 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat kiriş gerilmeleri (MPa)	
Çizelge Ek 9d.1 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
. kat kiriş yay d nmesi akma yay d nmesi oranları	
Çizelge Ek 9d.2 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
. kat kiriş yay d nmesi akma yay d nmesi oranları	
Çizelge Ek 9d.3 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat kiriş yay d nmesi akma yay d nmesi oranları	
Çizelge Ek 9d.4 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat kiriş yay d nmesi akma yay d nmesi oranları	
Çizelge Ek 9d.5 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat kiriş yay d nmesi akma yay d nmesi oranları	
Çizelge Ek 9d.6 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat kiriş yay d nmesi akma yay d nmesi oranları	
Çizelge Ek 10b.1 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
1. kat kolon gerilmeleri (MPa)	
Çizelge Ek 10b.2 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
1. kat kolon gerilmeleri (MPa)	
Çizelge Ek 10b.3 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat kolon gerilmeleri (MPa)	
Çizelge Ek 10b.4 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
2. kat kolon gerilmeleri (MPa)	
Çizelge Ek 10b.5 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat kolon gerilmeleri (MPa)	
Çizelge Ek 10b.6 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum	
3. kat kolon gerilmeleri (MPa)	

Çizelge Ek 10d.1 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
1. kat kolon yay dönmesi/akma yay d nmesi oranları
Çizelge Ek 10d.2 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
. kat kolon yay d nmesi akma yay d nmesi oranlari439
Çizelge Ek 10d.3 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
2. kat kolon yay dönmesi/akma yay d nmesi oranları
Çizelge Ek 10d.4 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
2. kat kolon yay d nmesi akma yay d nmesi oranlari
Çizelge Ek 10d.5 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
3. kat kolon yay dönmesi akma yay d nmesi oranları
Çizelge Ek 10d.6 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
3. kat kolon yay d nmesi akma yay d nmesi oranlari
Çizelge Ek 12b.1 7.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
. kat irleşim dönmeleri (<i>rad</i>)466
Çizelge Ek 12b.2 9.0m a ıklıklı er evelerin minimum, ortalama ve maksimum
. kat irleşim d nmeleri (<i>rad</i>)466
Çizelge Ek 12b.3 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum
2. kat irleşim d nmeleri (<i>rad</i>)
Çizelge Ek 12b.4 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum
2. kat irleşim d nmeleri (<i>rad</i>)
Çizelge Ek 12b.5 7.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum
3. kat irleşim d nmeleri (<i>rad</i>)
Çizelge Ek 12b.6 9.0 <i>m</i> a ıklıklı er evelerin minimum, ortalama ve maksimum
3. kat irleşim d nmeleri (<i>rad</i>)
Çizelge Ek 15b.1 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum tepe deplasman oranları
Çizelge Ek 15b.2 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum tepe deplasman oranları494
Çizelge Ek 15b.3 9.0 <i>m</i> a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum tepe deplasman oranları
Çizelge Ek 15b.4 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum tepe deplasman oranları495
Çizelge Ek 15b.5 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum . kat teleme oranları

Çizelge Ek 15b.6 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum . kat teleme oranları
Çizelge Ek 15b.7 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 2. kat öteleme oranları
Çizelge Ek 15b.8 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 2. kat teleme oranları
Çizelge Ek 15b.9 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 3. kat öteleme oranları
Çizelge Ek 15b.10 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum,
ortalama ve maksimum 3. kat teleme oranları
Çizelge Ek 15b.11 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum . kat teleme oranları
Çizelge Ek 15b.12 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum,
ortalama ve maksimum . kat teleme oranları
Çizelge Ek 15b.13 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 2. kat teleme oranları
Çizelge Ek 15b.14 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum,
ortalama ve maksimum 2. kat teleme oranları
Çizelge Ek 15b.15 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 3. kat teleme oranları
Çizelge Ek 15b.16 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum,
ortalama ve maksimum 3. kat teleme oranları
Çizelge Ek 15c.1 7.0m a ıklıklı yarı rijit er evelerin tepe deplasmanlarının rijit er eve
tepe deplasmanına oranı
Çizelge Ek 15c.2 7.0m a ıklıklı yarı rijit er evelerin . kat telemelerinin rijit er eve
. kat telemelerine oranı
Çizelge Ek 15c.3 7.0m a ıklıklı yarı rijit er evelerin 2. kat telemelerinin rijit çerçeve
2. kat telemelerine oranı
Çizelge Ek 15c.4 7.0m a ıklıklı yarı rijit er evelerin 3. kat telemelerinin rijit er eve
3. kat telemelerine oranı
Çizelge Ek 15c.5 9.0m a ıklıklı yarı rijit er evelerin tepe deplasmanlarının rijit er eve
tepe deplasmanına oranı
Çizelge Ek 15c.6 9.0m a ıklıklı yarı rijit er evelerin . kat telemelerinin rijit er eve
. kat telemelerine oranı

Çizelge Ek 15c.7 9.0m a ıklıklı yarı rijit er evelerin 2. kat telemelerinin rijit er eve
2. kat telemelerine oranı
Çizelge Ek 15c.8 9.0m a ıklıklı yarı rijit er evelerin 3. kat telemelerinin rijit er eve
3. kat telemelerine oranı
Çizelge Ek 16b.1 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 1. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.2 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 1. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.3 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 2. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.4 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 2. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.5 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 3. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.6 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 3. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.7 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 1. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.8 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 1. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.9 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 2. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.10 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 2. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.11 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 3. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 16b.12 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 3. kat kolon gerilmeleri (<i>MPa</i>)54
Çizelge Ek 17b.1 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum . kat irleşim d nmeleri (<i>rad</i>)
Çizelge Ek 17b.2 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum . kat irleşim d nmeleri (rad)55
Çizelge Ek 17b.3 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
x_{1} make inverse 2 has interimed and a large (x_{1}, t)

Çizelge Ek 17b.4 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 2. kat irleşim d nmeleri (<i>rad</i>)
Çizelge Ek 17b.5 7.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 3. kat irleşim d nmeleri (rad)
Çizelge Ek 17b.6 7.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 3. kat irleşim d nmeleri (<i>rad</i>)
Çizelge Ek 17b.7 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum . kat irleşim d nmeleri (<i>rad</i>) 562
Çizelge Ek 17b.8 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum . kat irleşim d nmeleri (<i>rad</i>) 562
Çizelge Ek 17b.9 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 2. kat irleşim d nmeleri (<i>rad</i>) 563
Çizelge Ek 17b.10 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 2. kat irleşim d nmeleri (<i>rad</i>) 563
Çizelge Ek 17b.11 9.0m a ıklıklı er evelerin, faya u ak kayıtlar altında minimum, ortalama
ve maksimum 3. kat irleşim d nmeleri (<i>rad</i>) 564
Çizelge Ek 17b.12 9.0m a ıklıklı er evelerin, faya yakın kayıtlar altında minimum, ortalama
ve maksimum 3. kat irleşim d nmeleri (<i>rad</i>)
ÖNSÖZ

alışmamın her aşamasında yakın ilgi ve desteğini g rdüğüm, değerli vakitlerini ve Te sonsu hosg rülerini enden esirgemeyen. alısmalarımın v nlendirilmesi ve sonu landırılmasında üyük emekleri ge en te danışmanım sayın Prof. A. afer K ve Т es danışmanım sayın Prof. S.Amr E NASHAI e en i ten teşekkürlerimi sunarım. Te i leme komitemdeki hocalarım sayın Prof. rahim EK ve sayın Do . Dr. Bülent AKBAŞ a te süresi oyunca değerli eleştirileri ve fikirleri ile te in gelişimine yaptıkları nemli katkılardan dolayı minnettarım.

Sayın Prof. S. Amr E NASHAI e yoğun temposuna rağmen enimle alışmayı ka ul ettiği ve te alışmamın eş danışmanlığını yürüterek u alışmanın ger ekleşmesini sağladığı için özel teşekkürü ir or ilirim.

Te alışması oyunca her zaman yanımda olduğu ve eni cesaretlendirerek sorunların üstesinden gelmemi sağladığı i in eşim enk AKS Y A a teşekkür ederim.

Ayrıca değerli yardımlarından dolayı sayın nş.Yük.Müh. Ömer GÜZEL'e teşekkür ederim. Dostlukları ve destekleri ile her aman yanımda olan sevgili arkadaşlarım anset KU U MA , Mü erra ESE ve em AYDEM e ok teşekkür ediyorum.

Son olarak, yalnı te alışması süresince değil tüm yaşamım oyunca ana her aman güvenen, koşulsu destekleyen ve teşvik eden ayrıca fırsatlar sunan sevgili a ama ve anneme gösterdikleri tükenmez hoşg rülerinden dolayı minnettarım. Hayatımı her aman kolaylaştıran desteğini ve sevgisini hep yanımda hissettiğim sevgili ağa eyime ve ailemi e katılarak i leri onurlandıran sevgili eşine sonsu teşekkürler.

ÖZET

Moment dayanımlı elik er eveli sistemler, yüksek süneklik kapasiteleri ve ekonomik tasarım olanakları nedeniyle depremselliği yüksek lgelerde a ve orta katlı inalarda sıklıkla kullanılmaktadır. Bu tip yapılarda plastik mafsalların kolonlardan nce kirişlerde oluşmasını sağlamak ve yapının sünekliğini arttırıp, g mesini geciktirmek için güçlü kolon ayıf kiriş ilkesi uygulanır. A katlı üyük a ıklıklı yapılarda uygulanan bu ilke gerekenden daha üyük kolon kesitlerinin se ilmesine ve ekonomik olmayan, aşırı güvenli tasarımlara neden olabilmektedir. Bu sorunu gidermek için özellikle Amerika'da uygulanan yöntem yapıların sadece dış er evelerini yatay yük taşıyan sistemler olarak tasarlamaktır. Ancak bu yapıların aşlıca de avantajlarından biri, sistemin yeniden dağılım imk nının sınırlı olmasıdır. Ko e depremleri sırasında rijit irleşimli moment dayanımlı Ayrıca Northridge ve elik vapılarda ve ellikle tamamen kaynaklı irleşimlerde ağır ve eklenilmeyen haşarlar oluşmuş ve u tip yapıların tasarım y ntemlerinin g den ge irilmesine neden olmuştur. Bu alışmalar kapsamında yarı rijit irleşimlerin doğru tasarlandığı takdirde deprem etkileri altında yeterli sünekliğe ve kararlı histeretik davranışa sahip olduğu g sterilmiştir. Ayrıca a katlı yapılar i in rijit er evelerin en ekonomik ve uygun üm olmadığı elirtilmiştir.

Bu alışmada, depremselliği yüksek lgelerde enerji s nümlemesinin kiriş kolon düğüm noktalarında oluşacağı yarı rijit irleşimli, a katlı üyük a ıklıklı yapılar tasarlanmış ve farklı irleşim kapasiteleri, er eve geometrileri ve deprem etkileri altında performansları analitik olarak incelenmiştir. Yapıların u şekilde tasarlanmasıyla gü lü kolon ayıf kiriş ilkesinin gerekliliği ortadan kaldırılmış ve sadece dış er eveleri yatay yük taşıyan sistemlere alternatif ekonomik sistemler araştırılmıştır. Sahada kaynak gerektirmeyen sadece ulonlu ağlantıları ulunan irleşimlerin kullanılmasıyla Northridge ve Ko e depremlerinde ortaya ıkan sorunlar üyük l üde giderilmiştir. Ayrıca yarı rijit irleşimli er evelerin, rijit irleşimli er evelere g re daha elverişli sonu lar verdiği koşullar da araştırılmıştır.

Bu amaçla farklı geometrik elliklere sahip çerçeveler, rijit, %70, %60 ve %50 eğilme kapasiteli irleşimler kullanılarak tasarlanmıştır. Yarı rijit irleşimlerde 0 ve %40 olmak ü ere iki ayrı pekleşme oranı ele alınmıştır. Ardından bu çerçevelerin deprem performansları

değer, doğrusal olmayan statik itme ve aman tanım alanında doğrusal olmayan dinamik analizlerle değerlendirilmiştir. Statik itme analizleriyle, yapıların kapasite eğrileri, lokal ve glo al sınır değerlerinin gerçekleşme anları, performans parametreleri, plastik mafsal oluşum sıraları ve yerleri, hedef deplasman ve ka ul edile ilirlik değerleri elirlenmiştir. Dinamik analizlerde 25 adet ger ek yer hareketi 3 farklı deprem seviyesine g re 1 eklendirilmiş ve 26 örnek çerçeveye 19 0 adet anali yapılmıştır. Devamında ise 3 farklı a alım ilişkisiyle 9 adet faya uzak ve 9 adet faya yakın yapay yer hareketi üretilerek 4 farklı deprem seviyesi i in 26 örnek çerçeveye 1872 adet anali yapılmıştır. Analizler neticesinde, çerçevelerin maksimum kesme kuvveti – maksimum deplasman değerleri, kat telemeleri, kiriş, kolon gerilmeleri ve yay d nmeleri, plastik mafsal sayıları ve irleşim d nmeleri elirlenmiştir. Ayrıca tepe ivme tepkileri Fourier analiziyle incelenmiş ve yapıların elastik ötesi periyotları irdelenmiştir.

Tasarlanan 26 örnek çerçeveden 25'inin, tüm ka ul edile ilirlik şartlarını sağladığı ve deprem etkileri altında güvenilir ir performansa sahip olduğu g rülmüştür. Ayrıca faya yakın kayıtlar altında, SMT irleşim modelli tüm yarı rijit er evelerde, rijit irleşimli er eveden daha a tepe deplasmanı oluşmuştur. Hem faya yakın, hem de faya u ak kayıtlar altında en düşük tepe deplasmanları .0m a ıklıklı er evelerde 0 irleşim kapasiteli, .0m a ıklıklı er evelerde ise 0 irleşim kapasiteli yarı rijit er evede g lenmiştir. Sonu olarak a katlı üyük a ıklıklı sistemlerde rijit irleşimli yapıların en uygun üm olmadığı, irleşim rijitliği ve kapasitesi değiştirilerek en uygun üm eulaşıla ileceği g sterilmiştir.

Anahtar Kelimeler: Moment dayanımlı elik er eve, Yarı rijit irleşim, Deprem davranışı, Statik itme anali i, aman tanım alanında dinamik anali , Fourier anali i

ABSTRACT

Moment resisting steel frames are used frequently in low and mid rise buildings located in high seismic areas due to their high ductility and economic solutions. In this type of structures strong column weak beam requirement should be used in order to provide plastic hinges occur at beams prior than columns, increase the ductility of the structure and postpone the collapse. This requirement results in larger column sections and overdesign in low rise long span buildings. Perimeter frames are used especially in United States in order to overcome these shortcomings. But low redundancy and lack of redistribution capacity are the main disadvantages of these frames. Also moment resisting steel frames, especially fully welded connections were heavily and unexpectedly damaged during 1994 Northridge and 1995 Kobe earthquakes. As a result, the design philosophy of this type of structures has been reconsidered. In some parts of these researches alternative connection types to fully rigid connections have adequate ductility and stable hysteretic behavior under seismic loads. Also it was stated that moment resisting frames with rigid connections are not the optimum solutions for low rise buildings.

In this study, low rise long span frames with energy dissipation zones in connections are designed in high seismic areas and their seismic performances are evaluated analytically with different connection capacities, frame geometries and earthquake levels. By dissipating energy in connections the necessity of strong column weak beam requirement is eliminated and alternative economic systems to perimeter frames are investigated. The problems occurred during the 1994 Northridge and the 1995 Kobe earthquakes are eliminated by using field bolted connections. Also the conditions in which semi rigid frames show a better performance than rigid frames are searched.

Frames with different geometric properties are designed by using rigid, 70%, 60% and 50% capacity connections. Semi rigid connections are taken into account with two different strain hardening levels as 10% and 40%. Then seismic performances of these frames are evaluated with Eigenvalue analyses, nonlinear pushover analyses and nonlinear time history analyses. As a result of pushover analyses capacity curves, local and global limit states, performance parameters, plastic hinge occurrence locations and sequence, target displacements and acceptance criteria are determined. 25 real strong ground motion records are scaled to 3 earthquake levels and 1950 time history analyses are conducted for 26 sample frames. Then by using three different attenuation relations, 9 far fault and 9 near fault artificial records are generated and scaled to 4 different earthquake levels. 1872 time history analyses are conducted for 26 sample frames under these records. As a result of time history analyses and connection rotations, plastic hinge numbers and connection rotations are determined. Moreover Fourier analyses of top lateral acceleration records are done and the changes in the period are investigated.

25 of 26 sample frames satisfied all the acceptance criteria's and showed a reliable performance under the earthquake effects. Under the near fault records, top displacements of all semi rigid frames with SMTR connection behavior model are smaller than rigid frame. Under both near and far field records, the smallest top displacement is calculated in 70% frame among 7.0m span frames and in 60% frame among 9.0m span frames. As a result, it was shown that, rigid frames are not the optimum solution in low rise long span buildings. The optimum solution can be obtained by changing the connection stiffness and capacity.

Keywords: Moment resisting steel frames, Semi rigid connection, Seismic response, Nonlinear pushover analysis, Nonlinear time history analysis, Fourier analysis

1. GİRİŞ

Çelik yap lar yüksek süneklik kapasiteleri, rijitlikleri, dayan mlar ve öngörülebilir göçme kapasiteleri nedeniyle, depremselliği yüksek bölgelerde yayg n olarak kullan lmaktad rlar. Depreme dayan kl çelik yap sistemlerinden biri olan moment dayan ml çelik çerçeveler, yüksek süneklik kapasiteleri ve ekonomik tasar m olanaklar nedeniyle az ve orta katl binalarda s kl kla kullan lmaktad rlar. 1994 Northridge ve 1995 Kobe depremlerine kadar, tamamen kaynakl moment dayan ml çerçeveler, birçok mühendis ve araşt rmac taraf ndan, deprem etkilerinden zarar görmez olarak kabul edilmiş ve uzun y llar boyunca depreme dayan kl en güvenilir yap sistemi olarak kullan lm şlard r.

Son y llarda meydana gelen depremler bu güveni oldukça sarsm şt r. 1994 Northridge ve 1995 Kobe depremleri s ras nda çelik yap larda ve özellikle tamamen kaynakl birleşimlerde, çok büyük ve beklenilmeyen hasarlar oluşmuştur. Bu depremlerin sonucunda çoğu ülkede, çelik yap lar n deprem davran şlar n n daha doğru belirlenmesi ve performanslar n n geliştirilmesi amac yla birçok araşt rma başlat lm şt r. Amerika'da Northridge depreminde meydana gelen hasarlar ve çelik yap lar n deprem performanslar n incelemek, ayr ca yönetmeliklerde gerekli düzenlemeleri yapmak amac yla SEAOC, ATC ve CUREE'nin kat l m yla SAC Projeleri "SAC Joint Venture" kapsam nda çeşitli çal şmalar yap lm şt r. Bu çal şmalar n sonucunda, birçok rapor ve tasar m rehberi yay nlanm şt r (SAC 1995 ve FEMA 355, 2000). Ayr ca elde edilen sonuçlar, AISC deprem yönetmeliğine de yans t lm şt r (AISC, 2005a).

SAC projelerinin bir k sm nda, tamamen kaynakl birleşimlere alternatif birleşim tipleri araşt r lm şt r. Bu amaçla yar rijit (k smi dayan ml) birleşimler ve bu birleşimlerle yap lan çerçeveler incelenmiş ve baz faydalar fark edilmiştir. Ancak çal şmalar tam olarak tamamlanmadan sonuçland r lm ş ve devam getirilmemiştir. Ayr ca 1994 Northridge ve 1995 Kobe depremleri öncesinde ve özellikle sonras nda Avrupa, Amerika ve Japonya'da birçok araşt rmac depremselliği yüksek bölgeler için, yar rijit (k smi dayan ml) birleşimli çerçevelerin deprem performans n incelemiştir.

Bu çal şmada, depremselliği yüksek bölgelerde enerji sönümlemesinin kiriş kolon düğüm noktalar nda oluşacağ yar rijit birleşimli (k smi dayan ml) yap lar, farkl çerçeve geometrileri ve farkl birleşim kapasiteleri kullan larak tasarlanm şt r. Ard ndan deprem etkileri alt nda performanslar analitik olarak incelenmiş ve rijit birleşimli sistem çözümleri ile karş laşt r lm şt r.

1.1 roblemin Tanımı

Moment dayanımlı elik er eveli sistemler, yüksek süneklik kapasiteleri ve ekonomik tasarım olanakları nedeniyle, depremselliği yüksek lgelerde a ve orta katlı inalarda sıklıkla kullanılmaktadır. Moment dayanımlı elik er evelerin deprem tasarımları, yapının dayanımında a alma olmadan ok miktarda akma ve plastik şekil değiştirme yapa ileceği kabulüne dayanır. Mühendislik uygulamalarında yoğun olarak kullanılan tasarım ilkelerine g re, deprem sırasında yapının enerji s nümlendirmesinin kiriş u larında oluşacak plastik mafsallarca sağlanması istenir. Ayrıca yapıdaki hasarların, elik elemanlarda oluşacak orta dereceli akma ve lokal burkulmalarla sınırlı kalması, gevrek kırılmaların ve kat g me mekani malarının oluşmasının engellenmesi ama lanır. Plastik mafsalların kolonlardan nce kiriş u larında oluşmasını sağlamak amacıyla, gü lü kolon ayıf kiriş prensi i uygulanır. Ayrıca kiriş kolon irleşim kapasitesinin kiriş plastik moment kapasitesinden üyük olması ve yapıda oluşacak plastik d nmeleri güvenle karşılaya ilmesi istenir.

Northridge ve Ko e depremleri sırasında, elik yapılarda ve ellikle tamamen kaynaklı irleşimlerde ağır ve eklenilmeyen hasarlar oluşmuştur. cak Northridge depreminde, 150'den fa la moment dayanımlı elik er eveli yapı ağır şekilde hasar ellikle tamamen kaynaklı kiriş kolon irleşim g rmüştür. Bu yapılarda, lgelerinde, eşitli gevrek kırılmalar oluşmuştur (Youssef vd., 1995). Ayrıca cak Ko e depreminde, elik yapılarda üyük yapısal hasarlar ve g meler meydana gelmiştir. lemlenen u hasarlar, elik yapıların deprem davranışları hakkındaki ilgimi i g den ge irmemi gerektiğini ortaya koymuştur. Şantiyede yapılan kaynaklı irleşimlerin eklenilen performansı g steremediği ve kaynakların kalite kontrolünün oğu aman yapılamadığı tespit edilmiştir (Elnashai, 2006). Bu gözlemler neticesinde, ir ok araştırmacı ve mühendis şantiyede bulonlu irleşim tiplerini araştırmaya ve kullanmaya y nelmiştir.

Deprem sırasında yapıda oluşacak plastik mafsalların (enerji s nümlendirme mekani malarının) kolonlardan önce kirişlerde oluşmasını sağlamak ve yapının sünekliğini arttırıp, göçmesini ertelemek i in gü lü kolon ayıf kiriş ilkesi uygulanır. AIS Deprem Y netmeliği nin (AIS, 200 a), B lüm . da a ıklanan gü lü kolon ayıf kiriş ilkesine g re, kolon kapasitesi, kiriş kapasitesinin .2 katı ile kesme kuvvetinden oluşan ilave momentin toplamından üyük olmalıdır. Bundan dolayı gerekli kolon kapasitesi, kiriş kapasitesinden en az %25 daha fazladır. A katlı, üyük a ıklıklı sistemlerde kiriş tasarımları, deprem yükleri yerine düşey yüklere g re yapılır. Bu nedenle, u yapılarda uygulanan gü lü kolon ayıf kiriş ilkesi gerekenden daha büyük kolon kesitlerinin seçilmesine ve ekonomik olmayan, aşırı güvenli (overdesign) tasarımlara neden olur.

A katlı, üyük a ıklıklı yapıların aşırı güvenli tasarımlarını gidermek i in, özellikle Amerika da uygulanan y ntem, yapıların sadece dış çerçevelerini (perimeter frame) yatay yük taşıyan sistemler olarak tasarlamaktır. Bu tip yapılarda i er eveler sadece düşey yükler altında oyutlandırılır ve kiriş kolon irleşimleri mafsallı olarak tasarlanır. Bu şekilde tasarlanan yapıların de avantajlarından ilki, sistemin nispeten a hiperstatiklik derecesine (redundancy) sahip olması ve dolayısıyla yeniden dağılım imkânının sınırlı olmasıdır. Bu yapılarda oluşan a sayıda lokal hasar, sistemin toptan göçmesine yol açabilmektedir (Astaneh, 1995). Bunun en önemli örneklerinden biri, 1994 Northridge depreminde tamamen yıkılan Kaliforniya Devlet niversitesi'nde yer alan otopark inasıdır (Elnashai ve Di Sarno 2008). Bu yapıların dezavantajlarından ir diğeri ise, sistemde oluşan hasarların yapının dışmerke liğini üyük 1 üde arttırmasıdır. Dolayısı ile yapılar, deprem esnasında, beklenenin üzerinde burulma etkilerine maruz kalırlar.

1994 Northridge ve 1995 Kobe depremleri öncesinde ve özellikle sonrasında Avrupa, Amerika ve aponya da ir ok araştırmacı, yarı rijit (kısmi dayanımlı) irleşimli er evelerin deprem performansını deneysel ve analitik olarak incelemiş ve rijit irleşimli er evelerle karşılaştırmıştır. Bu alışmaların ncülüğü Nader ve Astaneh (1991, 1992, 1996), Elnashai ve Elgha ouli () ve Elnashai vd. () tarafından yapılmıştır. Bu alışmalarda, depremselliği yüksek lgelerde ulunan rijit irleşimli er evelere alternatif olarak, enerji s nümlendirmesinin kiriş u ları yerine yarı rijit kiriş kolon irleşim lgelerinde sağlandığı sistemler incelenmiştir.

Çalışmaların sonucunda yarı rijit irleşimlerin (örn. alt ve üst aşlıklar ile gövde korniyerli ve u atılmış alın levhalı) doğru tasarlandığı takdirde, deprem etkileri altında yeterli sünekliğe ve sta il histeretik davranışa sahip olduğu g sterilmiştir. Ayrıca ellikle a katlı yapılar i in, rijit irleşimli er evelerin en ekonomik ve uygun üm olmadığı elirtilmiştir. Bu yapılarda optimum tasarımın yarı rijit irleşimli er evelerle elde edile ileceği vurgulanmıştır.

1.2 Amaç ve Kapsam

Bu alışmanın amacı, depremselliği yüksek lgelerde enerji sönümlemesinin kiriş kolon düğüm noktalarında oluşacağı yarı rijit irleşimli (kısmi dayanımlı) yapılar tasarlamak ve farklı irleşim eğilme kapasiteleri, er eve geometrileri ve deprem etkileri altında performanslarını analitik olarak incelemektir. Ayrıca yarı rijit irleşimli (kısmi dayanımlı) er evelerin, rijit irleşimli er evelere g re daha elverişli sonu lar verdiği koşulların araştırılmasıdır. Bu amacı ger ekleştire ilmek i in aşağıdaki adımlar i lenmiştir:

Enerji sönümlemesinin kiriş u ları yerine, kiriş - kolon irleşim lgelerinde sağlandığı farklı a ıklıklı er eve sistemlerinin, irleşim eğilme kapasitelerinin kiriş kapasitelerine oranı 0, 0 ve 0 olacak şekilde tasarlanması,

Tasarlanan sistemlerin, doğrusal olmayan statik itme analizi ile kapasite eğrilerinin belirlenmesi,

Faya yakın ve faya u ak, ger ek ve yapay deprem kayıtları altında, tasarlanan sistemlerin aman tanım alanında, doğrusal olmayan dinamik anali lerinin yapılması ve deprem performanslarının elirlenmesi,

dayanımlı) irleşimli Tasarlanan (kısmi çerçevelerin yarı rijit deprem performanslarının rijit irleşimli er evelerin deprem performanslari ile karşılaştırılması ve yarı rijit irleşimli er evelerin daha elverişli sonu lar verdiği kosulların tespit edilmesi,

Yarı rijit (kısmi dayanımlı) irleşimlerin eğilme kapasitelerinin, rijitliklerinin ve evrimsel davranış elliklerinin, er evenin deprem performansına etkilerinin parametrik olarak incelenmesi,

A katlı, üyük a ıklıklı yapılarda enerji s nümlemesinin kiriş u ları yerine, kiriş kapasitesinden daha a kapasiteye sahip yarı rijit (kısmi dayanımlı) irleşimlerde ger ekleştirilmesi, gü lü kolon ayıf kiriş ilkesinin gerekliliğini ortadan kaldırmaktadır. Bunun yerine kolonların yarı rijit (kısmi dayanımlı) irleşimlerden daha sonra plastikleşmesinin sağlanması yeterlidir. Bu şekilde tasarlanan sistemlerde, her ne kadar kiriş kesitlerinde ir artış olsa da, kolon kesitlerinde ciddi miktarda a almalar sağlana ilmektedir.

Kolon kesitlerinde oluşan u a almalar ve kullanılan yarı rijit irleşimler, sistemin periyodunu rijit irleşimli sistemlerin periyoduna nazaran arttırmaktadır. Sistem rijitliğindeki u a almanın, ilk akışta deprem etkileri altında deplasmanları arttıracağı düşünülse de, yapılan alışmalar sonucunda u durumun her aman ger ekleşmediği g rülmüştür (Elnashai ve Elghazouli,1994; Elnashai vd., 1998). ijitlikteki a alma ve periyodun artması, yapının maru kaldığı depremin frekans i eriğine ağlı olarak, etkiyen kuvvetin a almasına yol a maktadır. A katlı, üyük a ıklıklı yapılar i in, ellikle faya yakın depremler etkisinde gelen yüklerde büyük miktarda azalmalar beklenmektedir.

Moment dayanımlı er evelerde, rijitlikte ve deprem yüklerinde yarı rijit irleşim kullanılmasıyla meydana gelen azalma, u tür sistemlerin tasarımının aslında ir optimi asyon pro lemi olduğunu ortaya koymaktadır.

Yarı rijit irleşimli moment dayanımlı er evelerde kullanılan irleşim tipleri (alt ve üst aşlıklar ile g vde korniyerli, u atılmış alın levhalı, v .) şantiyede kaynak gerektirmeyen sadece ulonlu ağlantıları ulunan uygulamalardır. Bu irleşimlerin kullanılması, yapım sürecini hı landırır kalifiye iş ilik gereksinimini a altır ve inaların kalite kontrolleri daha güvenli yapıla ilir. Bu sayede Northridge ve Ko e depremlerinde tamamen kaynaklı irleşimlerde ortaya ıkan sorunlar, büyük ölçüde giderilebilir.

ijit irleşimli a katlı üyük a ıklıklı er evelerde, gü lü kolon ayıf kiriş ilkesinden dolayı ortaya çıkan ve ekonomik olmayan aşırı güvenli tasarım durumu, yarı rijit irleşimli sistemlerde irleşim kapasitesi a altılarak üyük l üde giderile ilmektedir. Bu sayede, sadece dış er eveler yerine tüm er evelerin yatay yük taşıması ekonomik olarak sağlana ilir. B ylece yapının hiperstatiklik derecesinde oluşan kayıplar engellene ilmektedir.

Akademik çevrelerde ve literatürde, yarı rijit irleşimlerin evrimsel davranışları ve u tür irleşimleri i eren er evelerin deprem performansları hakkında, son yıllarda yoğun alışmalar yapılmaktadır. Bu alışmalarda yarı rijit irleşimli sistemlerin, depremselliği yüksek lgelerde kullanılmasının sahip olduğu potansiyel sıklıkla vurgulansa da, bu tür yapılara uygulamada ok a rastlanmaktadır. Bu durumun en nemli se epleri arasında literatürde yapılan alışmaların henü y netmeliklere yansıtılmamış olması ve hatta a 1 y netmeliklerin depremselliği yüksek lgelerde yarı rijit irleşimli er evelerin yapılmasına izin vermemesi gösterilebilir.

AISC Deprem Y netmeliği (AIS, 200 a) B lüm .2a-2 de irleşimin sahip olması gereken minimum dayanım i in, kirişin plastik moment kapasitesine ağlı olduk a sıkı ir limit yer almaktadır. Bu maddeye g re, 0.04*rad* lık kat telemesi durumunda, irleşimin taşıma kapasitesi kirişin kapasitesinin en a 0 ine eşit olmalıdır. Ayrıca kirişin taşıma kapasitesinde yapılan a altma en fa la 20 oranında kolon tasarımına yansıtıla ilmektedir. Bu nedenle kirişin plastik moment kapasitesinin 0 ninden daha a moment aktaran yarı rijit (kısmi dayanımlı) irleşimler kullanılsa bile, kolon kapasitesinin, gü lü kolon ayıf kiriş ilkesinden dolayı, kiriş plastik moment kapasitesinin en az %80'ine göre belirlenmesi gerekmektedir. Sonuç olarak AIS y netmeliklerine g re depremselliği yüksek bölgelerde yarı rijit irleşimli yapıların ekonomik olarak tasarlanması mümkün olmamaktadır.

Avrupa y netmeliklerine aktığımı da ise deprem sırasında oluşacak plastik mafsalların (enerji s nümlendirme mekani malarının) kirişler yerine, kiriş kolon düğüm noktalarında oluşmasına i in verilmektedir (Eurocode EN1998-1, 2004 Bölüm 6.3.1 (2) ve Bölüm 6.6.1 (1)). Ayrıca gü lü kolon ayıf kiriş ilkesi yerine, gü lü kolon ayıf irleşim ilkesi uygulanabilmektedir (Eurocode EN1998-1, 2004 Bölüm 6.5.2 (5) ve Bölüm 6.6.4 (6)). Ancak Eurocode y netmeliğindeki u gelişmeler henü tamamlanmamıştır.

Depremselliği yüksek lgelerde, enerji sönümlemesinin kiriş kolon irleşim lgelerinde ger ekleştiği yarı rijit irleşimli er eveler tasarlamanın ve uygulamanın n koşulu, kullanılan irleşimin yeterli d nme kapasitesine, sünekliğe ve sta il histeretik davranışa sahip olmasıdır.

ellikle son 20 yıldır, araştırmacılar tarafından, yarı rijit irleşimlerin çevrimsel yükler altındaki davranışı incelenmektedir. Bu alışmalardan a ıları B lüm 2. de verilmiştir. Nader ve Astaneh (, 2,) ile aşlayan, Elnashai ve Elgha ouli () ve Elnashai vd. () alışmaları ile devam eden, Shi vd. (2007) ile günümü e kadar ulaşan alışmalarda doğru tasarlanmış yarı rijit irleşimlerin yeterli d nme kapasitesine, sünekliğe ve sta il histeretik davranışa sahip olduğu g sterilmektedir. Ayrıca Eurocode EN 3-1-8 (2005) Bölüm 6.4.2'de, enerji sönümlemesinin ger ekleştirileceği ulonlu irleşimlerin, yeterli d nme kapasitesine sahip olması i in gereken koşullar verilmiştir.

Bu alışmada kullanılan yarı rijit irleşimler, AISC (2003a, 2003b ve 2003c) ve Eurocode EN1993-1-8 (2005) yönetmeliklerine g re tasarlanmış ve yeterli dönme kapasitesine, sünekliğe ve sta il histeretik davranışa sahip oldukları ka ul edilmiştir.

Sonuç olarak, yarı rijit (kısmi dayanımlı) irleşimli er evelerin yukarıda değinilen potansiyellerinin, deprem davranışlarının ve y netmeliklerde ulunan eksikliklerinin belirlenebilmesi için analitik ve deneysel alışmaların yapılması gereklidir.

1.3 Tezin Organizasyonu

Bu te deki alışmalar iki ana aşlık altında gruplandırıla ilir. Bunlar; *i*) yarı rijit (kısmi dayanımlı) irleşimli er evelerin modellenmesi ve tasarımı, *ii*) tasarlanan çerçevelerin deprem performanslarının incelenmesi ve rijit irleşimli er evelerle karşılaştırılmasıdır. Bu iki grupta yer alan alışmalar, altı lüm halinde sunulmuştur. B lümlerin i erikleri hakkında özet bilgiler aşağıda verilmiştir.

Birinci bölümde pro lemin tanımı, alışmanın amacı ve kapsamı a ıklanmış ve te in organizasyonu sunulmuştur. Ardından yarı rijit (kısmi dayanımlı) irleşimli moment dayanımlı er eveler ile ilgili olarak da önce yapılan alışmalar hakkında literatür bilgisi verilmiştir.

kinci lüm, yarı rijit irleşimleri kapsamaktadır. Öncelikle literatürde bulunan ve yarı rijit (kısmi dayanımlı) irleşimlerin tasarımını, histeretik (evrimsel) davranışının modellenmesini ve çevrimsel yükler altındaki davranışını deneysel olarak inceleyen alışmalar etlenmiştir. Daha sonra, kiriş kolon irleşim tipleri ve mevcut yönetmeliklere göre sınıflandırılma şartları sunulmuştur. Hem yönetmeliklerde, hem de literatürde bulunan birleşimlerin tasarımında kullanılan, yöntemler verilmiştir. Son olarak, irleşimlerin yeterli dönme kapasitesine sahip olmaları için gereken şartlar hakkında ilgi verilmiştir.

Moment dayanımlı er evelerin tasarımı, üçüncü bölümde ele alınmıştır. Bu lüm iki kısma ayrıla ilir. lk kısımda, tasarım metodu olarak kullanılan AIS - FD metodu kısaca anlatılmıştır. Daha sonra, günümüz deprem yönetmeliklerinde bulunan süneklik düzeyi yüksek çerçevelerle ilgili tasarım şartları sunulmuştur. kinci kısımda ise örnek yapıların tasarımında kullanılan ina ellikleri, yük ve yükleme kom inasyonları, tasarım metodu ve modelleme kabulleri verilmiştir. Son olarak, rnek yapılar tasarlanmış ve kesit oyutları, irleşim geometrileri gi i ellikleri et halinde sunulmuştur.

Dördüncü bölümde, tasarımı yapılan örnek çerçevelerin deprem performanslarının belirlenmesinde izlenen yol etlenmiştir. Bunun için öncelikle, doğrusal olmayan statik (pushover) analiz ve aman tanım alanında doğrusal olmayan dinamik analiz metotları kısaca a ıklanmıştır. Daha sonra dinamik anali lerde kullanılacak yer hareketlerinin seçilmesi, üretilmesi, normalizasyonu ve ölçeklendirilmesi anlatılmıştır. Son olarak, yapıların deprem performanslarının değerlendirilmesi i in, lokal ve glo al davranışlarıyla ilgili davranış kriterleri a ıklanmıştır.

Beşinci lümde, yapılan anali lerden elde edilen sonu lar verilmiştir. nce çerçevelerin değer anali lerinden elde edilen sonu lar karşılaştırmalı olarak sunulmuştur. Daha sonra doğrusal olmayan statik itme ve aman tanım alanında doğrusal olmayan dinamik anali i sonu ları verilmiştir. Son olarak tepe ivme tepkilerinin Fourier anali leri yapılarak periyotlarında meydana gelen değişim incelenmiştir.

Altıncı lüm alışmanın son lümüdür. Bu lümde elde edilen sonu lar etlenmiş, karşılaştırılmış ve ayrıca gelecek alışmalar i in de a 1 nerilerde ulunulmuştur.

1.4 Önceki Çalışmalar

Son yıllarda, yarı rijit (kısmi dayanımlı) irleşimlerin davranışı ve u tarz irleşimli er evelerin deprem davranışları ve performansları, araştırmacıların yoğun ilgisini çekmektedir. Bu bölümde, yarı rijit (kısmi dayanımlı) irleşimli er evelerle ilgili olarak yapılmış eşitli deneysel ve analitik alışmalar incelenmiş ve sonu ları etlenmiştir. Öncelikle bu araştırmaya temel olan Nader ve Astaneh (1991, 1992, 1996), Elnashai ve Elgha ouli (), Elnashai vd. () tarafından yapılan alışmalar ve SAC projesi kapsamında yapılan iki alışma, detaylı olarak incelenmiştir. Ardından, günümüze kadar yarı rijit irleşimli er evelerin dinamik davranışlarıyla ilgili olarak yapılan a ı alışmalar incelenmiş ve sonu ları etlenmiştir.

Yarı rijit (kısmi dayanımlı) irleşimli er evelerin deprem davranışını, deneysel olarak inceleyen ilk alışmalardan iri Nader ve Astaneh (1991, 1996) tarafından yapılmıştır. Bu alışmalarda, asit ve yarı rijit (kısmi dayanımlı) irleşimli yapının (tek katlı ve tek a ıklıklı) davranışı, deprem yükü altında incelenmiş ve rijit irleşimli yapı ile karşılaştırılmıştır. Deneyler sırasında, her irleşim tipi (asit, yarı rijit, rijit) i in aynı er eve elemanları kullanılmıştır. Çer eve elemanlarının kesit hesapları, yarı rijit irleşimli er eve a alınarak yapılmıştır. Ayrıca yapıların 4. derece deprem bölgesinde (UBC 1991'e göre en kritik deprem bölgesi) ulunduğu ka ul edilmiş ve taşıyıcı sistem davranış katsayısı (R) 12 yerine 8 alınmıştır. alışmada, sarsma ta lası (shake ta le) deneyi yapılarak basit, yarı rijit ve rijit irleşimli yapıların davranışları elirlenmiştir. Deneylerde ü farklı deprem kaydı (1940 El Centro, 1952 Taft ve 1985 Meksika) kullanılmıştır. Her bir depremin maksimum yer ivmesi, 0.05g'den 0.5g'ye kadar değişik aralıklarla artırılmış ve yapıya etkitilmiştir. ncelenen glo al davranış parametreleri arasında yapının periyodu, s nüm oranı ve ta an kesme kuvveti - tepe deplasmanı ilişkisi yer almaktadır. Ayrıca irleşimlerin moment - dönme, kesme kuvveti kesme deformasyonu ve eksenel kuvvet - eksenel deformasyon davranışları da, lokal davranış parametresi olarak incelenmiştir. Çerçevelerin 0.35g Taft yer hareketi altında g sterdiği taban kesme kuvveti - tepe deplasmanı ilişkisi Şekil 1.1'de verilmiştir. Ayrıca, yarı rijit irleşimlerin 0.5g Taft ve 0.5g Meksika yer hareketleri altındaki moment - dönme ilişkisi Şekil 1.2'de görülmektedir.

Şekil 1.1 Çerçevelerin 0.35*g* Taft yer hareketi etkisinde taban kesme kuvveti – yatay deplasman ilişkisi (Nader ve Astaneh, dan alınmıştır)

Şekil 1.2 Yarı rijit irleşimlerin a) 0.5g Taft ve b) 0.5g Meksika yer hareketleri altındaki moment - d nme ilişkisi (Nader ve Astaneh, dan alınmıştır)

Yazarlar, deneysel verilere dayanarak aşağıdaki sonu ları elirtmişlerdir:

Birleşim rijitliği arttığında ta an kesme kuvveti artmış, fakat yatay deplasman aynı ölçüde azalmamıştır,

En uygun taşıyıcı sistemin tasarlanması i in, kabul edilebilir yatay deplasmanlara ve mümkün olan en az taban kesme kuvvetine sahip sistemin araştırılması gerekmektedir,

ncelenen tek katlı yapı i in, rijit irleşimli sistem en uygun çözüm değildir,

Yarı rijit irleşimli yapılar, deprem yüklerini güvenli i imde karşılaya ilmek i in yüksek potansiyele sahiptir.

Nader ve Astaneh (1992) ok katlı elik yapıların deprem davranışını, farklı yarı rijit (kısmi dayanımlı) irleşim tipleri kullanarak analitik olarak incelemiştir. alışmanın ilk kısmında, yarı rijit irleşimli er eveler i in eşdeğer deprem yükü metodu geliştirilmiştir. Yapının doğal periyodunun belirlenmesi için irleşim rijitliğinin etkilerini de içeren ampirik bir formül; ayrıca taşıyıcı sistem davranış katsayısı (R) için de ir ifade nermişlerdir.

alışmada yedi katlı, iki a ıklıklı ve d rt katlı, d rt a ıklıklı iki ina rijit irleşimli olarak UB y netmeliğine g re tasarlanmıştır. Daha sonra, u yapılardaki rijit irleşimler parametrik olarak, yarı rijit irleşimler ile değiştirilmiştir. Kullanılan irleşimlerin rijitlik oranları 0.00 ile 0 arasında değişmektedir. Ayrıca, birleşimlerin akma momentleri de rijitlik oranlarına göre ayarlanmıştır. 2 Taft depreminin N2 E ileşeni kullanılarak, yapıların artımsal aman tanım alanı analizlerini yapılmıştır. alışmada irleşim rijitliklerinin akma momentine, taban kesme kuvvetine, kat ötelemesine ve maksimum plastik dönmelere olan etkisi incelenmiştir. Birleşim rijitliği oranı 2 olan, d rt katlı ve yedi katlı yapıların taban kesme kuvveti - kat ötelemesi ilişkileri Şekil 1.3'de görülebilir.

Şekil 1.3 a) D rt katlı ve b) Yedi katlı yapının taban kesme kuvveti – kat telemesi ilişkisi (Nader ve Astaneh, 2 den alınmıştır)

alışmanın ikinci kısmında, yarı rijit irleşimli ü yapı nerilen metotlara g re tasarlanmıştır. D rt katlı d rt a ıklıklı yapı i in, alt ve üst aşlıkları korniyerli, gövdesi "T" ağlantılı yedi katlı iki a ıklıklı yapı i in alt ve üst aşlıkları levhalı, gövdesi çift korniyerli; on katlı ü a ıklıklı yapı i in de u atılmış alın levhalı irleşim tipleri kullanılmıştır. Yarı rijit birleşimlerin histeretik davranışları ilineer kinematik pekleşmeli olarak modellenmiştir. Bu yapıların dinamik anali leri, 2 Taft depreminin N2 E ileşeni ve 1978 Miyagiken Oki depreminin N00E ileşeni kullanılarak yapılmıştır. Deprem kayıtları, ü farklı deprem seviyesini yansıtacak şekilde l eklendirilmiştir. Yapıların deprem performanslarının incelenmesinde kat telemesi, plastik mafsal oluşma yerleri ve sırası kullanılmıştır.

D rt katlı ve on katlı yapıların Miyagiken Oki depremi altında üç farklı deprem seviyesin için elde edilen kat öteleme değerleri,

Şekil 1.4'de görülebilir.

Şekil 1.4 Yapıların (d rt katlı ve on katlı) hafif şiddetli, orta şiddetli ve şiddetli depremler etkisinde kat teleme değerleri (Nader ve Astaneh, 2 den alınmıştır)

Ayrıca, yazarlar gevrek kırılması engellenerek tasarlanmış u atılmış alın levhalı irleşimlerin, 0.035 radyandan, üst ve alt aşlıkları korniyerli irleşimlerin ise 0.040 radyandan daha fazla plastik d nme kapasitesine sahip olacağını vurgulamışlardır. Şekil 1.5a da alt ve üst aşlıkları korniyerli, gövdesi "T" ağlantılı irleşimin, Şekil 1.5b'de ise u atılmış alın levhalı irleşimin aman tanım alanındaki anali lerinden elde edilen moment dönme ilişkileri g sterilmiştir.

Şekil 1.5 a) Alt ve üst aşlıkları korniyerli, gövdesi "T" ağlantılı,) u atılmış alın levhalı irleşimlerin moment d nme ilişkisi (Nader ve Astaneh, 2 den alınmıştır)

Anali ler sonucunda, nerilen eşdeğer yatay yük metodu değerlendirilmiş ve yapıların doğal periyotları, nerilen ampirik denklem sonu ları ile karşılaştırılmıştır. Ayrıca, yarı rijit irleşimli er evelerin deprem davranışları hakkında aşağıdaki sonu lara ulaşmışlardır:

Birleşim rijitliğinin kiriş rijitliğine oranı den üyük olduğunda, taşıyıcı sistem davranış katsayısı (R), süneklik dü eyi yüksek er evelere eşit alına ilir,

Yarı rijit irleşimli er evelerin kat ötelemeleri, küçük deprem seviyesinde öteleme sınırlarını tamamen ve üyük deprem seviyesinde ise oğunlukla sağlamaktadır.

Yarı rijit irleşimli yapıların deprem davranışını, deneysel ve analitik olarak inceleyen öncü alışmalardan irisi de Elnashai ve Elgha ouli () ve Elnashai vd., () tarafından yapılmıştır. Deneylerin ilk serisinde, yarı rijit irleşimli er evelerin deprem davranışları hakkında, tamamen kaynaklı alternatifleriyle karşılaştırmalı olarak detaylı ilgi sağlamak i in iki katlı, tek a ıklıklı erçeveler ü erinde eş adet deneysel alışma yapılmıştır. Deneylerden iki tanesinde rijit (tamamen kaynaklı) irleşimli er eveler kullanılmıştır. Bu çerçeveler çevrimsel ve pseudo-dinamik deprem yükü altında incelenmiştir. Geri kalan üç deneyde ise yarı rijit irleşimli er eveler monotonik, çevrimsel ve pseudo dinamik deprem yükü altında incelenmiştir. Deneylerde yarı rijit irleşimler için, alt ve üst aşlıkları tek ve gövdesi çift korniyerli irleşim tipi kullanılmıştır. Pseudo dinamik deneylerde, deprem etkin süresi 15*sn*

olan 1940 Imperial Valley (El Centro) depreminin N-S bileşeni kullanılmıştır. Hem rijit hem de yarı rijit irleşimli er eveler i in kayıtların 1 eklendirilmesi, çerçeve kapasitesinin deneydeki maksimum yer ivmesine oranı aynı olacak şekilde yapılmıştır.

alışmanın analitik kısımlarında kullanmak üzere, Madas ve Elnashai (1992) tarafından birleşimler i in nerilen elemana dayalı çevrimsel model, deney sonu larıyla karşılaştırılarak doğrulanmıştır. Daha sonra, yarı rijit irleşimlerin lokal ve glo al er eve davranışı üzerindeki etkisi, u model kullanılarak incelenmiştir. Analitik incelemeler, d rt farklı irleşim tipi kullanılarak yapılmıştır. Bu irleşim tipleri *i*) kayma bölgesinin (kiriş ve kolon aşlıklarının sınırladığı lge "panel zone") kayma şekil değiştirmesi ihmal edilen rijit (tamamen kaynaklı) irleşim, *ii*) kayma bölgesinin (panel zone) kayma şekil değiştirmesini göz önüne alan rijit (tamamen kaynaklı) irleşim, *iii*) alt ve üst aşlıkları korniyerli, gövdesi çift korniyerli irleşim ve *iv*) sadece gövdesi ift korniyerli irleşimlerdir. Çerçeveler ilk olarak monotonik artan yükler altında anali edilmiş ve er evelerin yük – deplasman ilişkisi, kolonlarda eğriliğin y n değiştirdiği nokta, plastik mafsal oluşum yerleri, sırası ve u unluğu incelenmiştir. Daha sonra er eveler, El Centro yer hareketinin N-S ileşeni altında anali edilmiştir.

Yazarlar, deneysel ve analitik alışmalara dayanarak aşağıdaki sonu lara ulaşmıştır:

Yarı rijit irleşimli er eveler, sünek ve stabil histeretik davranış sergilemiştir,

Yarı rijit irleşimli çerçevelerin rijitlikleri, akma ve göçme kapasiteleri, rijit irleşimli çerçevelerden daha az olmasına rağmen, sabit bir kapasite deney maksimum yer ivmesi oranı altında, yarı rijit irleşimli er evelerin deplasmanları, rijit çerçevelerden daha az olmuştur.

Deneylerin ikinci serisinde, irleşim parametrelerinin er eve davranışı ü erindeki etkisini değerlendirmek amacıyla, üç adet yarı rijit irleşimli er eve test edilmiştir. Birleşimlerin rijitlikleri ve dayanımları dışında, bu üç çerçeve tamamen aynıdır. Birleşimlerin dayanımları, irleşen kirişin plastik moment kapasitesinin %20'si ile 0 ı arasında değişmektedir. Bu deneyler, çevrimsel yükler altında yürütülmüş ve lokal ve glo al davranışlar incelenmiştir.

Deneylerden elde edilen yarı rijit er evelerin ilk kat irleşimlerinin moment dönme ilişkileri Şekil 1.6'da görülebilir. Deneyler süresince tüm yarı rijit irleşimlerin sünek ve stabil histeretik davranış sergilediği belirtilmiştir. Ayrıca irleşim dayanımı arttığında, enerji sönümlendirme kapasitesi de artmıştır. Bununla beraber, tüm deneyler boyunca irleşimlerin kapasitesinde belirgin bir azalma ya da herhangi bir göçme durumunun g lemlenmediği vurgulanmıştır.

(Elnashai vd., den alınmıştır)

Yarı rijit irleşimli er evelerin doğal titreşim periyodu, akma ve g me deplasmanı, taban kesme kuvveti, sünekliği ve dayanım katsayısı (overstrength) rijit irleşimli er evelerle karşılaştırılmıştır. Ayrıca, kolonun ve irleşimin süneklik talepleri de, rijit irleşimli çerçevelerinkiyle karşılaştırılmıştır.

Elde edilen sonuçlar, %3 kat ötelemesi sınır durumu için karşılaştırmalı olarak verilmiştir. Bunlardan a ıları irleşim rijitliği ve dayanımı arttığında er evenin sünekliği artmaktadır. Birleşim rijitliğinin artması ile irleşimin süneklik tale i a almaktadır. Diğer yandan irleşim rijitliğinin artması ile kolon ta anının dönme süneklik talebi artmaktadır.

Sonuç olarak yarı rijit irleşimli er evelerin, depremselliği yüksek lgelerde kullanılmasına ilişkin aşağıdaki sonu lar elirtilmiştir:

ncelenen bulonlu irleşimler yeterli süneklik ve sta il histeretik davranışa sahiptir. Bu nedenle depreme dayanıklı yapı tasarımında efektif olarak kullanıla ilir,

Yarı rijit irleşim kullanılmasıyla, kiriş - kolon dayanım katsayısının (overstrength) gerekliliği ortadan kalkmaktadır. Bu katsayı yerine kolon, irleşim dayanım katsayısının kullanılması gerekmektedir

Yarı rijit irleşimli er evelerin, deprem yükü taşıyan sistem olarak kullanılması için daha fa la analitik ve deneysel alışmaların yapılması gerekmektedir.

lümde, depremselliği yüksek lgelerde yarı rijit FEMA/SAC projesinin II. aşamasının ir (kısmi dayanımlı) irleşimli er evelerin performansının değerlendirilmeşi i in iki adet analitik alışma yapılmıştır. Maison vd. (2000a) alışmasında doku adet Northridge depremi öncesi yapılan kaynaklı moment dayanımlı er eve incelenmiştir. Bu çerçeveler, orjinal kiriş oyutları sabit tutulup, irlesim ellikleri parametrik olarak değiştirilerek ve kolon incelenmiştir. ncelenen ü, dokuz ve yirmi katlı çerçevelerin depremselliği düşük, orta ve yüksek bölgelerde bulunduğu ka ul edilmiştir. Anali ler sırasında ü farklı irleşim rijitliği ($30EI_b/L_b$, $10EI_b/L_b$, $5EI_b/L_b$), ü farklı irleşim kapasitesi $(1.0M_{pb}, 0.66M_{pb}, 0.33M_{pb})$ ve iki farklı pekleşme oranı (. , .) g nüne alınmıştır. alışma sırasında, farklı çerçevenin elastik olmayan statik itme anali i ve dinamik anali i yapılmıştır. Dinamik 0 yıllık süre i inde asılma olasılığı %2 ve %10'nu yansıtacak sekilde analizler. 1 eklendirilen 20 farklı yer hareketi kullanılarak yapılmıştır. Birleşim özelliklerinin, yapının doğal periyoduna, ta an kesme kuvvetine, kat telemesine, toplam enerji sönümlendirme kapasitesine ve irleşim d nme tale ine etkisi incelenmiştir.

Depremselliği yüksek lgedeki ü katlı yapının taban kesme kuvveti – tepe noktası öteleme a ısı ve kat seviyesi - kat teleme a ısının grafikleri Şekil 1.7'de görülebilir. Ayrıca maksimum toplam d nme ile kat teleme a ısı Şekil 1.8'de verilmiştir.

Şekil 1.7 katlı yapının a) taban kesme kuvveti – tepe noktası, b) kat seviyesi - kat öteleme a ısı (Maison vd., 2000a dan alınmıştır)

Şekil 1.8 katlı yapının maksimum toplam dönme – kat öteleme a 1sı (Maison vd., 2000a dan alınmıştır)

Yazarların ulaştığı sonu lardan a ıları aşağıda etlenmiştir:

er evelerin akma dayanımları ve akma sonrası rijitlikleri, irleşimin akma momenti ve akma sonrası rijitliğinden doğrudan etkilenmektedir. Bunun yanında er evelerin elastik rijitlikleri ise, irleşimin rijitliğinden ok fa la etkilenmemektedir.

ijitlik oranları 30, 0 ve olan yarı rijit irleşimli (kısmi dayanımlı) er evelerin doğal titreşim periyodu, rijit irleşimli er evelerden sırasıyla .0, . ve .33 kat daha üyük olmuştur.

A katlı yapılarda, kat öteleme a ıları ve irleşim d nmeleri diğer er evelerden daha büyük olmuştur.

Bu alışmada yatay yük taşıyan sistemin, sadece dış (perimeter) çerçeveler olduğunun elirtilmesi nemlidir. Ayrıca, kullanılan yapıların ger eğe uygun tasarımları gerektiği kadar yansıtmadığı alışmada da elirtilmiştir. Yatay yük sadece dış çerçevelerle taşındığında kiriş kesitleri ok üyük olmaktadır. Bundan dolayı yeterince rijit, gü lü ve üyük d nmeler yapa ilen yarı rijit (kısmi dayanımlı) irleşimler tasarlamak olduk a ordur. Bu se eplerden ötürü, sadece dış er eveleri yatay yük taşıyan sistemlerde, yarı rijit (kısmi dayanımlı) irleşimlerin kullanılması uygun olmamaktadır.

Maison ve Kasai (2000) ile Maison vd. (2000b) alışmalarında depremselliği yüksek olan bölgede ü katlı yapı ve depremselliği orta olan lgede doku katlı yapı, yarı rijit (kısmı dayanımlı) irleşimlerle tasarlanmıştır. Üç katlı yapıda iki farklı irleşim tipi kullanılmıştır. Bu irleşim tipleri; kompozit yarı rijit (kısmi dayanımlı) irleşim ile alt ve üst aşlıkla gövdesi korniyerli irleşimdir. Doku katlı yapıda ise alt ve üst aşlıklar "T" profilli irleşim kullanılmıştır. Yapılardaki ütün er eveler yatay yük taşıyan sistem olarak tasarlanmıştır. er evelerin tasarımında taşıyıcı sistem davranış katsayısı (R) 2 alınmıştır (UB 1994 y netmeliğine g re). Anali lerde, 0 yıllık süre i inde aşılma olasılığı %2, %10, %50'yi yansıtan ü takım deprem kaydı kullanılmıştır. Her ir takım 20 kayıttan oluşmuş ve ortalama spektral büyüklükleri, hedef davranış spektrumu ile aynı olacak şekilde öl eklendirilmiştir.

alışmada kullanılan yarı rijit (kısmı dayanımlı) irleşimin, histeretik davranış modeli Şekil 1.9'da görülebilir.

Şekil 1.9 Yarı rijit irleşimin histeretik davranış modeli (Maison ve Kasai, 2000 den alınmıştır)

Ele alınan tüm durumlarda irleşim dayanımı, kiriş dayanımından (genellikle kiriş moment kapasitesinin yarısından a) daha kü üktür. Yapıların performansları değerlendirilirken, iki performans amacı kullanılmıştır. Bunlar seyrek depremler i in an üvenliği (CG) ve çok seyrek depremler için Göçmenin Önlenmesi () performans amacıdır. Yarı rijit irleşimli çerçevelerin kat ötelemesi ve irleşim d nmesi, rijit irleşimli er evelerle karşılaştırılarak incelenmiştir. Elde edilen ta an kesme kuvveti – tepe teleme a ısı ilişkisi, maksimum kat teleme oranları ve yarı rijit irleşimlerin dönme talepleri, sırasıyla Şekil 1.10 ve Şekil 1.11'de görülebilir.

Şekil 1.10 katlı yapının ta an kesme kuvveti – tepe teleme a ısı (Maison vd., 2000 den alınmıştır)

Şekil 1.11 katlı yapının maksimum kat teleme oranları ve irleşimin d nmesi (Maison vd., 2000 den alınmıştır)

alışmanın sonucunda ya arlar aşağıdaki sonu lara ulaşmışlardır:

Yarı rijit irleşimli ü katlı yapı, performans ama larını sağlamamıştır. Bir ok durumda hem ötelemeler hem de irleşim d nmeleri limit değerleri aşmıştır,

Yarı rijitirleşimli yapılarınilimit değeriniaşmıştır.limit değerini ise yarı rijitirleşimli yapılarınive rijityapılarıniaşmıştır,

Yapının farklı parametreler (rneğin daha düşük taşıyıcı sistem davranış katsayısı veya daha yüksek kapasiteli yarı rijit irleşimler) kullanılarak yeniden tasarlanması,

Birleşim d nmesi i in verilen limit değeri (0.035*rad*), depremselliği yüksek lgelerde a katlı yapıların tasarlanmasını sınırlamaktadır. Buna rağmen i in verilen öteleme limitini (0.05*rad*) sağlayan yarı rijit (kısmi dayanımlı) irleşimli yapı tasarlanması mümkündür,

Yarı rijit irleşimli yapıların, depremselliği orta ve yüksek lgelerde kullanılması i in yüksek potansiyelleri ulunmaktadır.

Bu alışmanın sonu larını değerlendirirken, hem yarı rijit (kısmı dayanımlı) hem de rijit irleşimli yapıların ka ul edile ilirlik şartlarını aştığı g nüne alınmalıdır. Ayrıca tasarlanan sistemde, her iki doğrultuda da yarı rijit (kısmı dayanımlı) irleşimli er eveler yatay yük taşımaktadır. ncelenen doğrultuda a ı kolonlar ayıf eksenlerinde yerleştirilmiştir, u nedenle yapının toplam rijitliği a almıştır. Ayrıca kullanılan yarı rijit (kısmı dayanımlı) irleşimlerin kapasiteleri, kiriş kapasitesinin yarısından a dır. Bu iki durum, çerçevelerde oluşan değerlerini olduk a arttırmıştır.

Yukarıdaki alışmaların yanı sıra, literatürde yarı rijit irleşimli er evelerin davranışını inceleyen ir ok alışma mevcuttur. Bunlardan a ıları ana hatları ile aşağıda verilmiştir.

Yarı rijit irleşimli er evelerin geometri akımından doğrusal olmayan anali leri i in, irleşimlerin histeretik davranışlarının da dikkate alındığı bir metot Chui ve Chan (1996) tarafından nerilmiştir. Ayrıca, yarı rijit birleşimin histeretik davranış tipinin (Ramberg Osgood, Richard Abbott ve Üstel Model), yapının genel davranışına olan etkisi de incelenmiştir Yapılan anali lerde farklı irleşim tipleri (rijit, doğrusal ve doğrusal olmayan yarı rijit) ve farklı histeretik davranış modelleri kullanılarak iki katlı, altı a ıklıklı çerçevenin deplasman davranışı incelenmiştir. Sonuç olarak, irleşimin doğrusal olmayan davranışı düzgün biçimde tanımlanırsa, incelenen histeretik davranış modellerinin sonu lar ü erinde çok fazla etkisinin olmadığı elirtilmiştir.

Basit (gövde çift veya tek korniyerli), yarı rijit (u atılmış alın levhalı, alt ve üst aşlıkları ve g vdesi korniyerli, alt ve üst aşlıkları korniyerli) ve rijit irleşimli tek katlı, tek a ıklıklı er evenin davranışı ser est titreşim, orlanmış titreşim ve deprem yükü altında, Lui ve Lopez () tarafından alışılmıştır. Bu alışmada, yarı rijit irleşimin histeretik davranışı bilineer kinematik pekleşmeli olarak modellenmiştir.

Awkar ve Lui (1999) rijit, yarı rijit ve asit irleşimli iki yapıyı (eş ve seki katlı, tek a ıklıklı) geliştirilen modal analiz prosedürünü kullanarak, iki farklı deprem kaydı altında incelemişlerdir. Yarı rijit irleşimlerin histeretik davranışları, bilineer kinematik pekleşmeli dönme yayları ile modellenmiştir. Son olarak yapılar doğal periyotları, taban kesme kuvvetleri, kat ötelemeleri ve modal davranışları a ısından karşılaştırılmıştır.

Foley ve innakota (a,) alışmalarında, rijit ve yarı rijit irleşimli elik çerçevelerin elastik olmayan ikinci mertebe analizlerinde kullanmak için, doğrusal olmayan mal eme davranışını, eleman boyunca ve kesit yüksekliğince yayılı alan ir sonlu eleman geliştirmişlerdir. Yarı rijit irleşimlerin histeretik davranışları, d rt doğrulu yay elemanları ile modellemiştir. Bu alışmada rijit ve yarı rijit irleşimli ü er eve incelemiştir. Bu çerçeveleri taban kesme kuvvetleri, kat ötelemeleri, plastik mafsal oluşum yerleri, sırası ve eleman oyunca yayılma u unluğu a ısından karşılaştırmışlardır.

Yarı rijit irleşimlerin enerji sönümlendirmesi, Sala ar ve Haldar (200) tarafından incelenmiştir. Bu alışmada asit, yarı rijit ve rijit irleşimli tek katlı, ü katlı ve seki katlı er eveler doku farklı deprem kaydı altında anali edilmiştir. Yarı rijit irleşimlerin histeretik davranışı "Richard four parameter" (ichard d rt katsayılı) metodu ile modellenmiştir. Farklı irleşim tipleri i in, kat ötelemeleri ve enerji sönümlendirmeleri

incelenmiştir. alışmanın sonucunda, yarı rijit irleşimlerin enerji s nümlendirme dü eylerinin visko s nümle ve plastik mafsallarla karşılaştırıla ilir dü eyde, hatta daha üyük olduğunu elirtilmiştir.

Ak aş ve hen (2003) yarı rijit irleşimli i er evelerin, tüm yapının performansına olan etkisini incelemişlerdir. Bu amaçla d rt a ıklıklı, eş katlı ve d rt a ıklıklı, on katlı iki bina iki farklı ka ul altında tasarlanmıştır. Ik durumda deprem yüklerinin sadece dış er evelerce taşındığı, i er evelerin asit irleşimli olduğu ka ul edilmiş ve sistem una g re tasarlanmıştır. Diğer durumda ise dış er eveler rijit irleşimli ve i er eveler yarı rijit irleşimli olarak tasarlanmıştır. Yarı rijit irleşimli er eveler, eş farklı irleşim rijitliği ve üç farklı irleşim dayanımı kullanılarak analiz edilmiştir. Yapıların davranışlarının belirlenmesi için, elastik olmayan statik analizleri ve ü farklı deprem kaydı altında aman tanım alanında dinamik anali leri yapılmıştır. Sonuç olarak çerçevelerin periyotları, taban kesme kuvvetleri, kat ötelemeleri ve enerji sönümlendirme düzeyleri karşılaştırılmıştır.

Yarı rijit irleşimli er evelerin davranış katsayısının (q) belirlenmesi için Fathi vd. (2006) tarafından yeni ir metot nerilmiştir. Daha sonra u metot, farklı er eve konfigürasyonları (bir, iki, üç, d rt ve eş a ıklıklı – ir, iki, d rt, altı, seki ve on katlı) kullanılarak incelenmiştir. Birleşimlerin rijitliği, kendisine ağlanan kiriş rijitliğinin 'i ile %100'ü arasında değişmektedir. Fakat bu irleşimler tam dayanımlı olarak ka ul edilmiştir. alışmada ü farklı deprem kaydı kullanılmıştır. Bina yüksekliği, genişliği ve irleşimin rijitlik oranının, q katsayısı ü erindeki etkisi incelenmiştir.

i ano (200) alışmasında, enerji sönümlendirmesi, u atılmış alın levhalı irleşimlerde ger ekleşen elik çerçeveler için bir tasarım prosedürü nermiştir. Bu metottaki amaç, tam dayanımlı irleşimli er eveler ile aynı deprem performansına sahip yarı rijit (kısmi dayanımlı) irleşimli çerçeveler elde etmektir. alışmada, yapıların deprem performansı, g meye yol a an maksimum yer ivmesi olarak tanımlanmıştır. Daha sonra, önerilen metot kullanılarak ü a ıklıklı, altı katlı er eve tasarlanmış ve altı sentetik (simulated) kayıt altında arttırılmış dinamik anali i yapılmıştır.

Sekulovic ve Danilovic (200) tarafından farklı deprem kayıtları altında rijit ve yarı rijit (alt ve üst aşlıkları ve g vdesi ift korniyerli) irleşimli tek a ıklıklı, yedi katlı er evenin dinamik davranışı incelenmiştir. Birleşimler monotonik yükler altında ichard ve A ott metodu ile modellenmiştir. evrimsel yükler altında ise ağımsı (independent) pekleşmeli olarak modellenmiştir. Çerçevelerin taban kesme kuvveti, kat ötelemeleri, plastik mafsal oluşumu ve enerji s nümlendirmeleri karşılaştırılmıştır.

Yarı rijit irleşimlerin ve yarı rijit irleşimli er evelerin incelendiği daha ir ok alışma literatürde mevcuttur. Bu çalışmaların üyük oğunluğunda irleşimlerin modellenmesi ve dinamik anali prosedürleri incelenmiştir. Bunun yanında, yarı rijit irleşimli er evelerin deprem performanslarının değerlendirildiği alışmaların sayısı nispeten a dır. Deneysel ve analitik olarak ger ekleştirilen u alışmalarda, yarı rijit irleşimli er evelerin yeterli sünekliğe ve sta il histeretik davranışa sahip olduğu g sterilmiş ve depremselliği yüksek bölgelerde kullanıla ileceği vurgulanmıştır. A katlı yapılarda, rijit irleşimli er evelerin en ekonomik üm olmadığı ve en uygun ümün, yarı rijit irleşimli er eveler ile elde edile ileceği de özellikle elirtilmiştir.

Yarı rijit irleşimli yapıların u avantajlarının incelendiği araştırma sayısı, olduk a a dır. Bu alışmalarda, ya özellikle yarı rijit irleşimli olarak tasarlanmamış sistemler kullanılmış ya da irleşim rijitliğinin ve kapasitesinin sonu lar ü erindeki etkisi incelenmemiştir. Ayrıca, yarı rijit irleşimli er evelerin en uygun deprem performansını sergilediği, irleşim kapasitesinin, kat sayısının, er eve a ıklığının ve deprem yükünün araştırıldığı ir alışma, ya arın ilgisi dahilinde ulunmamaktadır. Bunlara ek olarak, yarı rijit irleşimli çerçevelerin deprem davranışının, faya yakın ve faya u ak kayıtlar altında ayrı ayrı incelendiği, sistemde oluşan deplasmanların frekans i eriğinin incelenerek rijit irleşimli sistemlerle karşılaştırıldığı aşka ir alışma da ya arın ilgisi dahilinde ulunmamaktadır.

2. YARI RİJİT BİRLEŞİMLER

2.1 Önceki Çal şmalar

Bulonlu birleşimlerin tasar m, davran ş ve modellenmesi ile ilgili literatürde çok fazla çal şma yap lm şt r. Bu bölümde araşt rman n kapsam na uygun, özellikle uzat lm ş al n levhal, alt ve üst başl klar ile gövdesi korniyerli birleşimlerle ilgili olarak daha önce yap lan çal şmalar üç ana başl k alt nda incelenmiş ve k saca özetlenmiştir. Bu bölümler; birleşimlerin modellenmesi, birleşimlerin çevrimsel deneyleri ile dönme kapasiteleri ve histeretik davran ş n modellenmesidir.

2.1.1 Birleşimlerin Modellenmesi

Kiriş - kolon birleşim davran ş n n belirlenmesinde kullan lan en doğru ve güvenilir metot deneysel çal şmalard r. Ancak günlük mühendislik uygulamalar nda kullanmak için pahal bir metottur ve genellikle belirli bir tasar m (araşt rma) amac n yans tmaktad r (Faella vd., 2000). Birleşim davran ş n n belirlenmesinde kullan lan mevcut metotlar dört k sma ayr labilir: *i*) matematiksel modeller (moment – dönme ilişkisi tek doğrulu, iki doğrulu, çok doğrulu ve doğrusal olmayan modellerle tan mlan r), *ii*) analitik model (yap sal analiz kavramlar : denge denklemi, uygunluk ve malzeme bağ nt lar), *iii*) mekanik model (birleşimler tek bir eleman davran ş sergileyen rijit ve şekil değiştirebilen parça tak m ndan oluşmaktad r), *iv*) sonlu eleman modeli.

Kishi ve Chen (1990) çal şmas nda, alt ve üst başl klar ve gövdesi korniyerli birleşimin moment dönme ilişkisi incelenmiş ve geliştirilmiştir. Birleşimlerin moment dönme davran ş üç parametreli *power model* ile modellenmiştir. Yar rijit birleşimin başlang ç rijitliği ve taş ma kapasitesi, analitik olarak; şekil katsay s da olas l k teorisiyle belirlenmiştir. Yazarlar, çal şman n sonucunda geliştirdikleri bu modelin birleşim davran ş n uygun ve rasyonel olarak yans tt ğ n belirtmişlerdir. Ayr ca yar rijit birleşimli çerçevelerin ikinci mertebe analizlerinde de kolayca uygulanabilmektedir.

Al n levhal bulonlu birleşimlerin doğrusal olmayan moment dönme davran ş için, Shi vd., (1996) taraf ndan analitik bir yöntem önerilmiştir. Çal şmada önerilen yöntem akma çizgileri ve kiriş teorisine dayan r ve birleşimlerin akma momenti ve başlang ç rijitliğini belirler. Önerilen bu analitik model, al n levhal bulonlu birleşimlerin mevcut deney sonuçlar ile karş laşt r lm ş ve yak n bir korelasyon gösterdiği tespit edilmiştir.

Pucinotti (200) alışmasında alt ve üst aşlıkları ve g vdesi korniyerli irleşimin davranışı i in asitleştirilmiş ir mekanik model nermiştir. Ayrıca Eurocode EN 3-1-1:1992/A2, (1998)'de tanımlanan yöntemi, u irleşim tipi i in geliştirmiştir. alışmanın sonucunda u iki modeli de deneysel sonu larla karşılaştırmıştır.

2.1.2 irleşimlerin Çevrimsel Deneyleri ve Dönme Kapasiteleri

Bulonlu irleşimlerin evrimsel davranışlarıyla ilgili alışmalar 0 lerin sonlarından aşlayarak günümü e kadar artarak devam etmiştir. Bu alışmalar arasındaki en nemli fark, elastik olmayan davranışın kaynağıdır. Yapılan alışmalarda araştırmacılardan a ıları irleşim elemanlarının (alın levhası, kolon aşlığı, "T" profil v .), diğerleri ise irleşen kirişin elastik olmayan davranışını incelemişlerdir.

Birleşen kirişin elastik olmayan davranışını inceleyen literatürdeki alışmalardan a ıları aşağıda etlenmiştir. Bu alışmalardaki asıl ama, tamamen kaynaklı, tam dayanımlı irleşimlere alternatif ve ayrıca plastik mafsalların (enerji s nümlendirmesini) kiriş u larında oluştuğu irleşim tiplerini araştırmaktır.

Moment aktaran irleşimlerin eşitli tiplerinin evrimsel davranışı Popov ve Tsai () tarafından incelenmiştir. Bu alışmanın sonu ları, depreme dayanıklı moment dayanımlı çerçeveler için alın levhalı ulonlu irleşimlerin, tamamen kaynaklı irleşimlere uygun bir alternatif olduğunu g stermiştir. Ayrıca Tsai ve Popov (0) alışmasında da takviyeli ve takviyesi d rt ulonlu alın levhalı irleşimlerin davranışlarını deneysel olarak incelemişlerdir.

ho arah vd. (0) alışmasında, takviyeli ve takviyesi alın levhalı irleşimlerle ilgili eş evrimsel deney yapılmıştır. Korol vd. (0) tarafından da yedi u atılmış alın levhalı irleşimin evrimsel yükler altındaki davranışı incelenmiştir. Astaneh-Asl (1995) alışmasında alın levhası ve kolon arasına I profili koyarak, takviyeli ve takviyesi alın levhalı irleşimlerin evrimsel deneyini yapmıştır. Bu alışmaların sonucunda, doğru tasarlanmış ve detaylandırılmış u atılmış alın levhalı irleşimlerin, depremselliği yüksek bölgelerde moment dayanımlı er evelerde kullanılmasının uygun olduğunu elirtilmiştir.

Takviyeli ve takviyesi u atılmış alın levhalı irleşimlerin dört çevrimsel deneyi Ghobarah vd. (2) tarafından yapılmıştır. Ayrıca u alışmada kolonlara eksenel kuvvet de uygulamışlardır. Deneylerin sonu ları, kayma lgesi akmasının üyük miktarda enerjiyi s nümlendirdiğini ve alın levhasının kayma lgesindeki elastik olmayan şekil değiştirmeleri sınırlandırmaya yardımcı olduğunu g stermiştir.

iteratürde irleşen kirişin kapasitesinden daha a kapasiteye sahip irleşim davranışını inceleyen alışmalar nispeten daha a dır. Ayrıca u alışmaların oğunda irleşimler, bulonun kırılması gi i gevrek g me modları nlenerek tasarlanmamıştır.

Yarı rijit (kısmi dayanımlı) irleşimlerin evrimsel davranışlarını inceleyen ilk deneysel alışmalardan iri Bernu i vd. () tarafından yapılmıştır. Bu alışmada yükleme davranışının ve geometrik mekanik katsayıların etkisini incelemek i in iki deney serisi oluşturulmuştur. Bütün durumlarda irleşimlerin kapasitesi, irleşen kiriş kapasitesinden daha az olarak ele alınmıştır.

Deneylerin ilk serisinde, alt ve üst aşlıkları korniyerli ve alın levhalı irleşimler, monotonik ve d rt farklı evrimsel yük altında test edilmiştir. Şekil 2.1 de alt ve üst aşlıkları korniyerli irleşimlerin farklı evrimsel yükler altındaki davranışlarının monotonik deney sonu larıyla karşılaştırılması verilmiştir. Ayrıca toplam d nmeye ve irleşim d nmesine katkıda ulunan elemanlar Şekil 2.2'de görülmektedir.

Şekil 2.1 Birleşimlerin moment d nme ilişkisi (Bernu i vd., dan alınmıştır)

Şekil 2.2 Toplam ve irleşim d nmesine katkıda ulunan elemanlar (Bernuzzi vd., 1996 dan alınmıştır)

Birleşimlerin evrimsel davranışları, monotonik davranışla iyi ir uyum g stermiştir. Ayrıca alışmada kiriş ile korniyerler arasındaki kaymanın (slippage), elastik olmayan davranışı etkileyen nemli ir fakt r olduğu elirtilmiştir. Bu kayma, momentin düşük değerlerinde ger ekleşmekte ve elastik olmayan lgenin daha ok aşlarında toplam irleşim d nmesi üzerinde çok etkili olmaktadır.

Deneylerin ikinci serisinde, bir adet alt ve üst aşlıkları korniyerli, iki adet alın levhalı, iki adet u atılmış alın levhalı ve bir adet sadece ir tarafı u atılmış alın levhalı irleşimler evrimsel yük altında test edilmiştir. Şekil 2.3'de iki adet u atılmış alın levhalı irleşimin, moment d nme ilişkisi verilmiştir. Bu iki irleşim arasındaki tek fark, alın levhasının kalınlığıdır. Her iki irleşimde . kalitesinde M20 ulonu kullanılmıştır. lk irleşimde alın levhası kalınlığı . *mm* ve akma gerilmesi 321*MPa*'dır. kinci irleşimde ise alın levhası kalınlığı 17.5*mm* ve akma gerilmesi 339*MPa*'dır.

Şekil 2.3 Birleşimlerin moment d nme ilişkisi (Bernuzzi vd., 1996 dan alınmıştır)

26

Yazarlar hem elastik hem de elastik olmayan lgede irleşim davranışını, en ok alın levhası davranışının elirlediğini ifade etmişlerdir. kinci irleşimdeki histeretik davranış ulonların elastik olmayan şekil değiştirmelerinin neden olduğu yük oşalması ve ters y nde yüklenmesinde ciddi rijitlik a alması (pinching) göstermektedir. lk birleşim 0.0 radyan d nme değerinde alın levhasının kırılmasıyla ve ikinci irleşim ise ulon kırılmasıyla 0.02 radyanlık d nme değerinde g müştür. Ayrıca u alışmada alın levhalı irleşimler i in yük oşalması ve ters y nde yüklenmesinde oluşan rijitlik a almalarını dikkate alan histeretik bir model geliştirilmiştir.

alışmanın sonucunda, yarı rijit irleşimlerin evrimsel davranışının rijitlik, dayanım, d nme sünekliği ve enerji s nümlendirme kapasitesi a ısından olduk a yeterli olduğu elirtilmiştir. ellikle eğer elastik ötesi durum alın levhası veya korniyerlerde yoğunlaşıyorsa, irleşimin histeretik davranışında rijitlik a almasının a ve şekil değiştirme kapasitesinin üyük olduğu vurgulanmıştır.

Kukreti ve A olmaali () alışmasında, oniki adet alt ve üst aşlıkları korniyerli irleşimin evrimsel deneylerini yapmıştır. alışmada kolonun şekil değiştirmesinin, irleşimin toplam d nmesine katkıda ulunmasını engellemek i in aşlık kalınlıkları üyük olan kolon kesitleri kullanılmıştır. Ayrıca kirişlerde de akma olmayacak şekilde iki farklı kiriş kesiti se ilmiştir. B ylece elastik olmayan davranışın, sadece irleşim elemanlarından gelmesi sağlanmıştır. Bütün deney numunelerinde A32 tam ngermeli ulonlar kullanılmıştır. Deney sonu larını temsil eden dört farklı irleşimin moment d nme ilişkisi Şekil 2.4 de verilmiştir. lk grafik düşük aşlangı rijitliğine (2 kN.m/rad) ve düşük moment kapasitesine (2 kN.m/rad) ve moment kapasitesine (202kN.m) sahip irleşime aittir. Diğer ikisi ise u sınırlar arasındaki değerlere (orta düzey) sahip irleşimlerin davranışlarıdır.

Şekil 2.4 D rt farklı irleşimin moment – d nme ilişkisi (Kukreti ve Abolmaali, 1999 dan alınmıştır)

Yazarlar, bütün deneylerdeki irleşimlerin yüksek yük seviyelerinde, yük oşalması ve ters yönde yüklenmesi sırasında rijitlik a alması (pinching) g sterdiğini vurgulamıştır. Ayrıca alt ve üst aşlıkları korniyerli oniki adet irleşimden elde edilen deney sonu larına dayanarak, bu alışmada histeretik model katsayıları i in tahmin denklemleri de nermişlerdir. Bilineer, elastik plastik, am erg sgood ve değiştirilmiş histeretik modeller i in katsayılar geliştirmişlerdir.

Bulonlu korniyerli irleşimlerin evrimsel davranışları, iki monotonik ve altı evrimsel deneyle Shen ve Astaneh () tarafından incelenmiştir. Alt ve üst aşlıkları korniyerli irleşimleri, ekme ve asın altındaki ulonlu korniyerler olarak asitleştirmişlerdir. Bu alışmada üyük evrimsel yükler altında irleşimlerin elastik olmayan davranışı, g me modları ve enerji sönümlendirme kapasiteleri araştırılmıştır. Ayrıca irleşimin toplam evrimsel davranışı üzerinde korniyer kalınlığının, ulon apının ve ulon mesafelerinin etkisi araştırılmıştır. Bunlara ilave olarak irleşimler i in farklı (a dan yükseğe ve yüksekten a a) evrimsel yükler altında histeretik kuralları oluşturulmuştur. Deney sonu larına dayanarak yazarlar, ulonlu korniyerli irleşimlerin sta il evrimsel davranış g sterdiğini ve tekrarlı yükler altında güvenilir enerji s nümlendirme kapasitesine sahip olduğunu elirtmiştir.

Sumner ve Murray (2000) tarafından on ir adet takviyeli ve takviyesiz uzatılmış alın levhalı irleşim, evrimsel yükler altında test edilmiştir. Bu numunelerden altı adetinde irleşim, irleşen kiriş kapasitesinden daha gü lü, diğer eş adetinde ise daha avıf olarak tasarlanmıştır. irleşimler kiriş plastik moment kapasitesinin %110'nuna, ü lü ayıf 0 nine g re tasarlanmıştır. Deneyler sırasında ayıf irleşimlerde gözlenen irleşimler ise plastik kapasiteler, kiriş kapasitesinin ile 0 sı arasında değişmektedir. Bu urkulmasından, diğer d rt tanesi ise bulon numunelerden bir tanesi kiriş aşlığının kırılmasından g müştür.

Alt ve üst aşlıkları korniyerli bulonlu irleşimlerin, monotonik ve evrimsel davranışları alado vd. (2000) alışmasında 15 adet tam ölçekli deney yapılarak incelenmiştir. Deneyler eş farklı yükleme durumu altında ve ü farklı kolon oyutu kullanılarak yapılmıştır. Bütün numunelerde 88 *kN* luk ngerme kuvveti olan . kalitesinde M ulonları kullanılmıştır. ECCS 1986 yüklemesi altında, ü farklı kolon oyutuna g re irleşimlerin evrimsel davranışı Şekil 2.5'de görülmektedir.

Şekil 2.5 Birleşimlerin evrimsel davranışı (alado vd., 2000'den alınmıştır)

Yazarlar bütün durumlarda irleşimlerin histeretik davranışında rijitlik a almalarının g lendiğini ifade etmiştir. Birleşimin toplam histeretik davranışı ü erinde kolon oyutlarının ok a etkisi olduğu vurgulanmıştır. Ayrıca monotonik ve evrimsel sonu ların karşılaştırması sonucu evrimsel yüklemeden dolayı rijitlik ve dayanım a almalarının ok nemli olmadığı elirtilmiştir.

Yorgun ve Bayramoğlu (200) alışmasında normal ve yenilik i (kolon aşlığı ile alın levhası arasında I profili par asının olması) u atılmış alın levhalı irleşimin evrimsel davranışı deneysel olarak incelenmiştir. Birleşimler, irleşen kirişin plastik moment kapasitesinin %80'ninden daha az kapasiteli, yarı rijit (kısmi dayanımlı) olarak tasarlanmıştır. Kolon aşlığı ve alın levhası irleşimin en ayıf elemanı olacak şekilde tasarlanmış ve yaklaşık olarak aynı yük altında akmaları sağlanmıştır. Ayrıca yükleme süresince kayma lgesinde akma g lenmemiştir. Bundan dolayı elde edilen elastik olmayan davranış sadece kolon aşlığından

ve alın levhasından gelmektedir. alışmanın sonucunda deneylere dayanarak yazarlar, numunelerin histeretik davranışının sta il olduğunu elirtmiştir.

Yang ve Kim (200) alışmasında rijit (tamamen kaynaklı), yarı rijit (alt ve üst aşlıkları ile gövdesi korniyerli) ve asit (g vde ift korniyerli) irleşimlerin evrimsel davranışı incelenmiştir. Birleşimlerin g me sınır tanımı, kat ötelemesinin %3'ü olarak kabul edilmiştir. Bu sınır durumunda rijit, yarı rijit ve asit irleşimlerin süneklik kapasiteleri sırasıyla 2., 3. ve . olarak hesaplanmıştır. Yazarlar deneylerin sonu larına dayanarak irleşimlerin g me mekani maları, akma ve g me momentleri, süneklik ve enerji dağıtma kapasiteleri ile ilgili ilgi vermiştir.

Bir adet alın levhalı ve yedi adet takviyeli ve takviyesi u atılmış alın levhalı irleşim, Shi vd. (200) tarafından evrimsel yükler altında test edilmiştir. Kayma Igesinin, alın levhası ve kolon aşlığı arasında kalan oşluğun irleşim d nmesine olan katkısı incelenmiştir. Bulonları alın levhasından daha gü lü olarak tasarlanan iki numunenin, moment dönme ilişkisi Şekil 2.6'da görülmektedir.

Şekil 2.6 Birleşimlerin moment d nme ilişkisi (Shi vd., 200 den alınmıştır)

Deneylerin sonu larına dayanarak, u iki numunenin süneklik kapasitesi 3. ve 3.2, plastik dönmeleri ise 0.045*rad* ve 0.038*rad* olarak verilmiştir. Ya arlar deprem yükleri altında, alın levhalı ulonlu irleşimin yeterli dönme, enerji sönümlendirme kapasitesi ve sünek göçme

modu sağlaması i in ü g me modu şartı nermiştir.

Ayrıca yazarlar alın levhalı ulonlu irleşimler i in bilineer kinematik pekleşmeli moment dönme modeli de nermiştir. Birleşimlerin, bu üç göçme modunu sağladığı takdirde, depreme dayanıklı moment er evelerinde, ok iyi histeretik davranış sergilediği ve gerekli enerji sönümlendirme kapasitesini sağladığını elirtilmiştir.

2.1.3 Histeretik Da ranışın Modellenmesi

Yarı rijit irleşimli yapıların dinamik analizlerinde, histeretik davranışının modellenmesi en kritik noktalardan biridir. Bölüm 2.1.2 de değinilen a 1 alışmalarda, deneysel sonu lara dayanılarak irleşimler i in histeretik model nerilmiştir. Bunlardan biri Bernuzzi vd., (1996) tarafından yapılan alışmadır. Bu alışmada alın levhalı irleşimler i in yük oşalması ve ters y nde yüklenmesinde rijitlik a almasını dikkate alan ir histeretik model nerilmiştir. Modeli geliştirirken enerji s nümlemeyi referans değişken olarak kabul etmişlerdir.

Kukreti ve Abolmaali, (1999) alışmasında deneysel sonuçlara dayanan, alt ve üst aşlıkları korniyerli irleşimin histeretik model parametrelerini tahmin eden denklemler nermiştir. Bilineer, elastik plastik, am erg sgood ve değiştirilmiş (modified) bilineer histeretik model için parametreler tahmin etmişlerdir. Bu d rt histeretik model parametrelerini elde etmek i in deney sonu larının doğrusal olmayan regresyon anali leri yapılmıştır. Tahmin denklemleriyle elde edilen histeretik eğrilerin, deneysel sonu lar ile karşılaştırılması Şekil 2.7 de verilmiştir. Şekilde verilen irleşimlerin rijitlikleri ve kapasiteleri orta düzeydedir (bkz. 2.1.2) ayrıca yük oşalması ve ters y nde yüklenmesi sırasında rijitlik a alması da a dır.

Şekil 2.7 Dört modelle deneysel sonuçların karşılaştırılması (Kukreti ve Abolmaali, 1999 dan alınmıştır)

Yazarlar, deneysel sonu larla karşılaştırıldığında bu tahmin denklemlerinin ve dört histeretik modelin, ka ul edile ilir sonu lar verdiğini elirtmiştir. Değiştirilmiş ilineer model gerçek davranışı en iyi şekilde ideali e ederken, elastoplastik model en k tü şekilde ideali e etmektedir. Ramberg Osgood modeli ise rijitlik a alması olmayan moment dönme evrimlerini en doğru şekilde modellemektedir. Değiştirilmiş bilineer model ile d rt farklı deney sonu larının karşılaştırılması Şekil 2.8 de verilmiştir. Sonu olarak irleşim davranışı dikkate alındığında, değiştirilmiş ilineer modelin sonucu iyi tahmin ettiği elirtilmiştir.

Şekil 2.8 Değiştirilmiş modelle deneysel sonu ların karşılaştırılması (Kukreti ve Abolmaali, 1999 dan alınmıştır)

Shi vd., (2007) tarafından uzatılmış alın levhalı irleşim i in, hem alın levhasının şekil değiştirmesini hem de kayma lgesinin kayma şekil değiştirmesini dikkate alan ilineer pekleşmeli model nerilmiştir. Şekil 2.9'da önerilen bu model görülebilir. Bilineer pekleşmeli modelin irleşim davranışını asit ve doğru olarak yansıttığı belirtilmiştir.

Şekil 2.9 Bilineer kinematik pekleşmeli model (Shi vd., 200 den alınmıştır)

2.2 irleşim Tipleri e Sınıflandırılması

elik er eve sistemlerinin geleneksel anali ve tasarımı, kiriş kolon irleşim lgelerinin ya rijit ya da mafsallı ka ul edilmesiyle yapılır. ijit irleşim ka ulüne g re, kiriş u momenti tamamen kolona aktarılır ve irleşimlerde g reli d nme oluşma . Mafsallı irleşimlerde ise kiriş u larında moment oluşma ve g reli d nme ser esttir. er eve anali ve tasarımındaki kullanım kolaylıklarından dolayı irleşimlerin u şekilde ideali e edilmeleri oldukça yaygındır. Buna rağmen, yapılan deneysel alışmaların sonu ları kiriş kolon irleşimlerin, ideal mafsallı ve ideal rijit irleşim davranışlarının arasında bir davranış sergilediğini g stermiştir. Şekil 2.10a da g rüldüğü ü ere M eğilme momenti, uygulandığı irleşimde kadar ir d nme oluşturur. a ısı kiriş kolon elemanlarının arasındaki g reli d nme değeridir. Eğilme momenti (M) ile d nme a ısı () arasındaki ilişki moment d nme diyagramı ile g sterilir (Şekil 2.10b).

Şekil 2.10 Birleşimin moment-d nme ilişkisi

2.2.1 irleşim Tipleri

ünümü de sıklıkla kullanılan irleşim tiplerinin a ıları Şekil 2.11 de g sterilmiştir. Birleşim tiplerinin rijitlik ve kapasite değerleri, levha veya korniyer kalınlığı, ulon apı, irleşim derinliği gi i ir ok geometrik elliğe ağlıdır. Tek veya ift g vde korniyerli irleşimler () ok narin olduklarından mafsallı irleşim olarak ka ul edilirler. Tamamen kaynaklı irleşimler () ok rijit olduklarından, rijit irleşim olarak adlandırılırlar. Bu irleşim tiplerinin arasında rijitliğe sahip irleşimler ise yarı rijit olarak tanımlanır.

Şekil 2.11 Kiriş kolon irleşim tipleri

Yarı rijit irleşimlerin davranışları moment d nme (M) ilişkisi ile ifade edilir. Yaygın olarak kullanılan rijit irleşimlerin moment d nme ilişkileri Şekil 2.12 de verilmiştir. Yükleme aralığı ir ütün olarak ele alındığında, tüm irleşim tipleri doğrusal olmayan moment d nme ilişkisine sahiptir. Birleşimin doğrusal olmayan davranışı, irleşimi oluşturan elemanların mal eme ellikleri, levha elemanlarının kısmi urkulması, elemanlardaki kısmi akmalar gi i ir ok parametreye ağlıdır. Birleşimin tasarımı ve üretimi doğru yapıldığı takdirde, yarı rijit irleşimler sünek davranış sergileye ilirler. ellikle deprem etkilerinin kritik olduğu yapılarda, irleşimin süneklik değeri en a irleşim kapasitesi kadar nemlidir.

Şekil 2.12 Moment d nme diyagramları, (hen ve Toma, 1994 den alınmıştır)

2.2.2 irleşimlerin Sınıflandırılması

Birleşimlerin sınıflandırılması i in literatürde ir ok alışma mevcuttur. Bu alışmada AISC, (2005b) ve Eurocode EN1993-1-8, (2005) yönetmeliklerinde verilen sınıflandırmalara kısaca değinilmiştir. Bu yönetmeliklerdeki sınıflandırmalar, irleşimin rijitliğine ve taşıma kapasitesine ağlı olarak yapılmaktadır.

2.2.2.1 AISC netmeliği

AISC, (200) y netmeliği irleşimleri, asit ve moment taşıyan irleşim olarak ikiye ayırmıştır. Moment taşıyan irleşimler ise kendi i inde rijit (fully restrained) ve yarı rijit (partially restrained) olarak ayrılmıştır.

Birleşim ri itli i

Birleşimin aşlangı rijitliği K_i , doğrusal olmayan davranıştan dolayı moment d nme ilişkisinin kü ük seviyelerinde dahi davranışı ifade etmekte yetersi dir (Şekil 2.13). Bu nedenle AISC, (2005b)'de birleşimin sekant rijitliği K_s , irleşim rijitliğinin g stergesi olarak ele alınmaktadır. Buna göre; birleşimin sekant rijitliği K_s 20 EI_b/L_b ise, irleşim rijit olarak ka ul edilir. Eğer K_s 2 EI_b/L_b ise, irleşim mafsallı olarak ka ul edilir. ijitlik u iki değer arasında olursa irleşim yarı rijit olarak ka ul edilir.

Şekil 2.13 Yarı rijit irleşimin rijitlik, dayanım ve süneklik karakteristikleri (AIS, 200)

Birleşim kapasitesi

Birleşimin kapasitesi, taşıya ileceği maksimum moment, M_n (Şekil 2.14) olarak ifade edilir ve taşıma gücü modeli esas alınarak veya fi iksel testler kullanılarak elirlene ilir. Eğer moment d nme ilişkisinde, herhangi bir lokal maksimum değeri bulunmazsa, 0.02 *radyan*lık dönmedeki moment değeri irleşim kapasitesi olarak alına ilir.

Ayrıca AIS (200) de irleşim kapasitesi i in ir alt sınır da tanımlanmıştır. Bu sınır değerden daha düşük kapasiteye sahip irleşimler mafsallı olarak ele alına ilir. 0.02 *radyan*lık d nmede kiriş plastik momentinin 20 sinden daha a moment aktaran irleşimlerin eğilme kapasitesi, tasarımda ele alınmaya ilir.

Şekil 2.14'de maksimum kapasite M_n ve u noktadaki d nme değeri de $_n$ ile gösterilmektedir. $_u$ maksimum d nme kapasitesidir ve irleşim kapasitesinin $0 M_n$ 'ye düştüğü noktadaki d nme değeri olarak tanımlanır. Kiriş kapasitesinden daha düşük kapasiteli rijit irleşim ola ileceği gi i kiriş kapasitesinden daha yüksek kapasiteye sahip yarı rijit irleşim de ola ilir.

Şekil 2.14 ijit, yarı rijit ve mafsallı irleşimlerin sınıflandırılması (AIS, 200)

2.2.2.2 Eurocode netmeliği

Eurocode EN1993-1-8 (2005) de irleşimler, kullanıldıkları çerçeve tipine ağlı olarak (apra lı ya da apra sı taşıyıcı sistem), irleşimin taşıma kapasitesine ve rijitliğine göre sınıflandırılmıştır.

Birleşim kapasitesi

ijit Birleşim (Full Strength): Birleşimin plastik moment taşıma kapasitesi, ağlı olduğu kiriş veya kolon plastik taşıma kapasitesinden üyükse, irleşim rijit irleşim olarak adlandırılır.

Mafsallı Birleşim (Nominally Pinned): Birleşimin plastik moment taşıma kapasitesi, rijit irleşim olması i in gereken değerin 2 inden a sa, irleşim mafsallı olarak adlandırılır.

Kısmi Dayanımlı (Partial Strength): Birleşimin plastik moment taşıma kapasitesi, yukarıda a ıklanan iki değer arasında ise, irleşim kısmı dayanımlı olarak adlandırılır.

Birleşim ri itli i

Birleşimler Çizelge 2.1 ve Şekil 2.15 de verilen aşlangı rijitliklerine ağlı olarak karşılaştırılmaları ile rijit, yarı rijit ve mafsallı olarak sınıflandırılır.

Mafsallı Birleşim: Moment dayanımlı er evelerde ulunan irleşimin aşlangı rijitliği $0.5EI_b/L_b$ değerinden kü ükse, irleşim mafsallı olarak sınıflandırılır. Ayrıca mafsallı irleşim, tüm sistemi veya elemanları olumsu etkileyecek l üde moment değeri oluşturmadan i kuvvetleri aktara ilmelidir. Tasarım yükleri tesiri altında d nme değerleri ka ul edile ilir olmalıdır.

ijit Birleşim: Moment dayanımlı er evelerde ulunan irleşimin aşlangı rijitliği $25EI_b/L_b$ değerinden üyükse, irleşim rijit olarak sınıflandırılır.

Yarı rijit Birleşim: Moment dayanımlı er evelerde ulunan irleşimin aşlangı rijitliği, yukarıda verilen iki değerin arasındaysa, irleşim yarı rijit olarak kabul edilir.

Birleşim ijitliği	apra lı er eveler	apra si er eveler	
$S_{j,A}$	$8EI_b/L_b$	$25EI_b/L_b$	
${S}_{j,B}$	$0.5 EI_b/L_b$	$0.5 EI_b/L_b$	

Çizelge 2.1. Birleşim rijitliğine ağlı sınıflandırma

E : kiriş elastisite modülü

 I_b : kiriş atalet momenti

 L_b : kolon aksları arasında kalan kiriş a ıklığı

Şekil 2.15 Birleşimlerin rijitliklerine g re sınıflandırılması

2.3 irleşim Da ranışının Modellenmesi

Yapısal anali lerde kullanılan gelişmiş y ntemler, kiriş kolon irleşim davranışının en doğru şekilde modellenmesini gerektirmektedir. Son yıllarda yaşanan gelişmelerle irlikte irleşim davranışının elirlenmesi, matematiksel olarak ifade edilmesi ve modellenmesi konularında ir ok deneysel ve analitik alışmalar yapılmış ve literatür ile y netmeliklerde yer almıştır.

2.3.1 irleşimlerin modellenmesi

elişmiş yapısal anali y ntemleri, kolon kiriş irleşim davranışının ger ek i şekilde anali lere yansıtılmasını gerektirir. Bu ama la yapısal anali modelinde kayma lgesi (panel bölgesi), kolon aşlığı ve irleşimler Şekil 2.16'da g rüldüğü gi i ayrı ayrı modellene ilir.

Şekil 2.16 Birleşim modellemesi i in Kra inkler modeli

Ben er şekilde nemli ir hassasiyet kay ına yol a madan Şekil 2.17'de verilen iki adet d nme yaylı asitleştirilmiş model de literatürde sıklıkla kullanılmaktadır. Bu modelde kullanılan her iki d nme yayı, irleşim elemanlarının yanı sıra kolon aşlığı eğilmesini ve kayma lgesi deformasyonunu da yansıtacak şekilde dü enlenir.

Şekil 2.17 Birleşim modellemesi i in Scissors modeli

2.3.2 Moment d nme ilişkilerinin matematiksel ifadesi

Yarı rijit irleşimli elik er eve anali inin güvenilir olması i in, kiriş kolon irleşim lgelerinin moment d nme davranışının doğru şekilde modellenmesi gerekir. Birleşimlerin modellenmesinde kullanılan yayların moment d nme davranışları, istenilen hasasiyet seviyesine g re se ilecek eşitli matematiksel ifadeler yardımıyla tariflene ilir. Bunlardan en sık kullanılanları Şekil 2.18'de g sterilmiştir.

Şekil 2.18 Moment d nme eğrisinin matematiksel ifadeleri

Yayların davranışını yansıtan matematiksel ifadenin daha karmaşık hale gelmesi, yapısal davranışın daha hassas elde edilmesini sağlamasına rağmen, yapısal anali programına gelen yükü arttırmaktadır.

Bir çok deneysel ve analitik alışmaların karşılaştırılması sonucu, Şekil 2.17'de verilen asitleştirilmiş model kullanıldığında, ü doğrulu (tri-lineer) modellemenin, yarı rijit irleşim davranışını ideal ve doğru şekilde yansıttığı g rülmüştür (Faella vd., 2000). Birleşim davranışının ü doğrulu moment d nme eğrisi olarak modellenmesi Eurocode EN 3-1-8, (200) e girmiştir (Şekil 2.19). Ancak, Amerikan y netmeliklerinde irleşim davranışının modellenmesine ait herhangi ir y ntem ulunmamaktadır.

doğrulu moment d nme ilişkisini tarifleyebilmek i in eş parametreye ihtiya vardır. Bu parametreler: (aşlangı) d nme rijitliği K_{φ} , akma moment kapasitesi $M_{j,y}$ akma sonrası d nme rijitliği $K_{\varphi,y}$, plastik moment kapasitesi $M_{j,Rd}$, plastik d nme rijitliği $K_{\varphi,\rho}$ 'dir. Parametrelerden ü ü, irleşim tipine ağlı olan asit matematiksel ağıntılarla diğer iki parametreden elde edilir.

40

Şekil 2.19 U atılmış alın levhalı ulonlu irleşim i in ü doğrulu moment d nme diyagramı (Eurocode EN1993-1-8, 2005)

doğrulu moment d nme diyagramı i in gerekli olan iki parametre, irleşimin aşlangı rijitliği ve plastik moment kapasitesidir. Eurocode EN 3-1-8 (2005) ve Eurocode ENV1993-1-1: 2 A2 () de a ıklanan elemana dayalı y ntem ile irleşimin aşlangı rijitliği ve plastik moment kapasitesi elde edile ilmektedir. AIS (2003a 2003 2003c) de a ıklanan akma i gilerine dayalı yöntemle ise irleşimin plastik moment kapasitesi hesaplanabilmektedir.

2.3.3 irleşim da ranışının belirlenmesi

Kiriş kolon irleşim davranışının elirlenmesi i in literatürde kullanılan y ntemler eş ayrı aşlık altında incelene ilir. Bunlar

Ampirik modeller Analitik modeller Mekanik modeller Sonlu eleman modelleri Deneysel alışmalardır.

Bu y ntemler irleşim davranışının elirlenmesi ve aynı amanda modellenmesi i in kullanıldığından B lüm 2.3.2 de verilen matematiksel ifadelerle irlikte ele alınırlar. Bu nedenle irleşimlerin moment d nme eğrisinin elirlenmesinde i lenen adımlar ikiye ayrılır;

ijitlik, dayanım ve şekil katsayılı formulasyon

egresyon anali i ile eğri uydurma (curve fitting y regression analysis)

Ampirik modeller, moment d nme eğrisinin matematiksel ifadesinin, irleşimin geometrik ve mekanik elliklerini elirten parametreleri i erecek şekilde ampirik olarak ifade edilmesine dayanır. Bu amprik ifadeler genellikle deney sonu larının regresyon anali leri ile elde edilir.

Analitik modeller, irleşimlerin asitleştirilmiş modellerinin elastik veya limit analizler ile incelenmesine ve davranışlarının elirlenmesine dayanır. Bu y ntemde genellikle irleşimin aşlangı rijitliği ve taşıma kapasitesi elirlenir. Ardından kullanılacak matematiksel ifade i in moment d nme davranışı hesaplanan u iki değere g re elirlenir.

Mekanik modeller, ir diğer ismiyle yaylı modeller kiriş kolon irleşimini oluşturan tüm par aların yay elemanlarıyla modellenmesine dayanır. Birleşimin tüm par alarının dayanım ve rijitlikleri yay elemanlarıyla g nüne alınır ve irleşimin aşlangı rijitliği ile taşıma kapasitesi belirlenir.

Sonlu elemanlara dayalı modeller, irleşimi oluşturan tüm par aların ve davranışın üç boyutlu sonlu elemanlarla modellenmesine dayanır. Bu y ntem her ne kadar aşlangı ta en uygun yöntem olarak g rünse de, irleşim davranışında nemli olan etkilerin (yü ey sürtünmesi, kontak yüzeyleri, geometrik ve malzeme nonlineerlikleri, vb.) sonlu eleman modeline yansıtılması olduk a ordur.

Deneysel alışmalar, irleşim davranışlarının elirlenmesinde en hassas sonu ları sağlarlar. Ancak her ir irleşim i in deney yapmak olduk a maliyetli ve aman alıcı ir işlemdir.

Yarı rijit irleşimlerin moment d nme eğrilerinin matematiksel ifadesinde kullanılan ü doğrulu d nme ilişkisini tanımlamak i in irleşimin aşlangı rijitliğine ve taşıma kapasitesine ihtiya vardır. AIS tasarım raporlarında, (2003a, 2003, 2003c) irleşimin taşıma kapasitesini elirlemek i in analitik y ntemlerden iri olan akma i gilerine dayalı y ntem verilmiştir. Ayrıca Eurocode EN 1993-1-, (200) y netmeliğinde verilen ve mekanik ir y ntem olan elemana dayalı y ntem ile irleşimin aşlangı rijitliği ve taşıma kapasitesi belirlenebilir.

2.3.3.1 AISC ntemi Akma Çizgilerine Dayalı ntem

AIS tasarım raporlarında, (2003a, 2003, 2003c) a ıklanan y nteme g re, alın levhalı ulonlu irleşimin plastik moment kapasitesi aşağıdaki adımlar i lenerek hesaplanır.

Kolon aşlığının ve alın levhasının plastik moment kapasiteleri, akma i gileri teorisine dayanan ir y ntemle hesaplanır.

Bulonların plastik moment kapasiteleri, gerekiyorsa manivela etkileri göz önüne alınarak hesaplanır.

lk iki adımda hesaplanan plastik moment kapasitelerinin en kü üğü irleşimin plastik moment kapasitesi olarak belirlenir.

Birleşimi oluşturan elemanların kapasite kontrolleri, bulunan plastik moment kapasitesine g re yapılır ve gerekli g rülen durumlarda takviye elemanları kullanılır.

Akma i gileri teorisi ilk ke 0 larda etonarme d şeme anali lerinde kullanılmıştır (ohansen 2). Bu y ntemle plak elemanın g me mekani masını oluşturacak yük değeri elirlenmiştir. Akma i gileri, plastik mafsalların ir doğru veya eğri oyunca sürekli olarak oluşması halidir. Akma i gilerinin arasında kalan plak lgesinin rijit kaldığı ka ul edilir. Plak elemanına gelen yük, kesitin eğilme kapasitesini aştığı aman akma i gileri oluşur. luşan akma i gileri ir g me mekani ması oluşturduğu aman plak elemanının taşıma kapasitesine ulaştığı ka ul edilir. Akma i gileri teorisi ile plak elemanlarının g me mekani maları ilk olarak etonarme plaklar i in geliştirilse de, elik plaklar i in de sıklıkla uygulanmıştır.

Akma i gileri anali i iki farklı y ntemle yapıla ilir: *i*) Denge metodu veya *ii*) irtüel iş enerji metodu. elik plakaların anali i i in tercih edilen y ntem, virtüel iş metodudur. Bu y ntemde dış yükün virtüel yer değiştirme oyunca yaptığı dış iş, levhanın akma i gileri oyunca virtüel d nmesi ile oluşan i işe eşitlenir. B ylece se ilen akma i gisi modeli i in sistemi g me durumuna ulaştıran kapasite yük elirlenir. Aynı sistemde g me durumuna ulaşa ilen farklı akma i gileri ola ilir. Burada uygun model, en kü ük kapasite yük değerini verendir. Buradan, akma i gileri teorisinin üst sınır teorem olduğu g rülmektedir. Bunun i in en kü ük üst sınırı verecek model ulunmalıdır.

Akma i gileri teoremi ile irleşim alın levhası ve kolon aşlığı kapasitesinin elirlenmesinde ilk adım, akma i gisi modelinin se ilmesidir. kinci adımda i ve dış iş denklemleri kurularak kapasite değeri elirlenir. Bu prensipler aşağıda a ıklanmıştır.

elik plakada akma i gisi modelinin elirlenmesi i in Srouji vd., (3) tarafından ir tasarım reh eri geliştirilmiştir. Buna g re akma i gilerinin yerleri elirlenirken aşağıdaki prensiplere mümkün olduğunca uyulmalıdır.

Dönme eksenleri genellikle mesnetler oyunca olmalıdır.

Akma i gileri komşu rijit par aların d nme eksenlerinin kesiştiği yerlerden geçmelidir.

Akma i gileri oyunca oluşan eğilme momentinin sa it olduğu ve plağın plastik momentine eşit olduğu ka ul edilir.

Bu prensipler dikkate alınarak akma i gisi modeli oluşturulur. Kiriş elemanını, asın aşlığının merke i etrafında d ndürecek irim virtüel deplasman uygulanır ve alın levhasının taşıma kapasitesi hesaplanır. Farklı irleşim tiplerine ait akma i gisi modelleri ve kapasite denklemleri AIS (2003c) de yer almaktadır. Aşağıda d rt ulonlu alın levhalı irleşim i in akma çizgisi modeli (Şekil 2.20) ve taşıma kapasitesi hesapları verilmiştir.

Şekil 2.20 D rt ulonlu alın levhalı irleşimin akma i gisi modeli (AIS 2003c)

iş, mekani mayı oluşturan akma i gilerinde oluşan i işlerin toplamıdır. Alın levhalı ulonlu irleşimlerde g rülen karmaşık akma i gileri modelleri (Şekil 2.21) için en uygunu, i işi "ve "y eksenlerine g re ayırmaktır. Akma i gisi modelinde ulunan i işin genel tanımı

$$W_{i} = \prod_{n=1}^{N} (m_{p-nx} L_{nx} - m_{p-ny} L_{ny})$$
(2.1)

burada $_{nx}$ ve $_{ny}$ akma çizgisi boyunca rijit plak bölümlerinin dönmesi, L_{nx} ve L_{ny} akma i gisi u unluğu ve m_p irim u unluktaki plağın plastik moment taşıma kapasitesidir.

$$m_p \quad F_{yp}Z \quad F_{yp} \quad \frac{(1)t_p^2}{4}$$
 (2.2)

irtüel d nmeden dolayı oluşan dış iş ise aşağıdaki şekilde ifade edilir.

$$W_e \quad M_{fc} \quad M_{fc} \quad \frac{1}{h} \tag{2.3}$$

burada M_{fc} kolon yüzündeki moment, uygulanan virtüel dönmedir. Uygulanan virtüel d nme h a eşittir, h değeri kirişin asın aşlığının merke inden alın levhasının üst ucuna olan mesafedir.

Şekil 2.21 Alın levhalı ulonlu irleşimin akma izgileri

ve dış iş denklemlerini asitleştirmek i in ir takım ka uller yapılır. Bulonlar i in levhada a ılan deliklerden oluşan kesit kayıpları g nüne alınma . Akma i gilerinin u unluğu hesaplanırken, kiriş ve kolon g vde kalınlıkları ihmal edilir. Başlık, rijitlik elemanları ve g vde oyunca ulunan k şe kaynak kalınlıkları denklemlerde g nüne alınma . Son olarak, asın lgesinde ulunan akma i gilerinden gelen kapasite katkıları ihmal edilir.

e miş yıllarda yapılan alışmalarda, alın levhalı ulonlu irleşimlere ait ok sayıda akma i gisi modeli incelenmiştir (Srouji vd., 3 Borgsmiller, Meng, AIS 2003c). Bu alışmaların devamında Sumner (2003) yeni ir akma i gisi modelini incelemiştir. Aşağıda d rt ulonlu alın levhalı irleşim i in akma i gisi ümü verilmiştir. W_i i iş ile W_e dış işin eşitlenmesi sonucu alın levhası kapasitesi M_{pl} aşağıdaki şekilde elde edilir.

$$M_{pl} = F_{yp}t_p^2 = \frac{b_p}{2} h_1 \frac{1}{p_{fi}} \frac{1}{s} = h_0 \frac{1}{p_{fo}} - \frac{1}{2} - \frac{2}{g} h_1(p_{fi} - s)$$
(2.4)

Şekil 2.20 de ve yukarıdaki denklemde g rülen s değeri aşağıda verilmiştir.

$$s \quad \frac{1}{2}\sqrt{b_p g} \tag{2.5}$$

Akma çizgileri teorisi ile manivela etkisi i eren ulon kuvvetleri elirleneme . Ancak yapılan deneysel alışmaların sonucunda, alın levhalı ulonlu irleşimlerde manivela etkilerinin mevcut olduğu g rülmüştür. Bu sonu lara dayanarak Kennedy vd. (), akma i gileri y nteminin değişik ir versiyonunu nermişlerdir. nerilen y ntem, ulon kuvvetlerini aşlık elemanına gelen kuvvetin ir fonksiyonu olarak ulmaktadır.

Kennedy y ntemi, eşdeğer yarım I profil analojisine ve levha davranışının ü aşamasına dayanmaktadır. Eşdeğer yarım I profil, ekme kuvveti etkisindeki g vde elemanına ağlı aşlığın rijit ir mesnede irleştirilmesiyle oluşur (Şekil 2.22).

Şekil 2.22 Eşdeğer yarım I profil analojisi (AIS, 2003c)

Etkiyen yükün düşük değerlerinde, aşlık davranışı "kalın levha davranışı olarak tanımlanır ve eşdeğer yarım I profil aşlığında plastik mafsal oluşma . Uygulanan yük artırıldığında, aşlıkla g vdenin kesişim noktalarında iki plastik mafsal oluşur ve "orta kalınlıkta levha davranışı olarak tanımlanır. Yükün daha da üyük değerlerinde, plastik mafsallar hem aşlıkla g vdenin kesişim noktalarında hem de aşlıkla ulonların kesişim noktalarında oluşur ve davranış "ince plak davranışı olarak tanımlanır (Şekil 2.23).

a) Kalın levha davranışı

) rta kalınlıkta levha davranışı

c) nce levha davranışı

Şekil 2.23 Başlık davranış modelleri (AIS, 2003c)

) alın levhalı ulonlu irleşimlerin tasarımı i in asitleştirilmiş Borgsmiller ve Murray (ir y ntem nermişlerdir. Bu y ntem, alın levhası kalınlığını ve kapasitesini hesaplamak i in akma i gileri teorisini kullanmaktadır. Ayrıca, irleşimin lgesindeki ekme ulon kuvvetlerinin belirlenmesi için manivela etkilerini göz önüne alan Kennedy yönteminin asitlestirilmis ir halini nermişlerdir. Basitlestirilmiş Kennedy modelinde, ulon kuvvetleri sadece maksimum manivela kuvveti dikkate alınarak hesaplanmaktadır. Bu yaklasımdaki temel varsayım, ulonlarda maksimum manivela kuvvetlerinin oluşması i in alın levhasının tamamen akması gerektiğidir. Bunun karşılığında, eğer levha yeterince dayanıklı ise hi ir manivela etkisi oluşma ve ulonlar direk ekme kuvveti etkisinde kalırlar. Ayrıca asitleştirilmiş y ntem, tasarımcının ulon apını veya levha kalınlığını kolayca optimize etmesini sağlar.

Borgsmiller ve Murray (), 2 adet numune ü erinde yaptıkları deneysel alışmalar sonucunda, bulonlarda manivela etkisinin, alın levhalarının kapasitelerinin 0 ı aşıldıktan sonra ortaya ıktığını g stermişlerdir. Bu alışmalara dayanarak, eğer etkiyen moment u değerden kü ükse, alın levhası kalın levha davranışı g sterir ve ulonlarda manivela etkiler ihmal edilir. Eğer etkiyen moment alın levhasının kapasitesinin 0 ını aşarsa levha, ince levha olarak kabul edilir ve bulon anali inde manivela kuvvet etkileri hesa a katılır.

AIS (2003c) alın levhalı irleşimlerle ilgili iki tip tasarım y ntemi vermiştir. Eğer kü ük ulon apı se ilmek istenirse . Prosedür e, levha kalınlığı minimi e edilmek istenirse 2. Prosedür'e göre tasarım yapılır. Her iki tasarım y ntemine ait akış şemaları AIS (2003c) de ve Ek 1'de verilmiştir.

Alın levhalı ulonlu irleşimlerin, alın levhalarının ve ulonlarının deprem ve rü gar etkilerine g re tasarımı AIS (2003c) de detaylı olarak verilmiştir. Birleşimin taşıma kapasitesinin diğer kriterlere g re (alın levhasının u atılmış kısmının kesme kontrolü, ulonların kesme kontrolü, kolon aşlığının eğilme dayanımı kontrolü, kolon g vdesinin akma ve yerel urkulma kontrolleri) tasarımı da AIS (2003a) da detaylı olarak verilmiştir.

erekli g rüldüğü hallerde, irleşimin takviye ve süreklilik levhalarına ait hesapları ise AIS (2003) de verilmiştir. Tüm u ilave kontrollere ait akış şeması özet halinde Ek 1'de sunulmuştur.

2.3.3.2 urocode ntemi lemana Dayalı Yöntem)

Son yıllarda yarı rijit irleşim davranışının elirlenmesi i in nemli alışmalar yapılmaktadır. Bu alışmaların sonu ları mevcut elik y netmeliklerine de girmiştir. Eurocode EN 3-1-8, (200) de, elemana dayalı y ntem adı verilen ayrıntılı ir tasarım y ntemi yer almaktadır. Bu yaklaşım, irleşim lgesini oluşturan elemanların taşıma kapasitelerinin ve rijitliklerinin ayrı ayrı elirlenmesini i ermektedir. Teorik a ıdan u y ntem, kapasitesi ve deformasyonu düzgün olarak belirlenebilen ve modellene ilen elemanlardan oluşan her türlü irleşime uygulanabilmektedir. Eurocode EN 1993-1- (200) de alın levhalı ulonlu irleşimlerin taşıma kapasitelerinin ve aşlangı rijitliklerinin hesaplanması i in u y ntem ayrıntılı olarak a ıklanmıştır. Ancak diğer yarı rijit irleşim tipleri i in henü genişletilmemiştir. Alın levhalı ulonlu irleşimler i in irleşimin genel davranışı aşağıda verilen eleman tarafından kontrol edilmektedir (Eurocode EN 1993-1-8, 2005) (Şekil 2.24):

CWS: Kayma gerilmeleri etkisindeki kolon gövdesi

: Kolon g vdesinin asın lgesi

FB: Eğilme etkisindeki kolon aşlığı

EPB: Eğilme etkisindeki alın levhası

BT: Çekme etkisindeki bulonlar

CWT: Kolon gövdesinin çekme bölgesi

BF : Kiriş aşlığı ve g vdesinin asın

B T: Kiriş g vdesinin ekme lgesi

lgesi

Şekil 2.24 Alın levhalı ulonlu irleşim davranışını etkileyen elemanlar

Yukarıda verilen elemanların ilk altısı, irleşimin hem eğilme taşıma kapasitesi hem de dönme rijitliği hesaplanırken kullanılır. Bunun yanında, son iki eleman, sadece irleşimin eğilme taşıma kapasitesi hesaplanırken ele alınır.

Ba ı elemanların rijitlik ve kapasite hesa ı, ekme lgesinde yer alan ulon sırasına ve yerleşimine ağlıdır. Bu elemanlar, kolon g vdesinin ekme lgesi, eğilme etkisindeki kolon aşlığı, eğilme etkisindeki alın levhası, ekme etkisindeki ulonlar ve kiriş g vdesinin ekme bölgesidir. Bu elemanların irleşim davranışına olan katkısı, her sıranın hem ayrı ayrı hem de diğer sıralarla irlikte değerlendirilmesi ile hesaplanır.

Alın levhalı ulonlu irleşimler i in ka ul edilen mekanik model Şekil 2.25 de g sterilmiştir. Burada hem eğilme taşıma kapasitesini hem de d nme rijitliğini etkileyen elemanlar, elastoplastik yay elemanı olarak verilmiştir. Bununla era er, sadece eğilme kapasitesinde etkisi olan elemanlar rijit plastik yay elemanı olarak modellenmiştir.

Şekil 2.25 Alın levhalı ulonlu irleşim i in mekanik model

Elemana dayalı y ntemde irleşimin sahip olduğu eğilme kapasitesi $M_{j,Rd}$ aşağıdaki ağıntıyla elde edilir.

$$M_{j.Rd} = \int_{i=1}^{n_b} h_i F_{i.Rd}$$
(2.6)

Burada $F_{i,Rd}$ ulon sırasına ait taşıma kapasitesi, n_b ekme lgesindeki ulon sıra sayısı ve *h* ulon sırasının asın merke ine olan u aklığıdır.

Birleşimin aşlangı d nme rijitliğinin hesaplanması i in, Eurocode EN 3-1-1:1992/A2
(1998) ve Eurocode EN 1993-1- (200) de a ıklanan yöntem Şekil 2.26'da g sterilmiştir.
Yapılan alışmalar sonucunda, irleşimin toplam rijitliğinin, elemanların u ama rijitliklerinin irleştirilmesiyle elde edile ileceği g rülmüştür.

Şekil 2.26 Birleşim d nme rijitliğinin hesaplanma yöntemi

Yöntemdeki ilk adım, her ulon sırası rijitliğinin (K_i^*) aşağıdaki şekilde hesaplanmasıdır.

$$\frac{1}{K_{i}^{*}} - \frac{1}{K_{cwt.i}} - \frac{1}{K_{cfb.i}} - \frac{1}{K_{epb.i}} - \frac{1}{K_{bt.i}}$$
(2.7)

kinci adımda ise, kiriş g vdesinin asın merke i etrafında rijit d nme yaptığı ka ul edilerek, ekme lgesindeki ulon sıralarının eşdeğer toplam rijitliği, (K_i) , hesaplanır.

$$K_{i} = \frac{\prod_{i=1}^{n_{b}} K_{i}^{*} h_{i}}{h_{i}}$$

$$(2.8)$$

burada: $h_t = \frac{\prod_{i=1}^{n_b} K_i^* h_i^2}{\prod_{i=1}^{n_b} K_i^* h_i}$ olarak tariflenir.

Son olarak irleşimin aşlangı rijitliği, ulon sıralarından ağımsı elemanların rijitlikleri ile ulon sıralarının eşdeğer toplam rijitliğinin (K_t) , irleştirilmesiyle hesaplanır.

$$K_{\phi} = \frac{h_{t}^{2}}{\frac{1}{K_{cws}} - \frac{1}{K_{cwc}} - \frac{1}{K_{t}}}$$
(2.9)

Y ntemin uygulanışı ile irleşim elemanlarının ireysel rijitliklerinin ve kapasitelerinin hesaplanması hakkında detaylı ilgi Eurocode EN 3-1-8 (2005) ve Eurocode ENV 1993-1-1:1992/A2 (1998)'de bulunabilir. Elemana dayalı y ntemin akış şeması Ek 2'de verilmiştir.

2.4 Dönme Kapasitesi

Yarı rijit irleşimlerin d nme kapasiteleriyle ilgili Bölüm 2.1'de özetlenen alışmaların dışında literatürde daha ir ok alışma mevcuttur. Bu kısımda yarı rijit irleşimlerin d nme kapasiteleriyle ilgili Amerikan ve Avrupa yönetmeliklerinde bulunan ilgilere yer verilmiştir.

2.4.1 AISC netmeliği

AIS (200 a) y netmeliğine g re irleşimlerde plastik mafsal oluşmasına i in verilmemektedir. Bu nedenle yarı rijit irleşimlerin sahip olması gereken d nme kapasitesine ait herhangi ir ilgi mevcut değildir.

te yandan rijit irleşimlerin sahip olması gereken süneklik dü eyi, yapısal sisteme ve deprem tasarımına ağlıdır. rneğin süneklik dü eyi yüksek moment dayanımlı er evelerde irleşimlerin sünek davranış sergilemesi i in d nme kapasitesi $_{u}$, 0.04 radyan'dan, süneklik dü eyi orta olan moment dayanımlı er evelerde ise $_{u}$, 0.02 radyan'dan üyük olmalıdır.

2.4.2 Eurocode netmeliği

Eurocode EN1998-1 (2004) y netmeliğinde irleşimlerde plastik mafsal oluşmasına i in verilmektedir. Birleşimlerin gerekli d nme kapasitesine sahip olup olmadıkları aşağıdaki kriterlerle belirlenebilmektedir (Eurocode EN1993-1-8, 2005).

- 1) Kiriş kolon irleşiminin $M_{j,Rd}$ tasarım moment kapasitesini, panel lgesinin kayma tasarım kapasitesi elirliyorsa, d/t_w 69 ε eşitliğinin sağlanması ile irleşimin plastik anali i in yeterli d nme kapasitesine sahip olduğu ka ul edile ilir. Burada $\varepsilon \sqrt{235/f_y} (f_y N/mm^2)$ dir.
- Aşağıda verilen şartların her ikisinin de sağlanması ile hem alın levhalı ulonlu hem de aşlıkları korniyerli irleşimlerin plastik anali i in yeterli d nme kapasitesine sahip olduğu ka ul edile ilir.
 - a) Kiriş kolon irleşiminin tasarım moment kapasitesi,

- kolon aşlığının eğilme kapasitesi veya,

- alın levhasının veya ekme lgesindeki korniyerin eğilme kapasitesi,

ile belirlenirse,

) Kolon aşlığının veya alın levhasının yahut ekme lgesindeki korniyerin *t* kalınlığı aşağıdaki denklemi sağlarsa:

$$t \quad 0.36 d \sqrt{f_{ub}/f_y}$$
 (2.10)

d: ulon apı

 f_{ub} : bulon çekme dayanımı

 f_{y} : kontrol edilen elemanın akma dayanımı

3) Bulonlu ir irleşimin taşıma kapasitesini $(M_{j,Rd})$, kayma etkisindeki bulonlar elirliyorsa, irleşimin plastik anali i in yeterli d nme kapasitesine sahip olmadığı kabul edilir.

2.5 Örnek Çerçe elerde ullanılan irleşimler

Bu alışmada rnek er eveler iki tip irleşim kullanılarak tasarlanmıştır. Bu irleşimlerden irincisi yarı rijit irleşimli er evelerin karşılaştırıldığı geleneksel rijit irleşimli erçeveler, ikincisi ise yarı rijit irleşimlerdir.

2.5.1 Rijit birleşimler

Yarı rijit irleşimli er evelerin karşılaştırılmasında kullanılan çerçevelerde, rijit irleşimler tasarlanmıştır. Eğilme i in kirişin aşlık levhalarının kolona irleşiminin tam penetrasyonlu küt kaynak ile sağlandığı, kesme kuvveti i in g vdenin her iki kısmına k şe kaynak ile irleştirilen kayma levhalarının kullanıldığı tipik rijit irleşim kullanılmıştır (Şekil 2.27). Bu irleşimlerin modellenmesinde, geleneksel rijit düğüm noktaları kullanılacaktır. Birleşim kirişin plastik moment kapasitesinin tamamını kolona aktaracak şekilde tasarlanacaktır. Bununla era er, depremselliği yüksek olan lgelerde kaynaklarda g menin önlenmesi, plastik kesitin kirişlerde ve irleşimden elli ir u aklıkta oluşması, ayrıca 0.0 radyan'lık d nme sınırının aşılmaması i in irleşimlerin doğru olarak tasarlanması gerekir.

Şekil 2.27 Rijit kiriş kolon irleşimi (DBYYHY, 200 den alınmıştır)

2.5.2 arı ri it birleşimler

Yarı rijit irleşimli er evelerde u atılmış alın levhalı, ulonlu irleşim kullanılmıştır. Bu irleşimlerde alın levhası kirişin aşlık levhalarına tam penetrasyonlu küt kaynakla, gövde levhasına ise ift taraflı k şe kaynakla irleştirilmiştir. Alın levhasının kolona ağlantısı i in ü sıra yüksek mukavemetli ulonlar kullanılmıştır. Bu alışmada kullanılan u atılmış alın levhalı irleşim detayı Şekil 2.28'de g sterilmiştir.

Şekil 2.28 U atılmış alın levhalı, ü sıra bulonlu irleşim

rnek er evelerde kullanılan yarı rijit irleşimler, yapısal anali lerde Şekil 2.17'de verilen ift d nme yaylı asitleştirilmiş model kullanılarak modellenmiştir. Birleşimlerin moment d nme eğrileri Şekil 2.19'da verilen ü doğrulu matematiksel ifade ile tariflenmiştir. Birleşimlerin tasarımı B lüm 2.3.3. de a ıklanan ve akış şeması Ek 1'de verilen AISC Y ntemi ile yapılmıştır. Ayrıca irleşimlerin aşlangı rijitlikleri ve taşıma kapasiteleri B lüm 2.3.3.2 de a ıklanan ve akış şeması Ek 2'de verilen Eurocode Yöntemi ile de elirlenmiştir. U atılmış alın levhalı ulonlu örnek ir irleşime ait u hesaplar Ek 3'de sunulmuştur.

Bu alışmada ayrıca yarı rijit irleşimlerin ü doğrulu matematiksel modellerinde, taşıma kapasitelerinin aşılmasından sonraki pekleşme oranları 0 ve 0 olarak se ilmiştir. B ylece irleşim pekleşme oranının sistem davranışına olan etkisi de incelenmiştir.

Bu alışma, yarı rijit irleşimlerin yüksek deprem etkileri altında yeterli d nme kapasitesine, sünekliğe ve sta il ir histeretik (evrimsel) davranışa sahip olduğu ka ülüne dayanarak yapılmıştır. Bu ka ul Bölüm 1.4'de ve Bölüm 2.1.'de özetlenen Nader ve Astaneh (1991, 1992, 1996), Elnashai ve Elghazouli (1994), Elnashai vd. (1998), Bernuzzi vd. (1996), Maison ve Kasai (2000) Calado vd. (2000), Shi vd. (2007) alışmalarına dayanarak yapılmıştır. Bununla irlikte rnek er eveler i in tasarlanan irleşimlerin yeterli d nme kapasitesine sahip olması i in B lüm 2. .2 de verilen Eurocode şartları da tasarım sürecinde sağlanmıştır.

Yarı rijit irleşimlerin evrimsel davranışları, sistemin deprem etkileri altındaki tepkilerini nemli l üde etkilemektedir. Bunun da tesinde yarı rijit irleşimlerin evrimsel davranışları irleşim tipine, geometrisine ve mal eme elliklerine ağlı olarak değişmektedir. Bu alışmada kullanılan irleşimlerin evrimsel davranışları (Nader ve Astaneh (1992, 1996), Elnashai ve Elghazouli (1994), Elnashai vd. (1998), Bernuzzi vd. (1996), Maison ve Kasai (2000) Calado vd. (2000), Shi vd. (2007)) alışmalarında elde edilen sonu lara dayanarak iki ayrı şekilde modellenmiştir. Bunlardan ilki Şekil 2.29'de görülen, simetrik kinematik pekleşmeli ü doğrulu yay elemanıdır. Bu eleman tipinde evrimsel yükler altında rijitlik a alması yoktur. Kullanılan diğer yay elemanı ise Şekil 2.30'de görülen, sabit eksenel kuvvet altında histeretik eğilme modelidir. Bu elemanda evrimsel yükler altında rijitlik a alması mevcuttur. Bu elemana ait rnek evrimsel davranış Şekil 2.31 'de görülebilir. Ayrıca bu elemanların davranışlarına ait detaylı ilgi eusN (200) de bulunabilir.

Şekil 2.29 Simetrik ü doğrulu yay elemanı (eus-NL, 2008)

Şekil 2.30 Sabit eksenel kuvvet alt nda histeretik eğilme modeli (Zeus NL, 2008)

Şekil 2.31 Sabit eksenel kuvvet alt nda histeretik eğilme modeli örnek davran ş

3. MOMENT DAYANIMLI ÇELİK ÇERÇEVELERİN TASARIMI

3.1 Giriş

Günümüzde, çelik yap lar n tasar m nda yayg n olarak kullan lan iki farkl yaklaş m mevcuttur. Bunlardan ilki lineer elastik hesaba dayal "Emniyet Gerilmeleriyle Tasar m" (ASD – Allowable Stress Design) metodu, diğeri ise taş ma gücü ilkelerini esas alan "Yük ve Dayan m Katsay lar yla Tasar m" (LRFD - Load and Resistance Factor Design) metodu olarak adland r l r. Emniyet gerilmelerine göre tasar m, önceleri yayg n kullan lan bir tasar m metodu olmas na karş n, son y llarda daha rasyonel ve olas l k esasl yük ve dayan m katsay lar yla tasar m metodunun kullan lmas yayg nlaşm şt r.

Yük ve dayan m katsay lar yla tasar m n temel amac , yap n n tüm yükleme kombinasyonlar alt nda hiçbir s n r durumu aşmamas n n sağlanmas d r. S n r durumlar, dayan m (taş ma gücü) s n r durumu (ultimate limit state) ve kullan labilirlik s n r durumu (serviceability limit state) olarak ikiye ayr l r. Moment dayan ml çelik çerçevelerin tasar m nda karş laş lan dayan m s n r durumlar aras nda: çekme akmas , çekme y rt lmas , burkulma (eğilmeli burkulma, burulmal burkulma, eğilmeli burulmal burkulma), plastik moment kapasitesi, yanal burkulma, yerel burkulma, kesme akmas , kesme burkulmas , kesme y rt lmas , kayma, ezilme, yorulma vb. say labilir. Bu yap larda karş laş lan kullan labilirlik s n r durumlar aras nda: sehim, öteleme, titreşim vb. say labilir.

Yük ve dayan m katsay lar yla tasar m Ravindra ve Galambos, (1978) taraf ndan önerilmiş ve 1986 y l nda da Amerikan yönetmeliklerine girmiştir. AISC, (2005b)'de tan mlanan yük ve dayan m katsay lar metoduna göre; Bir dayan m katsay s (ϕ) ile nominal dayan m n (R_n) çarp m yla elde edilen tasar m dayan m n n (ϕR_n), LRFD yükleme kombinasyonlar kullan larak elde edilen gerekli dayan ma (R_u) eşit ya da daha fazla olmas gerekmektedir. Bu çal şmada incelenen örnek yap lar, AISC, (2005b)'de bulunan LRFD metodu kullan larak tasarlanm ş ve analiz edilmiştir.

Bu bölümde, öncelikle AISC, (2005b) – LRFD metodu hakk nda genel bilgi verilmiştir. Ard ndan moment dayan ml çelik çerçeveleri, süneklik düzeyi yüksek sistemler olarak tasarlayabilmek için, yönetmeliklerde verilen tasar m şartlar aç klanm şt r. Daha sonra, bu çal şmada incelenen örnek yap lar n tasar m nda izlenen süreç aç klanm ş ve tasarlanan örnek yap lar n genel özellikleri (geometrik boyutlar, eleman kesitleri, birleşim tipleri ve detaylar, deprem tasar m parametreleri, vb.) son k s mda özet halinde verilmiştir.

3.2 AISC – LRFD Metodu

Bu lümde, incelenen yapıların tasarımında kullanılan AIS , (200) – LRFD, metodu kısaca tanımlanmış ve ardından u metotta kullanılan tasarım kriterleri sta ilite tasarımı, kapasite tasarımı ve kullanıla ilirlik tasarımı a ıklanmıştır. Daha nce de a ıklandığı ü ere yük ve dayanım katsayılarıyla tasarım (FD) metodu "Nominal dayanımın (R_n), bir dayanım katsayısıyla (ϕ) arpılması sonucu elde edilen tasarım dayanımı (ϕR_n), en az LRFD yükleme kom inasyonları kullanılarak yapılan anali ler sonucu elde edilen gerekli dayanım (R_n) kadar olmalıdır şeklinde tanımlanır. Bu metodun temel tasarım ilkesi:

$$\phi R_n \qquad \gamma_i Q_{ni} \tag{3.1}$$

denklemiyle ifade edilir. Burada

γ_i	: Yük katsayıları,
Q_{ni}	: Nominal tasarım yükleri

3.2.1 Tasarım riterleri

Yük ve dayanım katsayıları metodu, yapının tüm uygun yükleme kom inasyonları altında, hi ir sınır durumunun (dayanım ve kullanıla ilirlik) aşılmaması prensi ine dayanır. LRFD metodu kullanılarak yapılacak tasarımlar i in yük ve yükleme kom inasyonları AS E -05 y netmeliğinde detaylı olarak verilmiştir. Bu y netmeliğe g re moment dayanımlı elik er eveli yapıların tasarımında kullanılacak yükleme kom inasyonları:

- 1. 1.4*D*
- 2. 1.2D 1.6(L H) $0.5(L_r veya S veya R)$
- 3. $1.2D \quad 1.6(L_r \text{ veya } S \text{ veya } R) \quad (0.5L \text{ veya } 0.8W)$
- 4. 1.2D 1.6W 0.5L $0.5(L_r veya S veya R)$
- 5. 1.2D 1.0E 0.5L 0.2S
- 6. 0.9*D* 1.6*W* 1.6*H*
- 7. 0.9D 1.0E 1.6H

şeklindedir. Burada

- *D* : Sabit yük,
- *L* : Hareketli yük,
- L_r : Çatı hareketli yükü,
- W : Rüzgâr yükü,
- *S* : Kar yükü,

Ε	: Deprem	vükü
	· Deprem	yunu

R : Yağmur yükü,

H : Yatay asınca ağlı yükü (emin, mal eme veya yeraltı suyu) ifade eder.

Bu alışmada kullanılan tasarım kriterleri sta ilite tasarımı, kapasite tasarımı ve kullanıla ilirlik tasarımı olarak ü ana lüm altında sınıflandırıla ilir.

Elemanlar, irleşimler ve tüm yapı sistemi, dayanım sınır durumlarıyla irlikte kullanıla ilirlik sınır durumları i in de kontrol edilmelidir. Elemanların tasarımında etkili olacak sınır durumun elirlenmesi i in kesitler, yerel burkulma davranışına g re sınıflandırılır. Bu sınıflandırma "kompakt kesitler , "kompakt olmayan kesitler ve "narin elemanlardan oluşan kesitler şeklinde yapılır. Buna göre, bir kesitin "kompakt" olarak sınıflandırıla ilmesi i in, aşlık elemanlarının g vde levha veya levhalarına sürekli olarak irleştirilmiş olması ve kesitin asınca alışan elemanlarının genişlik kalınlık oranının, Çizelge 3.1'de verilen λ_p sınır değerini aşmaması gerekmektedir. Eğer ir veya daha fazla asın elemanının genişlik kalınlık oranı λ_p sınırını aşıyor ama λ_r sınırını aşmıyorsa, kesitler "kompakt olmayan kesit" olarak nitelendirilir. Eğer herhangi ir elemanın genişlik kalınlık oranı, λ_r sınırını aşıyorsa kesit "narin elemanlardan oluşan kesit olarak tanımlanır.

	Coniclity -	Genişlik kalınlık oranı sınırları		
leman Tanımı	alınlık	λ_p	λ_r	
		(Kompakt)	(Kompakt olmayan)	
Kiriş ve Kolon Başlıklarında Eğilme	$rac{b_f}{2t_f}$	$0.38\sqrt{\frac{E}{F_y}}$	$1.0\sqrt{\frac{E}{F_y}}$	
Kiriş ve Kolon vdesinde Eğilme	$\frac{h}{t_w}$	$3.76\sqrt{\frac{E}{F_y}}$	$5.70\sqrt{\frac{E}{F_y}}$	
Kolon Başlıklarında Uniform Basın	$rac{b_f}{2t_f}$	-	$0.56\sqrt{rac{E}{F_y}}$	
Kolon Gövdesinde Uniform Basın	$rac{h}{t_w}$	-	$1.49\sqrt{\frac{E}{F_y}}$	

Cizelge 3.1 Elemanların genişlik kalınlık oranı sınırları (AIS, 200 den uyarlanmıştır)

3.2.2 Stabilite Tasarımı

Sta ilite şartları, hem yapı sisteminin genelinde, hem de her ir elemanında ayrı ayrı sağlanmalıdır. Yapı ve elemanların sta ilite anali lerinde ikinci merte e etkilerini, eğilme, kayma ve eksenel deformasyonları, geometrik hataları ve elemanın rijitlik a almasını dikkate alan tüm analiz metotlarının kullanılmasına i in verilmiştir. Elastik anali lerle tasarlanan yapılarda, eleman ve yapı sta ilitesi aşağıdaki koşulların yerine getirilmesiyle sağlanır

Elemanların, irleşimlerin ve diğer yapısal elemanların gerekli dayanımı, yönetmeliklerde verilen analiz metotlarından iri kullanılarak hesaplanmalı,

Elemanların ve irleşimlerin tasarım şartları, u şekilde hesaplanan gerekli dayanım değerleri kullanılarak sağlanmalıdır.

3.2.2.1 Gerekli Dayanımın Hesaplanması

İkin i Merte e Metotları ile Analiz

AISC, (2005b) y netmeliğine g re elemanlar, irleşimler ve diğer yapısal elemanlar i in gerekli dayanım, hem *P* (yatay ötelemesi nlenmiş sistemlerde, tek ir elemanda oluşan deformasyonların neden olduğu ikinci merte e etkileri) hem de *P* (yatay ötelemesi nlenmemiş sistemlerde, tüm yapının yatay deplasmanından oluşan ikinci merte e etkileri) etkilerini dikkate alan herhangi bir ikinci mertebe elastik analiz metoduyla belirlenebilir. Ayrıca arttırılmış irinci merte e analizi (Second order analysis by amplified first order elastic analysis) olarak adlandırılan yaklaşık ir metot kullanılarak da ikinci mertebe anali inin yapılmasına i in verilmiştir. Bu metot ikinci mertebe etkilerini, birinci mertebe analizden elde edilen eksenel kuvvetlerin ve momentlerin ir katsayıyla arttırılarak hesaba katılmasına dayanır. erekli ikinci merte e eğilme dayanımı (M_r) ve eksenel kuvvet dayanımı (P_r):

$$M_r \quad B_1 M_{nt} \quad B_2 M_{lt} \tag{3.2}$$

$$P_r \quad P_{nt} \quad B_2 P_{lt} \tag{3.3}$$

ile belirlenir. Burada

- M_{nt} : FD yük kom inasyonları kullanılarak hesaplanan irinci merte e momenti (er evenin yanal deplasman yapmadığı kabul edilir),
- M_{lt} : FD yük kom inasyonları kullanılarak hesaplanan ve sadece çerçevenin yanal deplasmanının se ep olduğu, irinci merte e momenti,

- P_{nt} FD yük kom inasyonları kullanılarak hesaplanan irinci mertebe eksenel : kuvveti (er evenin yanal deplasman yapmadığı ka ul edilir),
- FD yük kom inasyonları kullanılarak hesaplanan ve sadece çerçevenin yanal P_{lt} : deplasmanının se ep olduğu, irinci merte e eksenel kuvveti,
- : Yanal ötelemesi nlenmiş er evedeki eksenel yüklü elemanların moment B_1 değerlerinde Petkilerini dikkate almak i in kullanılan moment büyütme katsayısı,

$$B_1 = \frac{C_m}{1 \quad \alpha \frac{P_r}{P_{e1}}} \quad 1 \tag{3.4}$$

 B_2 : Yanal telemesi nlenmemiş er evedeki P etkilerini yansıtmak i in kullanılan moment üyütme katsayısı,

$$B_2 \quad \frac{1}{1 \quad \alpha - \frac{P_{nt}}{P_{e2}}} \quad 1 \tag{3.5}$$

: LRFD için 1.0,

$$P_{nt}$$

 C_m

α

FD yük kom inasyonları kullanılarak hesaplanan kattaki toplam düşey yük, :

- : U ve a ıklık momentleri ile yanal desteklemeyi g nüne alan katsayı. Eğilme dü lemlerinde mesnetleri arasından yüke maru kalmayan, hem eksenel kuvvet hem de eğilme etkisindeki elemanlar i in 0.6 $0.4(M_1/M_2)$, yükün olduğu durumlarda ise 1.0 kabul edilebilir. Burada M_1 ve M_2 , birinci mertebe analizinden hesaplanan, yanal ötelemesi nlenmiş elemanın iki ucunda ulunan sırasıyla kü ük ve üyük eğilme momentleridir. M_1/M_2 oranı iki y nlü eğilmede po itif, tek y nlü eğilmede ise negatiftir,
- : Yanal ötelemesi nlenmiş elemanın, elastik kritik urkulma dayanımı, P_{e^1}

$$P_{e1} = \frac{{}^{2}EI}{\left(K_{1}L\right)^{2}}$$
(3.6)

 P_{e2} : Yanal urkulma anali iyle elirlenen katın elastik kritik urkulma dayanımı,

Moment dayanımlı er evelerde, kolonlar i in yanal telenmeli efektif u unluk katsayısının hesaplandığı durumlarda, katın elastik kritik urkulma dayanımı:

$$P_{e2} = \frac{{}^{2}EI}{\left(K_{2}L\right)^{2}}$$
(3.7)

olarak hesaplanır. Ayrıca yatay yük taşıyan tüm sistem tipleri için:

$$P_{e2} \quad R_M - \frac{HL}{H} \tag{3.8}$$

ifadesinin kullanılmasına da i in verilmiştir. (3.6), (3.7), (3.8) ifadelerinde;

L	: Kat yüksekliği,
Ι	: Elemanın atalet momenti,
R_{M}	: Moment dayanımlı er eveler i in 0.,
K_1	: Yatay ötelemesi nlenmiş sistemlerde, elemanın eğilme dü lemindeki efektif
	u unluk katsayısı,
<i>K</i> ₂	: Yatay ötelemesi nlenmemiş sistemlerde, elemanın eğilme dü lemindeki efektif u unluk katsayısı,
Н	: Yatay yüklerden oluşan irinci merte e kat ötelemesi,
Η	: $_{H}$ değerini hesaplamak i in kullanılan yatay kuvvetlerden oluşan toplam kat
	kesme kuvvetidir.

İkin i Merte e Metotları ile Tasarım

Moment dayanımlı er evelerde ikinci merte e deplasmanının, irinci merte e deplasmanına oranı (B_2 ye eşit alına ilir) . dan kü ük ya da eşitse, elemanların ve irleşimlerin gerekli dayanımları, ilave şartlar sağlandığı sürece ikinci merte e anali lerle belirlenebilir.

kinci merte e anali i in, arttırılmış irinci merte e metodu kullanıldığında ilave şartlar:

Yapı anali inde, tüm elemanların nominal geometrisi ve nominal elastik rijitliği kullanıla ilir,

Sadece düşey yükten oluşan tüm yükleme kombinasyonlarına, yapının her katına etkiyen minimum $0.002Y_i$ 'lik yatay yük ilave edilmelidir. Burada Y_i , *i*. kat seviyesine etkiyen tasarım düşey yüküdür.

Eğer ikinci merte e deplasmanın, irinci merte e deplasmanına oranı ($_{2.mertebe}/_{1.mertebe}$). den kü ük ya da eşitse, elemanların tasarımında K 1.0 kullanıla ilir. Aksi takdirde kolonlar, efektif u unluk katsayısı (K) veya yatay ötelemesi nlenmemiş yapının urkulma anali inden elirlenen kolon urkulma gerilmesi (F_e) kullanılarak tasarlanmalıdır.

3.2.2.2 fektif zunluk atsayısı

Efektif u unluk katsayısının (K) hesaplanması i in, literatürde eşitli metotlar nerilmiştir. K nın elirlenmesinde kullanılan en yaygın metot, alignment i elgesi metodudur. Ayrıca u metot nomogram olarak da ilinmektedir. Alignment i elgeleri kullanılarak ulunan efektif u unluk katsayısı, yapının tipine ve elemanın u şartlarına ağlıdır. Yatay ötelemesi nlenmiş sistemler i in kolonun efektif u unluk katsayısı (K), konservatif olarak .0 alına ilir.

AIS , (200) y netmeliğinin a ıklama ekinde, *K* katsayısının elirlenmesinde alignment çizelgeleri metodunun kullanılması nerilir. Bu metoda göre, efektif u unluk katsayısı, göreli rijitlik katsayıları kullanılarak (*G*) çizelgelerden belirlenir. Çerçeve kolonunun alt ve üst ucunda u katsayı:

$$G = \frac{(I/L)_{kolon}}{(I/L)_{kiriş}}$$
(3.9)

olarak hesaplanır. Burada

I :Kolon ve kiriş elemanın atalet momenti

L :Kolon ve kiriş elemanın serbest u unluğu

Alignment çizelgeleri metodu birçok ka ule dayanmaktadır. Bu nedenle, ka ullerin ge erli olmadığı durumlarda dahi metodun kullanıla ilmesi i in, a ı dü eltmelerin yapılması gerekmektedir.

Alignment çizelgesi metodunda yapılan kabullerden biri, yatay ötelemesi nlenmemiş çerçevelerdeki tüm irleşimlerin rijit olarak ele alınmasıdır. Farklı sınır şartlarına sahip her hangi ir kiriş elemanı i in kiriş u unluğunun:

$$L_{g} \quad L_{g} \quad 2 \quad M_{F} / M_{N}$$

$$(3.10)$$

denklemi ile elirlenmesi AIS , (200) tarafından nerilmektedir. Burada

- L_{e} : Kirişin mesnetlenmemiş u unluğu
- M_F : Kiriş elemanın u ak ucunda erçevenin yatay analizinden elde edilen moment
- M_N : Kiriş elemanın yakın ucunda er evenin yatay anali inden elde edilen moment

3.2.3 apasite Tasarımı

Yük ve dayanım katsayıları metoduna g re, sistemde ulunan yapı elemanlarının, tüm dayanım sınır durumlarında yeterli kapasiteye sahip olması gerekmektedir. Bu lümde yapı elemanlarının ekme kuvveti, asın kuvveti, eğilme momenti, kesme kuvveti ve eksantrik normal kuvvet etkisi altındaki tasarım dayanımlarının hesaplanması kısaca etlenmiştir.

3.2.3.1 Çekme Tasarımı

Elemanların nominal ekme dayanımı (P_n),toplam enkesitin ekme akması ya da net enkesit alanının ekme yırtılması sınır durumlarından elde edilen en kü ük değerdir.

Toplam enkesitin ekm	e akması :	P_n	$F_{y}A_{g}$	(3.11)
Net enkesit alanın ekn	ne yırtılması :	P_n	$F_u A_e$	(3.12)

Burada

A_{e}	: Net enkesit alanı
A_{g}	: Enkesit alanı
F_{y}	: Minimum akma gerilmesi
F_{u}	: Minimum ekme dayanımı

3.2.3.2 asınç Tasarımı

Kompakt ve kompakt olmayan kesitli elamanların nominal asın dayanımı (P_n), eğilme burkulması sınır durumu esas alınarak

$$P_n \quad F_{cr}A_g \tag{3.13}$$

denklemiyle hesaplanır. Burada eğilme urkulması gerilmesi (F_{cr}) ve kritik elastik burkulma gerilmesi (F_e) :

$$\frac{KL}{r} = 4.71 \sqrt{\frac{E}{F_y}} \text{ ise, (elastik olmayan)} \qquad F_{cr} = 0.658^{\frac{F_y}{F_e}} F_y \qquad (3.14)$$

$$\frac{KL}{r} = 4.71 \sqrt{\frac{E}{F_y}} \text{ ise, (elastik)} \qquad F_{cr} = 0.877 F_e \qquad (3.15)$$

$$F_e = \frac{\frac{^2E}{KL}}{\frac{KL}{r}}^2$$
(3.16)

şeklinde hesaplanır. Burada

A_{g} : Enkesit alanı	
-------------------------	--

- *K* : Efektif u unluk katsayısı
- *L* : Serbest uzunluk
- *r* : Atalet yarı apı
- F_{v} : Minimum akma gerilmesi

3.2.3.3 ğilme Tasarımı

Kompakt g vde ve aşlıklardan oluşan ayrıca yatay mesnetlenme mesafesi L_b L_p şartını sağlayan elemanların nominal eğilme dayanımı (M_n) , sadece akma sınırı esas alınarak elirlenir. Eğer kompakt elemanlar u koşulu sağlamıyorsa nominal eğilme dayanımı, akma ve yanal urkulma sınır durumlarına g re elirlenir. ü lü ekseni (x ekseni) etrafında eğilmeye maru I kesitli elemanların, nominal eğilme dayanımı:

$$L_b \quad L_p \text{ ise } \qquad M_n \quad M_p \quad F_y Z_x$$

$$(3.17)$$

$$L_{p} \quad L_{b} \quad L_{r} \text{ ise } \qquad M_{n} \quad C_{b} \quad M_{p} \quad (M_{p} \quad 0.7F_{y}S_{x}) \quad \frac{L_{b} \quad L_{p}}{L_{r} \quad L_{p}} \qquad M_{p}$$
(3.18)

$$L_b \quad L_r \text{ ise } \qquad M_n \quad F_{cr}S_x \quad M_p \tag{3.19}$$

olarak hesaplanır. Burada

 L_b : Yatay ötelemeye karşı asın aşlığının tutulu olduğu noktalar arasındaki mesafe L_p : Plastik eğilme kapasitesine ulaşmak i in gereken mesnetlenmemiş mesafe

$$L_p \quad 1.76 \, r_y \sqrt{\frac{E}{F_y}} \tag{3.20}$$

L_r : Yanal urkulmanın elastik olmayan lgede oluşması i in gereken mesnetlenmemiş mesafe

$$L_{r} = 1.95 r_{ts} \frac{E}{0.7F_{y}} \sqrt{\frac{Jc}{S_{x}h_{o}}} \sqrt{1 - \sqrt{1 - 6.76 - \frac{0.7F_{y}}{E} \frac{S_{x}h_{o}}{Jc}}}$$
(3.21)

 F_{cr} : elastik yanal burkulma gerilmesi:

$$F_{cr} = \frac{C_b^{-2}E}{\frac{L_b}{r_{ts}}^2} \sqrt{1 - 0.078 \frac{Jc}{S_x h_o}} \frac{L_b^{-2}}{r_{ts}}^2$$
(3.22)

$$r_{ts}^2 = \frac{\sqrt{I_y C_w}}{S_x}$$
(3.23)

$$M_p = : \text{Plastik moment kapasitesi}$$

$$F_y = : \text{Minimum akma gerilmesi}$$

$$Z_x = : \text{ ekseni etrafındaki plastik kesit modülü}$$

S_{x}	: ekseni etrafındaki elastik kesit modülü
Ε	: Elastisite modülü
J	: Burulma katsayısı
C_w	: Çarpılma (arping) katsayısı
с	: I profilleri için 1.0
r_{ts}	: L_r nin elirlenmesinde kullanılan atalet yarı apı

 C_b uniform olmayan moment dağılımın etkisini yansıtan katsayıdır ve aşağıdaki denklem ile belirlenir.

$$C_{b} = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} - 3M_{A} - 4M_{B} - 3M_{C}} = 3.0$$
(3.24)

 M_A , M_B , M_C , M_{max} momentleri, elemanın serbest u unluğunun sırasıyla 1/4, 1/2, 3/4 noktalarındaki momentleri ve elemanda oluşan maksimum momentin mutlak değerleridir.

3.2.3.4 esme Tasarımı

Elemanların nominal kesme dayanımı (V_n) , kesme akması ve kesme urkulması sınır durumlarına g re

$$V_n \quad 0.6F_y A_w C_v \tag{3.25}$$

şeklinde hesaplanır. C_{ν} katsayısı g vdenin akması, elastik olmayan urkulması veya elastik urkulması sınır durumlarından irinin elirleyici olmasına ağlıdır. I kesitli elemanlar i in C_{ν} katsayısı .0 alına ilir.

3.2.3.5 ksenel u et e ğilme Momenti tkisi

Basın kuvveti ve eğilme momenti etkisindeki elemanların tasarımında, ilineer etkileşim (interaction) denklemleri:

$$\frac{P_r}{\phi_c P_n} \quad 0.2 \text{ için} \qquad \frac{P_r}{\phi_c P_n} \quad \frac{8}{9} \quad \frac{M_{rx}}{\phi_b M_{nx}} \quad \frac{M_{ry}}{\phi_b M_{ny}} \quad 1.0$$
(3.26)

$$\frac{P_r}{\phi_c P_n} \quad 0.2 \text{ için} \qquad \frac{P_r}{2\phi_c P_n} \quad \frac{M_{rx}}{\phi_b M_{nx}} \quad \frac{M_{ry}}{\phi_b M_{ny}} \quad 1.0$$
(3.27)

sağlanmalıdır. Tasarımı yapılan eleman asın kuvveti yerine ekme kuvveti etkisindeyse (3.26) ve (3.27) denklemlerinde ϕ_c yerine ϕ_t konularak kullanılır. Burada

P_r	: Gerekli eksenel asın veya ekme dayanımı
P_n	: Nominal eksenel asın veya ekme dayanımı
M_{r}	: Gerekli eğilme dayanımı
M_n	: Nominal eğilme dayanımı
ϕ_{c}	: Basın i in dayanım katsayısı (0.0)
ϕ_t	: Çekme i in dayanım katsayısı (0. 0)
$\phi_{\!_b}$: Eğilme i in dayanım katsayısı (0.0)
x	: Gü lü eksen eğilmesini simgeleyen alt simge
у	: Zayıf eksen eğilmesini simgeleyen alt simge

3.2.4 ullanılabilirlik Tasarımı

Kullanıla ilirlik sınır durumları, yapının veya elemanların kalite seviyesini tanımlar ve yapının kullanım amacına g re elirlenir. Yapıların kullanım amacını ve performanslarını k tü şekilde etkileyen davranışlar i in, (örn. sehim, yatay öteleme ve titreşim gi i) yapısal sistemlerin ve elemanların yeterli rijitliğe sahip olması gerekir. Yapılarda kullanıla ilirlik sınır durumunun aşılması, genellikle yapı işlevinin o ulması veya a alması anlamına gelir. Moment dayanımlı elik er evelerde yapı işlevini etkileyen iki nemli kullanıla ilirlik sınır durumu; sehim ve yatay ötelemedir.

Servis yüklerinden dolayı kat ve atı elemanlarında oluşan sehim, yapının kullanıla ilirliğini a altmamalıdır. AS E -0 y netmeliğinde sehim kontrolü i in verilen yük kom inasyonları

- 8. *D L*
- 9. *D* 0.5*S*

Ayrıca AS E -0 y netmeliğine g re, kirişlerin sehim sınırları:

$$\frac{L}{360}$$
 Sadece hareketli yükler, (L) etkisinde (3.28)

$$\frac{L}{240} \qquad \text{Hareketli ve sabit yük } (D \ L) \text{ etkisinde}$$
(3.29)

Yanal öteleme kontrolü, yapıların hem kullanıla ilirliği, hem de stabilitesi için oldukça önemlidir. Kat öteleme sınırları, temelde kullanıla ilirlik sınır durumlarıyla ilgilidir. Buna rağmen, araştırmalar u sınırların sisteme ilave dayanım ve rijitlik sağlamasından dolayı, er evenin deprem performansını ve sta ilitesini (*P* etkileri) arttırdığını g stermiştir. ASCE 7-0 y netmeliği, deprem yükleri altında yapı tipine ve kullanım sınıfına (occupancy category) ağlı olarak değişen teleme sınırları vermiştir. Bu sınırlar Çizelge 3.2'de görülebilir.

ani	ullanım ategorisi		
apı	I veya II	III	IV
Yığma kesme duvarlı yapılardan farklı, d rt veya daha a katlı lme duvarlı yapılar	$0.025h_{x}$	$0.020h_{x}$	$0.015h_{x}$
Konsol kesme duvarlı yığma yapılar	$0.010h_{x}$	$0.010h_{x}$	$0.010h_{x}$
Diğer yığma kesme duvarlı yapılar	$0.007h_{x}$	$0.007h_{x}$	$0.007 h_x$
Tüm diğer yapılar	$0.020h_{x}$	$0.015h_{x}$	$0.010h_{x}$

Çizelge 3.2 Öteleme sınırları (AS E -0 den alınmıştır)

 h_x kat yüksekliği

Çizelge 3.2'de verilen kat öteleme sınırları, arttırılmış kat öteleme değerleri ile karşılaştırılmalıdır. Bir katın ötelemesi, alt ve üst u larının yatay deplasmanları arasındaki farka eşittir. Arttırılmış kat ötelemesi, deprem yükünün yatay ileşeninin se ep olduğu elastik öteleme değeriyle, kullanılan yapı sisteminin tipine ağlı olan ir üyütme katsayısının (deflection amplification factor, C_d) arpımıyla hesaplanır.

Deprem yükünden dolayı oluşan yatay telemelerin, düşey yükler altında sistemde sta ilite kay ına neden olmaması i in yapının her katının sta ilitesi de ayrıca incelenmelidir. Stabilite kontrolü, yatay kuvvetin her doğrultusu ve yapının her katı için;

$$_{i} \quad \frac{P_{i}R_{i}}{V_{v_{i}}H} \tag{3.30}$$

ifadesiyle yapılır. Burada

	. Hat yakonigi
P_i	 ncelenen kat seviyesinde sabit yük ve kalıcı hareketli yük ya da geçici hareketli yükün %25'ini içeren kat ağırlığı
R	: Taşıyıcı sistem davranış katsayısı
i	: ncelenen kat seviyesinde hesaplanan yatay öteleme
V_{yi}	: ncelenen katın toplam plastik yatay geri döndürme kesme kuvveti (lateral shear

Geri döndürme kesme kapasitesi (V_{yi}) , plastik analiz metotları kullanılarak elirlenmelidir. Ancak aşağıdaki şartlar sağlandığında, u değer denklem (3.31) kullanılarak da hesaplanabilir.

Kattaki tüm irleşimler, gü lü kolon ayıf kiriş ilkesini sağlamalıdır,

ncelenen katın alt ve üst kısımlarında, moment dayanımlı a ıklık sayısı aynı olmalıdır,

ncelenen katın alt ve üst u larında, kirişlerin dayanımları aynı olmalıdır,

$$V_{yi} = \frac{2 \int_{j=1}^{n} M_{pG_j}}{H}$$
(3.31)

burada

Η

• Kat viiksekliŏi

restoring capacity) kapasitesi

 M_{pG_j} : ncelenen katın üst kısmında moment aktaran kirişlerin plastik kapasitesi n: ncelenen katın üst kısmında, moment aktaran kiriş sayısı

Eğer kattaki hiçbir kolon gü lü kolon ayıf kiriş ilişkisini sağlamıyorsa, geri d ndürme kesme kuvveti kapasitesi V_{vi} :

$$V_{yi} = \frac{2 \int_{k=1}^{n} M_{pC_k}}{H}$$
(3.32)

denklemiyle hesaplanabilir. Burada

*M*_{pCk} : ncelenen kattaki kolonların plastik moment kapasitesi (eksenel kuvvetler dikkate alınır)
 m : ncelenen kattaki kolon sayısı

Diğer durumlarda V_{vi} değeri, plastik anali metotlarıyla hesaplanmalıdır.
Düzenli ve iyi tasarlanmış ir yapıda, eğer değeri 0.3 e eşit ya da daha a sa, P etkileri, sta ilite kay ına sebep olmaz. değeri u sınırdan daha üyükse, P etkilerinin neden olduğu sta ilite kay ının olması muhtemeldir. Bu durumda, er eve ya yeniden tasarlanmalı, ya da detaylı performans y ntemleri kullanılarak P etkilerinin tam değerlendirilmesi yapılmalıdır.

Son olarak, rüzgâr yükleri i in y netmeliklerde herhangi ir kullanıla ilirlik sınır durumu verilmemiştir. Buna rağmen, literatürdeki ir ok alışmada ve AIS Tasarım aporu , (2003)'de, rüzgâr yükü için teleme sınır değeri $0.0025h_x$ olarak önerilmektedir.

3.3 Süneklik Düzeyi Yüksek Çerçe eler için Deprem Tasarım artları

Depreme dayanıklı yapı tasarımında mevcut y netmeliklerin amacı, yapının sık ve kü ük şiddetteki depremleri elastik sınırlar i inde kalarak orta şiddetteki depremleri elastik sınırların tesinde, fakat taşıyıcı sistemde kolayca onarıla ilecek nemsi hasarlarla ok şiddetli depremleri ise üyük hasarlarla fakat taşıyıcı sistem tamamen g meden, can kay 1 olmaksı ın karşılaya ilmesini sağlamaktır. Bunun için mevcut yönetmelikler, sünek davranış sergileyecek mal emelerin, yapı sistemlerinin ve detaylarının kullanılmasını destekler. Bir yapının sünek davranış sergilemesi i in, dayanımında nemli ir a alma, sta ilite kay 1 veya g me olmadan üyük elastik tesi şekil değiştirme yapa ilmesi gerekir.

Moment dayanımlı elik er eveler, depreme dayanıklı yapı tasarımında sıklıkla kullanılan yapı sistemlerinden iridir. Bu yapıların elemanları, elastik olmayan büyük şekil değiştirmeleri güvenle ger ekleştire ilecek ve dolayısıyla sistemin geneli yeterli sünek davranış sergileyecek şekilde tasarlanıp detaylandırıla ilir. Moment dayanımlı elik çerçeveler süneklik kapasitelerine göre ü sınıfta tasarlanır. Bunlar *i*) Süneklik Düzeyi Yüksek Çerçeveler (Special Moment Frame, SMF), *ii*) Süneklik Düzeyi Orta Çerçeveler (Intermediate Moment Frame, IMF) ve *iii*) Süneklik Düzeyi Normal Çerçevelerdir (Ordinary Moment Frame, OMF). Süneklik düzeyi yüksek çerçevelerin şiddetli depremler esnasında, ok üyük elastik tesi şekil değiştirmeleri güvenle yapabilmesi istenir ve tasarım şartları u amaca göre belirlenir.

Bu bölümde, AISC, (2005a) yönetmeliğindeki süneklik düzeyi yüksek çelik çerçevelerin tasarımıyla ilgili olan şartlar kısaca etlenmiştir. Ayrıca u şartların, enerji sönümlemesinin kiriş - kolon irleşim lgesinde oluşacağı er evelerin tasarımına olan etkisi değerlendirilmiştir. Süneklik dü eyi yüksek er evelerin istenilen davranışı göstermesi için, enerji sönümlemenin oluştuğu elemanların ve u elemanlara ağlanan diğer elemanların yeterli kapasiteye, rijitliğe ve şekil değiştirme kapasitesine sahip olması gereklidir. Bu kriterlerin sağlanması i in y netmeliğin verdiği şartlar ilerleyen lümlerde kısaca a ıklanmıştır.

3.3.1 AISC netmeliği

AIS, (200 a) y netmeliği, moment dayanımlı çerçeveleri, enerji sönümlemesi iki bölgede olacak şekilde tasarlar. Bu lgeler, kiriş ve kolon u larında oluşacak eğilme mafsalları ile kiriş - kolon kayma lgesinde (panel one) oluşacak kayma mafsallarıdır.

3.3.1.1 iriş e olon esitleri nkesit artları)

Kiriş ve kolon u larında oluşacak plastik mafsalların, yerel urkulmalara yol a madan yeterli plastik dönme yapabilmesi için, u elemanların kesitlerinin elirli şartları sağlaması gerekmektedir. Kesitlerin güvenilir elastik olmayan şekil değiştirme yapabilmesi için elemanın genişlik kalınlık oranı, elastik olmayan lgede de yerel urkulmanın oluşması engellenecek şekilde sınırlandırılır. AIS , (200) y netmeliği Ta lo B . de (B lüm 3.2. – i elge 3.) kompakt elemanlar i in verilen genişlik kalınlık oranları, elemanda akma aşlamadan nce yerel urkulmanın nlenmesi i in yeterlidir. Buna rağmen, mevcut deney sonu ları süneklik dü eyi yüksek er evelerde gereken elastik olmayan davranış i in u sınırın yeterli olmadığını g stermiştir. Bu nedenle, yapıların deprem tasarımlarında kullanılan u değerler AIS , (200 a) y netmeliğinde değiştirilmiştir. Bu y netmeliğe g re, sismik olarak kompakt elemanlar i in gereken genişlik kalınlık oranı sınırları (λ_{ps}) aşağıda verilmiştir:

Kiriş ve Kolon Başlıklarında Eğilme ve Uniform Basın Hali

$$\frac{b_f}{2t_f} = 0.30 \sqrt{\frac{E}{F_y}}$$
(3.33)

Kiriş vdesinde Eğilme Hali

$$\frac{h}{t_w} = 2.45 \sqrt{\frac{E}{F_y}}$$
(3.34)

Kolon vdesinde Eğilme ile era er Eksenel Kuvvet Hali

$$\frac{P_u}{\phi P_y} = 0.125 \text{ ise} \qquad \frac{h}{t_w} = 3.14 \sqrt{\frac{E}{F_y}} (1 - 1.54 \frac{P_u}{\phi P_y})$$
(3.35)

$$\frac{P_u}{\phi P_y} \quad 0.125 \text{ ise } \qquad \frac{h}{t_w} \quad 1.12 \sqrt{\frac{E}{F_y}} (2.33 \quad \frac{P_u}{\phi P_y}) \quad 1.49 \sqrt{\frac{E}{F_y}}$$
(3.36)

Eğer gü lü kolon ayıf kiriş oranı 2.0 den üyükse, kolon aşlığı ve gövdesi için genişlik kalınlık sınırları (λ_{ps}), AISC (2005b) Tablo B 4.1'deki (Bölüm 3.2.1 – Çizelge 3.1) gi i alına ilir.

U larında plastik mafsal oluşan kirişlerin, yanal urkulmaya maru kalmadan yeterli elastik olmayan şekil değiştirme yapa ilmesi i in, mesnetlenmemiş u unluğun elirli sınırları sağlaması gerekir. Kirişin alt ve üst aşlıklarının maksimum mesnetlenmemiş u unluğun değeri, L_b 0.086 $r_y E/F_y$ denkleminden elde edilen değerden kü ük olmalıdır. Bu sınır değer, ncelikle yanal doğrultuda mesnetlenme şartı ile ilgili alışmalara ve evrimsel yüke maru kirişlerin sınırlı sayıdaki deneysel alışmalarına dayanır. Ayrıca u sınırın kullanılmasıyla, yeterli süneklik sağlanana kadar yanal urkulmadan türü oluşacak dayanım azalmalarının geciktirilmesi ama lanır.

3.3.1.2 olon iriş Moment Oranı

Süneklik dü eyi yüksek er evelerin tasarımındaki mevcut yaklaşım, elastik olmayan şekil değiştirmelerin ve plastik mafsalların kolonlardan nce kirişlerde oluşmasını sağlamaktır. Bu yaklaşıma, gü lü kolon ayıf kiriş (strong column eak eam, SC/WB) ilkesi denir. Bu sayede katlarda g me mekani ması oluşturmadan, mümkün ola ildiğince ok kirişte plastik mafsal meydana gelmesi ve yüksek seviyelerde enerjinin sönümlenmesi amaçlanır. S B ilkesine göre, kiriş - kolon düğüm noktasına irleşen kolonların eğilme momenti kapasitelerinin toplamı, u düğüm noktasına irleşen kirişlerin eğilme momenti kapasiteleri toplamından daha üyük olmalıdır.

$$\frac{M_{pc}^{*}}{M_{pb}^{*}} \quad 1.0 \tag{3.37}$$

burada

 M_{pc}^{*} : Kiriş - kolon irleşim lgesinde irleşen kolonların eğilme kapasitelerinin toplamı. $M_{pc}^* = Z_c F_{vc} P_{uc}/A_g$ M_{nh}^* : Kiriş - kolon irleşim lgesinde irleşen kirişlerin eğilme kapasitelerinin $M_{nb}^* = 1.1 R_v F_{vb} Z_b = M_{uv}$ toplamı. : Kolon enkesit alanı A_{q} : Kiriş ve kolon mal emelerinin minimum akma gerilmesi F_{vb}, F_{vc} : Kiriş ve kolon plastik modülü Z_{h}, Z_{c} : Beklenen akma gerilmesinin, minimum akma gerilmesine oranı R_{v} : Plastik mafsaldaki kesme kuvvetinin kolon aksında oluşturduğu ilave moment M_{uv} : LRFD yük kombinasyonları kullanılarak hesaplanan asın dayanımı P_{uc}

Tek katlı er evelerde ve ok katlı er evelerin en üst kat düğüm noktalarında, plastik mafsalların kirişlerde veya kolonlarda meydana gelmesi kat mekani ması oluşumunu değiştirmemektedir. Bu nedenle, tek katlı inalarda ve ok katlı inaların en üst düğüm noktalarında, gü lü kolon ayıf kiriş ilkesinin uygulanmasına gerek yoktur.

3.3.1.3 iriş - Kolon irleşimleri

AIS, (200 a) y netmeliğine g re tasarlanan, süneklik dü eyi yüksek er evelerin kiriş - kolon irleşimleri aşağıda verilen şartları sağlamalıdır:

Deprem yükü taşıyan er evelerdeki kiriş – kolon irleşimleri, en a 0.0 radyan göreli kat öteleme a ısını sağlaya ilecek kapasitede olmalıdır.

reli kat teleme a 151 0.0 radyan olduğunda, irleşimin kolon yü ünde l ülen eğilme momenti, kirişin eğilme kapasitesinin 0 ninden a olmamalıdır.

Birleşimin gerekli kesme dayanımı hesaplanırken, deprem yükü etkilerinden gelen kuvvet:

$$E = 2 \ 1.1 R_y M_p \ / L_h \tag{3.38}$$

ifadesi kullanılarak belirlenmelidir. Burada

- R_{v} : Beklenen akma gerilmesinin, minimum akma gerilmesine oranı
- M_p : Kirişin nominal plastik eğilme dayanımı
- L_h : Plastik mafsal noktaları arasındaki mesafe

AISC, (2005a) deprem y netmeliğine g re, irleşimlerin yukarıdaki şartlara uygunluk kontrolleri iki metotla yapıla ilir. Bu metotlardan ilki, y netmeliğin "S" ekinde verilen yönteme g re irleşimlerin evrimsel deneylerinin yapılmasıdır. Diğer metot ise, y netmeliğin "P ekine g re süneklik dü eyi yüksek er eveler i in yeterliliği nceden g sterilmiş (ge erliliği kanıtlanmış) olan irleşim detaylarının kullanılmasıdır.

3.3.1.4 Kayma Bölgesi (Panel Zone)

AISC, (2005a) y netmeliğinde, evrimsel yükler altında kayma lgesinin yüksek miktarda sünekliğe ve sta il histeretik davranışa sahip olduğu elirtilmiş ve u konuda yapılan deneysel alışmalar (Fielding ve Huang, Kra inkler Slutter, Popov vd., 199) verilmiştir. Ancak, kolonlarda üyük arpılmalara neden olacak kadar ayıf kayma lgelerinin tasarlanması engellenmiştir. Bu ama la, kayma bölgesi kapasitesinin belirlenmesi

i in iki ayrı y ntem verilmiştir. Bunlardan ilkinde kayma lgesinin kapasitesi, bir miktar elastik olmayan gerilmelerin de oluşacağı ka ul edilerek hesaplanır. Bu kapasitenin kullanıldığı er evelerin anali lerinde, kayma lgesinde oluşan deformasyonların da modellenmesi orunludur. Diğer y ntemde ise kayma lgesinin kapasitesi elastik sınırlarda kalınarak hesaplanır ve anali lerde, u lgenin deformasyonlarının modellenmesine gerek yoktur.

Elastik olmayan davranışı da içeren kapasite:

$$P_r = 0.75 P_c \text{ için } R_v = 0.60 F_y d_c t_w = 1 - \frac{3b_{cf} t_{cf}^2}{d_b d_c t_w}$$
 (3.39)

$$P_r = 0.75P_c$$
 için $R_v = 0.60F_y d_c t_w = 1 - \frac{3b_{cf} t_{cf}^2}{d_b d_c t_w} = 1.9 - \frac{1.2P_r}{P_c}$ (3.40)

ifadesiyle hesaplanır. Elastik sınırlarda kalan kapasite ise:

$$P_r \quad 0.4P_c \text{ için } \qquad R_v \quad 0.60F_y d_c t_w \tag{3.41}$$

$$P_r = 0.4P_c \text{ için} \qquad R_v = 0.60F_y d_c t_w = 1.4 = \frac{P_r}{P_c}$$
 (3.42)

denklemleriyle belirlenir. Burada

- P_r : Gerekli eksenel dayanım
- P_c : Kolon eksenel akma dayanımı
- b_{cf} : Kolon aşlık genişliği
- t_{cf} : Kolon aşlık kalınlığı
- t_w : Kolon g vde kalınlığı
- d_b : Kiriş kesit yüksekliği
- d_c : Kolon kesit yüksekliği

3.4 Örnek inaların Tasarımı

3.4.1 Taşıyıcı Sistem Tanımı

Moment dayanımlı elik er eveli yapılar, taşıyıcı sistem dü enlemesi a ısından genellikle iki farklı şekilde tasarlanırlar. Bu sistemlerden ilki Avrupa ve aponya da yaygın olarak kullanılan, deprem yüklerinin, yapıların tüm er eveleriyle (space frame) taşınmasıdır. Bu yapılarda tüm kolon - kiriş irleşimleri, moment aktaran irleşim olarak tasarlanır. Bu yapıların en üyük avantajı, yüksek hiperstatiklik derecesine (redundancy) sahip ve depremin urulma etkilerine karşı olduk a güvenli olmasıdır. Ancak a katlı, üyük a ıklıklı yapılarda tüm irleşimleri rijit irleşim olarak yapmak, gü lü kolon ayıf kiriş ilkesinden dolayı yapının aşırı güvenli (overstrength) tasarlanmasına neden olmaktadır. rtaya ıkan u aşırı güvenli (overstrength) tasarımı gidermek i in kullanılan diğer taşıyıcı sistem dü enlemesinde ise, sadece dış er eveler (perimeter frame) deprem yükü taşıyan er eve olarak tasarlanır. er eveler ise sadece düşey yükler altında oyutlandırılır ve kiriş kolon irleşimleri mafsallı ellikle Amerika da sistemin olarak tasarlanır. yaygın olarak kullanılan u de avantajlarından iri, sistemin nispeten a hiperstatiklik derecesine (redundancy) sahip olması ve dolayısıyla yeniden dağılım imk nının sınırlı kalmasıdır. Bu yapılarda oluşan a sayıda lokal hasar, sistemin toptan göçmesine yol açabilmektedir (Astaneh, 1995). Bunun en önemli örneklerinden biri, Northridge depreminde tamamen yıkılan Kaliforniya Devlet Üniversitesi'ndeki otopark inasıdır (Elnashai ve Di Sarno 200). Bu yapıların de avantajlarından ir diğeri ise, sistemde oluşan hasarların, yapının dışmerke liğini üyük l üde arttırmasıdır. Dolayısı ile yapılar deprem esnasında, beklenenin üzerinde burulma etkilerine maru kalırlar.

Bu alışmada tasarlanan örnek inalarda, tüm er eveler yatay yük taşıyan er eve olarak dü enlenmiştir. B ylece inanın daha yüksek hiperstatiklik derecesine sahip olması ve depremin urulma etkilerine karşı daha güvenli olması sağlanmıştır. Ayrıca yarı rijit (kısmi dayanımlı) irleşimli er evelerde, gü lü kolon ayıf kiriş ilkesi uygulanmadığından, aşırı güvenli tasarım pro lemi de büyük ölçüde giderilmiştir.

Tasarlanan rnek inaların hepsi planda simetrik ir dü enlemeye sahiptir. Yatay yükler ku ey güney (K) doğrultusunda apra lı er evelerle, doğu atı (DB) doğrultusunda ise moment dayanımlı er evelerle taşınmaktadır. Bu alışmanın amacı, yarı rijit irleşimli moment dayanımlı çerçevelerin deprem davranışını incelemek olduğundan, inaların K doğrultusundaki tasarımı ve davranışı kapsam dışında tutulmuştur. Dolayısıyla sadece DB doğrultusunda yer alan moment dayanımlı er eveler tasarlanmış ve incelenmiştir.

Yapılardaki tüm er eveler deprem yükü taşıdığından, sadece tipik ir i er evenin tasarımı yapılmıştır. Ayrıca er eveler süneklik dü eyi yüksek er eveler olarak ele alınmıştır.

Bu alışmada ü katlı – ü a ıklıklı yapı, iki ayrı aks a ıklığı 7.00m ve 9.00m kullanılarak tasarlanmıştır. Ayrıca tüm yapılarda ilk kat yüksekliği .20m, diğer katların yüksekliği 3.0m olarak ele alınmıştır. Örnek yapıların planı ve oy kesiti Şekil 3.1 de verilmiştir. ncelenen çerçeve, şekil ü erinde g sterilmiştir.

b) 9.00m aks a ıklıklı

Şekil 3.1 a) 7.00m aks a ıklıklı, b) 9.00m aks a ıklıklı yapının planı ve boy kesiti

3.4.2 ük e ükleme ombinasyonları

Binaların tasarımında kullanılan düşey, rü g r ve deprem yükleri ile yükleme kom inasyonlarının elirlenmesinde, ASCE 7-0 ve IB (200) y netmelikleri kullanılmıştır.

3.4.2.1 Düşey ükler

rnek inaların tasarımında kullanılan sa it ve hareketli yükler, ofis inaları i in AS E -05 y netmeliğinin 3. ve . lümlerinde verilen kriterlere g re elirlenmiştir. Normal katlar ve atı katı i in ka ul edilen değerler Çizelge 3.3 de verilmiştir.

Yük	Çatı katı	Normal kat
Sabit Yük	$3.20 kN/m^2$	$3.20 kN/m^2$
Hareketli Yük	$1.00 kN/m^2$	$3.80 kN/m^2$

Çizelge 3.3 Ka ul edilen düşey yükler

Sa it yükler i in kullanılan değerler, yapıda ulunan sa it yüklerin yanı sıra taşıyıcı sistem elemanlarının ati ağırlığı ile mekanik ve elektrik ekipmanlarının ağırlıklarını da i ermektedir. Ayrıca lme duvarlar i in alınan $0.50 kN / m^2$ 'lik yükün normal katlara uygulanan hareketli yükün i inde olduğu ka ul edilmektedir.

3.4.2.2 Deprem Yükü

rnek inaların tasarımında kullanılan deprem yükleri, AS E -0 y netmeliğine g re elirlenmiştir. Binaların, emin sınıfı D olan ir lgede yapıldığı ka ul edilmiştir. Binalar depremselliği yüksek lgelerde yapıldığından, kısa periyot (short period) parametresi S_s 1.50g ve bir saniye periyot (one second period) parametresi S_1 0.60g alınmıştır. Bu değerler AS E -0 y netmeliğinde verilen maksimum deprem haritaları kullanılarak (ma imum considered earth uake maps) elde edilmiştir. Bu değerlerin se ilmesinin en nemli iki nedeni; *i*) Amerika daki San Andreas ve Ne Madrid gi i fayların çevresinde bulunan birçok bölgeyi temsil edebilmesi ve *ii*) Türk Deprem y netmeliğinde . derece deprem

lgeleri i in verilen tasarım spektrumuna en yakın sonu ları üretmesidir. Ayrıca inalar ofis inası olarak tasarlandığından, kullanım kategorisi II (occupancy category), yapı nem katsayısı (importance factor) olarak alınmıştır.

Deprem yükü, eşdeğer deprem yükü metodu kullanılarak AS E -0 e g re elirlenmiştir. Bu metoda göre deprem taban kesme kuvveti:

$$V = C_s W \tag{3.43}$$

denklemiyle hesaplanabilir. Burada

C_{s}	: Deprem davranış katsayısı (seismic response coefficient)
W	: Yapının efektif ağırlığı

ASCE 7-0 y netmeliğinde yapının efektif ağırlığı, yapının toplam ati yükü ile deprem esnasında yapıya etkiyeceği eklenilen hareketli yüklerinin ir kısmı olarak tanımlanmıştır. Bu yönetmeliğe g re ofis inaları i in efektif deprem ağırlığı, ati yüke, hareketli yükün bölme duvarlar için olan $0.50 \text{ kN} / m^2$ lik kısmı eklenerek hesaplana ilir.

Deprem davranış katsayısı (C_s) aşağıdaki denklem ile tanımlanmıştır:

$$C_s = \frac{S_{DS}}{\frac{R}{I}}$$
(3.44)

Burada

Ι	: Yapı nem katsayısı
R	: Taşıyıcı sistem davranış katsayısı

Denklem (3.44)'de verilen C_s deprem davranış katsayısı, aşağıda verilen sınır değerleri aşmamalıdır:

$$T \quad T_L \text{ için} \qquad C_S \quad \frac{S_{D1}}{T \quad \frac{R}{I}}$$
(3.45)

$$T \quad T_L \text{ için } \qquad C_S \quad \frac{S_{D1}T_L}{T^2 \quad \frac{R}{I}}$$
(3.46)

Ayrıca deprem davranış katsayısı (C_s), 0.0 den daha kü ük olama . Buna ek olarak, eğer yapının S_1 parametresi 0.6g değerine eşit ya da daha üyükse, C_s değeri 0.5 S_1I/R değerinden daha küçük olamaz. Burada

S_{DS}	: Kısa periyotların tasarım spektral ivme parametresi
S_{D1}	: Bir saniye periyodun tasarım spektral ivme parametresi
Т	: Yapının doğal titreşim periyodu
T_L	: Uzun periyot

Tasarım ivme spektrum parametreleri S_{DS} ve S_{D1} ,

$$S_{DS} = \frac{2}{3} S_{MS} \tag{3.47}$$

$$S_{D1} = \frac{2}{3} S_{M1} \tag{3.48}$$

kullanılarak elirlenir. Burada S_{MS} ve S_{M1} , sırasıyla kısa periyot ve ir saniye periyodu i in beklenilen maksimum depremin ivme spektrum parametreleridir. Bu parametreler, temel yer hareketi parametreleri S_s (kısa periyot parametresi) ve S_1 (bir saniye periyot parametresi)'in sırasıyla F_a ve F_v emin katsayılarıyla arpılarak:

$$S_{MS} = F_a S_S \tag{3.49}$$

$$S_{M1} = F_{\nu}S_{1}$$
 (3.50)

hesaplanır. F_a ve F_v emin katsayılarının değerleri, emin sınıfına ve temel yer hareketi parametrelerine ağlı olarak Çizelge 3.4 ve Çizelge 3.5'e göre belirlenir. S_s ve S_1 parametreleri ise y netmelikte verilen spektral ivme haritaları kullanılarak elirlenir. Bu haritalardaki değerler 0 yıllık sürede aşılma olasılığı 2 olan depremler i in, B sınıfı eminde (kaya emin) ulunan, s nümlü yapılara g re dü enlenmiştir.

Zemin	ısa periyot parametresi							
Sınıfı	<i>S_s</i> 0.25	<i>S</i> _s 0.5	<i>S</i> _s 0.75	<i>S</i> _s 1.00	<i>S</i> _s 1.25			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.2	1.2	1.1	1.0	1.0			
D	1.6	1.4	1.2	1.1	1.0			
Е	2.5	1.7	1.2	0.9	0.9			

Çizelge 3.4 F_a emin katsayısı

Çizelge 3.5 F_{v} emin katsayısı

Zemin	Bir saniye periyot parametresi						
Sınıfı	$S_1 = 0.1$	$S_1 = 0.2$	$S_1 = 0.3$	$S_1 = 0.4$	$S_1 = 0.5$		
А	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.7	1.6	1.5	1.4	1.3		
D	2.4	2.0	1.8	1.6	1.5		
Е	3.5	3.2	2.8	2.4	2.4		

Belirlenen tasarım ivme spektrum parametrelerine g re, AS E -0 y netmeliğinde tanımlanan tasarım spektrumu Şekil 3.2 de verilmiştir.

Şekil 3.2 Tasarım ivme spektrumu (AS E -0 den alınmıştır)

Yapının doğal titreşim periyodu (T), yapısal ellikler ve elemanların şekil değiştirme karakteristikleri kullanılarak modal anali y ntemiyle elirlene ilir. Ayrıca periyot, AS E - 0 y netmeliğinde moment dayanımlı elik er eveler i in verilen ampirik formül kullanılarak da belirlenebilir:

$$T_a = 0.0724 h_n^{0.8}$$
 (3.51)

Burada h_n yapı yüksekliğidir (*m*). Dayanım tasarım hesaplarında kullanılacak deprem yükü elirlenirken doğal titreşim periyodu (*T*), (3.51) denklemiyle belirlenen periyodun bir üst sınır katsayısıyla arpımından daha üyük alınama . Bu üst sınır katsayısı, S_{D1} parametresi 0.4*g* den üyük yapılar i in . dür.

Kat telemelerinin kontrolünde kullanılacak deprem yükü elirlenirken, yapının doğal titreşim periyodu ir üst sınır olmaksı ın elirlenir.

Süneklik dü eyi yüksek moment dayanımlı elik er eveler i in AS E -0 y netmeliğinde

Taşıyıcı sistem davranış katsayısı (*R*) 8

Deplasman (teleme) üyütme katsayısı (C_d) 5.5

Sistem dayanım (overstrength) katsayısı $\begin{pmatrix} 0 \end{pmatrix}$ 3 olarak verilmiştir.

Her ne kadar u değerler rijit irleşimli er eveler i in verilmiş olsa da, yarı rijit irleşimli er eveler i in karşılıkları olmadığından aynen kullanılmıştır.

3.4.2.3 Deprem ükünün Düşey Dağılımı

ASCE 7-0 y netmeliğine g re yapının katlarına etkiyen deprem kuvveti (F_x);

$$F_{x} = C_{yx}V \tag{3.52}$$

denklemi kullanılarak hesaplanır. Burada $C_{\nu x}$ düşey dağılım katsayısını, V ise yapının toplam taban kesme kuvvetini ifade eder (Denklem (3.43)). Düşey dağılım katsayısı:

$$C_{vx} = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k}$$
(3.53)

Burada w_i ve w_x yapının *i*. ve *x*. katlarındaki ağırlığı h_i ve h_x ifadeleri *i*. ve *x*. katın yüksekliğidir. Ayrıca *k* değeri, periyotla doğrusal olarak değişen üstel ir ifadedir. Eğer yapının periyodu 0.5 *sn* den kü ük ya da eşitse *k* değeri alınır. Eğer yapının periyodu 2.5 *sn* ye eşit ya da üyükse *k* değeri 2 alınır. Eğer yapının periyodu u iki sınır değer arasında ise *k* değerini hesaplamak i in ve 2 arasında doğrusal enterpolasyon yapılır.

3.4.2.4 ükleme ombinasyonları

rnek inaların tasarımında, yük ve dayanım katsayıları metodu i in verilen

- 1. 1.4D
- 2. 1.2D 1.6L $0.5L_r$
- 3. 1.2D (0.5*L* veya 0.8*W*) $1.6L_r$
- 4. 1.2D 0.5L $0.5L_r$ 1.6W
- 5. 1.2D 0.5L 1.0E
- 6. 0.9*D* 1.6*W*
- 7. 0.9D 1.0E

yükleme kom inasyonları kullanılmıştır. Ancak tasarlanan rnek inalar a katlı olduğu i in, deprem yükleri rü g r yüklerinden daha kritik olmaktadır. Bu nedenle tasarlama sürecinde sadece 2. 3. ve . yükleme kom inasyonları kullanılmıştır. Kom inasyonlarda ulunan deprem yükü etkisi (E), ASCE 7-0 y netmeliğinde hem yatay, hem de düşey deprem etkilerinin toplamı olarak aşağıdaki şekilde tanımlanmıştır:

$$E \quad E_h \quad E_v \tag{3.54}$$

Bu denklemin ilk terimi yatay deprem yükünü ifade eder ve:

$$(3.55)$$

şeklinde hesaplanır. Burada ρ hiperstatiklik "redundancy katsayısı ve Q_E yatay deprem yükü etkisidir.

(3.54) denkleminin ikinci terimi ise düşey deprem yükünü ifade eder ve

$$E_{\nu} = 0.2S_{DS}D \tag{3.56}$$

ifadesiyle hesaplanır. Burada D sabit yükü, S_{DS} kısa periyotlar i in tasarım ivme spektrum parametresini ifade etmektedir.

Deprem yükünün düşey ve yatay ileşenlerine ayrılmasıyla . ve . yükleme kom inasyonları

- 5. $(1.2 \ 0.2S_{DS})D \ \rho Q_E \ 0.5L$
- 7. $(0.9 \ 0.2S_{DS})D \ \rho Q_E$

şeklinde ifade edilir. Sonu olarak rnek inaların tasarımında kullanılan yükleme kom inasyonları Çizelge 3.6 de verilmiştir.

Yükleme K.	D	L	L_r	$Q_{\scriptscriptstyle E}$
2.	1.2	1.6	0.5	
3.	1.2	0.5	1.6	
5.	$1.2 0.2S_{DS}$	0.5		ρ
7.	$0.9 0.2S_{DS}$			ρ

Çizelge 3.6 rnek inaların tasarımında kullanılan yükleme kom inasyonları

3.4.3 Tasarım Metodu

Mevcut y netmeliklerin a ılarında (rn. AIS, 200 a, DBYBHY, 200), depremselliği yüksek lgelerde yarı rijit irleşimli moment dayanımlı er eve tasarımı mümkün değildir. Bunun yanında, Eurocode EN - (200) y netmeliğinde u tar yapıların kullanılmasına i in verilmiş olsa dahi, tasarım sürecinin tamamını kapsayan ilkeler henü tamamlanmamıştır.

Bu alışmada, er evelerin tasarımında Amerikan yönetmelikleri (AISC, 2005a, 2005b,ve ASCE 7-0) kullanılmıştır. Ancak daha nce de elirtildiği ü ere yarı rijit irleşimli er eveleri, depremselliği yüksek lgelerde y netmeliklere tamamen uygun tasarlamak mümkün değildir. Bu nedenle depremselliği yüksek bölgelerde er eveler tasarlanırken, yarı rijit irleşimlerin kullanımını engelleyen AIS (200 a) .2a (2) (k . B lüm 3.3. .3) maddesine uyulmamıştır. Ayrıca gü lü kolon ayıf kiriş ilkesi de (AISC 2005a 9.6 maddesi, k . B lüm 3.3. .2) uygulanmamıştır. Bunun yerine Eurocode EN 1998-1 (2004) y netmeliğinde verilen yaklaşıma en er olarak, kolonların irleşimlerden daha gü lü olması sağlanmıştır. Bu ama la AIS (200 a) . maddesi, kiriş kapasitesi yerine irleşim kapasitesi alınarak uygulanmıştır.

Yönetmeliklerdeki ir diğer sorun ise, yarı rijit irleşimli kirişlerin düşey yükler altında oyutlandırılmasıdır. Depremselliği yüksek lgelerde ulunan yapılar i in, y netmeliklerde u konuda herhangi ir y ntem a ık a elirtilmemiştir. Ancak depremselliği düşük lgelerde ulunan veya rü g r yükü taşıyan er evelerde kullanılan yarı rijit irleşimlere ait tasarım

kriterleri, Amerikan yönetmeliklerinde mevcuttur. Bu kriterler "*Flexible Moment Connection*" (FM) metodu adı altında AIS (200 c) de yer alır. FMC metoduna göre;

Kirişler, düşey yükler altında mesnetleri mafsallı ka ul edilerek tasarlanır.

Yatay yükler altındaki anali lerde irleşimler rijit olarak modellenir.

Birleşimler, etkiyen fakt rlü kuvvetleri taşıyacak kapasiteye sahip olmalıdır.

Birleşimler, kaynaklar ve bulonlar göçmeden, yeterli dönme kapasitesine ulaşa ilmelidir.

Bu metoda ait detaylı ilgiler Ackroyd (), esch indner (), esch indner ve Dis ue (200) de uluna ilir. FM metodu, yaptığı ka uller iti ariyle ir ok eksikliğe sahiptir. Yapının ger ek davranışının hi ir aman elirlenememesini sahip olduğu elirlenemeyen konservatifliği ile gidermektedir. Yine de yönetmeliklerde bulunan tek yaklaşım olduğundan, u alışmada tasarlanan yarı rijit irleşimli yapılarda FM metodu uygulanmıştır. Ancak yatay yük anali lerinde irleşimler, aşlangı rijitlikleri kullanılarak modellenmiştir. Birleşim tasarımları ise B lüm 2. de verildiği şekilde yapılmıştır.

Tasarlanan yarı rijit irleşimli er evelerin deprem performanslarının değerlendirilmesi aşamasında, karşılaştırma yapa ilmek i in, her tip yapı rijit irleşimli olarak da tasarlanmıştır.

ijit irleşimli yapıların tasarımı Amerikan y netmeliklerine (AIS 200 a, 200 c AS E - 0) tamamen uygun yapılmıştır. rnek er evelerin ve elemanlarının tasarımında kullanılan ilgili y netmelik maddeleri ilerleyen lümlerde a ıklanmıştır.

3.4.3.1 Stabilite Tasarımı

Yarı rijit ve rijit irleşimli tüm rnek er evelerin sta ilite anali i ve tasarımında gerekli dayanımlarının elirlenmesi i in, B lüm 3.2.2. de a ıklanan "Artırılmış Birinci Merte e Elastik Anali Metodu ile kinci Merte e Anali (second order analysis y amplified first order elastic analysis metot) metodu kullanılmıştır.

Yarı rijit irleşimli rnek er evelerde kirişler, kolonlara rijit olarak mesnetlenmediğinden efektif u unluk katsayısının elirlenmesinde, standart metodun kullanılması doğru olmamaktadır. Bu nedenle, alignment i elgesi metodunda (nomograph) kullanılan *G* terimin elirlenmesinde değiştirilmiş kiriş u unluğu kullanılmıştır. Bu sayede efektif u unluk katsayısı elirlenirken, rijitlikteki a alma hesaplara katılmıştır. Bu y ntem esch indher ve Dis ue, (200) alışmasında incelenmiş ve yarı rijit irleşimler için alignment çizelgesinde kullanılacak rijitlik oranları (3.9) ifadesi yerine,

$$G \quad \frac{(EI/L)kolon}{C^*} \tag{3.57}$$

şeklinde verilmiştir. Burada C^* terimi, kirişlerin efektif rijitliğini ifade eder ve aşağıdaki şekilde tanımlanır:

$$C^* \quad 0.5 \quad \frac{EI}{L}_{kiriş} \tag{3.58}$$

3.4.3.2 lemanların Dayanım Tasarımı

Yarı rijit irleşim kapasitelerinin belirlenmesine yönelik maddeler, Amerikan y netmeliklerinde mevcuttur. Ancak, u tip irleşimlerin rijitliklerinin elirlenmesine y nelik her hangi ir y netmelik lümü ya da tasarım raporu ulunmamaktadır. Bunun yanı sıra, Eurocode EN1993-1- y netmeliğinde, u atılmış alın levhalı irleşimlerin kapasite ve rijitliklerinin elirlenmesine y nelik tamamlanmış ir lüm ulunmaktadır. Fakat Eurocode y netmeliğinin u kısmı diğer irleşim tipleri i in henü tamamlanmamıştır.

Örnek çerçevelerin yarı rijit irleşimleri, Amerikan tasarım raporlarında (AIS 2003, AIS 2003a, AIS 2003 , AIS 2003c) verilen, B lüm 2.3.2. de a ıklanan akma i gilerine dayalı y nteme g re tasarlanmıştır. Ayrıca tasarlanan irleşimlerin kapasiteleri ve rijitlikleri Eurocode 1993 1- y netmeliğinde verilen, B lüm 2.3.2.2. de a ıklanan elemana dayalı y nteme g re hesaplanmıştır. Bu alışmada yarı rijit irleşimler i in uygulanan tasarım y ntemi rnek ir irleşim i in detaylı olarak Ek 3 de verilmiştir.

Örnek çerçevelerde ulunan kiriş elemanları, B lüm 3.3. de verilen sismik olarak kompakt olma şartlarına uygun kesitlerden se ilmiştir. Kirişlerin eğilme kapasiteleri B lüm 3.2.3.3 e g re, kayma kapasiteleri ise B lüm 3.2.3. e g re hesaplanmıştır. Ayrıca kirişlerin maksimum mesnetlenmemiş mesafeleri, B lüm 3.3. .3 de verilen şarta göre dü enlenmiştir.

Kolon elemanları B lüm 3.3. de verilen sismik olarak kompakt olma şartlarına uygun kesitlerden se ilmiştir. Kolonların asın dayanımları B lüm 3.2.3.2 e, kayma kapasiteleri B lüm 3.2.3. e ve eğilme dayanımları B lüm 3.2.3.3 e g re hesaplanmıştır. Ayrıca kolon kapasiteleri eksenel kuvvet ve eğilme momenti altında B lüm 3.2.3. e g re elirlenmiştir.

3.4.3.3 ullanılabilirlik ontrolleri

Örnek çerçeve kirişlerinin sehim kontrolleri B lüm 3.2. e g re yapılmıştır. Ayrıca çerçevelerin yatay öteleme kontrolleri, Bölüm 3.2.4'de verilen şartlara g re yapılmıştır. Buna ilave olarak, er evelerin sta ilite kontrolleri de B lüm 3.2.2 e g re yapılmıştır.

Rİ İT İRİM İInA ıklıklı (3.00m) Çerçeve

Eleman Kesitleri							
Kat Kolon Kesiti iriş esit							
3. Kat	W10X68	W16	x31				
2. Kat	W10X100	W18X40					
1. Kat	W10X112	W18	X40				
Çelik Ağırlığı (<i>ton</i>)	6.4	3.	5				

Kütle Özellikleri					
Kat	Sismik Ağırlık	Kütle (ton)			
3. Kat	604.80	61.67			
2. Kat	699.30	71.31			
1. Kat	699.30	71.31			

Periyot				
Kat	Periyot (sn)			
1 Mod	0.903			
2 Mod	0.294			
3 Mod	0.156			

irleşim Geometrisi e Moment - Dönme Özellikleri

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	-	-	-	-	-	-	-	1.00E+15
J402	-	-	-	-	-	-	-	1.00E+15
J301	-	-	-	-	-	-	-	1.00E+15
J302	-	-	-	-	-	-	-	1.00E+15
J201	-	-	-	-	-	-	-	1.00E+15
J202	-	-	-	-	-	-	-	1.00E+15

Sismik	Tasarım	Özellikleri
--------	---------	-------------

	Dayanım	Öteleme
Periyot	0.710	0.903
Sismik Davranış Katsayısı	0.106	0.083
3. Kat Kesme Kuvveti	98.69	80.0
2. Kat Kesme Kuvveti	75.02	58.6
1. Kat Kesme Kuvveti	37.85	27.9
Taban Kesme Kuvveti	211.6	166.4
3. Kat teleme ranı	-	0.011
2. Kat teleme ranı	-	0.014
. Kat teleme ranı	-	0.012

%70 **İR İM A ASİT İ** Katlı A ıklıklı (3 .00*m*) Çerçeve

Eleman Kesitleri							
Kat	Kolon Kesiti	iriș	esiti				
3. Kat	W10X68	W18	X35				
2. Kat	W10X88	W21	X50				
1. Kat	W10X100	W21	X50				
Çelik Ağırlığı (<i>ton</i>)	5.8	4.	2				

	Kütle Özellikle	ri
Kat	Sismik Ağırlık	Kütle (ton)
3. Kat	604.80	61.67
2. Kat	699.30	71.31
1. Kat	699.30	71.31

Periyot				
Kat	Periyot (sn)			
1 Mod	0.903			
2 Mod	0.294			
3 Mod	0.156			

irleşim Geometrisi e Moment - Dönme Özellikleri

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	18	220	600	22	T - 12	-	263.2	88 638
J402	18	220	600	22	T - 12	-	263.2	69 491
J301	23	240	730	29	T-15	-	435.3	158 338
J302	23	240	730	29	T-15	-	435.3	118 703
J201	23	240	730	29	-	-	435.3	102 995
J202	23	240	730	29	T-17	-	435.3	135 351

Sismik Tasarım Özellikleri					
	Dayanım	Öteleme			
Periyot	0.710	0.926			
Sismik Davranış Katsayısı	0.106	0.081			
3. Kat Kesme Kuvveti	98.69	78.23			
2. Kat Kesme Kuvveti	75.02	57.09			
1. Kat Kesme Kuvveti	37.85	26.94			
Taban Kesme Kuvveti	211.6	162.3			
3. Kat teleme ranı	-	0.011			
2. Kat teleme ranı	-	0.014			
. Kat teleme ranı	-	0.012			

88

%60 İR İM A ASİT İ Katlı A ıklıklı (3 .00*m*) Çerçeve

Eleman Kesitleri							
Kat	Kolon Kesiti	iriş	esiti				
3. Kat	W10X68	W18	X35				
2. Kat	W10X77	W21	X50				
1. Kat	W10X88	W21	X50				
Çelik Ağırlığı (<i>ton</i>)	5.3	4.	2				

	Kütle Özellikle	ri
Kat	Sismik Ağırlık	Kütle (ton)
3. Kat	604.80	61.67
2. Kat	699.30	71.31
1. Kat	699.30	71.31

Periyot				
Kat	Periyot (sn)			
1 Mod	0.975			
2 Mod	0.320			
3 Mod	0.177			

irleşim Geometrisi e Moment - Dönme Özellikleri

-

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	17	220	600	22	-	-	225.6	51 973
J402	17	220	600	22	T - 12	-	225.6	68 689
J301	20	240	700	25	T-13	-	373.1	134 731
J302	20	240	700	25	T - 13	-	373.1	102 316
J201	20	240	700	25	-	-	373.1	90 117
J202	20	240	700	25	T-15	-	373.1	118 844

Sismik Tasarım Özellikleri					
	Dayanım	Öteleme			
Periyot	0.710	0.975			
Sismik Davranış Katsayısı	0.106	0.077			
3. Kat Kesme Kuvveti	98.69	74.85			
2. Kat Kesme Kuvveti	75.02	54.11			
1. Kat Kesme Kuvveti	37.85	25.15			
Taban Kesme Kuvveti	211.6	154.1			
3. Kat teleme ranı	-	0.011			
2. Kat teleme ranı	-	0.015			
. Kat teleme ranı	-	0.013			

89

% 0 İR İM A ASİT İ Katlı A ıklıklı (3x7.00*m*) Çerçeve

Eleman Kesitleri							
Kat	Kolon Kesiti	iriş	esiti				
3. Kat	W10X68	W182	X35				
2. Kat	W10X68	W212	X50				
1. Kat	W10X77	W212	X50				
Çelik Ağırlığı (<i>ton</i>)	4.8	4.	2				

Kütle Özellikleri					
Kat	Sismik Ağırlık	Kütle (ton)			
3. Kat	604.80	61.67			
2. Kat	699.30	71.31			
1. Kat	699.30	71.31			

Periyot			
Kat	Periyot (sn)		
1 Mod	1.029		
2 Mod	0.334		
3 Mod	0.188		

irleşim Geometrisi e Moment - Dönme Özellikleri

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	15	210	590	19	-	-	188.0	49 917
J402	15	210	590	19	T - 12	-	188.0	65 294
J301	17	220	675	22	T-12	-	310.9	113 137
J302	17	220	675	22	T - 12	-	310.9	87 334
J201	17	220	675	22	-	-	310.9	75 873
J202	17	220	675	22	T – 12	-	310.9	100 439

Sismik Tasarım Özellikleri				
	Dayanım	Öteleme		
Periyot	0.710	1.029		
Sismik Davranış Katsayısı	0.106	0.073		
3. Kat Kesme Kuvveti	98.69	71.43		
2. Kat Kesme Kuvveti	75.02	51.10		
1. Kat Kesme Kuvveti	37.85	23.35		
Taban Kesme Kuvveti	211.6	145.9		
3. Kat teleme ranı	-	0.011		
2. Kat Öteleme ranı	-	0.016		
. Kat teleme ranı	-	0.014		

90

Rİ İT İRİM İKatlıA ıklıklı (3.00m) Çerçeve

Eleman Kesitleri					
Kat	Kolon Kesiti	iriş	esiti		
3. Kat	W12X96	W18	x40		
2. Kat	W12X136	W21	x62		
1. Kat	W12X152	W21	x62		
Çelik Ağırlığı (<i>ton</i>)	8.8	5.:	5		

	Kütle Özellikler	i
Kat	Sismik Ağırlık <i>kN</i>)	Kütle (ton)
3. Kat	777.60	79.29
2. Kat	899.10	91.68
1. Kat	899.10	91.68

Periyot			
Kat	Periyot (sn)		
1 Mod	0.767		
2 Mod	0.251		
3 Mod	0.130		

irleşim Geometrisi e Moment - Dönme Özellikleri

_

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	-	-	-	-	-	-	-	1.00E+15
J402	-	-	-	-	-	-	-	1.00E+15
J301	-	-	-	-	-	-	-	1.00E+15
J302	-	-	-	-	-	-	-	1.00E+15
J201	-	-	-	-	-	-	-	1.00E+15
J202	-	-	-	-	-	-	-	1.00E+15

			-
Sismik	Tasarim	Ozellikler	i
SISHIK	I agai IIII	O Lemmer	-

	Dayanım	Öteleme
Periyot	0.710	0.767
Sismik Davranış Katsayısı	0.106	0.098
3. Kat Kesme Kuvveti	126.9	118.5
2. Kat Kesme Kuvveti	96.5	89.1
1. Kat Kesme Kuvveti	48.7	44.2
Taban Kesme Kuvveti	272.0	251.9
3. Kat teleme ranı	-	0.010
2. Kat teleme ranı	-	0.012
. Kat teleme ranı	-	0.010

%70 İR İM A ASİT İ Katlı A ıklıklı (3 .00*m*) Çerçeve

Eleman Kesitleri					
Kat	Kolon Kesiti	iriş	esiti		
3. Kat	W12X96	W18	x50		
2. Kat	W12X120	W21	x73		
1. Kat	W12X136	W21	x73		
Çelik Ağırlığı (<i>ton</i>)	8.0	6.	1		

Kütle Özellikleri				
Kat	Sismik Ağırlık <i>kN</i>)	Kütle (ton)		
3. Kat	777.60	79.29		
2. Kat	899.10	91.68		
1. Kat	899.10	91.68		

Periyot				
Kat	Periyot (sn)			
1 Mod	0.835			
2 Mod	0.266			
3 Mod	0.138			

irleşim Geometrisi e Moment - Dönme Özellikleri

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	23	240	660	29	T – 14	-	399.7	120 434
J402	23	240	660	29	T-14	-	399.7	94 959
J301	27	260	765	35	T-18	-	680.7	213 049
J302	27	260	765	35	T-18	-	680.7	162 421
J201	27	260	765	35	-	-	680.7	135 614
J202	27	260	765	35	T-20	-	680.7	182 543

Sismik Tasarım Özellikleri						
	Dayanım	Öteleme				
Periyot	0.710	0.835				
Sismik Davranış Katsayısı	0.106	0.090				
3. Kat Kesme Kuvveti	126.9	110.0				
2. Kat Kesme Kuvveti	96.5	81.7				
1. Kat Kesme Kuvveti	48.7	39.7				
Taban Kesme Kuvveti	272.0	231.4				
3. Kat teleme ranı	-	0.011				
2. Kat teleme ranı	-	0.013				
. Kat teleme ranı	-	0.011				

%60 İR İM A ASİT İ Katlı A ıklıklı (3 .00*m*) Çerçeve

Eleman Kesitleri							
Kat	Kolon Kesiti	iriş Kesiti					
3. Kat	W12X96	W18x50					
2. Kat	W12X106	W21x73					
1. Kat	W12X120	W21x73					
Çelik Ağırlığı (<i>ton</i>)	7.3	6.1					

Kütle Özellikleri						
Kat	Sismik Ağırlık <i>kN</i>)	Kütle (ton)				
3. Kat	777.60	79.29				
2. Kat	899.10	91.68				
1. Kat	899.10	91.68				

Periyot				
Kat	Periyot (sn)			
1 Mod	0.874			
2 Mod	0.278			
3 Mod	0.146			

irleşim Geometrisi ve Moment - Dönme Özellikleri

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	20	230	630	25	-	-	342.6	69 285
J402	20	230	630	25	T-14	-	342.6	94 537
J301	24	260	760	32	T-15	-	583.4	179 720
J302	24	260	760	32	T-15	-	583.4	137 521
J201	24	260	760	32	-	-	583.4	118 544
J202	24	260	760	32	T – 18	-	583.4	160 158

Sismik Tasarım Özellikleri					
	Dayanım	Öteleme			
Periyot	0.710	0.874			
Sismik Davranış Katsayısı	0.106	0.0858			
3. Kat Kesme Kuvveti	126.9	105.7			
2. Kat Kesme Kuvveti	96.5	77.9			
1. Kat Kesme Kuvveti	48.7	37.4			
Taban Kesme Kuvveti	272.0	221.0			
3. Kat teleme ranı	-	0.011			
2. Kat teleme ranı	-	0.014			
. Kat teleme ranı	-	0.011			

% 0 İR İM A ASİT İ Katlı A ıklıklı (3 .00*m*) Çerçeve

Eleman Kesitleri							
Kat	Kolon Kesiti	iriş	esiti				
3. Kat	W12X96	W18	x50				
2. Kat	W12X96	W21	x73				
1. Kat	W12X96	W21	x73				
Çelik Ağırlığı (<i>ton</i>)	6.5	6.	1				

Kütle Özellikleri						
Kat	Sismik Ağırlık <i>kN</i>)	Kütle (ton)				
3. Kat	777.60	79.29				
2. Kat	899.10	91.68				
1. Kat	899.10	91.68				

Periyot				
Kat	Periyot (sn)			
1 Mod	0.929			
2 Mod	0.294			
3 Mod	0.157			

irleşim Geometrisi e Moment - Dönme Özellikleri

irleşim No.	Alın L. Kal.	Alın . Gen.	Alın . Yük.	Bulon Çapı	Tak. L. Kal.	Sürek. L. Kal.	Plastik Moment	aşlangıç Ri itliği
J401	17	220	600	22	-	-	285.5	67 467
J402	17	220	600	22	T-14	-	285.5	91 854
J301	22	240	740	29	T-14	-	486.2	153 873
J302	22	240	740	29	T-14	-	486.2	118 712
J201	22	240	740	29	T-14	-	486.2	153 873
J202	22	240	740	29	T-14	-	486.2	118 712

Sismik Tasarım Özellikleri		
	Dayanım	Öteleme
Periyot	0.710	0.929
Sismik Davranış Katsayısı	0.106	0.081
3. Kat Kesme Kuvveti	126.9	100.3
2. Kat Kesme Kuvveti	96.5	73.2
1. Kat Kesme Kuvveti	48.7	34.5
Taban Kesme Kuvveti	272.0	207.9
3. Kat teleme ranı	-	0.011
2. Kat teleme ranı	-	0.014
. Kat teleme ranı	-	0.012

4. DEPREM PERFORMANSININ DE ERLENDİRİLMESİ

Yap lar n deprem performans, belirli bir deprem etkisi alt nda bir binada oluşabilecek hasarlar n düzeyi ve dağ l m na bağl olarak belirlenen yap güvenliği durumu olarak tan mlanabilir. Yap lar n deprem performanslar n n değerlendirilmesi için, yap elemanlar n n kapasitelerinin yan s ra global ve lokal deformasyon taleplerinin de belirlenmesi gerekmektedir. Yap lar n bu taleplerinin doğru ve efektif olarak belirlenmesi ve değerlendirilmesi için uygun analiz metotlar kullan lmal d r. Mevcut yönetmeliklerde (örn. ASCE 7-05; FEMA 356, 2000 ve DBYBHY, 2007) deprem hesab ve performans değerlendirilmesi için, yap lar n doğrusal ve doğrusal olmayan davran ş kabullerine dayanan iki farkl analiz metodu tan mlanm şt r. Ayr ca bu analizlerde kullan lan metotlar, statik ve dinamik olmak üzere iki gruba ayr l r. Literatürde yap lan çal şmalarda (örn Elnashai, 2002), yap lar n deprem davran ş n n belirlenmesi için dinamik analiz metotlar n n kullan lmas n n daha uygun olduğu belirtilmiştir. Fakat bu metotlar n hesap ad mlar, statik analiz metotlar na göre daha çok ve karmaş kt r, ayr ca sonuçlar n n değerlendirilmesi de zordur.

Bu çal şmada, örnek çerçevelerin deprem performanslar n n değerlendirilmesi için "Doğrusal Olmayan Statik İtme Analizi" ve "Zaman Tan m Alan nda Dinamik Analiz" analiz metotlar kullan lm st r. Doğrusal olmayan statik itme analizi, yap lar n toplam kapasitesini ve stabilitesini değerlendirmek, ayr ca olas plastik mekanizmalar ve bunlara bağl enerji sönümleme bölgelerini belirlemek için kullan lm şt r. Dinamik analiz metoduyla karş laşt r ld ğ nda, doğrusal olmayan statik itme analizi uygulamada daha yayg n olarak kullan lmaktad r. Bunun başl ca nedeni, dinamik analiz metotlar n n yoğun hesap ad mlar ve modelleme zorluklar olmadan, eleman n ve sistemin deformasyon taleplerinin kabul edilebilir doğrulukla hesaplanabilmesidir. Ancak henüz pek çok problem ve k s tlama (Krawinkler and Seneviratna 1998) doğrusal olmayan statik analiz metodunda aş labilmiş değildir. Doğrusal olmayan statik analiz metodunun bu problemlerini ve k s tlamalar n aşabilmek için son y llarda yap lan çal şmalarda birçok yenilik önerilmiştir (Bracci vd., 1997; Elnashai, 2001; Chopra ve Goel, 2002; Antoniou ve Pinho 2004; Ayd noğlu, 2004). Buna rağmen eğer yap da, yap sal bir düzensizlik ya da yer hareketinin doğas nda farkl bir özelliği (genliği, etkin süresi, faz özellikleri vb.) mevcutsa yeni geliştirilen metotlar da yeterli ve güvenilir sonuçlar sağlamayabilir. Bu k s tlamalardan dolay, yap lar n deprem performanslar n n değerlendirilmesinde, doğrusal olmayan dinamik analiz metotlar n n kullan lmas da gerekmektedir (Elnashai, 2002). Dolay s yla, bu çal şmada örnek çerçevelerin davran şlar n, global ve lokal tepkilerini değerlendirmek için doğrusal olmayan statik itme analiziyle beraber zaman tan m alan nda doğrusal olmayan dinamik analizleri de yap lm şt r.

4.1 Doğrusal Olmayan Statik İtme Analizi

Doğrusal olmayan statik itme analiziyle, yapının taşıma kapasitesi, yer değiştirme kapasitesi, global ve lokal talepleri belirlenebilir. Bu analiz metodunda, sa it düşey yükler altındaki çerçeveye, monotonik olarak artan yatay yükler (deplasman veya kuvvet) etkitilir. Yatay yük arttırma işlemi genellikle ir kontrol noktasının daha nceden elirlenen yatay deplasman değerine ulaşmasına kadar veya taban kesme kuvvetinin belirlenen değere ulaşmasına kadar devam ettirilir. FEMA 356, (2000) kontrol noktasının yatay deplasman değerini belirlemek için, hedef deplasmanın 0 katını nermektedir. Hedef deplasman, tasarım depremi süresince ulaşılması eklenilen maksimum tepe deplasmanı olarak tanımlana ilir.

Statik itme analizinde, yapı yatay olarak yer değiştirdik e, yapısal deformasyonlar ve i kuvvetler devamlı olarak tespit edilir. Ayrıca sistemde ve elemanlarda oluşan akmaların, mafsalların ve göçmelerin oluşum sırası i lenir ve yapının g me mekani ması elirlene ilir. Tasarımın ka ul edile ilirliği, hedef deplasmana ulaşmış sistemin, dayanım ve süneklik taleplerinin kontrolüyle belirlenir. Taban kesme kuvveti- tepe deplasmanı ilişkisi kapasite eğrisi olarak ifade edilir ve yapının toplam performansını yansıttığı için statik itme analizinin temel sonucudur.

Geleneksel statik itme analizinde kullanılan yatay yük dağılımı, yapının davranışı ü erinde tek bir modun hâkim olduğu varsayımına dayanır. enellikle en etkin mod olarak, yapının ilk modu se ilir ve diğer modların katkısı ihmal edilir. Bu alışmada yatay yük dağılımı yönetmeliklerde (ASCE 7-05; FEMA 356, 2000) önerilen

$$C_{vx} = \frac{w_x h_x}{n} \frac{w_i h_i^k}{w_i h_i^k}$$
(4.1)

ifadesi kullanılarak hesaplanmıştır. Burada C_{vx} katsayısı x. katın yatay kuvvet katsayısını, w_i ve w_x ifadeleri i. ve x. katın ağırlığını, h_i ve h_x ise i. ve x. katın yüksekliğini göstermektedir. Ayrıca k değeri:

şeklinde hesaplanmaktadır.

Bu alışmada, rnek er evelerin statik itme analizleri, yer değiştirme kontrollü olarak ve kuvvet a lı artımsal yatay yük etkitilerek ger ekleştirilmiştir. Artımsal yatay yükler uygulanmadan nce yapıya sa it düşey yükler etkitilmiştir. er evelere kat hi alarından etkitilen artımsal yatay yükler, y netmeliğin nerdiği ve yapının etkin (irinci) moduna yakın olan dağılımla (denklem (4.1)) uygulanmıştır. Bu yükler kontrol noktasının seçilen yer değiştirmesine ulaşılana kadar monotonik olarak artırılmıştır. Kontrol noktasının yer değiştirme değeri, yapının toplam yüksekliğinin 0 nu olarak se ilmiştir.

Statik itme analizleri sonucunda, yapıların davranışını ifade eden kapasite eğrileri (taban kesme kuvveti – tepe deplasmanı ilişkisi) elde edilmiştir. Şekil 4.1 de ü katlı .00*m* a ıklıklı, irleşim kapasitesinin kiriş kapasitesine oranı %60 olan rnek yapının kapasite eğrisi görülmektedir.

Şekil 4.1 Kapasite eğrisi

Yapının tepe noktasına ait hedef deplasman değeri, FEMA 3 (2000) de verilen katsayı metoduna g re hesaplanmıştır. Yapının, kolonlarının, kirişlerinin ve irleşimlerinin ka ul edilebilirlik kontrolleri, belirlenen hedef deplasman değerine g re yapılmıştır. Ayrıca kirişlerde, kolonlarda ve irleşimlerde oluşan akmaların, mafsalların ve g melerin yerleri ve sıraları elirlenmiştir. Son olarak yapının deprem davranışı hakkında ilgi veren yapısal dayanım katsayısı (), dayanım katsayısı (*i*) ve yer değiştirme sünekliği elirlenmiştir.

4.1.1 Hedef Deplasman

Bu alışmada, rnek yapıların tepe (kontrol) noktasının hedef deplasmanı, FEMA 3 (2000) y netmeliğinde a ıklanan "Katsayı Metodu kullanılarak elirlenmiştir. Bu metot ile yapının deplasman tale i sayısal olarak elirlene ilmektedir. Bu metotta çok serbestlik dereceli bir yapının elastik sınırlar tesinde yapacağı deplasman, tek ser estlik dereceli ir sistemin elastik sınırlar i inde yapacağı deplasmanın eşitli katsayılarla arpılması sonucu elde edilir.

Katsayı Metodunda kapasite eğrisi ilineer model ile idealleştirilir. Şekil 4.2 de idealleştirilen kapasite eğrisi g sterilmiştir. dealleştirme sırasında kapasite eğrisinin altında kalan alan ile bilineer ideal eğrinin altında kalan alan eşitlenir. Bu sırada ideal eğrinin, kapasite eğrisini akma ta an kesme kuvvetinin 0 ında kesmesi ama lanır. Kapasite eğrisinin idealleştirme yöntemi FEMA 3 (2000) de detaylı olarak verilmiştir.

a) akma sonrası pozitif eğim

) akma sonrası negatif eğim

Şekil 4.2 dealleştirilmiş kapasite eğrisi (FEMA 3 dan alınmıştır)

dealleştirilmiş kapasite eğrisi kullanılarak, efektif periyot (T_e) ve yapının hedef deplasmanı (t_t) :

$$T_e = T_i \sqrt{\frac{K_i}{K_e}}$$
(4.3)

$$_{t} \quad C_{0}C_{1}C_{2}C_{3}S_{a}\frac{T_{e}^{2}}{4^{2}} \tag{4.4}$$

denklemleri ile hesaplanır. Burada:

- T_e : Yapının efektif periyodu T_i : ncelenen doğrultuda yapının elastik doğal periyodu
- K_e : Yapının efektif yatay rijitliği

K_i	: ncelenen doğrultuda yapının elastik yatay rijitliği
C_0	: ok ser estlik dereceli sistemin tepe noktasının yatay yer değiştirmesi ile
	eşdeğer tek ser estlik dereceli sistemin spektral yer değiştirmesi arasındaki ilişkiyi oluşturan dü eltme katsayısı
C_1	: Doğrusal elastik olarak hesaplanan yer değiştirmeyi, beklenen maksimum elastik
	olmayan yer değiştirmeye d nüştüren dü eltme katsayısı
C_2	: En üyük deplasman değerindeki, histerisis enerji şeklinin etkisini hesaba katan
	dü eltme katsayısı
C_3	: kinci merte e etkileri nedeniyle artan yer değiştirmelerin etkisini göz önüne
	alan dü eltme katsayısı
S_a	: Yapının irinci doğal periyoduna karşılık gelen spektral ivme

Hedef deplasmanın (4.3) ve (4.4) denklemleriyle belirlenmesinde ardışık yaklaşım yolu izlenir. Buna göre, tahmin edilen bir hedef deplasman ile denklemler sonucunda elde edilen deplasmanın birbirine yeterince yakın olduğu nokta hedef deplasman olarak kabul edilir.

4.2 aman Tanım Alanında Doğrusal Olmayan Dinamik Analiz

Yapıların deprem davranışları ve performansları statik anali metotlarıyla tam olarak belirlenemeyebilir. Bunun en önemli nedenlerinden biri statik analiz metotlarının belirli bir (irinci) modun etkisini g nüne alması ve diğer modların katkısını ihmal etmesidir. Ayrıca literatürde yapılan alışmalarda (rn. Elnashai, 2002) da belirtilmiştir ki, depremin talep ve kapasite değerlendirmesi i in mevcut en doğru ve uygulana ilir metot, aman tanım alanında doğrusal olmayan dinamik analiz metodudur. Bunun yanında, bu metodun da a 1 orlukları mevcuttur. Bunlardan en nemlileri, anali lerde kullanılan deprem yer hareketlerinin seçilmesi ve ölçeklendirilmesi ayrıca taşıyıcı sistem elemanlarında kullanılacak histeretik modelin seçilmesidir.

aman tanım alanında doğrusal olmayan dinamik anali metodunun amacı, taşıyıcı sistemdeki doğrusal olmayan davranışları göz önüne alarak sistemin hareket denklemini deprem kaydı altında adım adım entegre etmektir. Bu anali metodunda taşıyıcı sistem elemanlarının tekrarlı yükler altındaki dinamik davranışını temsil eden i kuvvet - şekil değiştirme (histeretik davranış) ağıntıları, teorik ve deneysel ge erlilikleri kanıtlanmış olan literatürdeki ilgili alışmalardan yararlanılarak tanımlana ilir. Anali sırasında her ir aman artımında sistemde meydana gelen yer değiştirme, plastik şekil değiştirme ve i kuvvetler ile u üyüklüklerin deprem tale ine karşı gelen maksimum değerleri hesaplanır.

Yapıların aman tanım alanında doğrusal olmayan anali lerinde, ger ek depremlerden seçilen (daha nce kaydedilmiş), yapay yollarla üretilen veya en eştirilen deprem yer hareketleri kullanıla ilir. Bu alışmada yapılan anali lerde 11 farklı depremden elde edilen 25 adet ger ek (kaydedilmiş) deprem yer hareketi kullanılmıştır. Bu yer hareketlerinin 13'ü faya uzak, 2 si ise faya yakın yer hareketlerinden oluşmaktadır. Ayrıca ü farklı yer hareketi modeline (a alım ilişkilerine) g re elirlenen davranış spektrumlarına uygun adet yapay deprem yer hareketi üretilerek analizlerde kullanılmıştır. Bu yapay yer hareketlerinin 9'u faya uzak, diğer uda faya yakın yer hareketlerini yansıtmaktadır.

aman tanım alanında doğrusal olmayan dinamik anali sonucunda yapıların kesme kuvvetideplasman değerleri ve kat telemeleri elirlenmiştir. Ayrıca kiriş ve kolon elemanlarının gerilmeleri, yay d nmeleri, plastik mafsal sayıları ile irleşimlerin d nme değerleri elirlenmiştir.

4.3 Analiz Platformu ve Modelleme

Bu alışmada, örnek çerçevelerin doğrusal olmayan statik itme analizleri ve aman tanım alanında doğrusal olmayan dinamik anali leri, Illinois Üniversitesi (Urbana-Champaign) Newmark a oratuar ında geliştirilen Zeus-NL (Elnashai vd., 2002; 2008) anali programıyla yapılmıştır. Bu program statik ve dinamik yükler altında iki ve üç boyutlu çelik, betonarme ve kompozit yapıların, mal eme ve geometri akımdan doğrusal olmayan analizlerini yapabilmektedir. Zeus-NL programında doğrusal olmayan mal eme davranışı, "lif" (fibre) yaklaşımı kullanılarak tek noktada yığılı olarak değil, eleman u unluğu ve kesit yüksekliği oyunca yayılı olarak ele alınmaktadır. Ayrıca program geometrik olarak doğrusal olmayan anali yapa ildiği i in, P ve P etkilerinin ger ek i olarak g nüne alınmasını sağlamaktadır. Zeus-NL programında statik anali , değer anali i, geleneksel ve adaptif statik itme analizleri ve dinamik anali ler yapılabilmektedir.

Analizlerde çelik malzeme, Zeus-N programında tanımlı kinematik pekleşmeli ilineer elasto plastik malzeme modeli ile tariflenmiştir (Şekil 4.3). Bu model için üç parametre gereklidir: eliğin elastisite modülü (E), akma dayanımı (F_y) ve pekleşme katsayısı (). Bu

alışmada elastisite modülü olarak 200.000*MPa* alınmıştır. AIS (200 c) y netmeliği profilleri i in A 2 eliğinin kullanılmasını önerir. Bu sınıftaki eliğin minimum akma dayanımı 345*MPa*, eklenilen akma dayanımı 3 0*MPa* dır. Statik itme ve dinamik analizler yapının performans değerlendirmesi i in yapıldığından, mal eme eklenilen akma dayanımı kullanılarak modellenmiştir. Ayrıca pekleşme katsayısı da 0.01 olarak ka ul edilmiştir.

Şekil 4.3 Anali modelinde kullanılan eliğin gerilme – şekil değiştirme ilişkisi

Kiriş ve kolonlar, kübik üç boyutlu elasto plastik kiriş kolon elemanı kullanılarak modellenmiştir (Şekil 4.4). Bu eleman tipinde nümerik entegrasyonlar iki Gauss kesitinde yapılmaktadır. Her bir Gauss kesitinde gerilmeler ve şekil değiştirmeler mal eme ilişkilerine dayanan "lif" (fibre) yaklaşımıyla eleman u unluğu ve kesit yüksekliği oyunca değişken olarak elde edilir. Bu nedenle mafsal oluşması eklenen lgelerde ayrıca ir mafsal tanımlaması yapmaya gerek yoktur.

Şekil 4.4 Kübik üç boyutlu elasto plastik kiriş kolon elemanı (eus N , 2008)

Yarı rijit irleşimlerin kuvvet - deplasman ilişkileri, Zeus-N programında ulunan noktasal yaylarla tanımlanmıştır. Statik itme anali lerinde yarı rijit irleşimlerin moment d nme ilişkileri, Şekil 4.5 de g sterilen simetrik ü doğrulu düğüm elemanı kullanılarak modellenmiştir (Elnashai vd., 200). Bu tip elemanlarda rijitlik ya da dayanım a alması g nüne alınamamaktadır. Bu nedenle irleşimlerin FEMA 3 (2000) da tanımlanan dayanım a alması noktasına ulaşıp ulaşmadığı ayrıca kontrol edilmiştir.

Şekil 4.5 Simetrik ü doğrulu yay elemanı (eus-NL, 2008)

Dinamik anali lerde ise yarı rijit irleşimlerin histeretik davranışlarının modellenmesinde iki farklı kuvvet – deplasman ilişkisi kullanılmıştır. Bunlardan ilki Şekil 4.5'de görülen, simetrik kinematik pekleşmeli ü doğrulu yay elemanıdır. Bu eleman tipinde evrimsel yükler altında rijitlik a alması yoktur. Kullanılan diğer yay elemanı ise Şekil 4.6'de görülen, sabit eksenel kuvvet altında histeretik eğilme modelidir. Bu elemanda evrimsel yükler altında rijitlik a alması mevcuttur. Bu elemana ait rnek evrimsel davranış Şekil 4.7'de görülebilir.

Şekil 4.6 Sabit eksenel kuvvet altında histeretik eğilme modeli (Zeus NL, 2008)

Şekil 4.7 Sabit eksenel kuvvet alt nda histeretik eğilme modeli örnek davran ş

Örnek çerçeveler Zeus-NL program nda iki boyutlu olarak modellenmiştir (Şekil 4.8). Kolon ve kirişler, uç k s mlar daha küçük boyutlu elemanlardan oluşacak şekilde sekiz parçaya bölünmüştür. Yap ya etkiyen düşey yükler, kiriş – kolon birleşim bölgelerinden ve kirişlerin üçte bir noktalar ndan etkitilmiştir. Statik itme analizinde kullan lan yatay yük dağ l m, yap n n birinci moduna uygun olarak ters üçgen şeklinde tan mlanm ş ve çerçeveye kat hizalar ndan etkitilmiştir. Her bir kat n kütlesi ise kiriş kolon birleşim noktalar ndan y ğ l olarak tan mlanm şt r.

Şekil 4.8 Zeus-NL modeli

Dinamik anali lerde kullanılan tüm deprem yer hareketleri, kolon kiriş düğüm noktalarına eşdeğer yatay yük şeklinde etkitilmiştir. Ayrıca s nümün etkisi ayleigh s nümüyle (orantısal s nüm) tanımlanmıştır. Her ir er evenin kütle ve rijitlikle orantılı s nüm parametreleri, birinci ve üçüncü periyotlar kullanılarak 2 s nüm oranına g re elirlenmiştir. Rayleigh sönümünde sönüm matrisi (C), kütle matrisi (M) ve rijitlik matrisi (K) nın doğrusal kom inasyonudur ve

$$C \quad \alpha M \quad \beta K$$
 (4.5)

denklemiyle ifade edilir. Burada α ve β sırasıyla kütle ve rijitlik matrisi katsayılarıdır ve doğal frekanslara ağlı olarak:

$$\alpha \quad \xi \frac{2\omega_i \omega_j}{\omega_i \quad \omega_j}, \qquad \beta \quad \xi \frac{2}{\omega_i \quad \omega_j} \tag{4.6}$$

denklemleriylei ile hesaplanırlar (Chopra 2000). Burada ω_i ve ω_j , *i* ve *j* modlarının a ısal frekansları ve ξ de u modların sahip olduğu s nüm oranıdır.

4.4 Deprem Yer Hareketleri

Yapıların deprem davranışları, yapıya etkiyen yer hareketleriyle, bu yer hareketlerine maruz sistemin sürekli değişen dinamik karakteristikleri arasındaki etkileşimin sonucudur. Bu bölümde dinamik analizlerde kullanılan yer hareketlerinin seçilme, normalizasyon ve ölçeklendirilme kriterleri incelenmiştir.

4.4.1 Seçilme Kriterleri

Yer hareketi kayıtlarının seçilmesiyle ilgili literatürde yapılan alışmalar olduk a sınırlıdır. Bununla beraber, mevcut deprem yönetmeliklerinde (AISC, 2005a; Eurocode EN 1998-1; DBYBHY, 2007) de kayıtların se ilme kriterleriyle ilgili az bilgi ulunmaktadır. Literatürde yapılan alışmalarda, deprem kayıtları genellikle iki farklı şekilde seçilmektedir (Bommer ve Acevedo, 2004; Elnashai ve Di Sarno, 2008). Bunlardan ilki deprem tasarım spektrumuna göre, diğeri ise sismolojik parametrelere göre yer hareketi kayıtlarının seçilmesidir (Bommer vd., 2000). Günümüzde mevcut yönetmelikler ise yer hareketi kayıtlarının seçilmesini, sismolojik parametreler yerine tasarım spektrumuna uygunluğuna g re yapmaktadır. Bunun yanında zemin karakteristiği iyi ilinen elirli ir lge i in seçilecek yer hareketi kayıtları, hem probabilistik veya deterministik deprem tehlike analizlerinden belirlenen davranış spektrumuna uygun olmalı, hem de jeolojik ve sismolojik şartları sağlamalıdır. Özellikle tasarımda kullanılan yer ivmesi kayıtları, deprem kaynağı etkilerini (örn. deprem kaynağının tipi ve boyutu), mesafe etkilerini (faya u ak ve faya yakın) ve jeolojik etkileri (topografi, yerel emin durumlar) yansıtmalıdır. Dinamik anali lerde kullanılacak yer hareketi kayıtları aşağıdaki se eneklerden iri kullanılarak elde edile ilir (Bommer vd., 2000):

Gerçek depremlerden seçilerek ve ölçeklendirilerek,

Tasarım davranış spektrumu ile uygun yapay (artificial) kayıtlar üretilerek,

Deprem kaynağının modeline dayanan (kaynak ve dalga yayılımı ellikleri fi iksel olarak en eştirilmiş) sentetik (simulated) kayıtlar üreterek.

ASCE 7-05, IBC (2006) ve FEMA 450 (2004) gibi günümüz yönetmeliklerinde yer hareketi kayıtları, maksimum tasarım depremine uygun üyüklüğü, faya u aklığı, kaynak mekani ması ve emin koşulları olan yer hareketlerinden seçilmelidir. Bu yönetmeliklere göre analizlerde yukarıda elirtilen ellikleri sağlayan en a ü yer hareketi kullanılmalıdır. Eğer istenilen özelliklere sahip yeterli sayıda deprem kaydı mevcut değilse, gereken sayı kadar yapay olarak üretilmiş kayıtlar kullanılmalıdır. Dinamik anali lerde, en a ü en fa la altı adet yer hareketinin kullanılması durumunda, tasarımda tüm yer hareketleri için elde edilen sonu ların maksimumu g nüne alınır. Bununla beraber, en az yedi adet yer hareketinin kullanılması durumunda ise sonu ların ortalaması kullanılır.

Bu alışmada yarı rijit irleşimli er evelerin dinamik analizlerinde, hem gerçek depremlerden seçilen hem de yapay olarak üretilen yer hareketi kayıtları kullanılmıştır. 13 adet faya u ak ve 2 adet faya yakın ger ek yer hareketi se ilmiş ve anali lerde kullanılmıştır. Ayrıca 3 farklı a alım ilişkisi kullanılarak, adet faya u ak ve adet faya yakın yapay yer hareketi kaydı üretilmiş ve kullanılmıştır.

4.4.1.1 Gerçek Deprem Yer Hareketleri

Bu alışmada kullanılan ger ek yer hareketleri, deprem üyüklüğüne (M), kaynak mekani masına, faya olan u aklığına, bölgenin zemin koşullarına ve PGA/PGV oranına göre se ilmiştir. Ayrıca kayıtlar se ilirken ATC 63 (2008) y netmeliğinde nerilen deprem kayıt setleri de dikkate alınmıştır. Bu yönetmeliğe g re yer hareketlerinin seçiminde aşağıdaki kriterler g nüne alınmalıdır.

büyük magnitüdlere sahip deprem kayıtlarını kullanmak, M = 6.5,

hem doğru atımlı (strike-slip), hem de ters atımlı (reverse) kaynak mekani masına sahip deprem kayıtları,
hem kaya, hem de sert zeminde kaydedilmiş deprem kayıtları ($V_s = 180 m/s$),

kaynak ve depremin olduğu yer arasındaki mesafeye g re (u ak mesafeli kayıtlar, 10 km daha üyük ve yakın mesafeli kayıtlar, 10 km ye eşit ya da daha kü ük),

her depremden elirli kayıt sayısı kullanılarak (ir deprem i in en fa la iki kayıt),

gü lü deprem kayıtları kullanılarak, PGA = 0.2g ve PGV = 15 cm/s.

Ayrıca AT 3 (200) deprem kayıtlarının seçimini, tüm yapı tiplerine uygun olmasını ve farklı deprem lgelerinde kullanıla ilir olmasını g nüne alarak yapmıştır. Bununla era er, u alışmada kullanılan yer hareketleri, en büyük yer ivmesinin (PGA) en büyük yer hı ına (PGV) oranına (PGA/PGV) göre de gruplandırılmıştır.

Sawada vd. (1992) alışmasında düşük PGA/PGV oranlı yer hareketlerinin, geniş davranış spektrum, askın düşük frekans, u un etkin süre, orta ve yüksek üyüklüklü deprem ve uzak merkez üssü mesafe özelliklerine sahip olduğunu elirtmiştir. Buna karşın yüksek PGA/PGV oranlı kayıtların ise dar davranış spektrumu, askın yüksek frekans, kısa etkin süre, kü ük ve orta üyüklüklü deprem ve kısa merke üssü mesafe elliklerine sahip olduğunu elirtmiştir. Broderick ve Elnashai (1996), Elnashai ve McClure (1996) alışmalarında ise zemin şartlarının tam olarak ilinmediği lgelerde yapılan yapıların deprem davranışlarını incelemek i in u yaklaşım kullanılmıştır. Rijit yapılarda, PGA/PGV oranı yüksek olan yer kayıtları etkili olurken, daha esnek (fle i le) yapılarda, PGA/PGV oranı düşük olan yer kayıtları etkili olmaktadır. PGA/PGV oranı için yaklaşık aralıklar:

düşük
$$PGA/PGV = 0.8$$
 (4.7)

orta 0.8 PGA/PGV 1.2 (4.8)

yüksek
$$PGA/PGV$$
 1.2 (4.9)

şeklinde verilmiştir. Burada en büyük ivme (*PGA*) değeri g cinsinden ve en üyük hı (*PGV*) değeri m/s cinsinden verilmiştir.

Anali lerde kullanılmak ü ere se ilen yer hareketi kayıtları, deprem kaynağı ile yapının olduğu lgenin arasındaki mesafeye göre iki gruba ayrılmıştır. lk gruptaki yer hareketleri faya uzak deprem kayıtlarından, diğer grup ise faya yakın deprem kayıtlarından oluşmaktadır. Se ilen deprem yer hareketi kayıtlarının ellikleri detaylı olarak Ek 4'de verilmiştir.

Ayrıca her ir gruptaki yer hareketi kayıtları PGA/PGV oranlarına g re de sınıflandırılmıştır. Seçilen faya u ak yer hareketi kayıtları Çizelge 4.1 de ve u kayıtların PGA'ya göre normali e edilmiş ivme spektrumları Şekil 4.9'da verilmiştir.

				ovut	Mos	Zom			PGA
No	ıl	Deprem	\mathbf{M}	ayn İstasyonu	$(km)^a$	Sinifi ^b	ileşeni	(g)	\overline{PGV}
				Istasyonu	(1111)	Simili		(8)	(g/ms-1)
1	1999	Kocaeli	7.5	Düzce	15.4	D	DZC180	0.312	0.531
2	1989	Loma Prieta	6.9	Emeryville	77.0	D	EMY260	0.260	0.633
3	1995	Kobe	6.9	Shin Osaka	19.2	D	SHI090	0.212	0.760
4	1999	Kocaeli	7.5	Düzce	15.4	D	DZC270	0.358	0.772
5	1979	Imper.Valley	6.5	El Centro#11	12.5	D	HE11140	0.380	0.903
6	1994	Northridge	6.7	CanyonCount	12.4	D	LOS000	0.410	0.953
7	1989	Loma Prieta	6.9	Emeryville	77.0	D	EMY350	0.215	1.000
8	1976	Friuli	6.5	Tolmezzo	15.8	С	ATMZ270	0.315	1.023
9	1999	Düzce	7.1	Bolu	12.0	D	BOL000	0.728	1.291
10	1992	Cape Mend.	7.0	Rio Dell Ov.	14.3	D	RIO360	0.549	1.304
11	1995	Kobe	6.9	Nishi Akashi	7.1	С	NIS090	0.503	1.374
12	1989	Loma Prieta	6.9	Capitola	15.2	D	CAP000	0.529	1.449
13	1989	Loma Prieta	6.9	Capitola	15.2	D	CAP090	0.443	1.512

Çizelge 4.1 Faya u ak yer hareketi kayıtları

^a En yakın u aklık

^b ASCE 7-05 Tablo 20.3-1'de V_s (kayma dalgası hı 1) 760 – 1500 *m/sn* için B,

 $V_s = 360 - 760 \text{ m/sn}$ için C ve $V_s = 180 - 360 \text{ m/sn}$ i in D verilmiştir.

Şekil 4.9 Faya u ak yer hareketi kayıtları pseudo ivme spektrumu

Seçilen faya yakın yer hareketi kayıtları özellikleri Çizelge 4.2'de ve u kayıtların ivme spektrumları Şekil 4.10'de verilmiştir. Ayrıca faya u ak ve faya yakın yer hareketi kayıtlarının, ivme spektrumlarının ortalamaları Şekil 4.11'de karşılaştırılmıştır.

				ovat	Mog	Zom			PGA
No	ıl	Deprem	Μ	ayıı İstəsvonu	$(km)^a$	Zem. Smifi ^b	ileşeni	$\mathbf{r}\mathbf{G}\mathbf{A}$	\overline{PGV}
				istasyonu	(KIII)	Sinn		(g)	(g/ms-1)
1	1999	Düzce	7.1	Düzce	D	6.6	DZC180	0.348	0.580
2	1999	Düzce	7.1	Düzce	D	6.6	DZC270	0.535	0.641
3	1994	Northridge	6.7	Slymar O. V.	С	5.3	SYL360	0.843	0.650
4	1999	Kocaeli	7.5	mit	В	7.2	IZT090	0.220	0.738
5	1992	Erzincan	6.7	Erzincan	D	4.4	ERZEW	0.496	0.771
6	1976	Gazli	6.8	Karakyr	С	5.5	GAZ090	0.718	1.003
7	1989	Loma Prieta	6.9	Corralitos	С	3.9	CLS000	0.644	1.167
8	1992	Cape Mend.	7.0	Cape Mend.	С	7.0	CPM000	1.497	1.175
9	1979	Imp. Valley	6.5	Bonds Cor.	D	2.7	HBCR140	0.588	1.301
10	1994	Northridge	6.7	Arleta	D	8.7	ARL360	0.308	1.328
11	1979	Imp. Valley	6.5	Bonds Cor.	D	2.7	HBCR230	0.775	1.688
12	1985	Nahanni	6.8	Site 1	С	9.6	S1010	0.978	2.126

Çizelge 4.2 Faya yakın yer hareketi kayıtları

^a En yakın u aklık

^b ASCE 7-05 Tablo 20.3-1'de V_s (kayma dalgası hı 1) 0 - 1500 m/sn için B,

 $V_s = 360 - 760 \text{ m/sn}$ için C ve $V_s = 180 - 360 \text{ m/sn}$ i in D verilmiştir.

Şekil 4.10 Faya yakın yer hareketi kayıtları pseudo ivme spekrumu

Şekil 4.11 Faya u ak ve yakın yer hareketi kayıtlarının pseudo ivme spektrumlarının ortalamaları

Dinamik anali lerde kullanılan yer hareketi kayıtları, "PEER NGA Strong Motion" (http://peer.berkeley.edu/smcat) ve "COSMOS Virtual Data Center" (http://www.cosmoseq.org/) veri ankalarından elde edilmiştir. PEE N A veri ankasında dünyanın eşitli yerlerinde meydana gelen 160'dan fazla deprem (art ıları da i eren) sırasında l ülen 000 den fa la deprem kaydı mevcuttur. Her ir deprem kaydı, ivmenin iki yatay ileşenini ve düşey ileşenini i ermektedir. Bu veri ankası i lerinde Türkiye Deprem Araştırma Enstitüsü nün de ulunduğu ulusal ve uluslararası ir ok kaynağı i ermektedir.

4.4.1.2 Yer Hareketi Modelleri (Azalım İlişkileri)

Yer hareketi modelleri (a alım ilişkileri), deprem dalgalarının i ledikleri yol oyunca enerji kayıplarını göz önüne alarak yer hareketi parametrelerini, deprem üyüklüğüne, faya u aklığına ve emin koşullarına ağlı olarak tanımlayan analitik ifadelerdir. Son 0 yılda, birçok araştırmacı tarafından değişik yer hareketi modelleri geliştirilmiştir. En üyük yer ivmesi (*PGA*), hı 1 (*PGV*), deplasmanı (*PGD*) ile spektral ivme (S_a), hı (S_v) veya deplasman (S_d) parametrelerinin belirlenmesine dayanan bu modeller deprem mühendisliğinde sıklıkla kullanılmaktadır. iteratürde yapılan ir ok alışmada (Trifunac ve Brady, 1976; Idriss, 1978; Boore ve Joyner, 1982; Campell, 1985; Joyner ve Boore, 1988, Ambraseys vd., 1996; Boore vd., 1997; Ambraseys ve Douglas, 2003) farklı a alım ilişkileri nerilmiş ve değerlendirilmiştir. Ayrıca dünya geneli için a alım ilişkilerinin kapsamlı özetleri Douglas (2001, 2002, 2004) tarafından yapılmıştır.

Bu alışmada, Ambraseys vd. (1996), Boore vd. (1997); Ambraseys ve Douglas (2003) alışmalarında verilen a alım ilişkileri kullanılarak faya yakın ve faya u ak yer hareketlerini yansıtan davranış ivme spektrumları elde edilmiştir. Bunun nedeni faya yakın ve faya uzak deprem kayıtlarının, yarı rijit irleşimli moment dayanımlı er eveler ü erindeki etkilerinin incelenmesi ve karşılaştırılmasıdır. Bu bölümde alışmada kullanılan ü a alım ilişkisiyle ilgili özet bilgi verilmiştir.

Ambraseys vd. (1996)

deprem tehlike değerlendirmelerinde mühendisliği Avrupa'da yapılan ve yapı uygulamalarında kullanıla ilecek yer hareketi modelinin belirlenmesi için en kapsamlı ve sistematik alışmalar, Am raseys tarafından yapılmıştır. Ambraseys vd. () alışmasında rta Doğu i in bir a alım ilişkisi geliştirmiştir. Bunun için yü ey dalgası Avrupa ve büyüklükleri (M_s) (surface wave magnitude) 4.0 ile 7.9 arasında değişen ve kaynak u aklığı en fazla 200 km olan depremden alınan 422 yatay deprem kaydı kullanılmıştır. Maksimum yatay yer ivmesi ve davranış spektrumu değerleri i in genel a alım ilişkisi modeli:

$$\log(y) \quad C_1 \quad C_2 M \quad C_4 \log(r) \quad C_A S_A \quad C_S S_S \qquad P \tag{4.10}$$

olarak verilmiştir. Burada y tahmin edilen değer (u durumda g cinsinden maksimum yer ivmesi veya davranış spektrumu katsayısı), M moment üyüklüğü ve r:

$$r \quad \sqrt{d^2 \quad h_0^2} \tag{4.11}$$

ile ifade edilmiştir. Bu ifadede *d* mesafe (*km*) ve h_0 ise C_1, C_2, C_4, C_A C_S ve katsayılarıyla era er verilen bir sabittir. Bu katsayılar Am raseys vd., () alışmasında periyoda ağlı olarak verilmiştir. S_A ve S_B zemin tipine ağlı katsayılardır. Bu alışmada ü farklı emin sınıfını dikkate almışlar ve u emin sınıflarına g re kullanılan katsayıları Çizelge 4.3'de verildiği gi i tanımlamışlardır.

Kayma dalgası hı 1, V_s (m/sn) Zemin tipi S_A S_{B} $V_{\rm c}$ 750 0 Kaya 0 360 V_{s} 750 1 0 Sert Yumuşak 180 V_s 360 0 1

Çizelge 4.3 Ambraseys vd., 1996 alışmasında verilen katsayıların değerleri

Boore vd. (1997)

Boore vd., () tarafından geliştirilen a alım ilişkisinde, deprem üyüklükleri (M) 5.2 ile
arasında değişen ve faya u aklığı en fa la 20 km olan Ku ey Batı Amerika da meydana
gelen 20 depremden elde edilen 2 yatay deprem kaydı kullanılmış ve a alım ilişkisi:

$$\ln Y \quad b_1 \quad b_2(M \quad 6) \quad b_3(M \quad 6)^2 \quad b_5 \ln r \quad b_V \ln \frac{V_s}{V_A}$$
(4.12)

olarak nerilmiştir. Bu denklemde Y yer hareketi parametresidir (*PGA*), M moment üyüklüğü ve V_s 30 m i in ortalama kayma dalgası hı ıdır. r odak u aklığıdır ve:

$$r \quad \sqrt{r_{jb}^2 \quad h^2} \tag{4.13}$$

şeklinde tanımlanmıştır. r_{jb} faya olan u aklığı, h da regresyon analizlerinden elde edilen hayali u aklığı ifade edder. h, b_1 , b_2 , b_5 , b_V ve V_A katsayıları Boore vd. () alışmasında periyoda ağlı olarak verilmiştir. Bu a alım ilişkisinde de emin koşulları g nüne alınmış ve emin kayma dalgası hı larına g re sınıflandırılmış ü ayrı emin sınıfı kullanılmıştır (Çizelge 4.4).

Çizelge 4.4 Boore vd., 1997 alışmasında kullanılan emin sınıfları

Zemin tipi	Kayma dalgası hi 1, V_s (m/sn)
A Sınıfı	<i>V</i> _s 750
B Sınıfı	360 V _s 750
sınıfı	V_s 360

Ambraseys ve Douglas (2003)

Dünya genelinde uygulana ilir ir a alım ilişkisi geliştirmek i in yapılan alışmalar 1980'lerden bu yana devam etmektedir. Am raseys ve Douglas (2003) alışmasında yüzey dalgası üyüklükleri (M_s) 5.83 ile 7. arasında değişen depremin yatay ileşeni kullanılmış ve a alım ilişkisi:

$$\log y \quad b_1 \quad b_2 M_s \quad b_3 d \quad b_A S_A \quad b_S S_s \tag{4.14}$$

şeklinde nerilmiştir. Bu denklemde, d faya olan u aklığı g sterir ve b_1 , b_2 , b_3 , b_A ve b_s , katsayılarıyla era er verilen ir sa ittir. Bu katsayılar Am raseys ve Douglas (2003)

alışmasında periyoda ağlı olarak verilmiştir. S_A ve S_B ifadeleri de emin tiplerine ağlı olarak elirlenen katsayıları g sterir. Bu alışmada ü farklı emin sınıfını dikkate almışlar ve bu zemin sınıflarına g re katsayıları Çizelge 4.5. de verilen şekilde tanımlamışlardır. Ayrıca bu a alım ilişkisi i in kullanılan kayıtların en nemli ellikleri faya yakın kayıtlardan se ilmeleridir. Kullanılan kayıtların faya en üyük u aklıkları *km* alınmıştır.

Zemin tipi	Kayma dalgası hı 1, V_s (m/sn)	S_A	S_{B}
Kaya	<i>V_s</i> 750	0	0
Sert	$360 V_s 750$	1	0
Yumuşak	180 V_s 360	0	1

Çizelge 4.5 Ambraseys ve Douglas, 2003 alışmasında verilen katsayıların değerleri

Türkiye de kaydedilen kuvvetli yer hareketi ivmelerinin a sayıda olması, diğer ülkeler i in geliştirilen a alım ilişkilerinin kullanılmasını orunlu kılmaktadır. Ülkemizdeki kuvvetli yer hareketi verilerinin Ku ey Batı Amerika verileriyle uyumlu olduğu g sterilmiş ve Türkiye'de yapılacak uygulamalarda Boore vd. () tarafından geliştirilmiş olan spektral ivme a alım ilişkisinin kullanılması nerilmiştir (Erdik vd., 2003).

4.4.1.3 Yapay Deprem Yer Hareketi ayıtları

Gerçek depremlere ait yer hareketi kayıtları, kaynak mekani masından, deprem dalgasının i lediği yolun jeolojisinden ve yerel emin şartlarından önemli ölçüde etkilenir. Dolayısıyla elirli ir lgeyi yansıtacak gerçek deprem yer hareketlerinin seçilmesi oldukça zordur. Bu nedenle, yapının ulunduğu bölgeye göre seçilen frekans i eriğine, ivme üyüklüğüne ve sarsıntı süresine uygun yapay kayıtlar üretilip kullanıla ilir. Bu alışmada deprem kaynağı ile yapının ulunduğu lge arasındaki mesafenin (faya u ak ve faya yakın), yarı rijit irleşimli çerçevelerin deprem performansı ü erindeki etkilerini incelemek i in farklı özelliklere sahip yapay deprem kayıtları üretilmiştir.

Yapay kayıtların üretilmesi için literatürde birçok metot mevcuttur. Bu metotlardan aşlıcaları yer hareketini, deterministik ve stokastik olarak modelleyen metotlardır ve Lam vd. (2000) alışmasında detaylı olarak incelenmiştir. Yapay kayıtların üretim süreci iki temel orluğu içerir: i) kayıtların davranış spektrumuna uygunluğunun sağlanması ve ii) kayıtların karakteristiklerinin ger ek olaylarla tutarlı olması. Davranış spektrumu olarak deprem tehlike analizlerinden elde edilen spektrum ya da y netmeliklerde verilen tasarım spektrumu kullanıla ilir.

Bu alışmada kullanılan yapay yer hareketi kayıtları, SIM KE – 1 (Gasparini ve Vanmarcke,

) programıyla üretilmiştir. Bu program ücretsiz olarak http://nisee.berkeley.edu/elibrary/Software/SIMQKE1ZIP internet sitesinden indirilebilir. SIMQKE – de kullanılan yaklaşımda, davranış spektrumuna uygun bir güç spektral yoğunluk fonksiyonu (power spektral density function) üretilir ve bu fonksiyondan rastgele fa a ılarına ve genliklere sahip sinüzoidal sinyaller elde edilir. Daha sonra bu sinyaller toplanır ve davranış spektrumuyla eşleşmeyi iyileştirmek i in iteratif ir y ntem kullanılır.

Literatürde yapılan alışmalarda birçok sismolojik ve jeofizik parametrelerin, davranış spektrumunun şeklini etkilediği gösterilmiştir. Am raseys vd., (1996), Boore vd., (1997), Ambraseys ve Douglas (2003), Bommer ve Acevedo (200) alışmalarında deprem üyüklüğünün (magnitude), deprem kaynağıyla yapının ulunduğu ölgenin arasındaki mesafenin ve emin sınıfının, davranış spektrumu ü erindeki etkilerini incelemişlerdir. Yapılan bu alışmalarda, davranış spektrumunun ampirik olarak elirlenmesinde a alım ilişkileri kullanılmaktadır. A alım ilişkileri davranış spektrumu parametrelerinin, deprem üyüklüğüne, faylanma mekani masına, faya u aklığına ve yerel emin koşullarına ağlı olarak tahmin edilmesini sağlamaktadır.

Bu alışmada üretilen faya yakın ve faya uzak yer hareketi kayıtları için davranış ivme spektrumunun belirlenmesinde Ambraseys vd., (1996), Boore vd., (1997) ve Ambraseys ve Douglas (2003) tarafından nerilen ü a alım ilişkisi kullanılmıştır. A alım ilişkilerindeki deprem üyüklükleri ve u aklıkları, elde edilen faya yakın ve faya u ak davranış spektrumlarının tasarım deprem seviyesini yansıtacak şekilde elirlenmiştir. Bu ama la elde edilen davranış hı spektrumunun 0.00*sn* ile 2.00*sn* arasında altında kalan alanın tasarım hı spektrumunun altında kalan alanla aynı olması sağlanmıştır. Faya yakın ve faya u ak davranış spektrumları i in elirlenen deprem üyüklükleri ve u aklıkları çizelge 4.6'de verilmiştir. Bu değerler kullanılarak elde edilen davranış spektrumları (ivme, hı ve deplasman spektrumları) Şekil 4.12'de g sterilmiştir.

	Ambraseys 1996		Boor	e 1997	Ambraseys 2003	
	M_{s}	zaklık	М	zaklık	M_{s}	zaklık
Faya akın	6.18	5km	6.17	5km	6.27	5km
Faya Uzak	7.13	20 <i>km</i>	7.18	20 <i>km</i>	7.43	20 <i>km</i>

Çizelge 4.6 Faya yakın ve faya u ak davranış spektrumları i in deprem parametreleri

114

Şekil 4.12 A alım ilişkilerinden elde edilen faya yakın ve faya u ak davranış spektrumları

SIMQKE – programı kullanılarak bu üç a alım ilişkisinden elde edilen davranış spektrumlarına uygun, ü ü faya u ak ve ü ü faya yakın toplam 18 adet yapay yer hareketi üretilmiş ve Ek de verilmiştir. Yapay yer hareketi kayıtlarının süreleri 2 sn ve aman artış aralıkları da 0.01*sn* olarak alınmıştır. Yer hareketleri üretilirken ü farklı trape şiddet arfı ve ü farklı fa a ısı kullanılmıştır. retilen yapay yer hareketi kayıtlarının ü a alım ilişkisiyle elde edilen davranış spektrumlarına uygunluğu Şekil 4.13'da gösterilmiştir.

Şekil 4.13 Yapay kayıt spektrumlarının davranış spektrumuyla karşılaştırması

4.4.2 Normalizasyon ve Ölçeklendirme

Deprem yer hareketi kayıtları kendilerine has özellikleri (örn. maksimum yer ivmesi, etkin süreleri, frekans i eriği v.b.) a ısından eşitlilik g sterirler. Yer hareketinin bir girdi parametresi olarak deprem talebi üzerindeki etkisini incelemek için, aynı şiddet seviyelerine sahip kayıtların kullanılması orunludur. Bu nedenle, yer hareketi kayıtlarının benzer bir şiddet seviyesi göstermesi için, ölçeklendirme işlemi uygulanmalıdır. 1 eklendirme işlemi temelde iki adımdan oluşur. Ik olarak kayıtlar, aralarında ola ilecek üyük farkları gidermek amacıyla normali e edilir. Daha sonra normali e edilen kayıtlar, belirli bir deprem etkisini yansıtmak i in 1 eklendirilir.

Günümüz deprem yönetmelikleri, bir bölgenin deprem riskini tasarım spektrumuyla g sterir ve se ilen deprem kayıtlarını belirli bir periyot aralığında, bu tasarım spektrumuyla eşleşecek ya da aşacak şekilde l eklendirir.

ASCE 7-05 ve FEMA 450 (2004) yönetmeliklerine göre, iki boyutlu analizlerde yer hareketi kayıtlarının her ir doğrultudaki yatay ileşenleri ayrı ayrı g nüne alınır. Deprem kayıtlarının ölçeklendirilmesinde öncelikle, her bir kaydın % s nüm oranına g re ivme spektrumları i ilir ve u spektrumların ortalaması hesaplanır. Daha sonra bu spektrum 0.2T ile 1.5T periyotları arasında tasarım ivme spektrumundan daha a olmayacak şekilde, yer hareketi kayıtları ölçeklendirilir. Burada T göz önüne alınan deprem doğrultusunda yapının doğal titreşim periyodudur. Üç boyutlu analizlerde ise, iki yatay ileşenin karelerinin toplamının karekökü (KTKK) spektrumu kullanılarak yer hareketleri ölçeklendirilir. Buna göre, KTKK spektrumlarının ortalaması 0.2T ile 1.5T periyotları arasında tasarım spektrumu kullanılarak yer hareketleri ölçeklendirilir.

ATC 63 (2008) y netmeliğinde deprem kayıtlarının ölçeklendirilmesi iki aşamadan oluşur. lk olarak deprem kayıtları aralarındaki farklılıkları azaltmak için, en üyük yer hı larına (PGV) göre normalize edilir. Daha sonra normalize edilen bu kayıtlar, belirli bir deprem seviyesi için ölçeklendirilir. ATC 63 (2008) y netmeliğine g re deprem kayıtlarının ölçeklendirilmesi, ir farkın dışında AS E -0 y netmeliğinde verilen metotla aynıdır. Bu fark l eklendirilen kayıtların ortalamasının AS E -05'de önerilen periyot aralığında tasarım spektrumundan daha a olmaması yerine, yapının doğal periyoduna (T) karşı gelen değerlerin eşit olmasıdır.

Yönetmeliklerde verilen ölçeklendirme prosedürlerinin yanı sıra, literatürde en büyük yer hareketi parametrelerine (örn. PGA, PGV) ve spektrum şiddetine (SI) dayalı irçok ölçeklendirme metodu da nerilmiştir. Literatürdeki alışmaların ir oğunda, yer

hareketlerinin ölçeklendirilmesi *PGA* değerine g re yapılmıştır. Bu ölçeklendirme metodunun en önemli avantajları, yönetmeliklerde tanımlanan deprem yükleri ile uyuşması ve asitliğidir. Yapıların deprem davranışları, kısa periyotlu yapılarda (0. *sn*'den daha küçük periyotlar) en büyük yer ivmesi (*PGA*) tarafından, uzun periyotlu yapılarda (0. *sn*'den büyük periyotlar) en üyük yer hı 1 (*PGV*) tarafından ve ok u un periyotlu yapılarda (3.0*sn*'den üyük periyotlar) en üyük yer deplasmanı (*PGD*) tarafından elirlenir. Bu nedenle kayıtların 1 eklendirilmesinde kullanılacak yer hareketi parametresinin, incelen yapının periyoduna göre seçilmesi gerekmektedir.

iteratürde kullanılan ir diğer metot ise yer hareketlerinin hı spektrumunun şiddetine g re ölçeklendirilmesidir. Bu ölçeklendirme metodu, belirli bir periyot aralığında l eklendirilen deprem kaydının hı spektrumunun entegre edilmesiyle bulunan yapıya gelecek enerjiyle, tasarım hı spektrumdan elde edilen değerin ir irine eşit olması ka ulüne dayanır. Literatürde spektrum şiddeti ile l eklendirme i in eşitli metotlar nerilmiştir. Bu metotlardan a ıları Martine -Rueda (1998) ile Elnashai ve Di Sarno (2008) alışmalarında karşılaştırılmış ve değerlendirilmiştir.

Spektrum şiddetiyle ölçeklendirme metodunun temeli olarak bilinen Housner (1952) alışmasında, hı spektrumunun kuvvetli yer hareketi etkisindeki yapı davranışının önemli bir ölçüsü olduğu elirtilmiştir. Belirli bir bölgedeki deprem etkisi spektrum şiddetiyle (SI_H) ifade edilmiş ve u değer 0. *sn* ile 2.5*sn* periyot aralığındaki elastik hı spektrumunun altında kalan lgenin alanı olarak tanımlanmıştır:

$$SI_{H} = \frac{{}^{2.5}}{{}_{0.1}}S_{\nu}(T,\xi)dT$$
(4.15)

burada S_v hi spektrumu eğrisi, T titreşim periyodu ve ξ sönüm katsayısıdır.

Housner (denklem (4.15)) spektrum şiddeti efektif bir ölçeklendirme metodu olarak düşünülmesine rağmen, a 1 nemli davranış parametrelerinin etkisini dikkate almamaktadır (Martinez - Rueda, 1997). Bu parametreler akma periyodu, yapı hasarından dolayı periyodun u aması ve frekans tanım alanında deprem kaydının enerji dağıtımıdır. Bu kısıtlamalardan dolayı, Housner in nerdiği entegrasyon sınırlarını değiştirmek i in, araştırmacılar tarafından eşitli alışmalar yapılmıştır (Nau ve Hall, Matsumura, 2 Martinez-Rueda, 1997). U un periyotlu yapılar i in en uygun 1 eklendirme metodunun, spektrum şiddeti olduğu önemle belirtilmelidir.

Bu alışmada incelenen rijit ve yarı rijit irleşimli süneklik dü eyi yüksek moment dayanımlı çerçevelerin periyotları genellikle uzundur (0.7 - 1.2 sn). Bu nedenle dinamik analizlerde kullanılan gerçek yer hareketi kayıtları, öncelikle spektrum şiddeti metodu ile normali e edilmiş, ardından ASCE 7-05'de verilen yönteme göre 0.8T ile 1.5T sınırları kullanılarak

l eklendirilmiştir. Bu alışmada Housner in alışmasındaki entegrasyon sınırlarından farklı olarak yapının periyoduna ağlı entegrasyon sınırları kullanılmıştır. Bu sınırlar 0.8*T* ile 1.5*T* olarak alınmıştır. Şekil 4.14'de spektrum şiddeti metoduna göre ölçeklendirilen bir deprem kaydının (oma Prieta depremi AP0 0 ileşeni) ivme ve hı spektrumları verilmiştir. Ayrıca her yer hareketi kaydının 1 eklendirilmesinde kullanılan katsayılar Çizelge 4.7 de verilmiştir.

a) Loma Prieta (Capitola) depremi AP0 0 ileșeni ivme spektrumu

b) Loma Prieta (Capitola) depremi APO 0 ileşeni hı spektrumu

-		7.0m A	çıklıklı		9.0m Açıklıklı			
Depremin ileşeni	Rijit	%70	%60	%50	Rijit	%70	%60	%50
ARL360	1.838	1.838	1.880	1.880	1.699	1.773	1.827	1.838
ATMZ270	1.675	1.675	1.853	2.033	1.383	1.534	1.616	1.675
BOL000	0.869	0.869	0.876	0.890	0.852	0.855	0.884	0.869
CAP000	0.965	0.965	0.867	0.786	1.108	1.054	0.970	0.965
CAP090	1.390	1.390	1.458	1.449	1.172	1.299	1.326	1.390
CLS000	1.226	1.226	1.306	1.376	1.110	1.158	1.211	1.226
CPM000	1.003	1.003	1.050	1.092	0.904	0.959	0.989	1.003
DZC180	0.989	0.989	1.041	1.087	0.940	0.946	0.993	0.989
DZC270	0.686	0.686	0.670	0.669	0.727	0.707	0.696	0.686
EMY260	0.826	0.826	0.749	0.691	1.065	0.913	0.850	0.826
EMY350	1.477	1.477	1.343	1.251	1.641	1.561	1.497	1.477
ERZEW	0.917	0.917	0.907	0.902	0.949	0.925	0.919	0.917
GAZ090	1.246	1.246	1.227	1.195	1.254	1.258	1.260	1.246
HBCR140	1.025	1.025	1.120	1.218	0.876	0.944	1.018	1.025
HBCR230	0.913	0.913	0.935	0.974	0.882	0.912	0.916	0.913
HE11230	1.877	1.877	1.827	1.827	2.081	1.984	1.890	1.877
IZT090	2.187	2.187	2.005	1.835	2.371	2.307	2.228	2.187
KDZC180	1.453	1.453	1.443	1.419	1.445	1.441	1.466	1.453
KDZC270	0.899	0.899	0.800	0.727	1.159	1.003	0.925	0.899
LOS000	1.519	1.519	1.547	1.503	1.275	1.441	1.490	1.519
NIS090	1.524	1.524	1.662	1.739	1.314	1.414	1.466	1.524
RIO360	1.490	1.490	1.429	1.387	1.564	1.543	1.499	1.490
S1010	1.373	1.373	1.350	1.323	1.455	1.406	1.394	1.373
SHI090	1.555	1.555	1.538	1.533	1.662	1.628	1.553	1.555
SYL360	0.584	0.584	0.543	0.508	0.681	0.626	0.595	0.584

Çizelge 4.7 Yer hareketi kayıtlarının 1 eklendirme katsayıları

erilen katsayılar, spektrum şiddeti y ntemine g re elde edilen katsayılar ile AS E -05 y ntemine g re elde edilen katsayıların arpımıdır.

4.5 Da ranış riterleri Sınır Durum Kriterleri)

Süneklik düzeyi yüksek rijit ve yarı rijit irleşimli moment dayanımlı çelik çerçevelerin, doğrusal olmayan statik ve dinamik analiz sonu larından elde edilen deprem davranışlarının değerlendirilmesi i in, lokal ve global davranışlarıyla ilgili belirli kriterlerin tanımlanması gerekmektedir. Bu bölümde çerçevelerin lokal ve glo al davranışlarını değerlendirebilmek için modelleme parametreleri, akma ve g me sınır durumları ile ka ul edile ilirlik şartları incelenmiş ve etlenmiştir.

4.5.1 Modelleme parametreleri

Yapıların glo al süneklikleri nemli derecede lokal sünekliğe ağlıdır. Yapılarda meydana gelen üyük elastik olmayan şekil değiştirme ve enerji s nümleme değerleri i in lokal süneklik değerlerinin de yüksek olması gerekmektedir. Yapıda ulunan elemanların lokal davranışları sistemin glo al davranışını doğrudan elirler. Bu nedenle anali lerde eleman davranışlarının ger ek i olarak modellenmesi üyük nem taşır. FEMA 3 (2000) de sünek davranışa sahip yapı elemanları i in verilen genelleştirilmiş yük - deplasman ilişkisi Şekil.4.15 de verilmiştir. Burada görülen modelleme parametreleri (a, b, c) FEMA 356 (2000)'de bulunan tablolar yardımıyla elirlenir.

Şekil.4.15 enelleştirilmiş yük – deplasman ilişkisi (FEMA 3 , 2000 den alınmıştır.)

Yapı elemanlarının davranışlarının modellenmesi ve değerlendirilmesi i in kritik davranış parametrelerinin tanımlanması gereklidir. FEMA 3, (2000) y netmeliğinde moment dayanımlı elik er evelerin eğilme etkisi kritik olan kiriş ve kolonları i in u değer, yay (chord) d nmesidir. Ben er şekilde irleşimler i in de d nme değeri, kritik davranış parametresidir. Kiriş ve kolon elemanlarının yay dönmeleri Şekil 4.16 da tariflenmiştir.

Şekil 4.16 Yay d nmeleri (FEMA 3 , 2000 den alınmıştır)

Moment dayanımlı elik er evelerin eğilme etkisi kritik kiriş, kolon ve irleşim elemanları için modelleme parametreleri Çizelge 4.8'de verilmiştir.

Flows	n Handrot	Modelleme Parametreleri			
	ш - пагекеі	a	b	c	
Kirişler Eğilme	$\frac{b_f}{2t_f} \frac{52}{\sqrt{F_{ye}}} \text{ ve } \frac{h}{t_w} \frac{418}{\sqrt{F_{ye}}}$	9 _y	11 _y	0.6	
Kolonlar P/P_{CL} 0.20	$\frac{b_f}{2t_f} \frac{52}{\sqrt{F_{ye}}} \text{ ve } \frac{h}{t_w} \frac{300}{\sqrt{F_{ye}}}$	9 _y	11 _y	0.6	
Kolonlar $0.20 P/P_{CL} 0.50$	$\frac{b_f}{2t_f} \frac{52}{\sqrt{F_{ye}}} \text{ ve } \frac{h}{t_w} \frac{300}{\sqrt{F_{ye}}}$	_1	_2	0.2	
Birleşimler U atılmış Alın ev.	Alın evhasında Eğilme	0.042	0.042	0.800	
Birleşimler Alt ve st Baş. Kor.	Korniyerlerin eğilme g .	0.042	0.084	0.200	
1 Plastik dönme:	11 1 1.7 P/P{CL} y				
2 Plastik dönme:	17 1 1.7 P/P{CL} y				

Çizelge 4.8 Çelik elemanlar için modelleme parametreleri (FEMA 356, 2000 den alınmıştır)

FEMA 3 (2000) eğriliğin, kiriş ve kolon elemanlarının tam ortasında y n değiştirdiği kabulüne dayanarak akma yay (chord) d nmesi i in aşağıdaki ifadeyi nermiştir.

$$y = \frac{M_{y}^{2}\ell}{3(M_{y} - M_{2})EI}$$
(4.16)

burada M_y kesitin akma momenti, M_2 elemanın ir ucundaki moment $(M_2 M_y)$, ℓ elemanın u unluğu, E elastisite modülü ve I atalet momentidir.

FEMA 3 (2000) y netmeliği M_2 moment değerini, M_y moment değerine eşit ka ul eder ve akma momentini:

Kirişlerde :
$$M_y Z F_{ye}$$
 (4.17)

Kolonlarda:
$$M_y \quad Z F_{ye} \quad 1 \quad \frac{P}{P_{ye}}$$
 (4.18)

şeklinde tanımlar. Burada Z kesitin plastik momenti, F_{ye} malzemenin beklenilen akma gerilmesi, P elemanın eksenel kuvveti ve P_{ye} eksenel kapasitesidir.

FEMA 3 (2000) deki u modelleme metodu, yığılı plastik mafsal elemanları kullanan analiz programları i in verilmiştir. Bu alışmada doğrusal olmayan anali ler i in kullanılan Zeus-NL programında, elemanların plastik davranışı eleman oyunca yayılı olarak g nüne alındığından, bu modelleme metodu kullanılmamıştır.

Plastik davranışın eleman oyunca yayılı olarak ele alınması, davranışın daha ger ek i olarak modellenmesini sağlamaktadır. Kiriş ve kolon elemanları i in, Zeus-NL programından elde edilen moment – yay d nmesi ilişkisinin, FEMA 3 (2000) modelleme eğrisi ile karşılaştırılması, kirişler i in Şekil 4.17'de ve kolonlar için Şekil 4.18 de verilmiştir.

Şekil 4.17 B 03 kirişinin moment –yay d nmesi ilişkisinin FEMA 3 ile karşılaştırılması

Şekil 4.18 C102 kolonunun moment –yay d nmesi ilişkisinin FEMA 3 ile karşılaştırılması

Ayrıca irleşimlerin modellenmesinde FEMA 3 (2000) de verilen iki doğrulu eğri yerine Bölüm 2.3.2 de a ıklanan "Elemana Dayalı Metot ile elde edilen ü doğrulu eğri kullanılmıştır.

4.5.2 okal Da ranış riterleri

4.5.2.1 Akma Sınır Durumu

Lokal akma sınır durumu, elastik ötesi şekil değiştirmelerin aşladığı ilk ana karşılık gelir. Doğrudan kullanılan mal emenin mekanik elliklerine ağlı olduğundan ve anali lerle elirlene ildiğinden, u sınır durumunu belirlemek nispeten kolaydır. eus-NL gibi birçok analiz programı, doğrusal olmayan mal eme davranışını eleman u unluğu ve kesit yüksekliği oyunca yayılı olarak ele almaktadır. Bu nedenle u tip akma sınır durumu, en kesitin en u noktasının şekil değiştirme değeriyle elirlenir.

Bu alışmada kiriş ve kolonların akma noktası, en kesitin en uç lifinde çeliğin akma şekil değiştirme değerinin aşıldığı an olarak ka ul edilmiştir. Birleşimlerde ise B lüm 2.3.2. ve B lüm 2.3.2.2 de a ıklanan metotlar kullanılarak elirlenen akma momentinin aşıldığı an olarak ka ul edilmiştir.

4.5.2.2 G çme Sınır Durumu

Elemanların yük taşıma kapasitesini kay ettiği noktaya g me sınır durumu denir. me anında ya da g meye yakın durumlarda yapıların ve elemanların davranışlarında ani değişiklikler oluşur. Dolayısıyla u sınır durumu belirlemek, akma sınır durumuna g re daha zordur.

Bu alışmada kullanılan eus-NL analiz programında elemanların g me sınırları tariflenememektedir. Bu nedenle, glo al ve lokal g me sınırları dışarıdan kontrol edilmiş ve herhangi ir g me sınır durumunun aşılmasından sonra elde edilen anali sonu ları kullanılmamıştır. Yapılan u kontrollerde g me sınır durumu, FEMA 356 (2000)'de tariflenen Şekil.4.15 de " olarak g sterilen ilk dayanım a alma noktası olarak ka ul edilmiştir. Bu sınır durumu Çizelge 4.8'de verilen değerler yardımıyla kirişler, kolonlar ve irleşimler i in elirlenmiştir.

4.5.2.3 Kabul edilebilirlik Kriterleri

Yapının deprem davranışının değerlendirilmesi i in, yapının doğrusal olmayan analizinden elde edilen eleman davranış değerleri, "ka ul edile ilirlik kriteri olarak ifade edilen sınır değerlerle kontrol edilmelidir. Ka ul edile ilirlik sınırları, performans seviyelerinin bir fonksiyonudur. Elemanların farklı performans seviyeleri için verilen kabul edilebilirlik sınırları, Şekil.4.19'de görülmektedir.

Deformasyon veya deformasyon oranı

Şekil.4.19 Performans seviyeleri i in ka ul edile ilirlik sınırları

Kiriş kolon ve irleşim elemanlarının, farklı performans seviyeleri için plastik dönme tale inin sınırları, FEMA 3 (2000) y netmeliğinde verilmiştir. Bu alışmada yapılar iki performans seviyesine g re değerlendirilmiştir. Bunlar seyrek depremler i in an üvenliği () (tasarım depremi) ve çok seyrek depremler için Göçmenin Önlenmesi (GÖ) (en büyük deprem) performans seviyeleridir. Bu performans seviyeleri için plastik d nme tale i sınırları

Çizelge 4.9'de görülmektedir. Bu alışmada her ne kadar FEMA 356 (2000)'de verilen modelleme metodu kullanılmamış olsa da, Çizelge 4.9'de verilen kabul edilebilirlik kriterleri akma d nmelerine ağlı olduğundan kullanılmıştır.

Ele	Eleman - Hareket			
Kirişler Eğilme	$\frac{b_f}{2t_f} \frac{52}{\sqrt{F_{ye}}} \text{ ve } \frac{h}{t_w} \frac{418}{\sqrt{F_{ye}}}$	6 _y	8 _y	
Kolonlar $P/P_{CL} = 0.20$	$\frac{b_f}{2t_f} \frac{52}{\sqrt{F_{ye}}} \text{ ve } \frac{h}{t_w} \frac{300}{\sqrt{F_{ye}}}$	6 _y	8 _y	
Kolonlar $0.20 P/P_{CL} 0.50$	$\frac{b_f}{2t_f} \frac{52}{\sqrt{F_{ye}}} \text{ ve } \frac{h}{t_w} \frac{300}{\sqrt{F_{ye}}}$	_3	_4	
Birleşimler U atılmış Alın .	Alın evhasında Eğilme	0.028	0.035	
Birleşimler Alt ve Üst B. Kor.	Korniyerlerin eğilme g .	0.025	0.035	
Plastik dönme:	8 1 $1.7 P/P_{CL}$ y			
Plastik dönme:	14 1 1.7 P/P_{CL} y			

Çizelge 4.9 Çelik elemanlar için kabul edilebilirlik kriterleri (FEMA 356, 2000'den alınmıştır)

4.5.3 Global Da ranış riterleri

4.5.3.1 Akma Sınır Durumu

Global (yapı) seviyede akma noktasının tanımlanması, lokal seviyedekine göre daha karmaşık bir durumdur. Literatürde yapı seviyesinde akma deplasmanının elirlenmesi için, Şekil 4.20'de verilen eşitli tanımlar nerilmiştir (park, 1988): i) ilk akmaya dayalı akma deplasmanı ii) ger ek sistemle aynı ilk elastik rijitliğe ve göçme yüküne sahip eşdeğer elasto plastik sisteme dayanan akma deplasmanı, iii) ger ek sistemle aynı enerji yutma kapasitesine sahip eşdeğer elasto plastik sisteme dayanan akma deplasmanı akma deplasmanı, iv) azaltılmış rijitlikli (sistemin göçme yükünün %75'indeki sekant rijitliği) eşdeğer elasto plastik sisteme dayanan akma deplasmanı.

Şekil 4.20 Yapı seviyesinde akma deplasmanı tanımları

Bu alışmada, yapı seviyesi için a ık ir akma noktası elli olmadığından, gerçek sisteme a altılmış rijitlikli eşdeğer elasto plastik idealizasyon yapılmıştır. Bu idealizasyonda göçme dayanımının inden ge en sekant rijitliği, aşlangı rijitlik değeri olarak ka ul edilmiştir. Bu rijitliğin g me dayanımına ulaştığı deplasman ise, akma deplasmanı olarak tanımlanmıştır.

4.5.3.2 Göçme Sınır Durumu

Bu alışmada glo al davranış i in yatay kat ötelemesine, g me mekani masına ve yatay dayanıma ağlı ü ayrı g me sınır durumu incelenmiştir. Bu sınır durumların tanımları, genel olarak uygulanan mevcut y netmeliklerin yanı sıra, hem deneysel hem de nümerik alışmaların sonu larına dayanmaktadır.

126

Kat Ötelemesi

Kat telemesi oranı (KÖ) "interstory drift" global seviyede, en sık kullanılan göçme kriteridir:

$$K\ddot{O}_i \quad -\frac{i}{h_i} \tag{4.19}$$

şeklinde tanımlanmıştır. Burada $_i$ değeri *i*. kat seviyesindeki yatay ötelemesi ve h_i incelenen katın yüksekliğidir. FEMA 356, (2000) y netmeliği moment dayanımlı çelik er evelerin teleme oranını, CG performans seviyesi için %2.5 ve GÖ performans seviyesi için % olarak vermiştir. Ayrıca literatürde yapılan alışmalarda (Broderick ve Elnashai, 1996; Mwafy ve Elnashai, 2001; Elnashai ve Mwafy, 2002; Di Sarno vd., 2003; Thermou vd., 2004; Mele vd., 2004 ve Elghazouli vd., 2008) yapısal hasarlar da g nüne alınarak, *KÖ*'nin üst sınırı %3 olarak kullanılmıştır. Bu alışmada *KÖ* nin üst sınırı, hem y netmeliğin verdiği sınırlar hem de literatürde yapılan alışmalarda nerilen değerler dikkate alınarak kontrol edilmiştir.

ata Da anımda alma

Moment dayanımlı elik er evelerde elemanlarının eğilme kapasiteleriyle belirlenen yapının yatay dayanım seviyesi, kuvvetli yer hareketi nedeniyle oluşan üyük yanal yer değiştirmeler esnasında maksimum seviyesine kadar artabilir. Bu noktanın aşılmasından sonra ikinci mertebe etkileri ve elemanlarda oluşa ilen dayanım a almaları nedeniyle, yapının yatay dayanımında a alma meydana gelir. Bu a alma tek aşına ir g me durumunu elirtmese de, u noktanın aşılmasından sonra dayanımda oluşan nemli ir a alma sta il ve güvenilir olmayan davranışı ifade eder. Literatürde yapılan alışmalar, yapının maksimum yatay dayanımının 0 a aldığı noktayı g me kriteri olarak ka ul etmişlerdir. Bu alışmada da aynı kriter g me noktasını tanımlamak i in kullanılmıştır.

Gö me Mekani masının Oluşumu

Yapı elemanlarında ortaya ıkan elastik tesi şekil değiştirmeler, plastik mafsal oluşumlarına yol a ar ve mafsallar g me mekani ması oluşturarak sta ilite kayıplarına neden olur. Bu alışmada, yapıda oluşa ilecek g me mekani malarının kontrolü i in, plastik mafsal oluşumları i lenmiştir. Yapıda oluşan ilk g me mekani ması anı, g me noktası olarak değerlendirilmiştir. Bu alışmada en kesitin her iki ucunun en uzak noktası akma şekil değiştirme değerine ulaştığında plastik mafsal oluştuğu (Broderick ve Elnashai, 1996; Elghazouli, 2008) ka ul edilmiştir. Yapıda göçmeye yol açacak kadar plastik mafsal oluşmasına g me mekani ması denir.

4.6 Performans parametreleri

Günümüz deprem yönetmeliklerinde deprem yükleri, taşıyıcı sistem davranış katsayısına (Amerikan yönetmeliklerinde R) ya da davranış katsayısına (Avrupa yönetmeliklerinde q)

lünen elastik davranış spektrumundan elde edilir. iteratürde taşıyıcı sistem davranış katsayısı ile ilgili eşitli tanımlar mevcuttur (M afy ve Elnashai, 2002). Elastik taban kesme kuvvetinin tasarım ta an kesme kuvvetine oranına taşıyıcı sistem davranış katsayısı denir ve:

$$R \quad \frac{V_e}{V_d} \tag{4.20}$$

denklemiyle tanımlanır. Taşıyıcı sistem davranış katsayısı dayanım (V), dayanım katsayısı (

), süneklik () ve s nüm ile ağlantılıdır. Bu parametreler arasındaki ilişki Şekil 4.21'de verilmiştir.

Şekil 4.21 Dayanım, taşıyıcı sistem davranış katsayısı, süneklik ve dayanım katsayısı arasındaki ilişki (Elnashai ve M afy, 2002)

Bu alışmada rnek er evelerin deprem performanslarının değerlendirilmesi i in dayanım katsayısı (overstrength factor), dayanım katsayısı (inherent overstrength factor) ve süneklik değerleri de hesaplanmıştır.

Da anım Katsa ısı

Mal emenin, elemanın veya yapının gerçek ve tasarım dayanımları arasındaki oranı elirten ir katsayıdır. Yapının dayanım katsayısı genellikle $\begin{pmatrix} d \end{pmatrix}$ ile ifade edilir ve:

$$_{d} \quad \frac{V_{y}}{V_{d}} \tag{4.21}$$

şeklinde tanımlanır. Burada V_y ve V_d sistemin sırasıyla ger ek (akma) ve tasarım yatay dayanımıdır.

Da anım Katsa ısı

Yatay yük taşıyan sistemler için Elnashai ve Mwafy (2002) tarafından denklem (4.21)'de verilen dayanım katsayısının $\begin{pmatrix} d \end{pmatrix}$ yanında, elastik dayanım (V_e) ile ger ek dayanım (V_y) seviyeleri arasında ilişki kuran ilave ir parametre nerilmiştir. nerilen u parametre $\begin{pmatrix} d \end{pmatrix}$:

$$_{i} \quad \frac{V_{y}}{V_{e}} \tag{4.22}$$

denklemiyle tanımlanmıştır ve " dayanım katsayısı" (inherent overstrength) olarak adlandırılmıştır. nerilen u değer ($_i$), Şekil 4.22'de g rüldüğü ü ere tasarım depremi altında yapının eklenilen davranışını yansıtır.

Şekil 4.22 "Öz dayanım katsayısının farklı seviyeleri a) Sünek davranış,) Elastik davranış

^{*i*} 1.0 olması yapının yüksek dayanım katsayına sahip olduğunu g sterir. Bu durumda yapının tasarım depremi altındaki glo al davranışı neredeyse elastiktir. Buna karşılık, eğer ^{*i*} 1.0 ise, 1.0 ile ^{*i*} değeri arasındaki fark elastik tesi alanda yapıya etki eden kuvvetin

oranının g stergesidir.

Süneklik

Bir yapının sünek davranış sergilemesi i in, dayanımında nemli ir a alma, sta ilite kay 1 veya g me olmadan üyük elastik tesi şekil değiştirme yapabilmesi gerekir. Yapıların deplasman sünekliğinin analitik olarak genel tanımı:

$$\frac{-u}{y}$$
 (4.23)

şeklinde yapılmıştır. Burada $_{u}$ g me (ultimate) noktasının, $_{y}$ ise akma noktasının deplasmanıdır. Denklem (4.23)'da verilen oranı "süneklik oranı olarak adlandırılmaktadır.

5. ANALİZ SONUÇLARI

Bu bölümde 26 adet örnek çerçevenin, özdeğer analizleri, doğrusal olmayan statik itme analizleri ve zaman tan m alan nda doğrusal olmayan dinamik analizlerinden elde edilen sonuçlar verilmiş ve değerlendirilmiştir. Örnek çerçeve tiplerine bağl olarak yap lan analizler Çizelge 5.1'de özetlenmiştir.

	Örnek Ç	Cerçeve Tipi		Yap lan Analizler			
Aç kl k	Birleşim Kapasitesi Oran	Birleşim Pekleşme Oran	Birleşim Davran ş Modeli	Özdeğer Analizi	Statik İtme Analizi	Dinamik Analiz	
	Rijit	-	-	1 adet	1 adet	147 adet	
		0/10	HFC		1 adat	147 adet	
	%70	7010	SMTR	1 adat	1 auer	147 adet	
	(P70)	9/ 10	HFC	1 auer	1 adat	147 adet	
		/040	SMTR		1 auei	147 adet	
		9/10	HFC		1 adat	147 adet	
7.0m	%60	%10	SMTR	1 adat	1 auci	147 adet	
	(P60)	0/ 40	HFC	1 auci	1 adat	147 adet	
		7040	SMTR		1 auer	147 adet	
	%50 (P50)	%10	HFC		1 adet	147 adet	
			SMTR	1 adat		147 adet	
		%40	HFC	1 auci	1 adet	147 adet	
		/040	SMTR		1 auci	147 adet	
	Rijit	-	-	1 adet	1 adet	147 adet	
		%10	HFC		1 adat	147 adet	
	%70	/010	SMTR	1 adat	1 duct	147 adet	
	(P70)	%/10	HFC	1 auct	1 adat	147 adet	
		/040	SMTR		1 duct	147 adet	
		%10	HFC		1 adet	147 adet	
9.0m	%60	/010	SMTR	1 adet	1 duct	147 adet	
	(P60)	%40	HFC	1 auci	1 adet	147 adet	
		/040	SMTR		1 duct	147 adet	
		%10	HFC		1 adet	147 adet	
	%50	<i>%</i> 010	SMTR	1 adat		147 adet	
	(P50)))	HFC	1 adet	1 adat	147 adet	
		/040	SMTR			147 adet	

Çizelge 5.1 Örnek çerçevelerde yap lan analizler

5.1 Özdeğer Analizleri

rnek er evelerin elastik periyotlarının ve mod şekillerinin elirlenmesi i in değer anali leri yapılmıştır. Yapıların değer anali lerinden elde edilen ilk ü periyodu Çizelge 5.2'de verilmiştir. Ayrıca er evelerin . periyotlarındaki değişim, irleşim kapasitesine ağlı olarak Şekil 5.1'de g sterilmiştir.

A outstute	irleşim	1. M	lod	2. N	lod	3. Mod	
AÇIKIIK	Kapasitesi	Periyot	Artış	Periyot	Artış	Periyot	Artış
7.0m	Rijit	0.903	-	0.294	-	0.156	-
	%70	0.926	2.5%	0.305	3.7%	0.166	6.4%
	%60	0.975	8.0%	0.320	8.8%	0.177	13.5%
	%50	1.029	14.0%	0.334	13.6%	0.188	20.5%
	Rijit	0.767		0.251		0.130	
0.0m	%70	0.835	8.9%	0.266	6.0%	0.138	6.2%
9.0m	%60	0.874	14.0%	0.278	10.8%	0.146	12.3%
	%50	0.929	21.1%	0.294	17.1%	0.157	20.8%

Çizelge 5.2 rnek er evelerin elastik periyotları

* ranlar aynı a ıklığa sahip rijit irleşimli er evenin periyoduna g re hesaplanmıştır.

Şekil 5.1 rnek er evelerin . periyotlarındaki değişim

Anali sonu larından da g rüldüğü ü ere irleşim rijitliğinin a alması periyotların artmasına yol a maktadır. Bu artış

%70 kapasiteli çerçevede %2.5 ile %8.9,

%60 kapasiteli çerçevede %8.0 ile %14.0,

0 kapasiteli er evede .0 ile 2 . arasında olmaktadır.

Ayrıca .0*m* a ıklıklı er evelerde g rülen artış oranı .0*m* a ıklıklı er evelere g re daha büyüktür. Yapıların periyotlarındaki u artış deprem tasarımları için oldukça önemlidir. Yapıların yatay rijitliklerinin a alması nedeniyle yatay yer değiştirmeler artmaktadır. Diğer taraftan uzun periyotlu yapılara etkiyecek deprem yükü de daha a olmaktadır.

5.2 Doğrusal Olmayan Statik İtme Analizleri

Örnek çerçevelerin doğrusal olmayan statik itme analizi sonuçları Bölüm 4.5 de a ıklandığı gibi lokal ve global seviyede incelenmiştir. Analizler sonucunda; yapıların kapasite eğrileri, lokal ve glo al sınır değerleri ger ekleşme anları, performans parametreleri, plastik mafsal oluşum sıraları ve yerleri, hedef deplasman değerleri ve ka ul edile ilirlik kontrolleri elirlenmiş ve ilerleyen lümlerde verilmiştir.

5.2.1 apasite ğrileri

Örnek çerçeveler için elde edilen taban kesme kuvveti – tepe deplasmanı ilişkisi, 7.0*m* ve 9.0*m* a ıklıklı er eveler i in sırasıyla Şekil 5.2 ve Şekil 5.3'de verilmiştir. Ayrıca çerçevelerin deprem tasarımında kullanılan ta an kesme kuvveti değerleri de şekil ü erinde g sterilmiştir.

Beklenildiği ü ere irleşimin taşıma kapasitesindeki a almalar, er evenin aşlangı rijitliğini ve toplam yatay yük taşıma kapasitesini a altmaktadır. Ayrıca irleşimlerin pekleşme oranlarındaki artış, sistemin elastik tesi davranışındaki kapasitesini arttırmaktadır.

Şekil 5.2 Çer evelerin kapasite eğrileri (7.0m a ıklıklı er eveler)

Şekil 5.3 Çer evelerin kapasite eğrileri (9.0m a ıklıklı er eveler)

134

5.2.2 okal Da ranış Sınır Değerleri

er eve elemanlarının akma, g me ve ka ul edile ilirlik sınır durumlarının ger ekleşme deplasmanları sırasıyla Çizelge 5.3, Çizelge 5.4 ve Çizelge 5.5 de verilmiştir. Ayrıca u sınır durumlarının ger ekleşme anları Şekil 5.4'de verilen kapasite eğrileri ü erinde g sterilmiştir.

Açıklık	irleşim Kapasitesi	irleşim ek. Oranı	iriş (<i>mm</i>)	Kolon (<i>mm</i>)	irleşim (<i>mm</i>)
	Rijit	-	84	162	-
	%70		-	160	46
	%60	%10	-	158	24
7.0m	%50		-	156	1
	%70		378	160	46
	%60	%40	-	158	24
	%50		-	155	1
	Rijit	-	105	139	-
	%70		-	157	58
	%60	%10	-	156	39
9.0m	%50		-	145	18
	%70		526	157	58
	%60	%40	-	156	39
	%50		-	145	18

Çizelge 5.3 okal akma sınır durumlarının ger ekleşme deplasmanları

Çizelge 5.4 Lokal göçme sınır durumlarının ger ekleşme deplasmanları

Açıklık	irleşim Kapasitesi	irleşim ek. Oranı	iriş (mm)	Kolon (<i>mm</i>)	irleşim (<i>mm</i>)
	Rijit	-	-	-	-
	%70		_	-	529
	%60	%10	-	-	508
7.0m	%50		-	-	496
	%70		_	-	545
	%60	%40	-	907	522
	%50		-	891	506
	Rijit	-	-	899	-
	%70		-	-	584
	%60	%10	-	-	573
9.0m	%50		-	-	507
	%70		_	867	600
	%60	%40	-	871	585
	%50		-	852	520

Açıklık	irleşim Kap.	irleşim Pek. Oranı	iriş (mm)		Kolon (mm)		irleşim (mm)	
			CG	GÖ	CG	ÖG	CG	GÖ
	Rijit	-	880	-	620	834	-	-
	%70	%10	-	-	616	836	277	345
	%60		-	-	617	844	264	330
7.0m	%50		-	-	613	838	254	320
	%70	%40	-	-	584	761	307	384
	%60		-	-	578	745	291	366
	%50		-	-	568	733	275	349
	Rijit	-	755	-	528	711	-	-
	%70	%10	-	-	566	762	298	371
	%60		-	-	568	766	285	358
9.0m	%50		-	-	548	743	272	343
	%70	%40	-	_	532	692	328	415
	%60		-	-	532	693	311	396
	%50		-	-	510	672	297	375

Çizelge 5.5 Lokal kabul edilebilirlik kriterlerinin ger ekleşme deplasmanları

Şekil 5.4 de g rüldüğü ü ere rijit irleşimli er evelerde ilk akma kiriş elemanında ger ekleşirken, yarı rijit irleşimli er evelerde ilk akma irleşimlerde ve rijit er eveye nispeten oldukça erken bir zamanda meydana gelmektedir. Hatta 7.0*m* a ıklıklı, 0 irleşim kapasiteli er evelerde, irleşimler sadece düşey yükler altında akma noktasına ulaşmaktadır. Yarı rijit irleşimli er evelerden sadece 0 irleşim kapasiteli ve 0 pekleşme oranlı er evelerin kirişlerinde akma g lenmiştir. Kolonlarda gözlenen ilk akma, tüm çerçevelerde ir irlerine ok yakın amanlarda ger ekleşse de, .0*m* a ıklıklı yarı rijit irleşimli er evelerde, ilk kolon akması rijit irleşimli er eveye g re daha ge ger ekleşmektedir. Ayrıca yarı rijit irleşim kapasitesinin a alması, kolonların ve irleşimlerin ilk akma anını ne çekmektedir.

ijit irleşimli 7.0*m* ve 9.0*m* a ıklıklı çerçevelerde, kirişler can güvenliği sınırına sırasıyla %7.7 (880*mm*) ve %6.6 (755*mm*) tepe teleme a ısında ulaşmakta ancak göçmenin önlenmesi ve g me limit durumlarına yapılan anali sınırları i inde ulaşmamaktadır. Buna karşılık yarı rijit irleşimli 7.0*m* a ıklıklı çerçevelerin irleşimlerinde;

Can güvenliği sınırına 2.2 (2 mm) ile %2.7 (307mm)

G menin nlenmesi sınırına 2. (320mm) ile %3.4 (384mm)

Göçme limit durumuna %4.4 (496*mm*) ile %4.8 (545*mm*)

arasındaki tepe teleme a ılarında ulaşılmıştır. Ayrıca .0*m* a ıklıklı çerçevelerin irleşimlerinde

Can güvenliği sınırına 2.4 (272*mm*) ile %2.9 (328*mm*)

G menin nlenmesi sınırına %3.0 (343mm) ile %3.6 (415mm)

Göçme limit durumuna %4.4 (507*mm*) ile %5.3 (600*mm*)

arasındaki tepe teleme a ılarında ulaşılmıştır. Yarı rijit irleşim kapasitesinin a alması, irleşimlerin can güvenliği, g menin nlenmesi ve lokal g me sınırlarına ulaşılma anını öne çekmektedir.

Kolonlar a ısından incelendiğinde ise tüm çerçevelerin can güvenliği, g menin nlenmesi ve lokal g me sınırlarına ulaşılması ir irine yakın amanlarda ger ekleşmiştir. Bunun yanında irleşim kapasitesinin değişmesi, kolonların sınır durumlarının ger ekleşme anlarına elirli ir dü ende etki etmemektedir. rneğin .0*m* a ıklıklı 0 pekleşme oranlı yarı rijit irleşimli er evelerin kolonlarında, can güvenliği ve g menin nlenmesi sınır durumlarına en ge 0 irleşim kapasiteli er evede ulaşılırken, .0*m* a ıklıklı 0 pekleşme oranlı yarı rijit irleşimli er eveler i in u durum en ge 0 irleşim kapasiteli er evede olmaktadır. Ayrıca irleşimin pekleşme oranının artması, kolonların sınır durumlarının ger ekleşme anlarını nemli derecede ne ekmektedir.

Şekil 5.4 okal sınır durumlarının ger ekleşme anları; a) 7.0m - SH11, b) 7.0m - SH14, c) 9.0m - SH11, d) 9.0m - SH14 çerçeveleri

138

5.2.3 Global Da ranış Sınır Değerleri

Örnek çer evelerin glo al g me sınırları, 3 adet glo al ve 2 adet lokal g me sınır durumu i in incelenmiştir. Çerçevelerin incelenen bu göçme sınır durumlarına karşı gelen tepe deplasman değerleri Çizelge 5.6'de verilmiştir. Ayrıca u sınır değerlerinin ger ekleşme anları Şekil 5.5 de verilen kapasite eğrileri ü erinde g sterilmiştir.

	irleşim Kap.	irleşim Pek.	%3 Kat Ötelemesi (mm)	Göçme Mek. (<i>mm</i>)	Dayanım Azalması (<i>mm</i>)	İlk leman Göçme SD (<i>mm</i>)	Kolon Göçme SD (<i>mm</i>)
7.0m	Rijit	-	290	-	-	-	-
	%70	%10	290	711	-	529	-
	%60		289	619	-	508	-
	%50		287	564	-	496	-
	%70	%40	295	656	-	545	-
	%60		299	638	-	522	907
	%50		292	652	-	506	891
9.0m	Rijit	-	303	662	-	899	899
	%70		294	598	-	584	-
	%60	%10	294	532	-	573	-
	%50		299	500	-	507	-
	%70	%40	294	647	-	600	867
	%60		297	572	-	585	871
	%50		303	529	-	520	852

Çizelge 5.6 lo al g me sınırlarının ger ekleşme deplasmanları

ncelenen 3 adet glo al g me sınırından sadece ikisi yapılan anali sınırları i inde ger ekleşmiştir. Bu sınır durumlarından 3 kat telemesi sınır durumu;

7.0*m* a ıklıklı er evelerde, %2.5 (287*mm*) ile %2.6 (299*mm*)

9.0*m* a ıklıklı er evelerde, %2.6 (294*mm*) ile %2.7 (303*mm*)

arasındaki tepe teleme a ılarında ger ekleşmiştir. Ayrıca g me mekani ması

7.0*m* a ıklıklı rijit er evede g lenmemiştir

7.0m a ıklıklı yarı rijit çerçevelerde, %4.9 (564mm) ile %6.2 (711mm)

9.0m a ıklıklı er evelerde, %4.64 (529mm) ile %5.8 (662mm)

arasındaki tepe teleme a ılarında oluşmuştur.

Ayrıca incelenen lokal g me sınırlarından ilk eleman g mesi sınır durumuna

7.0*m* a ıklıklı rijit er evede ulaşılmamıştır

9.0*m* a ıklıklı rijit er evede . (*mm*)

7.0m a ıklıklı yarı rijit er evelerde, 4.4 (496mm) ile %4.8 (545mm)

9.0*m* a ıklıklı yarı rijit er evelerde, .4 (507*mm*) ile %5.3 (600*mm*)

arasındaki tepe teleme a ılarında ulaşılmıştır. Kolonlarda ise g me sınır durumuna

7.0*m* a ıklıklı rijit er evede ulaşılmamıştır

7.0*m* a ıklıklı 0 pekleşme oranlı yarı rijit çerçevelerde ulaşılmamıştır

9.0*m* a ıklıklı 0 pekleşme oranlı yarı rijit çerçevelerde ulaşılmamıştır

7.0*m* a ıklıklı 0 pekleşme oranlı yarı rijit çerçevelerde, %7.8 (891*mm*) ile %8.0 (907*mm*)

9.0*m* a ıklıklı rijit er evede . (*mm*)

9.0*m* a ıklıklı 0 pekleşme oranlı yarı rijit çerçevelerde, %7.5 (852*mm*) ile %7.6 (871*mm*)

arasındaki tepe teleme a ılarında ulaşılmıştır.

Yarı rijit irleşim kapasitesinin a alması, er evelerde g me mekani masına ulaşılma anını ne ekmektedir. Ayrıca irleşimin pekleşme oranının artması ise g me mekani masına ulaşılma anını geciktirmektedir. Ancak irleşim pekleşme oranının artması aynı amanda da kolonlarda ulaşılan g me sınır durumu anını ne ekmektedir.

Şekil 5.5 lo al g me sınır durumlarının ger ekleşme anları; a) 7.0m - SH11, b) 7.0m - SH14, c) 9.0m - SH11, d) 9.0m - SH14 çerçeveleri
Örnek çerçevelerin glo al akma noktası elirlenirken her ir glo al g me sınır durumu ayrı ayrı ele alınmıştır. er evelerin glo al akma noktaları, u sınır durumlarına göre kapasite eğrilerine hem Bölüm 4.1.1'de a ıklanan ilineer ideali asyon (FEMA 3 0, 2000) hem de Bölüm 4.5.3.1'de a ıklanan bilineer elasto plastik ideali asyon yapılarak ulunmuştur (Şekil 5.6). Çerçevelerin elde edilen akma deplasmanları Çizelge 5.7'de verilmiştir.

Şekil 5.6 Kapasite eğrisinin ideali asyonu

X			%3	Kat	Gö	çme	İlk l	eman	Ко	lon
klij	irleşim	irleşim	Ötele	emesi	M	ek.	Göçn	ne SD	Göçn	ne SD
[c]	Kap.	Pek.	(<i>m</i>	<i>m</i>)	<i>(mm)</i>		<i>(mm)</i>		<i>(mm)</i>	
V	-		İ	İ	İ	İ	İ	İ	İ	İ
	Rijit	-	143	210						
	%70		147	202	193	222	183	222		
L	%60	%10	148	198	183	216	178	214		
.0n	%50		145	192	173	205	168	205		
(~	%70		148	216	200	274	188	268		
	%60	%40	153	214	195	265	183	258	215	255
	%50		150	208	190	252	177	246	208	237
	Rijit	-	158	190	177	217	182	225	182	225
	%70		142	202	183	227	183	227		
Ч	%60	%10	148	197	177	218	180	218		
.0n	%50		147	186	165	202	165	202		
0,	%70		137	211	192	294	187	289	213	305
	%60	%40	147	210	182	278	183	279	210	291
	%50		147	201	168	257	167	255	197	269

Çizelge 5.7 lo al akma deplasmanları

5.2.4 Performans Parametreleri

rnek er evelere ait performans parametreleri her ir g me sınır durumu i in ayrı ayrı incelenmiş ve Çizelge 5.8 ~ Çizelge 5.11'de verilmiştir.

	irleşim	irleşim irleşim V_d V_y (kN)		ş	Sünek	lik,			
	Kap.	Pek.	(kN)	İ*	İ*	d	i	İ*	İ*
	Rijit	-	212	955	1248	5.89	0.74	2.0	1.4
	%70		212	847	1067	5.03	0.63	2.0	1.4
-	%60	%10	212	741	912	4.30	0.54	2.0	1.5
.0n	%50		212	628	763	3.60	0.45	2.0	1.5
(~	%70		212	854	1115	5.26	0.66	2.0	1.4
	%60	%40	212	762	964	4.55	0.57	2.0	1.4
	%50		212	647	812	3.83	0.48	1.9	1.4
	Rijit	-	272	1939	2261	8.31	1.04	1.9	1.6
••••	%70		272	1366	1747	6.42	0.80	2.1	1.5
-	%60	%10	272	1229	1500	5.51	0.69	2.0	1.5
.0n	%50		272	1043	1232	4.53	0.57	2.0	1.6
0,	%70		272	1329	1808	6.65	0.83	2.1	1.4
	%60	%40	272	1218	1569	5.77	0.72	2.0	1.4
	%50		272	1043	1304	4.79	0.60	2.1	1.5

Çizelge 5.8 3 Kat telemesi g me sınır durumu i in performans parametreleri

Çizelge 5.9 me mekani ması g me sınır durumu i in performans parametreleri

	irleşim	irleşim	V_{d}	V_y ((kN)	ş	ş	Süneklik,		
	Kap.	Pek.	(kN)	İ*	İ*	d	i	İ*	İ*	
	Rijit	-	212							
	%70		212	1063	1132	5.34	0.67	3.7	3.2	
г	%60	%10	212	887	960	4.53	0.57	3.4	2.9	
.0n	%50		212	734	794	3.75	0.47	3.3	2.8	
(~	%70		212	1094	1295	6.11	0.76	3.3	2.4	
	%60	%40	212	936	1097	5.17	0.65	3.3	2.4	
	%50		212	797	912	4.30	0.54	3.4	2.6	
	Rijit	-	272	2163	2461	9.05	1.13	3.7	3.1	
	%70		272	1671	1895	6.97	0.87	3.3	2.6	
L	%60	%10	272	1417	1604	5.90	0.74	3.0	2.4	
.0n	%50		272	1151	1299	4.78	0.60	3.0	2.5	
6	%70		272	1732	2190	8.05	1.01	3.4	2.2	
	%60	%40	272	1450	1849	6.80	0.85	3.1	2.1	
	%50		272	1171	1496	5.50	0.69	3.1	2.1	

	irleşim	irleşim	V_{d}	V_y ((kN)	ş	ş	Sünek	lik,
	Kap.	Pek.	(kN)	İ*	İ*	d	i	İ*	İ*
	Rijit	-	212						
	%70		212	1017	1132	5.34	0.67	2.9	2.4
Г	%60	%10	212	866	957	4.51	0.56	2.9	2.4
.0n	%50		212	715	795	3.75	0.47	3.0	2.4
(~	%70		212	1039	1278	6.03	0.75	2.9	2.0
	%60	%40	212	887	1081	5.10	0.64	2.9	2.0
	%50		212	747	903	4.26	0.53	2.9	2.1
	Rijit	-	272	2224	2514	9.24	1.16	4.9	4.0
	%70		272	1671	1892	6.96	0.87	3.2	2.6
-	%60	%10	272	1439	1606	5.90	0.74	3.2	2.6
.0n	%50		272	1151	1299	4.78	0.60	3.1	2.5
01	%70		272	1696	2173	7.99	1.00	3.2	2.1
	%60	%40	272	1461	1852	6.81	0.85	3.2	2.1
	%50		272	1161	1492	5.49	0.69	3.1	2.0

Çizelge 5.10 lk eleman dayanım a alması g me sınır durumu i in performans parametreleri

Çizelge 5.11 Kolonlarda dayanım a alması g me sınır durumu i in performans parametreleri

	irleşim	irleşim	V_d	V_y	(kN)	ş	ş	Sünek	lik,
	Kap.	Pek.	(kN)	İ*	İ*	d	i	İ*	İ*
	Rijit	-	212						
	%70		212						
	%60	%10	212						
.0n	%50		212						
	%70		212						
	%60	%40	212	1017	1076	5.08	0.63	4.2	3.6
	%50		212	862	884	4.17	0.52	4.3	3.8
	Rijit	-	272	2224	2514	9.24	1.16	4.9	4.0
	%70		272						
-	%60	%10	272						
.0m	%50		272						
5	%70		272	1891	2223	8.17	1.02	4.1	2.8
	%60	%40	272	1638	1891	6.95	0.87	4.1	3.0
	%50		272	1338	1528	5.62	0.70	4.3	3.2

B :Bölüm 4.1.1'de a ıklanan ilineer ideali asyon (FEMA 3 0, 2000) yapılarak elde edilmiş değerler,

EP :Bölüm 4.5.3.1'de a ıklanan bilineer elasto plastik ideali asyon yapılarak elde edilmiş değerler.

:Dayanım katsayısı, $_{d}$ ve öz dayanım katsayısı, $_{i}$ bilineer elasto plastik ideali asyon sonu larıyla, B lüm . da a ıklanan şekilde hesaplanmıştır.

§

Hem global hem de lokal göçme sınır durumlarında yarı rijit irleşim kapasitesinin a alması çerçevenin dayanım $\begin{pmatrix} & \\ & d \end{pmatrix}$ ve öz dayanım $\begin{pmatrix} & \\ & i \end{pmatrix}$ katsayısını a altmaktadır.

7.0m a ıklıklı yarı rijit irleşimli er evelerin dayanım katsayısı, rijit er eveye g re;

%3 kat ötelemesi g me sınır durumu i in ile 3 arasında,

9.0m a ıklıklı yarı rijit irleşimli er evelerin dayanım katsayısı, rijit er eveye g re;

%3 kat ötelemesi g me sınır durumu i in 20 ile %45 arasında,

G me mekani ması sınır durumu i in 11 ile %47 arasında a almıştır.

dayanım katsayılarına akıldığında ise sadece 9.0*m* a ıklıklı rijit er evede ve %40 pekleşme oranlı, 0 irleşim kapasiteli er evede 1.0'den büyük değerler g rülmüştür. Buna g re u er evelerde tasarım depremi etkisi altında elastik davranış beklenmektedir. Buna karşılık diğer tüm çerçevelerde u katsayılar .0 den kü ük olduğu i in tasarım depremi etkisi altında elastik tesi davranış g stermesi eklenmektedir. Ayrıca yarı rijit irleşim kapasitesinin a alması dayanım katsayısını a altmıştır. Öz dayanım katsayısının a alması ise elastik ötesi bölgede oluşan davranışın artması olarak yorumlana ilir.

er evelerin kapasite eğrilerine elasto plastik ideali asyon yapılarak elde edilen süneklik değerleri, ilineer ideali asyon yapılarak elde edilenlere g re daha kü üktür.

3 Kat telemesi sınır durumu i in irleşim kapasitesinin a alması süneklik dü eyinde nemli ir değişime yol a mamıştır. Hatta .0*m* a ıklıklı er evelerde yarı rijit irleşim kullanılması ilineer ideali asyona göre hesaplanan süneklik düzeyini %10'a varan oranlarda arttırmaktadır.

me mekani ması oluşması sınır durumu i in yarı rijit irleşimli er evelerin süneklikleri, rijit er eve sünekliğine g re daha düşüktür. 7.0*m* a ıklıklı rijit er evede anali sınırları i inde g me mekani ması oluşmadığından süneklik hesaplanamamıştır. .0*m* a ıklıklı rijit er evede ise süneklik B da 3. , EP da 3. olarak hesaplanmıştır. Yarı rijit er eve süneklikleri ise;

7.0m a ıklıklı yarı rijit çerçevelerin bilineer idealizasyonunda 3.3 ile 3.7,

7.0m a ıklıklı yarı rijit çerçevelerin elasto plastik idealizasyonunda 2.4 ile 3.2,

9.0m a ıklıklı yarı rijit çerçevelerin bilineer idealizasyonunda 3.0 ile 3.4,

9.0*m* a ıklıklı yarı rijit çerçevelerin elasto plastik idealizasyonunda 2.1 ile 2.6 arasında değişmektedir.

5.2.5 lastik Mafsal Oluşum erleri e Sırası

rnek er evelerde oluşan plastik mafsal yerleri ve sıraları Ek da verilmiştir. Bunların arasından 9.0*m* a ıklıklı rijit irleşimli ve %60 irleşim kapasiteli çerçeve Şekil 5.7'de verilmiştir.

a) 9.0m a ıklıklı rijit çerçeve

b) 9.0m a 1kl1 %60 irleşim kapasiteli çerçeve

Şekil 5.7 Plastik mafsal yerleri ve sıraları

Rijit çerçevelerde plastik mafsallar kiriş ve kolon u larında, yarı rijit er evelerde ise kiriş kolon irleşim lgelerinde ve kolon u larında oluşmuştur. Ancak 7.0*m* a ıklıklı, 0 irleşim kapasiteli ve 0 pekleşme oranlı er evede kiriş u larında da plastik mafsallar g lenmiştir.

9.0*m* a ıklıklı tüm er evelerin g me mekani masını, kiriş mekani maları oluşturmuştur. Her ne kadar 0 ve 0 irleşim kapasiteli 0 pekleşme oranlı çerçevelerin ikinci kat kolon u larında plastik mafsallar oluşarak kolon mekani ması oluşturuyormuş gi i g rünse de, kenar kolonların u larındaki plastik mafsallar sistemdeki tüm irleşimler mafsallaştıktan sonra oluşmaktadır.

7.0*m* a ıklıklı 0 irleşim pekleşme oranlı ü er evenin g me mekani masını, kiriş mekani maları oluşturmuştur. .0*m* a ıklıklı 0 irleşim pekleşme oranlı ve 0 irleşim kapasiteli er evenin de g me mekani ması kirişlerde oluşurken, 0 ve 0 kapasiteli er evelerin mekani maları ikinci kat kolonlarının mafsallaşmasıyla oluşmuştur.

5.2.6 Hedef Deplasman

rnek er evelerin tasarım deprem durumlarına karşı gelen hedef deplasman değerleri, B lüm . . de a ıklanan "Katsayılar Metoduna g re hesaplanmış ve Çizelge 5.12'de verilmiştir.

	irleşim Kapasitesi	irleşim Pek.Oranı	Hedef Deplasman (mm)
	Rijit	_	161
	%70		166
7.0m	%60	%10	176
	%50		215
	%70		166
	%60	%40	176
	%50		215
	Rijit	_	137
	%70		150
-	%60	%10	156
.0m	%50		169
	%70		150
	%60	%40	156
	%50		169

Çizelge 5.12 Hedef deplasman değerleri

Birleşim kapasitesinin a alması, hedef deplasman değerini arttırmıştır. Bunun yanında irleşimin sahip olduğu pekleşme oranı, hesaplanan hedef deplasman değerini değiştirmemiştir. Örnek çerçevelerin kabul edilebilirlik kontrolleri, belirlenen hedef deplasmanın ger ekleşme anına g re yapılmıştır. Örnek er evelerin tüm kiriş, kolon ve irleşim elemanları, can güvenliği performans seviyesi şartlarını sağlamıştır.

5.3 aman Tanım Alanında Doğrusal Olmayan Dinamik Analizler

rnek er evelerin aman tanım alanında dinamik analizleri 25 adet gerçek ve 18 adet yapay yer hareketi kullanılarak yapılmıştır.

5.3.1 Gerçek Deprem er Hareketleri ullanılan Analizler

er ek deprem yer hareketi kullanılarak yapılan dinamik anali lerde Bölüm 4.4.1.1'de verilen 25 adet yer hareketi kaydı ü farklı deprem seviyesi i in l eklendirilmiş ve adet kayıt üretilmiştir. Ele alınan ü farklı deprem;

Tasarım deprem seviyesi,

Maksimum deprem seviyesi (. Tasarım Depremi),

1.33xMaksimum deprem seviyesidir.

Her bir örnek çerçevenin, elde edilen adet yer hareketi altında dinamik anali i yapılmıştır. Analizler sonucunda, çerçevelerin maksimum kesme kuvveti – maksimum deplasman değeri, kat telemeleri, kiriş gerilmeleri ve yay d nmeleri, kolon gerilmeleri ve yay d nmeleri, plastik mafsal sayıları ve irleşim d nme değerleri elirlenmiş ve değerlendirilmiştir.

5.3.1.1 Maksimum Kesme Kuvveti – Maksimum Deplasman Değerleri

ijit ve yarı rijit irleşimli er evelerin glo al davranışları hakkında daha iyi ir değerlendirme yapabilmek için dinamik analiz sonucu elde edilen maksimum taban kesme kuvveti – maksimum tepe deplasman değerleri, statik itme analizinden elde edilen kapasite eğrileri ile karşılaştırılarak 7.0*m* ve 9.0*m* a ıklıklı er eveler i in sırasıyla Şekil 5.8 ve Şekil 5.9'da verilmiştir. Grafiklerden de g rüldüğü gi i yapı elastik sınırlar i inde olduğunda, statik itme ve dinamik anali sonu ları ir irlerine daha yakın sonu lar vermektedir. Yapının elastik tesi davranışında ise dinamik analizlerle statik itme anali i arasındaki fark artmaktadır. Dinamik anali lerin ok üyük ir oğunluğunda elde edilen maksimum ta an kesme kuvvetleri, statik itme anali leriyle elde edilen değerlerden daha üyük olmaktadır.

Ayrıca dinamik ve statik itme anali lerinden elde edilen maksimum kat kesme kuvveti – maksimum kat ötelemesi oranları her kat için ayrı ayrı karşılaştırılmış ve Ek 7'de verilmiştir. Bu grafiklerden g rüldüğü ü ere, . kat ve 2. katta dinamik anali lerle statik itme analizleri arasında elirli ir uyum olmasına rağmen, 3. katta anali ler arasındaki fark elirgin ir şekilde artmaktadır. Ayrıca statik itme anali leri sonu ları incelendiğinde, irleşim pekleşme oranının artması . ve 2. kat teleme oranlarını arttırırken, 3. kat teleme oranını a altmaktadır.

Şekil 5.8 Taban kesme kuvveti – tepe deplasmanı ilişkileri a) .0m - Rijit, b) 7.0m - %70, c) 7.0m - %60, d) 7.0m - %50 kapasiteli çerçeveler

Şekil 5.9 Taban kesme kuvveti – tepe deplasmanı ilişkileri a) .0m - Rijit, b) 9.0m - %70, c) 9.0m - %60, d) 9.0m - %50 kapasiteli çerçeveler

5.3.1.2 Kat Ötelemeleri

Örnek çerçevelerin 25x3 deprem kaydı altında elde edilen maksimum tepe deplasmanları ve kat öteleme oranları Ek 8a'da verilmiştir. Bunların i inden .0*m* a ıklıklı er evelerin maksimum tepe deplasman oranları Şekil 5.10 da verilmiştir. Ayrıca er evelerin, her deprem seviyesi için minimum, maksimum ve ortalama tepe deplasman oranları ve kat öteleme oranları Ek de verilmiştir.

rüldüğü ü ere tüm deprem seviyeleri i in, 25 adet yer hareketi kaydı altında hem yarı rijit hem de rijit irleşimli er evelerin ortalama kat teleme değerleri kabul edilebilirlik sınırlarını sağlamaktadır. Ancak sonu lar tek tek incelendiğinde, tasarım depremi ve maksimum deprem i in yapılan 300 adet anali den tanesinde ka ul edile ilirlik sınırları aşılmıştır. Ka ul edile ilirlik sınırlarının aşıldığı durumların dağılımı Çizelge 5.13 de verilmiştir.

	irlesim	irlesim	Pek.	1.	Kat	2.	Kat	3.	Kat
	Kap.	Modeli	Oranı	TD	MD	TD	MD	TD	MD
	Rijit			_	_	_	_	1	_
- -	0/70		%40	-	_	-	-	-	-
	% /0		%10	-	-	-	-	-	-
	0/ 60	CMTD	%40	-	-	1	-	-	-
	%00	SMIR	%10	-	-	1	-	-	-
	0/ 50		%40	1	-	1	-	-	-
.0n	%30		%10	1	-	1	1	-	-
	0/ 70		%40	-	-	-	-	1	-
	% 70		%10	-	-	-	-	4	-
	04.60	UEC	%40	-	-	2	-	3	-
	%00 HFC	me	%10	-	-	3	-	4	-
	% 50		%40	1	-	6	-	4	-
	7030		%10	1	-	7	1	6	-
_	Rijit			-	-	-	-	1	-
	%70		%40	-	-	-	-	1	-
	/0/0		%10	-	-	-	-	1	-
	% 60	SMTD	%40	-	-	-	-	1	-
	7000	SWITK	%10	-	-	-	-	1	-
u	% 50		%40	-	-	-	-	-	-
-0.	/0.50		%10	-	-	-	-	-	_
9.0	%70		%40	-	-	3	-	1	-
	/0/0		%10	-	-	1	-	1	-
	%60	HEC	%40	-	-	1	-	1	-
	/000	III C	%10	-	-	1	-	2	-
	%50		%40	-	-	1	-	1	-
	%50		%10	-	-	3	-	5	-

Çizelge 5.13 Ka ul edile ilirlik sınırının aşıldığı anali sayıları

Şekil 5.10 Maksimum tepe deplasman oranları (.0m a ıklıklı er eveler)

Ka ul edile ilirlik sınırı SMT irleşim davranış modelinin kullanıldığı 1 analizde aşılmıştır. Buna karşın HF davranış modelinin kullanıldığı 4 anali de aşılma ger ekleşmiştir. Ayrica 2 adet rijit er eve anali inde de aşılma g rülmüştür. 7.0*m* a ıklıklı er evelerde irleşim kapasitesinin oranı a aldık a ka ul edile ilirlik sınırının aşılma sıklığı artmıştır. Ancak .0*m* a ıklıklı er evelerde durum u şekilde olmamıştır. rneğin SMT irleşim modelli er evelerde ka ul edile ilirlik sınırının en a aşılması, 0 irleşim kapasiteli er evelerde olmuştur.

7.0*m* ve 9.0*m* a ıklıklı er evelerin ortalama tepe deplasman ve kat teleme oranları Çizelge 5.14 ~ Çizelge 5.21'de verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır. Yarı rijit irleşimli er evelerde, rijit irleşimli er eveye g re oluşan deplasman azalma ve/veya artış oranları aşağıda etlenmiştir.

7.0*m* a ıklıklı SMT irleşim modelli er evelerin tepe deplasmanları: -%8, +%13 7.0*m* a ıklıklı SMT irlesim modelli er evelerin kat telemeleri : -%13, +%17 irleşim modelli er evelerin tepe deplasmanları 7.0*m* a ıklıklı HF :+%5,+%29 7.0m a ıklıklı HF irleşim modelli er evelerin kat telemeleri : +%5, +%39 irleşim modelli er evelerin tepe deplasmanları: -%12, +%11 9.0m a ıklıklı SMT 9.0*m* a ıklıklı SMT irlesim modelli er evelerin kat telemeleri : -%12, +%20 9.0m a ıklıklı HF irleşim modelli er evelerin tepe deplasmanları : -%2, +%31

irleşim modelli er evelerin kat telemeleri

: -%2, +%46

7.0*m* a ıklıklı, HF irleşim modelli erçevelerin haricinde, tüm yarı rijit irleşimli çerçevelerin ortalama tepe deplasmanlarında a almalar g rülmüştür. SMT irleşim modelli er evelerde u a almalar 3 merte elerine kadar artmaktadır. Bunun yanında SMT modelli er evelerde oluşan ortalama deplasmanlardaki maksimum artış 20 dü eyinde olurken, HF irleşim modelli er evelerde lara varan artışlar g lenmiştir. Ayrıca, tasarım deprem seviyesi i in SMT irleşim modelli yarı rijit er evelerin hepsinde,

rijit irleşimli er eveye g re daha az ortalama tepe deplasmanı ve kat telemesi oluşmuştur.

9.0m a ıklıklı HF

Correction	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.015		0.021		0.027	
P70_SMTR_SH14	0.014	92%	0.020	97%	0.026	98%
P70_SMTR_SH11	0.014	92%	0.020	97%	0.027	99%
P60_SMTR_SH14	0.014	95%	0.021	102%	0.029	108%
P60_SMTR_SH11	0.014	95%	0.021	102%	0.029	109%
P50_SMTR_SH14	0.015	97%	0.022	106%	0.030	111%
P50_SMTR_SH11	0.014	97%	0.022	107%	0.030	113%
P70_HFC_SH14	0.016	105%	0.023	113%	0.030	111%
P70_HFC_SH11	0.016	105%	0.024	116%	0.030	111%
P60_HFC_SH14	0.016	108%	0.025	121%	0.032	121%
P60_HFC_SH11	0.016	110%	0.025	122%	0.034	126%
P50_HFC_SH14	0.018	121%	0.026	125%	0.033	122%
P50_HFC_SH11	0.019	124%	0.026	125%	0.035	129%

Çizelge 5.14 7.0m a ıklıklı çerçevelerin ortalama tepe deplasman oranları

Camaana	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.015		0.020		0.025	
P70_SMTR_SH14	0.014	91%	0.019	97%	0.025	102%
P70_SMTR_SH11	0.014	91%	0.019	97%	0.025	102%
P60_SMTR_SH14	0.013	88%	0.019	97%	0.026	103%
P60_SMTR_SH11	0.013	88%	0.019	97%	0.026	104%
P50_SMTR_SH14	0.013	88%	0.020	99%	0.027	109%
P50_SMTR_SH11	0.014	88%	0.020	100%	0.027	111%
P70_HFC_SH14	0.016	101%	0.022	110%	0.027	111%
P70_HFC_SH11	0.015	98%	0.022	112%	0.028	112%
P60_HFC_SH14	0.015	98%	0.023	113%	0.029	115%
P60_HFC_SH11	0.015	100%	0.023	112%	0.028	115%
P50_HFC_SH14	0.016	106%	0.024	121%	0.032	129%
P50_HFC_SH11	0.016	107%	0.023	117%	0.032	131%

Çizelge 5.15 9.0m a ıklıklı çerçevelerin ortalama tepe deplasman oranları

Comosmo	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.014		0.020		0.026	
P70_SMTR_SH14	0.014	95%	0.019	98%	0.026	100%
P70_SMTR_SH11	0.014	95%	0.019	97%	0.026	99%
P60_SMTR_SH14	0.014	99%	0.021	105%	0.029	112%
P60_SMTR_SH11	0.014	99%	0.021	105%	0.029	111%
P50_SMTR_SH14	0.015	104%	0.022	112%	0.030	116%
P50_SMTR_SH11	0.015	104%	0.022	111%	0.030	114%
P70_HFC_SH14	0.015	107%	0.023	117%	0.031	117%
P70_HFC_SH11	0.016	109%	0.023	118%	0.029	110%
P60_HFC_SH14	0.016	114%	0.025	127%	0.033	127%
P60_HFC_SH11	0.017	116%	0.025	124%	0.033	125%
P50_HFC_SH14	0.018	127%	0.027	135%	0.034	131%
P50_HFC_SH11	0.018	126%	0.026	131%	0.034	131%

Çizelge 5.16 7.0m a ıklıklı çerçevelerin ortalama .kat teleme oranları

Comeeye	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.014		0.019		0.025	
P70_SMTR_SH14	0.013	91%	0.017	92%	0.023	93%
P70_SMTR_SH11	0.013	91%	0.017	91%	0.023	91%
P60_SMTR_SH14	0.013	91%	0.018	93%	0.023	95%
P60_SMTR_SH11	0.013	90%	0.018	93%	0.023	94%
P50_SMTR_SH14	0.014	97%	0.019	100%	0.026	107%
P50_SMTR_SH11	0.014	97%	0.019	99%	0.026	104%
P70_HFC_SH14	0.014	102%	0.020	106%	0.026	107%
P70_HFC_SH11	0.014	98%	0.020	106%	0.026	103%
P60_HFC_SH14	0.014	103%	0.021	113%	0.028	111%
P60_HFC_SH11	0.015	104%	0.021	109%	0.026	106%
P50_HFC_SH14	0.016	113%	0.024	126%	0.032	127%
P50_HFC_SH11	0.016	115%	0.022	117%	0.031	127%

Çizelge 5.17 9.0m a ıklıklı çerçevelerin ortalama .kat teleme oranları

Correction	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.018		0.025		0.032	
P70_SMTR_SH14	0.017	93%	0.024	98%	0.031	98%
P70_SMTR_SH11	0.017	93%	0.024	99%	0.032	100%
P60_SMTR_SH14	0.017	97%	0.026	104%	0.034	108%
P60_SMTR_SH11	0.018	98%	0.026	105%	0.035	111%
P50_SMTR_SH14	0.018	100%	0.027	109%	0.036	111%
P50_SMTR_SH11	0.018	100%	0.027	111%	0.037	115%
P70_HFC_SH14	0.019	105%	0.028	112%	0.035	110%
P70_HFC_SH11	0.019	105%	0.028	115%	0.035	111%
P60_HFC_SH14	0.020	110%	0.030	121%	0.038	120%
P60_HFC_SH11	0.020	111%	0.030	122%	0.040	125%
P50_HFC_SH14	0.022	124%	0.031	125%	0.039	122%
P50_HFC_SH11	0.022	125%	0.031	127%	0.041	130%

Çizelge 5.18 7.0m a ıklıklı çerçevelerin ortalama 2.kat teleme oranları

Çerçeve	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.018		0.023		0.028	
P70_SMTR_SH14	0.017	94%	0.023	99%	0.029	103%
P70_SMTR_SH11	0.017	94%	0.023	100%	0.030	105%
P60_SMTR_SH14	0.016	90%	0.023	99%	0.030	105%
P60_SMTR_SH11	0.016	90%	0.023	99%	0.030	106%
P50_SMTR_SH14	0.016	90%	0.024	100%	0.031	110%
P50_SMTR_SH11	0.016	91%	0.024	102%	0.032	113%
P70_HFC_SH14	0.019	103%	0.026	111%	0.032	111%
P70_HFC_SH11	0.018	100%	0.026	112%	0.032	112%
P60_HFC_SH14	0.018	101%	0.027	113%	0.033	115%
P60_HFC_SH11	0.019	103%	0.027	113%	0.033	116%
P50_HFC_SH14	0.019	107%	0.028	120%	0.036	128%
P50_HFC_SH11	0.020	108%	0.028	118%	0.037	130%

Çizelge 5.19 9.0m a ıklıklı çerçevelerin ortalama 2.kat teleme oranları

Comosmo	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.017		0.024		0.029	
P70_SMTR_SH14	0.016	90%	0.023	96%	0.029	99%
P70_SMTR_SH11	0.016	90%	0.023	96%	0.030	101%
P60_SMTR_SH14	0.016	90%	0.023	99%	0.032	107%
P60_SMTR_SH11	0.016	90%	0.024	100%	0.033	112%
P50_SMTR_SH14	0.015	87%	0.024	99%	0.032	109%
P50_SMTR_SH11	0.015	87%	0.024	102%	0.034	117%
P70_HFC_SH14	0.019	106%	0.027	114%	0.033	112%
P70_HFC_SH11	0.019	108%	0.029	122%	0.035	118%
P60_HFC_SH14	0.020	113%	0.028	118%	0.036	121%
P60_HFC_SH11	0.020	114%	0.030	124%	0.039	131%
P50_HFC_SH14	0.020	117%	0.029	123%	0.037	126%
P50_HFC_SH11	0.022	125%	0.029	124%	0.041	139%

Çizelge 5.20 7.0m a ıklıklı çerçevelerin ortalama 3.kat teleme oranları

Comeene	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.016		0.021		0.026	
P70_SMTR_SH14	0.016	97%	0.022	106%	0.029	114%
P70_SMTR_SH11	0.016	97%	0.023	106%	0.030	115%
P60_SMTR_SH14	0.015	96%	0.023	107%	0.029	114%
P60_SMTR_SH11	0.015	96%	0.023	107%	0.030	117%
P50_SMTR_SH14	0.014	88%	0.022	102%	0.030	115%
P50_SMTR_SH11	0.014	88%	0.022	104%	0.031	120%
P70_HFC_SH14	0.018	112%	0.026	121%	0.032	124%
P70_HFC_SH11	0.018	110%	0.026	124%	0.033	128%
P60_HFC_SH14	0.017	108%	0.027	125%	0.034	131%
P60_HFC_SH11	0.018	110%	0.027	126%	0.035	137%
P50_HFC_SH14	0.019	118%	0.027	128%	0.035	137%
P50_HFC_SH11	0.020	122%	0.028	133%	0.038	146%

Çizelge 5.21 9.0m a ıklıklı çerçevelerin ortalama 3.kat teleme oranları

Yarı rijit irleşimli er evelerde oluşan tepe deplasmanının ve kat telemelerinin, rijit irleşimli er evelerin sonu larına oranı her kayıt altında, her kat seviyesi i in ayrı ayrı incelenmiş ve Ek c de verilmiştir. Ayrıca her ir yer hareketi kaydı altında er evelerde oluşan maksimum kat teleme oranları Ek d de g sterilmiştir. Bunların i inden .0*m* a ıklıklı er evelerin kat telemelerinde en üyük a alışa ve artışa neden olan yer hareketi kayıtları sonu ları sırasıyla Şekil 5.11 ve Şekil 5.12 de verilmiştir.

er evelerde oluşan maksimum tepe deplasmanları, yer hareketi kaydına ağlı olarak ayrı ayrı incelendiğinde ve tüm deprem seviyelerinin ortalaması g nüne alındığında

7.0m açıklıklı ve SMTR irleşim davranış modelli er evelerde

12 adet ger ek yer hareketi kaydında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.

S000 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%69 u oluşmuştur**.

SY 3 0 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimlier evelerde oluşan tepe deplasmanlarının % 9 u oluşmuştur.

7.0m açıklıklı ve HFC irleşim davranış modelli er evelerde

3 adet ger ek yer hareketi kaydında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.

S000 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının %7 i oluşmuştur.

HE11230 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının % 66 sı oluşmuştur.

9.0m açıklıklı ve SMTR irleşim davranış modelli er evelerde

15 adet ger ek yer hareketi kaydında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.

SHI0 0 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının %74'ü oluşmuştur.

S 0 0 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%141'i oluşmuştur**.

9.0m açıklıklı ve HFC irleşim davranış modelli er evelerde

7 adet ger ek yer hareketi kaydında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.

NISO 0 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%87'si oluşmuştur**.

S 0 0 yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının %151'i oluşmuştur.

Ayrıca yarı rijit irleşim kullanılmasıyla tepe deplasmanlarında ve kat telemelerinde oluşan en çok a alma ve artmalar aşağıda etlenmiştir:

7.0*m* açıklıklı çerçevelerin tepe deplasmanında minimum oran; LOS000 yer hareketi kaydının maksimum deprem seviyesinde, %50-HFC-SH11 çerçevesinde %48; maksimum oran; HE11230 yer hareketi kaydının maksimum deprem seviyesinde, %50-HFC-SH14 çerçevesinde %224 olmuştur.

9.0*m* açıklıklı çerçevelerin tepe deplasmanında minimum oran; HE11230 yer hareketi kaydının tasarım deprem seviyesinde, %50-HFC-SH11 çerçevesinde %53; maksimum oran; S1010 yer hareketi kaydının maksimum deprem seviyesinde, %50-HFC-SH14 çerçevesinde %195 olmuştur.

7.0*m* açıklıklı çerçevelerin kat ötelemelerinde minimum oran; LOS000 yer hareketi kaydının 1.33xmaksimum deprem seviyesinde, %50-SMTR-SH11 çerçevesinin 1. katında %45; maksimum oran; ATMZ270 yer hareketi kaydının tasarım deprem seviyesinde, %50-HFC-SH11 çerçevesinin . katında %315 olmuştur.

9.0*m* açıklıklı çerçevelerin kat ötelemelerinde minimum oran; HE11230 yer hareketi kaydının tasarım deprem seviyesinde, %50-HFC-SH11 çerçevesinin 1. katında %48; maksimum oran; CAP000 yer hareketi kaydının tasarım deprem seviyesinde, %50-HFC-SH11 çerçevesinin . katında %238 olmuştur.

Yarı rijit irleşim kullanılmasıyla, maksimum tepe deplasmanlarında ve kat telemelerinde oluşan a almalar genellikle elirli yer hareketi kayıtlarında (SHI0 0, HB 0, HB 230,

APO 0, APO00, vd.) yoğunlaşmaktadır. Bu nedenle 3 ayrı a alım ilişkisi kullanılarak faya u ak ve faya yakın yapay yer hareketleri üretilmiş ve yer hareketi kayıtlarının sonu lara etkisi daha detaylı olarak incelenmiştir.

Şekil 5.11 SHI0 0 yer hareketi kaydı altında maksimum kat teleme oranları

160

Şekil 5.12 S 0 0 yer hareketi kaydı altında maksimum kat teleme oranları

161

5.3.1.3 iriş Gerilmeleri e Yay Dönmeleri

Dinamik analizler sonucunda 26 adet rnek er evenin her katı için maksimum kiriş gerilme değerleri, tasarım, maksimum ve maksimum depremin .33 katı i in elirlenmiş ve Ek 9a'da verilmiştir. Bunlar i inden .0*m* a ıklıklı er evelerin .katına ait maksimum kiriş gerilme değerleri Şekil 5.13 de g sterilmiştir. Ayrıca her deprem seviyesi i in çerçevelerin her kattaki minimum, maksimum ve ortalama kiriş gerilme değerleri Ek de verilmiştir.

Tüm deprem seviyeleri için, 2 adet yer hareketi kaydı altında rijit irleşimli er evelerin ortalama maksimum kiriş gerilmeleri, her kat i in akma gerilmesini aşmıştır. Bunun yanında yarı rijit irleşimli er evelerin hepsinde ortalama maksimum kiriş gerilmeleri akma değerinin altında kalmıştır. Beklenildiği ü ere yarı rijit irleşim kapasitesinin ve irleşim pekleşme oranının a alması kiriş gerilmelerini ciddi miktarda a altmaktadır. Ayrıca HF irleşim davranış modelli anali lerde elde edilen kiriş gerilmeleri, SMT modelli ümlerden daha yüksek olmuştur.

7.0m ve 9.0m a ıklıklı er evelerin her kat ve her deprem seviyesi i in ortalama kiriş gerilme değerleri Çizelge $5.22 \sim$ Çizelge 5.27 verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır. Yarı rijit er evelerin ortalama kiriş gerilmeleri rijit er eveye g re

7.0 <i>m</i> a ıklıklı,	0 kapasiteli, HF modelli er eveler i in	: %68 - %83
9.0 <i>m</i> a ıklıklı,	0 kapasiteli, HF modelli er eveler i in	: %65 - %82
7.0 <i>m</i> a ıklıklı, %	70 kapasiteli, SMTR modelli çerçeveler için	: %67 - %79
9.0 <i>m</i> a ıklıklı,	0 kapasiteli, SMT modelli er eveler i in	: %64 - %79
7.0 <i>m</i> a ıklıklı,	0 kapasiteli, HF modelli çerçeveler için	: %59 - %75
9.0 <i>m</i> a ıklıklı,	0 kapasiteli, HF modelli er eveler i in	: %57 - %72
7.0 <i>m</i> a ıklıklı,	0 kapasiteli, SMT modelli er eveler i in	: %59 - %71
9.0 <i>m</i> a ıklıklı,	0 kapasiteli, SMT modelli er eveler i in	: %56 - %69
7.0 <i>m</i> a ıklıklı,	0 kapasiteli, HF modelli er eveler i in	: %51 - %69
9.0 <i>m</i> a ıklıklı,	0 kapasiteli, HF modelli er eveler i in	: %49 - %65
7.0 <i>m</i> a ıklıklı,	0 kapasiteli, SMT modelli er eveler i in	: %49 - %63
9.0 <i>m</i> a ıklıklı,	0 kapasiteli, SMT modelli çerçeveler için	: %48 - %60
ام محمد محمد ما	and the	

Şekil 5.13 Maksimum . kat kiriş gerilmeleri (.0*m* a ıklıklı er eveler)

C	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	416		433		446	
P70_SMTR_SH14	283	68%	317	73%	346	78%
P70_SMTR_SH11	279	67%	293	68%	302	68%
P60_SMTR_SH14	253	61%	282	65%	314	70%
P60_SMTR_SH11	247	59%	257	59%	265	59%
P50_SMTR_SH14	215	52%	245	57%	271	61%
P50_SMTR_SH11	203	49%	212	49%	223	50%
P70_HFC_SH14	294	71%	332	77%	364	82%
P70_HFC_SH11	284	68%	298	69%	312	70%
P60_HFC_SH14	261	63%	301	70%	327	73%
P60_HFC_SH11	251	60%	266	61%	279	63%
P50_HFC_SH14	228	55%	263	61%	295	66%
P50_HFC_SH11	213	51%	228	53%	228	51%

Çizelge 5.22 7.0*m* a ıklıklı çerçevelerin ortalama .kat kiriş gerilmeleri (*MPa*)

Comment	Tasarım I	Depremi	Maksimum	n Deprem	1.33x Maks	. Deprem
Çeiçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	408		421		431	
P70_SMTR_SH14	264	65%	293	70%	320	74%
P70_SMTR_SH11	262	64%	278	66%	287	67%
P60_SMTR_SH14	230	56%	255	61%	281	65%
P60_SMTR_SH11	227	56%	239	57%	247	57%
P50_SMTR_SH14	207	51%	228	54%	249	58%
P50_SMTR_SH11	197	48%	204	48%	211	49%
P70_HFC_SH14	273	67%	305	72%	331	77%
P70_HFC_SH11	266	65%	282	67%	290	67%
P60_HFC_SH14	239	59%	270	64%	292	68%
P60_HFC_SH11	232	57%	243	58%	249	58%
P50_HFC_SH14	215	53%	240	57%	269	62%
P50_HFC_SH11	200	49%	207	49%	226	53%

Çizelge 5.23 9.0m a ıklıklı çerçevelerin ortalama 1. kat kiriş gerilmeleri (MPa)

Concerne	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	410		427		440	
P70_SMTR_SH14	292	71%	322	75%	347	79%
P70_SMTR_SH11	285	69%	295	69%	303	69%
P60_SMTR_SH14	250	61%	277	65%	305	69%
P60_SMTR_SH11	240	59%	248	58%	256	58%
P50_SMTR_SH14	214	52%	238	56%	262	60%
P50_SMTR_SH11	203	49%	210	49%	218	50%
P70_HFC_SH14	302	74%	335	79%	363	82%
P70_HFC_SH11	290	71%	304	71%	319	72%
P60_HFC_SH14	260	63%	295	69%	325	74%
P60_HFC_SH11	243	59%	264	62%	271	62%
P50_HFC_SH14	231	56%	263	62%	287	65%
P50_HFC_SH11	215	52%	225	53%	250	57%

Çizelge 5.24 7.0m a ıklıklı çerçevelerin ortalama 2. kat kiriş gerilmeleri (MPa)

Cerceve	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*	
Rgd	403		416		424		
P70_SMTR_SH14	274	68%	303	73%	328	77%	
P70_SMTR_SH11	269	67%	281	68%	288	68%	
P60_SMTR_SH14	236	58%	261	63%	282	67%	
P60_SMTR_SH11	230	57%	239	58%	246	58%	
P50_SMTR_SH14	200	50%	221	53%	243	57%	
P50_SMTR_SH11	194	48%	201	48%	208	49%	
P70_HFC_SH14	283	70%	315	76%	338	80%	
P70_HFC_SH11	274	68%	285	69%	291	69%	
P60_HFC_SH14	242	60%	277	67%	293	69%	
P60_HFC_SH11	234	58%	243	58%	249	59%	
P50_HFC_SH14	212	53%	236	57%	267	63%	
P50_HFC_SH11	199	49%	205	49%	231	55%	

Çizelge 5.25 9.0m a ıklıklı çerçevelerin ortalama 2. kat kiriş gerilmeleri (MPa)

Concerne	Tasarım I	Depremi	Maksimum	n Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	399		411		422	
P70_SMTR_SH14	275	69%	309	75%	335	79%
P70_SMTR_SH11	270	68%	288	70%	298	71%
P60_SMTR_SH14	246	62%	273	66%	300	71%
P60_SMTR_SH11	241	60%	252	61%	260	62%
P50_SMTR_SH14	218	55%	241	59%	266	63%
P50_SMTR_SH11	209	52%	216	53%	224	53%
P70_HFC_SH14	288	72%	330	80%	351	83%
P70_HFC_SH11	289	72%	315	77%	328	78%
P60_HFC_SH14	262	66%	291	71%	318	75%
P60_HFC_SH11	250	63%	257	62%	279	66%
P50_HFC_SH14	232	58%	263	64%	293	69%
P50_HFC_SH11	214	54%	222	54%	261	62%

Çizelge 5.26 7.0m a ıklıklı çerçevelerin ortalama 3. kat kiriş gerilmeleri (MPa)

Cerceve -	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	396		407		416	
P70_SMTR_SH14	263	66%	299	73%	328	79%
P70_SMTR_SH11	260	66%	283	69%	294	70%
P60_SMTR_SH14	236	60%	264	65%	287	69%
P60_SMTR_SH11	232	59%	246	60%	253	61%
P50_SMTR_SH14	207	52%	229	56%	251	60%
P50_SMTR_SH11	202	51%	210	51%	216	52%
P70_HFC_SH14	274	69%	313	77%	342	82%
P70_HFC_SH11	267	67%	289	71%	298	72%
P60_HFC_SH14	244	62%	277	68%	301	72%
P60_HFC_SH11	238	60%	250	61%	259	62%
P50_HFC_SH14	221	56%	243	60%	269	65%
P50_HFC_SH11	208	52%	219	54%	232	56%

Çizelge 5.27 9.0m a ıklıklı çerçevelerin ortalama 3. kat kiriş gerilmeleri (MPa)

Ayrıca rnek er eve kirişlerini, FEMA 3 (2000) y netmeliğinde tanımlanan ve Bölüm 4.5.2.3'de verilen kabul edilebilirlik kriterlerine göre kontrol etmek için yay dönmeleri de incelenmiştir. er evelerin 2 3 yer hareketi kaydı altında elde edilen maksimum kiriş yay d nmeleri Ek c de verilmiştir. Bu grafiklerin i inden .0*m* a ıklıklı er evelerin .kat kirişlerinde g lenen yay d nmesi değerleri Şekil 5.14 de g sterilmiştir. Ayrıca er evelerin her deprem seviyesi için her kattaki minimum, maksimum ve ortalama kiriş yay dönmesi değerleri Ek 9d'de verilmiştir. Ek 9c'de verilen grafiklerdeki ve Ek 9d'de verilen çizelgelerdeki değerler yay dönmesinin akma yay d nmesine oranıdır.

7.0*m* ve 9.0*m* a ıklıklı, hem rijit hem de yarı rijit irleşimli er evelerin kiriş yay d nmeleri her deprem seviyesi için kabul edile ilirlik sınırlarını tüm analizlerde sağlamıştır.

7.0m ve 9.0m a ıklıklı er evelerin her kat ve her deprem seviyesi i in ortalama kiriş yay d nme değerleri Çizelge $5.28 \sim$ Çizelge 5.33'de verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır.

Birleşim kapasitesi oranı a aldık a ve irleşim pekleşme oranı arttık a, kiriş yay d nmeleri her zaman olmamakla birlikte, genellikle a almaktadır. Ayrıca irleşimlerin HF modeli ile tanımlanması da kiriş yay d nmelerinin artmasına yol a maktadır. Bunların yanında deprem seviyesi arttık a, yarı rijit irleşimli er evelerde oluşan kiriş yay d nmelerin, rijit er eve sonu larına oranı a almaktadır.

Şekil 5.14 Maksimum . kat kiriş yay d nmeleri (.0m a ıklıklı er eveler)

C	Tasarım I	Depremi	Maksimum	n Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	1.44		2.00		2.62	
P70_SMTR_SH14	1.02	71%	1.17	59%	1.29	49%
P70_SMTR_SH11	1.03	71%	1.20	60%	1.31	50%
P60_SMTR_SH14	1.00	69%	1.15	57%	1.25	48%
P60_SMTR_SH11	1.01	70%	1.18	59%	1.26	48%
P50_SMTR_SH14	0.98	68%	1.12	56%	1.19	46%
P50_SMTR_SH11	1.00	70%	1.14	57%	1.18	45%
P70_HFC_SH14	1.07	74%	1.23	62%	1.42	54%
P70_HFC_SH11	1.09	76%	1.28	64%	1.41	54%
P60_HFC_SH14	1.04	72%	1.25	63%	1.53	58%
P60_HFC_SH11	1.07	75%	1.27	64%	1.45	56%
P50_HFC_SH14	1.05	73%	1.21	60%	1.51	58%
P50_HFC_SH11	1.11	77%	1.23	62%	1.22	46%

Çizelge 5.28 7.0*m* a ıklıklı çerçevelerin ortalama 1.kat kiriş yay d nmesi akma yay d nmesi oranları

Çizelge 5.29 9.0*m* a ıklıklı çerçevelerin ortalama 1. kat kiriş yay d nmesi akma yay d nmesi oranları

<u>C</u>	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	1.33		1.76		2.20	
P70_SMTR_SH14	0.88	67%	0.98	56%	1.08	49%
P70_SMTR_SH11	0.89	67%	1.01	57%	1.12	51%
P60_SMTR_SH14	0.83	62%	0.93	53%	1.02	47%
P60_SMTR_SH11	0.83	63%	0.96	54%	1.06	48%
P50_SMTR_SH14	0.86	65%	0.97	55%	1.04	47%
P50_SMTR_SH11	0.87	65%	0.99	56%	1.04	47%
P70_HFC_SH14	0.91	68%	1.03	59%	1.12	51%
P70_HFC_SH11	0.91	68%	1.07	61%	1.16	53%
P60_HFC_SH14	0.86	64%	0.98	56%	1.06	48%
P60_HFC_SH11	0.88	66%	1.02	58%	1.08	49%
P50_HFC_SH14	0.90	68%	1.02	58%	1.13	51%
P50_HFC_SH11	0.92	69%	1.02	58%	1.11	51%

C	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	1.27		1.80		2.37	
P70_SMTR_SH14	1.04	81%	1.24	69%	1.34	56%
P70_SMTR_SH11	1.04	82%	1.26	70%	1.34	56%
P60_SMTR_SH14	0.99	78%	1.16	64%	1.25	53%
P60_SMTR_SH11	1.00	79%	1.18	65%	1.25	53%
P50_SMTR_SH14	0.95	75%	1.11	61%	1.18	50%
P50_SMTR_SH11	0.96	75%	1.12	62%	1.17	49%
P70_HFC_SH14	1.10	86%	1.29	72%	1.47	62%
P70_HFC_SH11	1.13	89%	1.34	74%	1.59	67%
P60_HFC_SH14	1.05	83%	1.27	70%	1.42	60%
P60_HFC_SH11	1.08	85%	1.31	73%	1.32	56%
P50_HFC_SH14	1.08	85%	1.20	67%	1.47	62%
P50_HFC_SH11	1.14	89%	1.26	70%	1.34	56%

Çizelge 5.30 7.0*m* a ıklıklı çerçevelerin ortalama 2.kat kiriş yay d nmesi akma yay d nmesi oranları

Çizelge 5.31 9.0*m* a ıklıklı çerçevelerin ortalama 2. kat kiriş yay d nmesi akma yay d nmesi oranları

Comment	Tasarım I	Depremi	Maksimum	n Deprem	1.33x Maks	1.33x Maks. Deprem Ortalama Oran* 1.92 1.16 60% 1.18 619/	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*	
Rgd	1.17		1.57		1.92		
P70_SMTR_SH14	0.90	77%	1.05	67%	1.16	60%	
P70_SMTR_SH11	0.90	77%	1.07	68%	1.18	61%	
P60_SMTR_SH14	0.86	73%	1.00	63%	1.08	56%	
P60_SMTR_SH11	0.86	73%	1.02	65%	1.10	57%	
P50_SMTR_SH14	0.80	68%	0.93	59%	1.01	53%	
P50_SMTR_SH11	0.80	68%	0.96	61%	1.03	54%	
P70_HFC_SH14	0.94	80%	1.12	71%	1.19	62%	
P70_HFC_SH11	0.93	80%	1.15	73%	1.20	62%	
P60_HFC_SH14	0.89	76%	1.09	69%	1.11	58%	
P60_HFC_SH11	0.90	77%	1.07	68%	1.12	58%	
P50_HFC_SH14	0.88	75%	1.01	64%	1.15	60%	
P50_HFC_SH11	0.89	76%	1.02	65%	1.17	61%	

<u> </u>	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	1.14		1.49		1.82	
P70_SMTR_SH14	1.11	97%	1.31	87%	1.45	79%
P70_SMTR_SH11	1.11	97%	1.33	89%	1.49	82%
P60_SMTR_SH14	1.08	95%	1.24	83%	1.37	75%
P60_SMTR_SH11	1.09	96%	1.28	85%	1.43	78%
P50_SMTR_SH14	1.06	93%	1.21	81%	1.33	73%
P50_SMTR_SH11	1.07	94%	1.26	84%	1.38	76%
P70_HFC_SH14	1.21	106%	1.50	100%	1.61	88%
P70_HFC_SH11	1.23	108%	1.55	104%	1.76	96%
P60_HFC_SH14	1.17	103%	1.39	93%	1.51	83%
P60_HFC_SH11	1.26	111%	1.43	96%	1.63	89%
P50_HFC_SH14	1.19	105%	1.56	105%	1.56	86%
P50_HFC_SH11	1.27	111%	1.42	95%	1.72	94%

Çizelge 5.32 7.0*m* a ıklıklı çerçevelerin ortalama 3.kat kiriş yay d nmesi akma yay d nmesi oranları

Çizelge 5.33 9.0 <i>m</i> a	ıklıklı çerçevelerin	ortalama 3.	kat kiriş yay	v dönmesi/akma	yay dönmesi
		oranları			

Comment	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.97		1.28		1.53	
P70_SMTR_SH14	0.95	97%	1.12	88%	1.26	83%
P70_SMTR_SH11	0.95	98%	1.14	89%	1.30	85%
P60_SMTR_SH14	0.91	94%	1.04	82%	1.15	75%
P60_SMTR_SH11	0.92	95%	1.07	84%	1.21	79%
P50_SMTR_SH14	0.88	91%	1.01	79%	1.13	74%
P50_SMTR_SH11	0.89	92%	1.05	82%	1.19	78%
P70_HFC_SH14	0.97	100%	1.21	95%	1.48	97%
P70_HFC_SH11	0.97	100%	1.28	100%	1.39	91%
P60_HFC_SH14	0.94	97%	1.12	88%	1.21	79%
P60_HFC_SH11	0.95	97%	1.18	93%	1.31	86%
P50_HFC_SH14	1.01	104%	1.12	88%	1.24	81%
P50_HFC_SH11	1.03	107%	1.21	95%	1.34	88%

5.3.1.4 Kolon Gerilmeleri ve Yay Dönmeleri

Dinamik analizler sonucunda 2 rnek er evenin her katı için maksimum kolon gerilme değerleri, tasarım, maksimum ve maksimum depremin .33 katı i in elirlenmiş ve Ek 10a'da verilmiştir. Bunlar i inden .0*m* a ıklıklı er evelerin .katına ait maksimum kolon gerilme değerleri Şekil 5.15 de g sterilmiştir.

rnek er evelerin tasarımında, irleşim kapasitesi a aldık a, er evede kullanılan kolon kesiti kü ültülmüştür (Çizelge 5.34). Ancak er evelerin 3. katlarında mümkün olan en kü ük kolon kesiti kullanıldığından, irleşim kapasitesinin a almasına rağmen kolon oyutlarında ir değişiklik olmamıştır. Kolonlarda oluşan gerilmeler incelenirken, kolon oyutları da g önüne alınmalıdır.

Her deprem seviyesi için her kattaki minimum, maksimum ve ortalama kolon gerilme değerleri Ek 0 de verilmiştir. 7.0*m* ve 9.0*m* a ıklıklı er evelerin her kat ve her deprem seviyesi için ortalama kolon gerilme değerleri Çizelge 5.35 ~ Çizelge 5.40'da verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır.

Açıklık	irleşim Kapasitesi	1.Kat	2.Kat	3.Kat
	Rijit	W10X112	W10X100	W10X68
7.0m	%70	W10X100	W10X88	W10X68
	%60	W10X88	W10X77	W10X68
	%50	W10X77	W10X68	W10X68
	Rijit	W12X152	W12X136	W12X96
0.0	%70	W12X136	W12X120	W12X96
9.0m	%60	W12X120	W12X106	W12X96
	%50	W12X96	W12X96	W12X96

Çizelge 5.34 Örnek çerçevelerin kolon kesitleri

Şekil 5.15 Maksimum 1. kat kolon gerilmeleri (9.0m a ıklıklı er eveler)

Correction	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	390	-	399	-	410	-
P70_SMTR_SH14	381	98%	397	100%	410	100%
P70_SMTR_SH11	381	98%	397	100%	408	100%
P60_SMTR_SH14	387	99%	400	100%	415	101%
P60_SMTR_SH11	387	99%	399	100%	413	101%
P50_SMTR_SH14	388	100%	402	101%	417	102%
P50_SMTR_SH11	388	100%	400	100%	414	101%
P70_HFC_SH14	385	99%	405	102%	419	102%
P70_HFC_SH11	386	99%	404	101%	415	101%
P60_HFC_SH14	394	101%	408	102%	426	104%
P60_HFC_SH11	393	101%	406	102%	421	103%
P50_HFC_SH14	393	101%	412	103%	428	104%
P50_HFC_SH11	393	101%	408	102%	423	103%

Çizelge 5.35 7.0*m* a ıklıklı çerçevelerin ortalama 1.kat kolon gerilmeleri (*MPa*)

<u> </u>	Tasarım I	Depremi	Maksimum	n Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	393	-	404	-	416	-
P70_SMTR_SH14	382	97%	398	99%	409	98%
P70_SMTR_SH11	382	97%	397	98%	407	98%
P60_SMTR_SH14	384	98%	398	99%	410	99%
P60_SMTR_SH11	383	98%	398	99%	408	98%
P50_SMTR_SH14	392	100%	402	100%	417	100%
P50_SMTR_SH11	392	100%	401	99%	415	100%
P70_HFC_SH14	387	99%	403	100%	416	100%
P70_HFC_SH11	386	98%	403	100%	413	99%
P60_HFC_SH14	390	99%	406	101%	419	101%
P60_HFC_SH11	390	99%	404	100%	415	100%
P50_HFC_SH14	395	101%	413	102%	430	103%
P50_HFC_SH11	394	100%	409	101%	427	103%

Çizelge 5.36 9.0m a ıklıklı çerçevelerin ortalama 1. kat kolon gerilmeleri (MPa)

Correction	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	330	-	386	-	392	-
P70_SMTR_SH14	317	96%	373	97%	391	100%
P70_SMTR_SH11	317	96%	372	97%	390	99%
P60_SMTR_SH14	326	99%	380	99%	394	101%
P60_SMTR_SH11	326	99%	378	98%	393	100%
P50_SMTR_SH14	335	101%	384	100%	394	101%
P50_SMTR_SH11	334	101%	382	99%	393	100%
P70_HFC_SH14	328	99%	382	99%	393	100%
P70_HFC_SH11	329	100%	382	99%	392	100%
P60_HFC_SH14	342	104%	389	101%	397	101%
P60_HFC_SH11	342	103%	388	101%	397	101%
P50_HFC_SH14	359	109%	390	101%	399	102%
P50_HFC_SH11	358	108%	389	101%	396	101%

Çizelge 5.37 7.0m a ıklıklı çerçevelerin ortalama 2.kat kolon gerilmeleri (MPa)

Comoono	Tasarım I	Depremi	Maksimum	n Deprem	1.33x Maks	1.33x Maks. Deprem		
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*		
Rgd	339	-	385	-	392	-		
P70_SMTR_SH14	287	85%	340	88%	371	95%		
P70_SMTR_SH11	287	85%	338	88%	367	94%		
P60_SMTR_SH14	290	85%	344	89%	374	96%		
P60_SMTR_SH11	290	85%	342	89%	372	95%		
P50_SMTR_SH14	288	85%	341	88%	376	96%		
P50_SMTR_SH11	288	85%	338	88%	371	95%		
P70_HFC_SH14	295	87%	358	93%	384	98%		
P70_HFC_SH11	292	86%	354	92%	382	97%		
P60_HFC_SH14	299	88%	365	95%	384	98%		
P60_HFC_SH11	300	88%	357	93%	378	96%		
P50_HFC_SH14	308	91%	368	95%	389	99%		
P50_HFC_SH11	307	91%	362	94%	386	99%		

Çizelge 5.38 9.0m a ıklıklı çerçevelerin ortalama 2. kat kolon gerilmeleri (MPa)

Concerne	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	348	-	385	-	399	-
P70_SMTR_SH14	297	86%	361	94%	384	96%
P70_SMTR_SH11	296	85%	358	93%	381	95%
P60_SMTR_SH14	279	80%	341	88%	376	94%
P60_SMTR_SH11	276	79%	332	86%	371	93%
P50_SMTR_SH14	250	72%	310	80%	356	89%
P50_SMTR_SH11	246	71%	301	78%	346	87%
P70_HFC_SH14	319	92%	378	98%	392	98%
P70_HFC_SH11	319	92%	374	97%	390	98%
P60_HFC_SH14	317	91%	369	96%	387	97%
P60_HFC_SH11	314	90%	364	94%	384	96%
P50_HFC_SH14	285	82%	348	90%	378	95%
P50_HFC_SH11	288	83%	345	90%	371	93%

Çizelge 5.39 7.0m a ıklıklı çerçevelerin ortalama 3.kat kolon gerilmeleri (MPa)

Comeene	Tasarım I	Depremi	Maksimum	1 Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	301	-	359	-	384	-
P70_SMTR_SH14	254	84%	314	87%	355	93%
P70_SMTR_SH11	252	84%	308	86%	344	90%
P60_SMTR_SH14	238	79%	296	82%	337	88%
P60_SMTR_SH11	237	79%	289	80%	325	85%
P50_SMTR_SH14	218	72%	268	74%	314	82%
P50_SMTR_SH11	216	72%	261	73%	306	80%
P70_HFC_SH14	266	88%	336	94%	369	96%
P70_HFC_SH11	260	86%	330	92%	360	94%
P60_HFC_SH14	248	82%	323	90%	358	93%
P60_HFC_SH11	251	83%	319	89%	350	91%
P50_HFC_SH14	242	80%	313	87%	351	91%
P50_HFC_SH11	247	82%	310	86%	344	90%

Çizelge 5.40 9.0m a ıklıklı çerçevelerin ortalama 3. kat kolon gerilmeleri (MPa)

T T T T T T T T T T	1 .	. 1 1	1 1	.1 1	• •	•••			1
Vor mint	01 01 0 01 0 01 10			0.000 0.000 0.000	010110110	*****	0.10	0110 001011	0 11 10 0 10 10 10 1
Y 211 11111	er evererin (мняняння в	K () ()	-111110-1	PLIMIN		P1	eve sonn	тагноя огант
I all IIIII		or taranna i				TTTT		CVC SOILU	iaima oram
			0		- ,		-		

7.0 <i>m</i> a ıklıklı	er evelerin . katında	:-%2~+%4
9.0 <i>m</i> a ıklıklı	er evelerin . katında	:-%3~+%3
7.0 <i>m</i> a ıklıklı	er evelerin 2. katında	:-%4~+%9
9.0 <i>m</i> a ıklıklı	er evelerin 2. katında	: -%15 ~ -%1
7.0 <i>m</i> a ıklıklı	er evelerin 3. katında	: -%29 ~ -%2
9.0 <i>m</i> a ıklıklı	er evelerin 3. katında	: -%28 ~ -%4

arasında olmuştur. ijit ve yarı rijit er evelerin kolon gerilmeleri arasındaki fark irinci ve ikinci katlarda nispeten kü ük oranlarda kalmıştır. Bunun nedeni, irleşim kapasitesi a aldık a kolon kesitinin de kü ülmesidir. Ancak tüm kolon kesitlerinin aynı olduğu ü üncü katlarda, rijit er eve kolon gerilmeleriyle, yarı rijit er eve kolon gerilmeleri arasındaki farklar a ılmaktadır.

7.0m a ıklıklı yarı rijit irleşimli çerçevenin üçüncü kat kolon gerilmeleri rijit çerçeveye göre;

%70 kapasiteli, SMTR modelli çerçevede	: %4 ~ %15
%60 kapasiteli, SMTR modelli çerçevede	: %6 ~ %21
%50 kapasiteli, SMTR modelli çerçevede	: %11 ~ %29
%70 kapasiteli, HFC modelli çerçevede	: %2 ~ %8
%60 kapasiteli, HFC modelli çerçevede	: %3 ~ %10
%50 kapasiteli, HFC modelli çerçevede	: %5 ~ %18

9.0m a ıklıklı yarı rijit irleşimli çerçevenin üçüncü kat kolon gerilmeleri rijit çerçeveye göre;

%70 kapasiteli, SMTR modelli çerçevede	: %7 ~ %16
%60 kapasiteli, SMTR modelli çerçevede	: %12 ~ %21
%50 kapasiteli, SMTR modelli çerçevede	: %18 ~ %28
%70 kapasiteli, HFC modelli çerçevede	: %4 ~ %14
%60 kapasiteli, HFC modelli çerçevede	: %7 ~ %18
%50 kapasiteli, HFC modelli çerçevede	: %9 ~ %20
arasında a almıştır.	
rnek er evelerde, tüm kolon kesitleri aynı olduğunda, SMTR modelli %70, %60 ve %50 kapasiteli irleşimler kullandığında, kolon gerilmeleri rijit er eve kolon gerilmelerine g re sırasıyla yaklaşık 10 (%4 ~ %16), %13.5 (%6 ~ %21) ve %20 (%11 ~ %29) oranında a almaktadır. Bunun yanında HF modelli 0, 0 ve 0 kapasiteli irleşimler kullandığında, kolon gerilmeleri rijit er eve kolon gerilmelerine g re sırasıyla yaklaşık 8 (%2 ~ %14), %10.5 (%3 ~ %18) ve %12.5 (%5 ~ %20) oranında a almaktadır. Ayrıca 0 pekleşme oranlı irleşim yerine 0 pekleşme oranlı irleşim kullanmak kolon gerilmelerini

2 civarında arttırmaktadır.

Çer eve kolonlarını, FEMA 3 (2000) y netmeliğinde tanımlanan ve Bölüm 4.5.2.3'de verilen kabul edilebilirlik kriterlerine göre kontrol etmek i in yay d nmeleri de ayrıca incelenmiştir. rnek çerçevelerin 25x3 yer hareketi kaydı altında elde edilen maksimum kolon yay dönmeleri Ek 10c'de verilmiştir. Bu grafiklerin içinden 9.0*m* a ıklıklı er evelerin .kat kolonlarında g lenen yay d nmesi değerleri Şekil 5.16 da g sterilmiştir. Ayrıca her deprem seviyesi için çerçevelerin her kattaki minimum, maksimum ve ortalama kolon yay d nmesi değerleri Ek 10c'de verilmiştir. Ek 10c'de verilen grafiklerde ve Ek 10d'de verilen çizelgelerdeki değerler yay d nmesinin akma yay d nmesine oranıdır.

7.0*m* ve 9.0*m* a ıklıklı, hem rijit hem de yarı rijit irleşimli er evelerin kolon yay dönmeleri her deprem seviyesi için tüm analizlerde ka ul edile ilirlik sınırlarını sağlamıştır.

7.0m ve 9.0m a ıklıklı er evelerin her kat ve her deprem seviyesi i in ortalama kolon yay d nme değerleri Çizelge $5.41 \sim$ Çizelge 5.46'de verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır.

Birleşim kapasite oranının a alması birinci ve ikinci kat kolon yay dönmelerini artırırken, üçüncü kat kolon yay d nmelerini a altmaktadır. Ayrıca irleşimlerin HFC modeli ile tanımlanması da kolon yay d nmelerinin artmasına yol a maktadır.

Şekil 5.16 Maksimum 1. kat kolon yay dönmeleri (9.0*m* a ıklıklı er eveler)

C	Tasarım Depremi		Maksimum Deprem		1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	1.31	-	1.80	-	2.38	-
P70_SMTR_SH14	1.23	94%	1.72	96%	2.33	98%
P70_SMTR_SH11	1.22	93%	1.71	95%	2.31	97%
P60_SMTR_SH14	1.26	96%	1.83	102%	2.58	108%
P60_SMTR_SH11	1.25	96%	1.82	101%	2.55	107%
P50_SMTR_SH14	1.30	99%	1.93	107%	2.64	111%
P50_SMTR_SH11	1.30	99%	1.91	106%	2.59	109%
P70_HFC_SH14	1.38	105%	2.07	115%	2.73	115%
P70_HFC_SH11	1.40	107%	2.08	115%	2.57	108%
P60_HFC_SH14	1.45	111%	2.21	123%	2.92	123%
P60_HFC_SH11	1.47	112%	2.16	120%	2.88	121%
P50_HFC_SH14	1.58	121%	2.31	129%	2.98	125%
P50_HFC_SH11	1.58	121%	2.25	125%	2.97	125%

Çizelge 5.41 .0m a ıklıklı er evelerin ortalama .kat kolon yay dönmesi/akma yay dönmesi oranları

Çizelge 5.42 9.0*m* a ıklıklı çerçevelerin ortalama 1. kat kolon yay dönmesi/akma yay dönmesi oranları

C	Tasarım I	Depremi	Maksimum Deprem		1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	1.54	-	2.09	-	2.73	-
P70_SMTR_SH14	1.38	90%	1.88	90%	2.48	91%
P70_SMTR_SH11	1.37	89%	1.86	89%	2.44	89%
P60_SMTR_SH14	1.36	88%	1.90	91%	2.52	92%
P60_SMTR_SH11	1.35	88%	1.89	90%	2.49	91%
P50_SMTR_SH14	1.43	93%	2.01	96%	2.80	102%
P50_SMTR_SH11	1.43	93%	1.99	95%	2.74	100%
P70_HFC_SH14	1.54	100%	2.18	104%	2.86	105%
P70_HFC_SH11	1.48	96%	2.17	104%	2.77	101%
P60_HFC_SH14	1.54	100%	2.30	110%	2.95	108%
P60_HFC_SH11	1.56	102%	2.22	106%	2.81	103%
P50_HFC_SH14	1.66	108%	2.53	121%	3.34	122%
P50_HFC_SH11	1.69	110%	2.34	112%	3.32	121%

	Tasarım Depremi		Maksimum Deprem		1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.86	-	1.13	-	1.35	-
P70_SMTR_SH14	0.84	98%	1.06	94%	1.32	97%
P70_SMTR_SH11	0.84	98%	1.06	94%	1.32	97%
P60_SMTR_SH14	0.86	100%	1.13	100%	1.45	107%
P60_SMTR_SH11	0.86	100%	1.13	100%	1.46	108%
P50_SMTR_SH14	0.90	105%	1.20	106%	1.56	115%
P50_SMTR_SH11	0.91	105%	1.21	107%	1.54	114%
P70_HFC_SH14	0.87	102%	1.17	104%	1.47	109%
P70_HFC_SH11	0.88	103%	1.22	108%	1.48	110%
P60_HFC_SH14	0.93	109%	1.23	109%	1.68	124%
P60_HFC_SH11	0.95	110%	1.29	114%	1.71	126%
P50_HFC_SH14	1.00	116%	1.36	120%	1.89	140%
P50_HFC_SH11	1.03	120%	1.33	118%	1.76	130%

Çizelge 5.43 7.0*m* a ıklıklı çerçevelerin ortalama 2.kat kolon yay dönmesi/akma yay dönmesi oranları

: Yarı rijit irleşimli er eve sonucunun, rijit irleşimli çerçeve sonucuna bölümü.

	Tasarım Depremi		Maksimum Deprem		1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.86	-	1.09	-	1.33	-
P70_SMTR_SH14	0.78	91%	0.99	91%	1.20	90%
P70_SMTR_SH11	0.78	91%	0.99	91%	1.20	90%
P60_SMTR_SH14	0.81	94%	1.04	96%	1.23	92%
P60_SMTR_SH11	0.81	95%	1.05	96%	1.23	93%
P50_SMTR_SH14	0.83	96%	1.03	95%	1.26	95%
P50_SMTR_SH11	0.83	96%	1.03	95%	1.26	95%
P70_HFC_SH14	0.81	94%	1.07	98%	1.34	101%
P70_HFC_SH11	0.80	93%	1.08	99%	1.35	102%
P60_HFC_SH14	0.84	98%	1.14	104%	1.39	104%
P60_HFC_SH11	0.87	101%	1.13	104%	1.40	105%
P50_HFC_SH14	0.90	105%	1.16	107%	1.48	111%
P50_HFC_SH11	0.93	108%	1.16	107%	1.49	112%

Çizelge 5.44 9.0*m* a ıklıklı çerçevelerin ortalama 2. kat kolon yay dönmesi/akma yay dönmesi oranları

~	Tasarım Depremi		Maksimum Deprem		1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.92	-	1.35	-	1.87	-
P70_SMTR_SH14	0.74	80%	0.97	72%	1.21	65%
P70_SMTR_SH11	0.74	80%	0.97	72%	1.16	62%
P60_SMTR_SH14	0.71	77%	0.93	69%	1.16	62%
P60_SMTR_SH11	0.71	77%	0.92	68%	1.16	62%
P50_SMTR_SH14	0.64	70%	0.86	64%	1.06	57%
P50_SMTR_SH11	0.64	70%	0.85	63%	1.09	58%
P70_HFC_SH14	0.81	88%	1.17	87%	1.47	79%
P70_HFC_SH11	0.85	92%	1.24	92%	1.51	80%
P60_HFC_SH14	0.85	92%	1.08	80%	1.45	77%
P60_HFC_SH11	0.87	94%	1.11	82%	1.45	77%
P50_HFC_SH14	0.76	82%	1.08	80%	1.52	81%
P50_HFC_SH11	0.82	89%	1.10	82%	1.44	77%

Çizelge 5.45 7.0*m* a ıklıklı çerçevelerin ortalama 3.kat kolon yay dönmesi/akma yay dönmesi oranları

: Yarı rijit irleşimli er eve sonucunun, rijit irleşimli er eve sonucuna lümü.

		0	lamaii			
	Tasarım Depremi		Maksimum Deprem		1.33x Maks. Deprem	
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	0.74	-	0.97	-	1.18	-
P70_SMTR_SH14	0.67	90%	0.86	89%	1.02	86%
P70_SMTR_SH11	0.67	90%	0.87	89%	1.02	86%
P60_SMTR_SH14	0.65	87%	0.84	87%	0.99	84%
P60_SMTR_SH11	0.65	87%	0.85	87%	0.99	84%
P50_SMTR_SH14	0.60	80%	0.76	78%	0.92	77%
P50_SMTR_SH11	0.60	80%	0.76	78%	0.92	78%
P70_HFC_SH14	0.70	94%	0.98	101%	1.16	98%
P70_HFC_SH11	0.68	92%	0.99	102%	1.18	100%
P60_HFC_SH14	0.67	90%	1.00	102%	1.12	94%
P60_HFC_SH11	0.72	97%	1.00	103%	1.20	101%
P50_HFC_SH14	0.65	88%	0.92	94%	1.14	97%
P50_HFC_SH11	0.69	93%	0.93	96%	1.12	95%

Çizelge 5.46 9.0*m* a ıklıklı çerçevelerin ortalama 3. kat kolon yay dönmesi/akma yay dönmesi oranları

5.3.1.5 olonlarda Oluşan lastik Mafsallar

Dinamik analizler sonucunda her ir yer hareketi kaydı altında örnek çerçevelerin her kat seviyesi i in kolon u larında oluşan toplam plastik mafsal sayıları tasarım, maksimum ve maksimum depremin .33 katı i in elirlenmiş ve Ek de verilmiştir. Bunlar i inden tasarım deprem seviyesinde .0*m* a ıklıklı er evelerin .kat kolon u larında oluşan mafsal sayıları Şekil 5.17'de g sterilmiştir. Ayrıca her deprem seviyesi i in çerçeve kolonlarında oluşan ortalama plastik mafsal sayıları Çizelge 5.47 ve Çizelge 5.48'de verilmiştir.

Kolonlarda oluşan plastik mafsal sayıları katlar a ında incelendiğinde, en ok plastik mafsalın irinci katta, en a mafsalın ise ü üncü katta oluştuğu g rülmüştür.

Tüm deprem seviyelerinde 7.0*m* a ıklıklı yarı rijit er evelerde oluşan ortalama kolon mafsal sayısı, rijit er eveye g re

%70 kapasiteli, SMTR modelli çerçevede	: %61
%60 kapasiteli, SMTR modelli çerçevede	: %57
%50 kapasiteli, SMTR modelli çerçevede	: %59
%70 kapasiteli, HFC modelli çerçevede	: %108
%60 kapasiteli, HFC modelli çerçevede	: %118
%50 kapasiteli, HFC modelli çerçevede	: %124

9.0m a ıklıklı yarı rijit er evelerde oluşan ortalama kolon mafsal sayısı, rijit er eveye g re

%70 kapasiteli, SMTR modelli çerçevede	: %61
%60 kapasiteli, SMTR modelli çerçevede	: %61
%50 kapasiteli, SMTR modelli çerçevede	: %65
%70 kapasiteli, HFC modelli çerçevede	: %78
%60 kapasiteli, HFC modelli çerçevede	: %83
%50 kapasiteli, HFC modelli çerçevede	: %101

oranında değişmiştir. .0m a ıklıklı ve HF irleşim modelli er evelerin tasarım deprem seviyesine ait anali sonu ları hari tüm anali lerde, yarı rijit irleşim kullanılmasıyla kolonlarda oluşan plastik mafsal sayılarında ciddi a almalar g lenmiştir.

Şekil 5.17 9.0*m* a ıklıklı er evelerin .kat kolon u larında oluşan plastik mafsal sayısı (Tasarım deprem seviyesi)

184

C	Tasarım	Depremi	Maksimum Deprem		1.33x Maks. Deprem	
Çerçeve –	Sayı	Oran*	Sayı	Oran*	Sayı	Oran*
Rgd	1.68	-	6.24	-	9.28	-
P70_SMTR_SH14	0.84	50%	3.56	57%	7.68	83%
P70_SMTR_SH11	0.80	48%	3.28	53%	6.80	73%
P60_SMTR_SH14	0.56	33%	4.08	65%	7.84	84%
P60_SMTR_SH11	0.52	31%	3.96	63%	6.20	67%
P50_SMTR_SH14	0.72	43%	4.36	70%	6.56	71%
P50_SMTR_SH11	0.68	40%	4.08	65%	6.20	67%
P70_HFC_SH14	2.12	126%	6.16	99%	9.28	100%
P70_HFC_SH11	2.32	138%	5.92	95%	8.32	90%
P60_HFC_SH14	2.80	167%	5.88	94%	10.00	108%
P60_HFC_SH11	2.64	157%	5.80	93%	8.52	92%
P50_HFC_SH14	3.24	193%	5.92	95%	9.48	102%
P50_HFC_SH11	2.96	176%	5.52	88%	8.24	89%

Çizelge 5.47 7.0*m* a ıklıklı çerçeve kolonlarında oluşan ortalama plastik mafsal sayısı

: Yarı rijit irleşimli er eve sonucunun, rijit irleşimli er eve sonucuna lümü.

Comment	Tasarım	Depremi	Maksimu	m Deprem	1.33x Mal	ks. Deprem
Çerçeve –	Sayı	Oran*	Sayı	Oran*	Sayı	Oran*
Rgd	2.36		4.68		6.56	
P70_SMTR_SH14	0.96	41%	3.48	74%	4.80	73%
P70_SMTR_SH11	0.92	39%	3.36	72%	4.32	66%
P60_SMTR_SH14	0.96	41%	3.44	74%	4.56	70%
P60_SMTR_SH11	0.96	41%	3.44	74%	4.36	66%
P50_SMTR_SH14	1.16	49%	3.76	80%	4.64	71%
P50_SMTR_SH11	1.12	47%	3.72	79%	4.24	65%
P70_HFC_SH14	1.56	66%	4.08	87%	5.40	82%
P70_HFC_SH11	1.52	64%	4.16	89%	5.04	77%
P60_HFC_SH14	1.84	78%	4.12	88%	5.28	80%
P60_HFC_SH11	2.04	86%	4.24	91%	4.88	74%
P50_HFC_SH14	2.88	122%	4.16	89%	6.32	96%
P50_HFC_SH11	2.92	124%	4.00	85%	5.76	88%

Çizelge 5.48 9.0m a ıklıklı çerçeve kolonlarında oluşan ortalama plastik mafsal sayısı

5.3.1.6 irleşim D nmeleri

Dinamik analizler sonucunda örnek çerçevelerin her katındaki irleşimlerin maksimum d nme değerleri tasarım, maksimum ve maksimum depremin .33 katı i in elirlenmiş ve Ek 2a da verilmiştir. Bunlar i inden .0*m* a ıklıklı er evelerin .katına ait maksimum irleşim d nme değerleri Şekil 5.18 de g sterilmiştir. Ayrıca her deprem seviyesi i in er evelerin her kattaki minimum, maksimum ve ortalama irleşim d nme değerleri Ek 2 de verilmiştir.

Tüm deprem seviyeleri i in, 2 adet yer hareketi kaydı altında tüm yarı rijit irleşimli er evelerin ortalama irleşim d nme değerleri ka ul edile ilirlik sınırlarını sağlamaktadır. Ancak sonuçlar tek tek incelendiğinde, tasarım depremi ve maksimum deprem i in yapılan 1200 adet analizden 155 tanesinde ka ul edile ilirlik sınırları aşılmıştır. Ka ul edile ilirlik sınırlarını aşıldığı durumların dağılımı Çizelge 5.49'da verilmiştir.

	irleşim	irleşim	Pek.	1.	Kat	2.]	Kat	3.]	Kat
	Kap.	Modeli	Oranı	TD	MD	TD	MD	TD	MD
	Rijit			-	-	-	-	-	-
	0/ 70		%40	-	_	-	-	-	-
	% /0		%10	-	1	-	-	-	-
	0/ 60	CMTD	%40	-	1	-	-	-	-
	%00	SMIR	%10	1	1	-	-	-	1
с	0/ 50		%40	1	1	-	-	-	1
.0n	%30		%10	1	2	-	1	-	2
	0/70		%40	-	-	-	-	4	3
	% /0		%10	-	1	-	-	5	7
	0/ 60	LIEC	%40	-	2	-	-	2	3
	%00	пгс	%10	1	2	1	2	6	6
	0/ 50		%40	1	2	-	2	4	6
	%50		%10	3	5	5	4	10	10
	Rijit			-	-	-	-	-	-
	0/ 70		%40	-	-	-	-	-	-
	7070		%10	-	-	-	-	-	-
	0/ 60	CMTD	%40	-	-	-	-	-	-
	%00	SWIK	%10	-	-	-	-	-	1
d	0/ 50		%40	-	-	-	-	-	-
.0n	%30		%10	-	1	-	-	-	-
6	0/ 70		%40	-	-	-	-	2	3
	% 70		%10	-	-	-	-	2	4
	0/ 60	UEC	%40	-	-	-	-	4	-
	<i>%</i> 000	пгс	%10	-	-	-	-	2	2
	04 50		%40	-	-	-	-	5	1
	%50		%10	-	1	1	-	7	8

Çizelge 5.49 Ka ul edile ilirlik sınırının aşıldığı anali sayıları

Şekil 5.18 Maksimum . kat irleşim d nmeleri (.0m a ıklıklı er eveler)

Çizelge 5.49'da g rüldüğü ü ere ka ul edile ilirlik sınırı SMT irleşim davranış modelinin kullanıldığı sadece 16 anali de aşılmıştır. Buna karşın HF davranış modelinin kullanıldığı 139 anali de aşılma ger ekleşmiştir. Ayrıca .0*m* a ıklıklı, SMT irleşim modeli kullanılan çerçevelerde, sadece maksimum deprem seviyesinde ka ul edile ilirlik sınırı 2 analizde aşılmıştır. Bunun yanında ka ul edile ilirlik sınırının aşılması . ve 2. kat seviyelerine nispeten 3. kat seviyesinde yoğunlaşmıştır. Bunun da en büyük nedenlerinden biri, bu kattaki hareketli yükün ok a olması ve kiriş oyutlarının kü ük olmasıdır. aten kü ük olan kiriş kapasiteleri kullanılarak hesaplanan irleşim kapasiteleri, daha da kü ük olmaktadır.

Ayrıca .33xmaksimum deprem seviyesi i in yapılan 650 adet analizden 49 tanesinde irleşim dayanım a alması sınırı (0.052*rad*) aşılmıştır. Bu sınırın aşıldığı durumların dağılımı Çizelge 5.50'de verilmiştir.

	irleşim	irleşim	Pek.	1.Kat	2.Kat	3.Kat
	Kap.	Modeli	Oranı	1.33xMD	1.33xMD	1.33xMD
	Rijit			-	-	-
	0470		%40	-	-	-
	% 70		%10	1	-	-
	0/ 60	SMTD	%40	1	-	-
	%00	SWITK	%10	1	-	1
ч	0/ 50		%40	1	-	-
.0n	%30		%10	1	1	2
	0/ 70		%40	1	-	-
	% 70		%10	1	-	-
	0/ 60	HFC	%40	3	-	-
	7000		%10	2	2	4
	%50		%40	1	2	1
			%10	4	4	7
	Rijit			_	-	_
	%70		%40	-	-	-
	7070		%10	-	-	-
	04.60	SMTD	%40	-	-	-
	7000	SWITK	%10	-	-	-
ц	04 50		%40	-	-	-
0.0	70.30		%10	1	-	_
5	04 70		%40	-	-	1
	7070		%10	-	-	-
	% 60	HEC	%40	-	-	-
	7000	пгс	%10	-	-	1
	% 50		%40	1	-	-
	70,00		%10	1	-	3

Çizelge 5.50 Dayanım a alması sınırının aşıldığı anali sayıları

Çizelge 5.50 de g rüldüğü ü ere dayanım a alması sınırı SMT irleşim davranış modelinin kullanıldığı sadece 0 anali de aşılmıştır. Buna karşın HF davranış modelinin kullanıldığı 3 anali de aşılma ger ekleşmiştir. Ayrıca .0*m* a ıklıklı, SMT irleşim modeli kullanılan er evelerde sadece anali de aşılma olmuştur. Dayanım a alması sınırının aşılması, yer hareketi kaydı a ında incelenirse, toplam aşılmanın

16 adeti CPM000,

7 adeti HE11230,

7 adeti CLS000,

5 adeti GAZ090,

kayıtlarında ger ekleşmiştir. eri kalan aşılma durumu, 0 farklı yer hareki kaydına yayılmıştır.

7.0m ve 9.0m a ıklıklı er evelerin her kat ve her deprem seviyesi i in ortalama irleşim d nme değerleri Çizelge $5.51 \sim$ Çizelge 5.56 'de verilmiş ve %70-SMTR-SH14 çerçevesinin sonu larıyla karşılaştırılmıştır.

Bu sonuçlardan da g rüldüğü ü ere;

Birleşim kapasitesinin a alması,

SMT yerine HF irleşim modelinin kullanılması,

Pekleşme oranının a alması

irleşimlerde oluşan d nmeleri arttırmaktadır.

Company	Tasarım I	Depremi	Maksimum	n Deprem	1.33x Maks. Deprem		
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*	
Rgd	-	-	-	-	-	-	
P70_SMTR_SH14	0.013	-	0.020	-	0.026	-	
P70_SMTR_SH11	0.014	102%	0.021	107%	0.029	112%	
P60_SMTR_SH14	0.015	112%	0.023	113%	0.031	116%	
P60_SMTR_SH11	0.016	117%	0.025	124%	0.034	130%	
P50_SMTR_SH14	0.017	126%	0.025	126%	0.033	124%	
P50_SMTR_SH11	0.018	132%	0.027	137%	0.036	137%	
P70_HFC_SH14	0.016	115%	0.023	116%	0.030	115%	
P70_HFC_SH11	0.016	119%	0.026	120%	0.032	110%	
P60_HFC_SH14	0.017	114%	0.026	117%	0.035	115%	
P60_HFC_SH11	0.019	120%	0.029	117%	0.038	111%	
P50_HFC_SH14	0.021	122%	0.029	115%	0.037	113%	
P50_HFC_SH11	0.022	125%	0.031	114%	0.040	112%	

Çizelge 5.51 7.0*m* a ıklıklı çerçevelerin ortalama 1.kat irleşim d nme oranları

Çizelge 5.52 9.0m a ıklıklı çerçevelerin ortalama .kat irleşim d nme oranları

C	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	-	-	-	-	-	-
P70_SMTR_SH14	0.013	-	0.018	-	0.023	-
P70_SMTR_SH11	0.013	101%	0.019	105%	0.026	109%
P60_SMTR_SH14	0.014	106%	0.020	107%	0.025	108%
P60_SMTR_SH11	0.014	106%	0.021	114%	0.028	118%
P50_SMTR_SH14	0.014	109%	0.021	114%	0.028	119%
P50_SMTR_SH11	0.015	115%	0.023	123%	0.031	131%
P70_HFC_SH14	0.015	111%	0.021	113%	0.026	109%
P70_HFC_SH11	0.015	110%	0.022	116%	0.028	110%
P60_HFC_SH14	0.016	114%	0.023	117%	0.028	110%
P60_HFC_SH11	0.017	118%	0.024	116%	0.030	109%
P50_HFC_SH14	0.017	117%	0.025	120%	0.033	117%
P50_HFC_SH11	0.018	118%	0.026	115%	0.036	117%

*: SMTR modelli çerçeve sonucunun, %70-SMTR-SH14 çerçeve sonucuna; HFC modelli çerçeve sonucunun, aynı kapasite ve pekleşme oranına sahip SMT modelli er eve sonucuna bölümü.

Camagna	Tasarım I	Depremi	Maksimun	n Deprem	1.33x Maks. Deprem		
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*	
Rgd	-	-	-	-	-	-	
P70_SMTR_SH14	0.011	-	0.018	-	0.024	-	
P70_SMTR_SH11	0.011	104%	0.019	110%	0.027	113%	
P60_SMTR_SH14	0.013	119%	0.020	115%	0.028	118%	
P60_SMTR_SH11	0.013	125%	0.022	127%	0.031	134%	
P50_SMTR_SH14	0.014	130%	0.022	126%	0.030	127%	
P50_SMTR_SH11	0.015	137%	0.024	138%	0.034	144%	
P70_HFC_SH14	0.013	124%	0.021	118%	0.027	113%	
P70_HFC_SH11	0.015	131%	0.024	127%	0.031	116%	
P60_HFC_SH14	0.015	122%	0.024	121%	0.032	115%	
P60_HFC_SH11	0.017	130%	0.028	125%	0.037	118%	
P50_HFC_SH14	0.019	135%	0.027	122%	0.035	116%	
P50_HFC_SH11	0.021	147%	0.030	123%	0.040	117%	

Çizelge 5.53 7.0m a ıklıklı çerçevelerin ortalama 2.kat irleşim d nme oranları

Çizelge 5.54 9.0m a ıklıklı çerçevelerin ortalama 2.kat irleşim d nme oranları

Company	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	. Deprem
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*
Rgd	-	-	-	-	-	-
P70_SMTR_SH14	0.011	-	0.017	-	0.023	-
P70_SMTR_SH11	0.011	103%	0.018	109%	0.025	113%
P60_SMTR_SH14	0.012	108%	0.018	109%	0.024	107%
P60_SMTR_SH11	0.012	110%	0.020	118%	0.027	119%
P50_SMTR_SH14	0.012	112%	0.019	115%	0.026	117%
P50_SMTR_SH11	0.012	115%	0.021	125%	0.030	132%
P70_HFC_SH14	0.013	117%	0.020	117%	0.025	110%
P70_HFC_SH11	0.013	114%	0.022	121%	0.028	112%
P60_HFC_SH14	0.014	116%	0.021	118%	0.027	113%
P60_HFC_SH11	0.015	121%	0.023	118%	0.031	115%
P50_HFC_SH14	0.016	132%	0.024	125%	0.032	121%
P50_HFC_SH11	0.018	141%	0.026	126%	0.036	120%

*: SMTR modelli çerçeve sonucunun, %70-SMTR-SH14 çerçeve sonucuna; HFC modelli çerçeve sonucunun, aynı kapasite ve pekleşme oranına sahip SMT modelli er eve sonucuna bölümü.

Company	Tasarım l	Depremi	Maksimun	n Deprem	1.33x Maks. Deprem		
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*	
Rgd	-	-	-	-	-	-	
P70_SMTR_SH14	0.011	-	0.016	-	0.022	-	
P70_SMTR_SH11	0.011	103%	0.018	109%	0.026	116%	
P60_SMTR_SH14	0.013	123%	0.020	122%	0.027	122%	
P60_SMTR_SH11	0.013	125%	0.022	133%	0.032	143%	
P50_SMTR_SH14	0.014	132%	0.022	134%	0.030	136%	
P50_SMTR_SH11	0.015	138%	0.025	150%	0.036	161%	
P70_HFC_SH14	0.018	170%	0.025	152%	0.027	122%	
P70_HFC_SH11	0.018	165%	0.030	170%	0.033	128%	
P60_HFC_SH14	0.021	159%	0.027	133%	0.033	120%	
P60_HFC_SH11	0.022	165%	0.031	143%	0.039	124%	
P50_HFC_SH14	0.023	160%	0.032	145%	0.037	122%	
P50_HFC_SH11	0.026	178%	0.033	134%	0.045	126%	

Çizelge 5.55 7.0m a ıklıklı çerçevelerin ortalama 3.kat irleşim d nme oranları

Çizelge 5.56 9.0m a ıklıklı çerçevelerin ortalama 3.kat irleşim d nme oranları

Company	Tasarım I	Depremi	Maksimum	Deprem	1.33x Maks	1.33x Maks. Deprem		
Çerçeve	Ortalama	Oran*	Ortalama	Oran*	Ortalama	Oran*		
Rgd	-	-	-	-	-	-		
P70_SMTR_SH14	0.011	-	0.016	-	0.022	-		
P70_SMTR_SH11	0.011	102%	0.018	109%	0.025	115%		
P60_SMTR_SH14	0.013	123%	0.020	122%	0.026	116%		
P60_SMTR_SH11	0.013	124%	0.021	131%	0.029	131%		
P50_SMTR_SH14	0.013	123%	0.021	128%	0.028	126%		
P50_SMTR_SH11	0.014	126%	0.022	140%	0.032	146%		
P70_HFC_SH14	0.016	145%	0.024	146%	0.029	130%		
P70_HFC_SH11	0.015	139%	0.028	158%	0.031	123%		
P60_HFC_SH14	0.020	148%	0.026	133%	0.031	119%		
P60_HFC_SH11	0.020	149%	0.029	139%	0.036	124%		
P50_HFC_SH14	0.023	172%	0.027	131%	0.034	123%		
P50_HFC_SH11	0.024	177%	0.031	139%	0.040	123%		

*: SMTR modelli çerçeve sonucunun, %70-SMTR-SH14 çerçeve sonucuna; HFC modelli çerçeve sonucunun, aynı kapasite ve pekleşme oranına sahip SMT modelli er eve sonucuna bölümü.

Ayrıca örnek çerçeve irleşimlerinin d nme değerleri ve kat telemeleri arasındaki ilişki de incelenmiş ve Ek 3 de verilmiştir. Bunların i inden .0*m* ve 9.0*m* a ıklıklı er evelerin 1.kat seviyesinde maksimum irleşim d nme ve maksimum kat teleme ilişkisi sırasıyla Şekil 5.19 ve Şekil 5.20'de g sterilmiştir.

Elde edilen sonuçlara göre maksimum irleşim d nme değerleriyle maksimum kat öteleme değerleri genellikle ir irine yakın sonu lar vermiştir. Bu ilişkiyi g nüne alarak, kat telemelerinin ve irleşim d nmelerinin ka ul edile ilirlik sınırlarını incelemekte fayda vardır. Kat telemeleri ve irleşim d nmeleri i in can güvenliği ve göçmenin önlenmesi performans seviyeleri i in FEMA 3 (2000) de verilen sınırlar Çizelge 5.57'de tekrar verilmiştir.

	Can Gü enliği Tasarım Depremi	Göçmenin Önlenmesi (Maksimum Deprem)
Kat Ötelemesi	0.025rad	0.050rad
Birleşim D nmesi	0.028rad	0.035rad

Çizelge 5.57 Kat telemesi ve irleşim d nmesi i in ka ul edile ilirlik sınırları

: Alın levhalı, ulonlu irleşimin ince levha davranışı i in

Kat telemesi ve irleşim d nmesi i in can güvenliği performans seviyesine ait ka ul edile ilirlik sınırları ir irine yakın değerlerdir. rnek er evelerde u iki sonucun ir irine yakın ıktığı g nüne alınırsa, tasarım depremi altında her iki sınırı da sağlayacak çerçeveler tasarlamak mümkündür. Ancak göçmenin önlenmesi performans seviyesi için, irleşim d nmesi sınırı, kat telemesi sınırının 0 i kadardır. Bu da maksimum deprem seviyesi altında, irleşim d nmesi sınırını sağlayacak er eve tasarımını ekonomik olmaktan uzaklaştırmaktadır.

Şekil 5.19 Kat teleme oranı – irleşim d nmesi ilişkisi (.0m a ıklıklı er eveler, .kat)

Şekil 5.20 Kat teleme oranı – irleşim d nmesi ilişkisi (.0m a ıklıklı er eveler, .kat)

5.3.2 apay Deprem er Hareketi ullanılan Analizler

Örnek çerçevelerin faya uzak ve faya yakın yer hareketi kayıtları altındaki davranışlarını incelemek için, B lüm . . .2 de a ıklanan 3 farklı a alım ilişkisi kullanılarak yapay yer hareketi kayıtları üretilmiştir. Bu ü a alım ilişkisinden elde edilen davranış spektrumuna uygun 3 adet faya uzak ve 3 adet faya yakın toplam 18 adet yapay yer hareketi kaydı üretilmiş ve dört farklı deprem seviyesi i in 1 eklendirilerek 72 adet kayıt elde edilmiştir. Ele alınan dört farklı deprem seviyesi,

0.50 x Tasarım depremi,

- .00 Tasarım depremi,
- . 0 Tasarım depremi (Maksimum deprem),
- 2.00 Tasarım depremidir.

26 adet örnek çerçevenin, elde edilen 72 adet yer hareketi altında dinamik anali i yapılmıştır. Yapılan anali ler neticesinde, er evelere ait maksimum taban kesme kuvveti – maksimum tepe deplasman değerleri, kolon gerilmeleri ve irleşim d nmeleri değerleri elirlenmiş ve değerlendirilmiştir. Ayrıca örnek çerçevelerin, faya uzak ve faya yakın yer hareketi kayıtları altında elde edilen tepe ivmeleri, Fourier anali i ile incelenmiş ve yapıların periyotlarındaki değişim değerlendirilmiştir.

5.3.2.1 Maksimum Kesme Kuvveti – Maksimum Deplasman Değerleri

Örnek çerçevelerin faya uzak ve faya yakın yer hareketleri altındaki glo al davranışları hakkında daha iyi ir değerlendirme yapa ilmek i in dinamik anali sonucu elde edilen maksimum taban kesme kuvveti – maksimum tepe deplasmanı ilişkileri 7.0m ve 9.0m a ıklıklı er eveler i in sırasıyla Şekil 5.21 ve Şekil 5.22 de verilmiştir. Ayrıca Maksimum kat kesme kuvveti – maksimum kat ötelemesi oranları her kat için ayrı ayrı karşılaştırılmış ve Ek 14'de verilmiştir.

Dinamik analizler sonucunda; irleşim kapasitesi a aldık a, aynı yer hareketi altında oluşan taban kesme kuvvetinin de a aldığı g lenmiştir. Ayrıca HF tipi irleşim modeli kullanılan anali lerde, SMT modeli kullanılanlara g re daha fa la deplasman oluşmuştur.

Şekil 5.21 Maksimum taban kesme kuvveti – maksimum tepe deplasmanı ilişkisi (.0*m* a ıklıklı er eveler)

Şekil 5.22 Maksimum taban kesme kuvveti – maksimum tepe deplasmanı ilişkisi (.0*m* a ıklıklı er eveler)

5.3.2.2 Kat Ötelemeleri

rnek er evelerin yapay deprem kaydı altında elde edilen maksimum tepe deplasmanları ve kat telemeleri Ek 15a da verilmiştir. Bunların i inden .0*m* a ıklıklı er evelerin, maksimum tepe deplasman oranları Şekil 5.23'de g sterilmiştir. Ayrıca çerçevelerin, her deprem seviyesi için faya uzak ve yakın kayıtlar altında oluşan minimum, maksimum ve ortalama tepe deplasman ve kat teleme oranları Ek 15 de verilmiştir.

Tüm deprem seviyeleri için, 18 adet yapay yer hareketi kaydı altında hem yarı rijit hem de rijit irleşimli er evelerin ortalama kat teleme değerleri kabul edilebilirlik sınırlarını sağlamaktadır. Ancak sonu lar tek tek incelendiğinde, tasarım ve maksimum deprem i in yapılan 936 adet analizden 42 tanesinde kabul edile ilirlik sınırları aşılmıştır (Çizelge 5.58).

	D !	D!	Dala		Faya	a za	k ay	ıtlar			Faya	ak	n ay	ntlar	
	Bir. Kon	Bir. Mod	Pek.	1.1	Kat	2.H	Kat	3.1	Kat	1.1	Kat	2.I	Kat	3.1	Kat
	кар	Iviou	Orain	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD
	Rijit			-	-	-	-	-	-	-	-	-	-	-	-
	04 70		%40	-	-	-	-	-	-	-	-	-	-	-	-
	% 70	- 4	%10	-	-	-	-	-	-	-	-	-	-	-	-
	0/ 60	TR	%40	-	-	-	-	-	-	-	-	-	-	-	-
	7000	SM	%10	-	-	-	-	-	-	-	-	-	-	-	-
С	0/ 50	•1	%40	-	-	-	-	-	-	-	-	-	-	-	-
.0n	%30		%10	-	-	-	-	-	-	-	-	-	-	-	-
	0/ 70		%40	-	-	1	-	-	-	-	-	1	-	1	-
	% 70		%10	-	-	1	-	-	-	-	-	3	-	-	-
		Ç	%40	-	-	-	-	-	-	-	-	1	-	1	-
	7000	IH	%10	1	-	1	-	-	-	-	-	1	-	1	-
	04 50		%40	-	-	5	-	-	-	1	-	5	-	1	-
	%30		%10	-	-	5	-	-	-	-	-	5	-	1	-
	Rijit			-	-	-	-	-	-	-	-	-	-	-	-
	%70		%40	-	-	-	-	-	-	-	-	-	-	-	-
	7070		%10	-	-	-	-	-	-	-	-	-	-	-	-
	04.60	TR	%40	-	-	-	-	-	-	-	-	-	-	-	-
	7000	SM	%10	-	-	-	-	-	-	-	-	-	-	-	-
ц	04 50		%40	-	-	-	-	-	-	-	-	-	-	-	-
.0n	%30		%10	-	-	-	-	-	-	-	-	-	-	-	-
9	0/ 70		%40	-	-	1	-	-	-	-	-	-	-	-	-
	%70		%10	-	-	1	-	-	-	-	-	1	-	-	-
	0/ 60	Ç	%40	-	-	1	-	-	-	-	-	-	-	-	-
	%0U	IH	%10	-	-	-	-	-	-	-	-	-	-	-	-
	0/ 50		%40	-	-	-	-	-	-	-	-	-	-	1	-
	%JU		%10	-	-	-	-	-	-	-	-	-	-	1	-

Çizelge 5.58 Ka ul edile ilirlik sınırının aşıldığı anali sayıları

Şekil 5.23 Maksimum tepe deplasman oranları (.0m a ıklıklı er eveler, faya yakın yer hareketleri)

199

Ka ul edile ilirlik sınırının aşıldığı 2 adet anali in tamamı, tasarım depremi seviyesi i in yapılmıştır. Ayrıca SMT irleşim davranış modelinin kullanıldığı hi ir anali de de ka ul edile ilirlik sınırlarında aşılma olmamıştır. Aşılmanın olduğu 2 adet anali in

14 adeti, 7.0*m* a ıklıklı, HF modelli, faya u ak yer hareketi altında,

22 adeti 7.0*m* a ıklıklı, HF modelli, faya yakın yer hareketi altında,

3 adeti 9.0*m* a ıklıklı, HF modelli, faya u ak yer hareketi altında,

3 adeti 9.0*m* a ıklıklı, HF modelli, faya yakın yer hareketi altında, ger ekleşmiştir.

7.0*m* ve 9.0*m* a ıklıklı er evelerin, faya u ak ve faya yakın yer hareketi kayıtları altındaki ortalama tepe deplasman oranları Çizelge 5.59 ~ Çizelge 5.62'de verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır. Yarı rijit irleşimli er evelerde, rijit irleşimli çerçeveye göre oluşan tepe deplasmanı azalma ve/veya artış oranları aşağıda etlenmiştir.

Faya u ak kayıtlar altında

7.0 <i>m</i> a 1kl1k	ılı SMT irleşim m	odelli er eveler	: -%8, +%23
7.0 <i>m</i> a 1kl1k	dı HF irleşim mod	lelli er eveler	: +%4, +%38
9.0 <i>m</i> a 1kl1k	dı SMT irleşim m	odelli er eveler	: -%9, +%10
9.0 <i>m</i> a 1kl1k	dı HF irleşim mod	lelli er eveler	: -%5, +%41
Faya yakın kayıtlar	altında		

7.0 <i>m</i> a ıklıklı SMT	irleşim modelli er eveler	: -%14, +%5
7.0 <i>m</i> a ıklıklı HF	irleşim modelli er eveler	: -%5, +%22
9.0 <i>m</i> a ıklıklı SMT	irleşim modelli er eveler	: -%17, +%3
9.0 <i>m</i> a ıklıklı HF	irleşim modelli er eveler	: -%12, +%20

7.0*m* a ıklıklı, HF irleşim modelli er evelerin faya u ak yer hareketi altındaki anali leri haricinde, tüm yarı rijit irleşimli çerçevelerin ortalama tepe deplasmanlarında rijit çerçeveye göre a almalar g rülmüştür. SMT irleşim modelli er evelerde u a almalar 7 merte elerine kadar artmaktadır. Bunun yanında SMT modelli er evelerde oluşan ortalama deplasmanlardaki maksimum artış 23 dü eyinde olurken, HF irleşim modelli çerçevelerde %41'lere varan artışlar g lenmiştir. Ayrıca yarı rijit irleşimli er evelerin tepe deplasmanlarının rijit irleşimli er eve deplasmanlarına oranı faya yakın kayıtlar altında daha küçük olmaktadır.

Yarı rijit irleşimli er evelerin ortalama tepe deplasmanlarının (Farklı irleşim kapasitesine sahip rnek er evelerin her irinin ortalama tepe deplasmanları tüm irleşim pekleşme oranları ve tüm deprem seviyeleri i in yapılan anali lerin ortalaması alınarak hesaplanmıştır) rijit irleşimli er eve sonu larına oranı, .0*m* ve 9.0*m* a ıklıklı er eveler i in sırasıyla Şekil 5.24 ve Şekil 5.25 de verilmiştir.

Şekil 5.24 7.0*m* a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe deplasman oranları

Şekil 5.25 9.0*m* a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe deplasman oranları

7.0*m* a ıklıklı er evelerde en düşük tepe deplasmanları, hem faya yakın hem de faya u ak yer hareketi kayıtları altında 0 irleşim kapasiteli SMT modelli er evelerde oluşmuştur. Ben er şekilde, .0*m* a ıklıklı er evelerde en düşük tepe deplasmanları, hem faya yakın hem de faya u ak yer hareketi kayıtları altında 0 irleşim kapasiteli SMT modelli er evelerde oluşmuştur. Ayrıca faya yakın yer hareketleri altında SMT modelli tüm yarı rijit er evelerde, rijit irleşimli erçeveden daha az ortalama tepe deplasmanı oluşmuştur.

Company	0. Tasarım D.		Tasa	rım D.	Maksimum D.		1.33xMaks. D.	
Çerçeve	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
Rgd	0.010		0.017		0.021		0.026	
P70_SMTR_SH14	0.010	100%	0.015	92%	0.020	96%	0.025	98%
P70_SMTR_SH11	0.010	100%	0.015	92%	0.020	96%	0.026	99%
P60_SMTR_SH14	0.010	100%	0.016	94%	0.022	104%	0.027	106%
P60_SMTR_SH11	0.010	100%	0.016	94%	0.022	104%	0.028	107%
P50_SMTR_SH14	0.009	94%	0.015	93%	0.023	109%	0.031	120%
P50_SMTR_SH11	0.009	94%	0.015	93%	0.023	109%	0.032	123%
P70_HFC_SH14	0.010	105%	0.019	117%	0.024	117%	0.031	121%
P70_HFC_SH11	0.010	105%	0.019	114%	0.024	115%	0.032	125%
P60_HFC_SH14	0.010	104%	0.019	115%	0.028	135%	0.035	136%
P60_HFC_SH11	0.010	104%	0.019	116%	0.029	136%	0.035	137%
P50_HFC_SH14	0.010	108%	0.021	129%	0.029	137%	0.034	133%
P50_HFC_SH11	0.010	105%	0.021	126%	0.028	135%	0.036	138%

Çizelge 5.59 7.0m a ıklıklı çerçevelerin, faya u ak kayıtlar altında, ortalama tepe deplasman oranları

Çizelge 5.60 7.0*m* a ıklıklı çerçevelerin, faya yakın kayıtlar altında, ortalama tepe deplasman oranları

Comeene	0. Tasarım D.		Tasai	arım D. Maks		num D.	1.33xMaks. D.	
Çerçeve	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
Rgd	0.011		0.018		0.022		0.027	
P70_SMTR_SH14	0.010	95%	0.015	87%	0.019	88%	0.025	94%
P70_SMTR_SH11	0.010	95%	0.015	86%	0.019	88%	0.025	95%
P60_SMTR_SH14	0.010	93%	0.015	87%	0.021	97%	0.027	100%
P60_SMTR_SH11	0.010	93%	0.015	87%	0.021	97%	0.027	101%
P50_SMTR_SH14	0.009	86%	0.015	86%	0.022	101%	0.028	104%
P50_SMTR_SH11	0.009	86%	0.015	86%	0.022	101%	0.028	105%
P70_HFC_SH14	0.011	100%	0.019	108%	0.024	111%	0.030	114%
P70_HFC_SH11	0.011	101%	0.019	108%	0.024	110%	0.030	115%
P60_HFC_SH14	0.010	95%	0.019	111%	0.026	122%	0.032	122%
P60_HFC_SH11	0.010	95%	0.019	106%	0.026	122%	0.032	121%
P50_HFC_SH14	0.010	98%	0.021	117%	0.026	121%	0.031	115%
P50_HFC_SH11	0.011	102%	0.020	115%	0.025	117%	0.031	117%

0	0. Tas	sarım D.	Tasa	rım D.	Maksii	mum D.	1.33xMaks. D.		
Çerçeve	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	
Rgd	0.009		0.015		0.020		0.023		
P70_SMTR_SH14	0.008	93%	0.014	93%	0.019	98%	0.023	100%	
P70_SMTR_SH11	0.008	93%	0.014	93%	0.019	98%	0.023	100%	
P60_SMTR_SH14	0.008	94%	0.014	91%	0.018	94%	0.023	98%	
P60_SMTR_SH11	0.008	94%	0.014	91%	0.018	94%	0.023	99%	
P50_SMTR_SH14	0.009	101%	0.014	93%	0.019	99%	0.025	107%	
P50_SMTR_SH11	0.009	101%	0.014	93%	0.019	99%	0.026	110%	
P70_HFC_SH14	0.008	95%	0.016	107%	0.023	115%	0.027	115%	
P70_HFC_SH11	0.008	95%	0.016	107%	0.023	115%	0.027	115%	
P60_HFC_SH14	0.009	98%	0.018	119%	0.023	118%	0.027	118%	
P60_HFC_SH11	0.009	98%	0.018	118%	0.023	115%	0.028	121%	
P50_HFC_SH14	0.010	111%	0.018	119%	0.023	118%	0.031	132%	
P50_HFC_SH11	0.010	114%	0.018	119%	0.024	122%	0.033	141%	

Çizelge 5.61 9.0m a ıklıklı çerçevelerin, faya u ak kayıtlar altında, ortalama tepe deplasman oranları

: Yarı rijit irleşimli er eve sonucunun, rijit irleşimli er eve sonucuna lümü.

Çizelge 5.62 9.0*m* a ıklıklı çerçevelerin, faya yakın kayıtlar altında, ortalama tepe deplasman oranları

Comence	0. Tas	sarım D.	Tasa	rım D.	Maksii	mum D.	1.33xMaks. D.		
Çerçeve	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	
Rgd	0.011		0.017		0.022		0.025		
P70_SMTR_SH14	0.009	86%	0.016	92%	0.021	94%	0.025	99%	
P70_SMTR_SH11	0.009	86%	0.016	92%	0.021	93%	0.025	99%	
P60_SMTR_SH14	0.009	86%	0.015 86%		0.018	83%	0.022	90%	
P60_SMTR_SH11	0.009	86%	0.015	86%	0.018	83%	0.022	91%	
P50_SMTR_SH14	0.009	87%	0.014	0.014 83%		86%	0.025	101%	
P50_SMTR_SH11	0.009	87%	0.014	83%	0.019	86%	0.026	103%	
P70_HFC_SH14	0.010	88%	0.018 109%		0.023	102%	0.026	105%	
P70_HFC_SH11	0.010	88%	0.019	110%	0.023	103%	0.026	103%	
P60_HFC_SH14	0.010	90%	0.018	108%	0.022	102%	0.026	104%	
P60_HFC_SH11	0.010	90%	0.018	107%	0.022	100%	0.026	106%	
P50_HFC_SH14	0.010	94%	0.017	100%	0.023	104%	0.030	120%	
P50_HFC_SH11	0.010	97%	0.017	100%	0.023	105%	0.030	119%	

7.0*m* ve 9.0*m* a ıklıklı er evelerin, faya u ak ve faya yakın yer hareketi kayıtları altındaki ortalama kat teleme oranları Çizelge 5.63 ~ Çizelge 5.65'de verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır. Yarı rijit irleşimli er evelerde, rijit irleşimli er eveye g re ortalama kat telemelerinde oluşan a alma ve veya artış oranları aşağıda etlenmiştir.

Faya u ak kayıtlar altında

	1.Kat	2.Kat	3.Kat
7.0 <i>m</i> a ıklıklı SMT modelli	: -%12, +%14	: -%9, +%21	: -%10, +%26
7.0 <i>m</i> a ıklıklı HF modelli	: -%3, +%47	: +%5, +%36	:+%9,+%45
9.0 <i>m</i> a ıklıklı SMT modelli	: -%12, +%20	: -%6, +%12	: -%11, +%6
9.0 <i>m</i> a ıklıklı HF modelli	: -%3, +%43	: -%3, +%41	: -%6, +%38
Faya yakın kayıtlar altında			
7.0 <i>m</i> a ıklıklı SMT modelli	: -%20, +%1	: -%11, +%8	: -%17, +%8
7.0 <i>m</i> a ıklıklı HF modelli	: -%9, +%25	: -%3, +%20	:+%6,+%29
9.0 <i>m</i> a ıklıklı SMT modelli	: -%19, +%4	: -%14, +%5	: -%17, +%1
9.0 <i>m</i> a ıklıklı HF modelli	: -%9 +%19	: -%10, +%21	: -%11, +%27

7.0*m* a ıklıklı, HF irleşim modelli er evelerin haricinde, tüm yarı rijit irleşimli çerçevelerin ortalama kat ötelemelerinde rijit er eveye g re a almalar g rülmüştür. SMT irleşim modelli er evelerde u a almalar 20 merte elerine kadar artmaktadır. Bunun yanında SMT modelli er evelerde oluşan ortalama kat ötelemelerindeki maksimum artış %26 dü eyinde olurken, HF irleşim modelli er evelerde 47 lere varan artışlar g lenmiştir. Ayrıca yarı rijit irleşimli er evelerin kat ötelemelerinin rijit birleşimli er eve kat ötelemelerine oranı faya yakın kayıtlar altında daha kü ük olmaktadır.

	Faya zak ayıtlar										Faya akın ayıtlar								
	Çerçeve	0. Tasa	arım D.	Tasar	ım D.	Maksin	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.		
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*		
	Rgd	0.010		0.017		0.022		0.029		0.011		0.018		0.022		0.028			
	P70_SMTR_SH14	0.010	106%	0.016	96%	0.020	91%	0.026	90%	0.011	101%	0.016	91%	0.020	89%	0.025	89%		
	P70_SMTR_SH11	0.010	106%	0.016	96%	0.020	90%	0.026	89%	0.011	101%	0.016	91%	0.020	89%	0.025	88%		
	P60_SMTR_SH14	0.010	104%	0.015	89%	0.020	89%	0.028	96%	0.010	94%	0.014	81%	0.018	82%	0.024	87%		
	P60_SMTR_SH11	0.010	104%	0.015	89%	0.020	88%	0.027	95%	0.010	94%	0.014	80%	0.018	82%	0.024	86%		
-	P50_SMTR_SH14	0.009	94%	0.015	93%	0.023	100%	0.033	114%	0.009	83%	0.015	87%	0.021	93%	0.028	101%		
.0n	P50_SMTR_SH11	0.009	94%	0.015	92%	0.022	100%	0.032	112%	0.009	83%	0.015	87%	0.021	92%	0.027	98%		
(-	P70_HFC_SH14	0.010	100%	0.018	106%	0.022	99%	0.032	113%	0.010	91%	0.018	100%	0.022	99%	0.029	103%		
	P70_HFC_SH11	0.010	101%	0.017	104%	0.022	97%	0.032	113%	0.010	93%	0.017	97%	0.022	96%	0.028	102%		
	P60_HFC_SH14	0.010	100%	0.018	110%	0.029	131%	0.040	139%	0.010	91%	0.019	106%	0.026	116%	0.034	123%		
	P60_HFC_SH11	0.010	100%	0.019	115%	0.028	127%	0.038	132%	0.010	91%	0.018	102%	0.025	112%	0.032	117%		
	P50_HFC_SH14	0.011	114%	0.022	131%	0.032	142%	0.042	147%	0.012	108%	0.021	120%	0.027	122%	0.035	125%		
	P50_HFC_SH11	0.011	113%	0.021	128%	0.030	134%	0.040	140%	0.012	112%	0.020	116%	0.026	116%	0.034	121%		
	Rgd	0.008		0.014		0.019		0.025		0.010		0.016		0.022		0.026			
	P70_SMTR_SH14	0.008	94%	0.013	96%	0.018	90%	0.022	89%	0.009	88%	0.014	92%	0.019	83%	0.022	86%		
	P70_SMTR_SH11	0.008	94%	0.013	96%	0.017	90%	0.022	88%	0.009	88%	0.014	92%	0.019	83%	0.022	86%		
	P60_SMTR_SH14	0.008	100%	0.014	97%	0.018	92%	0.023	93%	0.009	92%	0.014	90%	0.018	81%	0.021	82%		
	P60_SMTR_SH11	0.008	100%	0.014	97%	0.018	92%	0.023	93%	0.009	92%	0.014	90%	0.018	81%	0.021	81%		
_	P50_SMTR_SH14	0.010	120%	0.014	103%	0.018	93%	0.025	100%	0.010	104%	0.014	91%	0.017	78%	0.024	94%		
.0m	P50_SMTR_SH11	0.010	120%	0.014	103%	0.018	92%	0.024	99%	0.010	104%	0.014	91%	0.017	77%	0.024	93%		
6	P70_HFC_SH14	0.008	97%	0.015	110%	0.023	117%	0.027	110%	0.009	91%	0.017	110%	0.022	99%	0.026	100%		
	P70_HFC_SH11	0.008	97%	0.015	109%	0.022	113%	0.026	107%	0.009	91%	0.017	110%	0.022	98%	0.025	95%		
	P60_HFC_SH14	0.008	104%	0.017	124%	0.023	116%	0.029	116%	0.009	97%	0.018	113%	0.021	95%	0.027	103%		
	P60_HFC_SH11	0.008	104%	0.017	123%	0.021	111%	0.028	114%	0.009	97%	0.017	109%	0.020	91%	0.026	99%		
	P50_HFC_SH14	0.010	121%	0.018	130%	0.024	124%	0.035	143%	0.010	102%	0.018	115%	0.023	102%	0.031	119%		
	P50_HFC_SH11	0.010	121%	0.018	130%	0.024	126%	0.035	140%	0.010	105%	0.017	109%	0.022	98%	0.030	114%		

Çizelge 5.63 7.0m ve 9.0m a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama .kat teleme oranları

: Yarı rijit irleşimli er eve sonucunun, aynı a ıklığa sahip rijit irleşimli er eve sonucuna lümü.

Çizelge 5.64 7.0m ve 9.0m a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama 2.kat teleme oranları

				Faya akın ayıtlar													
	Çerçeve	0. Tasa	arım D.	Tasar	ım D.	Maksin	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	0.011		0.020		0.026		0.031		0.013		0.021		0.027		0.032	
	P70_SMTR_SH14	0.011	100%	0.018	91%	0.024	96%	0.030	96%	0.012	95%	0.019	89%	0.024	89%	0.030	95%
	P70_SMTR_SH11	0.011	100%	0.018	92%	0.025	96%	0.030	98%	0.012	95%	0.019	89%	0.024	89%	0.031	96%
	P60_SMTR_SH14	0.012	102%	0.019	95%	0.026	101%	0.033	105%	0.012	95%	0.018	89%	0.026	95%	0.033	103%
	P60_SMTR_SH11	0.012	102%	0.019	95%	0.026	102%	0.034	108%	0.012	95%	0.019	89%	0.026	96%	0.033	105%
-	P50_SMTR_SH14	0.011	97%	0.019	97%	0.028	110%	0.037	118%	0.011	90%	0.019	91%	0.027	103%	0.034	106%
.0n	P50_SMTR_SH11	0.011	97%	0.019	97%	0.028	112%	0.038	121%	0.011	90%	0.019	91%	0.028	104%	0.034	108%
(-	P70_HFC_SH14	0.012	105%	0.023	117%	0.029	115%	0.036	116%	0.013	100%	0.023	111%	0.029	108%	0.036	113%
	P70_HFC_SH11	0.012	105%	0.023	115%	0.029	115%	0.037	120%	0.013	101%	0.024	114%	0.029	108%	0.036	113%
	P60_HFC_SH14	0.012	106%	0.023	116%	0.033	129%	0.041	130%	0.012	97%	0.023	112%	0.031	117%	0.038	120%
	P60_HFC_SH11	0.012	106%	0.024	118%	0.033	131%	0.041	133%	0.012	97%	0.023	109%	0.031	117%	0.038	120%
	P50_HFC_SH14	0.013	110%	0.025	127%	0.034	134%	0.040	130%	0.013	100%	0.025	120%	0.031	117%	0.037	116%
	P50_HFC_SH11	0.012	107%	0.025	126%	0.034	134%	0.042	136%	0.013	106%	0.024	117%	0.031	115%	0.038	120%
	Rgd	0.010		0.018		0.023		0.027		0.013		0.020		0.026		0.029	
	P70_SMTR_SH14	0.010	94%	0.017	97%	0.023	103%	0.027	102%	0.011	87%	0.019	96%	0.025	97%	0.028	99%
	P70_SMTR_SH11	0.010	94%	0.017	97%	0.023	103%	0.027	103%	0.011	87%	0.019	97%	0.025	97%	0.029	100%
	P60_SMTR_SH14	0.010	97%	0.017	95%	0.022	99%	0.027	103%	0.011	88%	0.018	90%	0.023	89%	0.027	96%
	P60_SMTR_SH11	0.010	97%	0.017	95%	0.023	99%	0.028	105%	0.011	88%	0.018	90%	0.023	89%	0.028	97%
-	P50_SMTR_SH14	0.011	102%	0.017	95%	0.023	103%	0.029	109%	0.011	88%	0.017	86%	0.023	90%	0.029	103%
.0n	P50_SMTR_SH11	0.011	102%	0.017	95%	0.023	103%	0.030	112%	0.011	88%	0.017	86%	0.023	90%	0.030	105%
0,	P70_HFC_SH14	0.010	97%	0.020	109%	0.027	118%	0.031	117%	0.011	90%	0.022	112%	0.027	106%	0.031	108%
	P70_HFC_SH11	0.010	97%	0.020	110%	0.027	119%	0.031	118%	0.011	90%	0.023	113%	0.027	107%	0.031	107%
	P60_HFC_SH14	0.010	101%	0.022	122%	0.028	122%	0.032	119%	0.012	93%	0.022	111%	0.027	106%	0.030	106%
	P60_HFC_SH11	0.010	101%	0.022	121%	0.027	119%	0.032	122%	0.012	93%	0.022	110%	0.027	104%	0.031	108%
	P50_HFC_SH14	0.012	113%	0.022	120%	0.027	118%	0.034	129%	0.012	96%	0.020	101%	0.027	105%	0.034	118%
	P50_HFC_SH11	0.012	117%	0.022	120%	0.028	122%	0.037	141%	0.012	99%	0.020	101%	0.027	106%	0.035	121%

: Yarı rijit irleşimli er eve sonucunun, aynı a ıklığa sahip rijit irleşimli er eve sonucuna lümü.

Çizelge 5.65 7.0m ve 9.0m a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama 3.kat teleme oranları

				Faya akın ayıtlar													
	Çerçeve	0. Tasa	arım D.	Tasar	ım D.	Maksin	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksimum D.		1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	0.009		0.016		0.021		0.024		0.011		0.019		0.024		0.028	
	P70_SMTR_SH14	0.009	102%	0.015	90%	0.019	94%	0.024	102%	0.011	100%	0.017	90%	0.022	94%	0.027	96%
	P70_SMTR_SH11	0.009	102%	0.015	90%	0.019	94%	0.025	103%	0.011	100%	0.017	90%	0.022	94%	0.027	97%
	P60_SMTR_SH14	0.009	100%	0.015	93%	0.022	108%	0.027	113%	0.010	97%	0.017	90%	0.024	102%	0.030	107%
	P60_SMTR_SH11	0.009	100%	0.015	93%	0.022	109%	0.028	115%	0.010	97%	0.017	90%	0.024	103%	0.030	108%
-	P50_SMTR_SH14	0.008	90%	0.015	91%	0.022	108%	0.029	122%	0.009	85%	0.015	83%	0.022	94%	0.029	102%
.0n	P50_SMTR_SH11	0.008	90%	0.015	91%	0.022	109%	0.030	126%	0.009	85%	0.015	83%	0.022	95%	0.029	103%
(-	P70_HFC_SH14	0.010	111%	0.020	122%	0.026	125%	0.033	135%	0.012	109%	0.022	116%	0.027	115%	0.036	127%
	P70_HFC_SH11	0.010	110%	0.020	119%	0.025	123%	0.032	134%	0.012	111%	0.021	115%	0.027	116%	0.036	129%
	P60_HFC_SH14	0.010	110%	0.020	122%	0.027	131%	0.032	132%	0.011	106%	0.023	124%	0.029	123%	0.035	123%
	P60_HFC_SH11	0.010	111%	0.020	125%	0.028	138%	0.034	142%	0.011	106%	0.023	123%	0.029	122%	0.035	127%
	P50_HFC_SH14	0.010	110%	0.021	129%	0.027	131%	0.034	141%	0.011	107%	0.021	113%	0.028	118%	0.035	124%
	P50_HFC_SH11	0.010	109%	0.020	125%	0.028	135%	0.035	145%	0.011	107%	0.021	114%	0.028	118%	0.036	127%
	Rgd	0.009		0.015		0.019		0.023		0.011		0.017		0.023		0.026	
	P70_SMTR_SH14	0.008	91%	0.013	89%	0.019	96%	0.023	101%	0.009	83%	0.015	85%	0.020	88%	0.026	98%
	P70_SMTR_SH11	0.008	91%	0.013	89%	0.019	96%	0.023	101%	0.009	83%	0.015	85%	0.020	88%	0.026	99%
	P60_SMTR_SH14	0.008	91%	0.013	90%	0.019	98%	0.023	101%	0.009	83%	0.015	85%	0.021	92%	0.026	99%
	P60_SMTR_SH11	0.008	91%	0.013	90%	0.019	98%	0.024	101%	0.009	83%	0.015	85%	0.021	93%	0.026	100%
-	P50_SMTR_SH14	0.008	93%	0.013	89%	0.019	95%	0.024	102%	0.009	85%	0.015	85%	0.020	86%	0.026	98%
.0n	P50_SMTR_SH11	0.008	93%	0.013	89%	0.019	96%	0.025	106%	0.009	85%	0.015	85%	0.020	87%	0.026	101%
0,	P70_HFC_SH14	0.008	94%	0.017	112%	0.024	125%	0.030	127%	0.009	89%	0.019	111%	0.026	112%	0.033	126%
	P70_HFC_SH11	0.008	94%	0.016	110%	0.025	127%	0.029	124%	0.009	89%	0.019	112%	0.026	113%	0.033	126%
	P60_HFC_SH14	0.009	101%	0.019	130%	0.025	130%	0.028	120%	0.010	97%	0.021	120%	0.028	120%	0.031	119%
	P60_HFC_SH11	0.009	101%	0.019	128%	0.024	126%	0.028	121%	0.010	97%	0.021	121%	0.028	119%	0.031	117%
	P50_HFC_SH14	0.010	116%	0.017	116%	0.024	123%	0.030	129%	0.011	105%	0.021	123%	0.025	110%	0.031	119%
	P50_HFC_SH11	0.010	119%	0.018	118%	0.024	123%	0.032	138%	0.011	107%	0.022	126%	0.025	107%	0.033	127%

: Yarı rijit irleşimli er eve sonucunun, aynı a ıklığa sahip rijit irleşimli er eve sonucuna lümü.

Yarı rijit irleşimli er evelerin ortalama kat ötelemelerinin (Farklı irleşim kapasitesine sahip örnek çerçevelerin her birinin ortalama kat ötelemeleri tüm irleşim pekleşme oranları ve tüm deprem seviyeleri i in yapılan anali lerin ortalaması alınarak hesaplanmıştır) rijit irleşimli er eve sonu larına oranı, her kat seviyesi için Şekil 5.26'da verilmiştir.

7.0*m* ve 9.0m a ıklıklı er evelerde en düşük kat ötelemeleri, faya yakın ve faya uzak yer hareketi kayıtları altında 0 veya %60 irleşim kapasiteli SMT modelli çerçevelerde oluşmuştur. Ayrıca faya yakın yer hareketleri altında SMT irleşim modelli tüm yarı rijit çerçevelerde ve tüm katlarda, rijit irleşimli erçeveden daha az ortalama kat ötelemesi oluşmuştur.

Yarı rijit irleşimli er evelerde oluşan tepe deplasmanının ve kat telemelerinin, rijit irleşimli er evelerin sonu larına oranı her kayıt altında, her kat seviyesi i in ayrı ayrı incelenmiş ve Ek c de verilmiştir. Ayrıca her ir yer hareketi kaydı altında er evelerde oluşan maksimum kat teleme oranları Ek d de g sterilmiştir. Bunların i inden .0*m* a ıklıklı er evelerin kat telemelerinde en üyük a alışa ve artışa neden olan yer hareketi kayıtları sonu ları sırasıyla Şekil 5.27 ve Şekil 5.28'de verilmiştir.

er evelerde oluşan maksimum tepe deplasmanları, yer hareketi kaydına ağlı olarak ayrı ayrı incelendiğinde ve tüm deprem seviyelerinin ortalaması g nüne alındığında

7.0m açıklıklı ve SMTR irleşim davranış modelli er evelerde

- **4 adet faya uzak** ve **tüm (9 adet) faya yakın** yer hareketi kayıtlarında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.
- A N faya yakın yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%82'si oluşmuştur**.
- A03F1 faya uzak yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%119 u oluşmuştur**.

7.0m açıklıklı ve HFC irleşim davranış modelli er evelerde

- **1 adet faya yakın** yer hareketi kaydında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.
- A96N1 faya yakın yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%97'si oluşmuştur**.
- A03F1 faya uzak yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%136 sı oluşmuştur**.

9.0m açıklıklı ve SMTR irleşim davranış modelli er evelerde

6 adet faya uzak ve tüm (9 adet) faya yakın yer hareketi kaydında yarı rijit irleşimli er evelerde, rijit er evelerden daha a tepe deplasmanı oluşmuştur.

A N faya yakın yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%85'i oluşmuştur**.

A03F2 faya uzak yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının %112'si oluşmuştur.

9.0m açıklıklı ve HFC irleşim davranış modelli er evelerde

3 adet faya yakın yer hareketi kaydında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.

A N faya yakın yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının **%93'ü oluşmuştur**.

A03F2 faya uzak yer hareketi kaydı altında yarı rijit irleşimli er evelerde, rijit irleşimli er evelerde oluşan tepe deplasmanlarının %134'ü oluşmuştur.

Ayrıca yarı rijit irleşim kullanılmasıyla tepe deplasmanlarında ve kat telemelerinde oluşan maksimum a alma ve artmalar aşağıda etlenmiştir.

7.0m açıklıklı çerçevelerin tepe deplasmanında minimum oran; A96 faya yakın yer hareketi kaydının tasarım deprem seviyesinde, %60-SMTR-SH14 çerçevesinde %67; maksimum oran; A03F3 faya uzak yer hareketi kaydının maksimum deprem seviyesinde, %50-HFC-SH11 çerçevesinde %173 olmuştur.

9.0m açıklıklı çerçevelerin tepe deplasmanında minimum oran; A96 faya yakın yer hareketi kaydının tasarım deprem seviyesinde, %60-SMTR-SH14 çerçevesinde %68; maksimum oran; A03F2 faya uzak yer hareketi kaydının 1.33xmaksimum deprem seviyesinde, %50-HFC-SH11 çerçevesinde %168 olmuştur.

7.0m açıklıklı çerçevelerin kat ötelemelerinde minimum oran; A0 faya yakın yer hareketi kaydının tasarım deprem seviyesinde, %60-SMTR-SH14 çerçevesinin
3. katında %58; maksimum oran; A03F2 faya uzak yer hareketi kaydının
1.33xmaksimum deprem seviyesinde, %50-HFC-SH11 çerçevesinin . katında %192 olmuştur.

9.0*m* açıklıklı çerçevelerin kat ötelemelerinde minimum oran; A96 faya yakın yer hareketi kaydının maksimum deprem seviyesinde, %50-SMTR-SH11 çerçevesinin . katında %64; maksimum oran; A03F1 faya uzak yer hareketi kaydının maksimum deprem seviyesinde, %50-HFC-SH11 çerçevesinin 1. katında %198 olmuştur.

Şekil 5.27 A96N1 faya yakın yer hareketi kaydı altında maksimum kat teleme oranları (9.0*m* a ıklıklı er eveler)

Şekil 5.28 A03F2 faya uzak yer hareketi kaydı altında maksimum kat teleme oranları (9.0*m* a ıklıklı er eveler)
5.3.2.3 Kolon Gerilmeleri

Dinamik analizler sonucunda rnek er evelerin her katı i in maksimum kolon gerilmeleri 18 adet yapay yer hareketi altında 0. tasarım, tasarım, maksimum ve maksimum depremin .33 katı i in elirlenmiş ve Ek a da verilmiştir. Bunlar i inden faya yakın yapay yer hareketleri altında .0*m* a ıklıklı er evelerin .katına ait maksimum kolon gerilme değerleri Şekil 5.29'da g sterilmiştir. Ayrıca er evelerin, her deprem seviyesi i in faya u ak ve yakın kayıtlar altında oluşan, her kattaki minimum, maksimum ve ortalama kolon gerilmeleri Ek 16 de verilmiştir.

B lüm .3. de a ıklandığı ü ere kolonlarda oluşan gerilmeler incelenirken kolon oyutları
g nüne alınmalıdır. rnek er evelerin kolon oyutlarıyla ilgili değerlendirmeler B lüm
.3. de verilmiştir. Yapay yer hareketi kayıtları altında oluşan kolon gerilmeleri
incelenirken u hususlar yine g nünde ulundurulmuştur.

7.0m ve 9.0m a ıklıklı er evelerin faya u ak ve yakın yer hareketleri altında, her kat ve her deprem seviyesi için ortalama kolon gerilme değerleri Çizelge $5.66 \sim$ Çizelge 5.68'de verilmiş ve rijit irleşimli er evenin sonu larıyla karşılaştırılmıştır.

0. Tasarım deprem seviyesi g nüne alınmaksı ın, yarı rijit er evelerin ortalama kolon gerilmelerinin, rijit er eve sonu larına oranı

7.0 <i>m</i> a ıklıklı	er evelerin . katında	: -%3 ~ +%7
9.0 <i>m</i> a ıklıklı	er evelerin . katında	:-%3~+%7
7.0 <i>m</i> a ıklıklı	er evelerin 2. katında	: -%10 ~ +%6
9.0 <i>m</i> a ıklıklı	er evelerin 2. katında	: -%22 ~ %0
7.0 <i>m</i> a ıklıklı	er evelerin 3. katında	: -%32 ~ -%1
9.0 <i>m</i> a iklikli	er evelerin 3 katında	: -%35 ~ -%3

arasında olmuştur. ijit ve yarı rijit er evelerin kolon gerilmeleri arasındaki fark irinci ve ikinci katlarda nispeten kü ük oranlarda kalmıştır. Bunun nedeni, irleşim kapasitesi a aldık a kolon kesitinin de kü ülmesidir. Ancak tüm kolon kesitlerinin aynı olduğu ü üncü katlarda, rijit er eve kolon gerilmeleriyle, yarı rijit er eve kolon gerilmeleri arasındaki farklar a ılmaktadır.

Şekil 5.29 Maksimum 1. kat kolon gerilmeleri (9.0m a ıklıklı er eveler, faya yakın yer hareketleri)

Çizelge 5.66 7.0*m* ve 9.0*m* a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama 1.kat kolon gerilmeleri (*MPa*)

]	Faya zal	k ayıtlar	r					F	aya akı	n ayıtla	r		
	Çerçeve	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	316		393		404		417		342		395		405		416	
	P70_SMTR_SH14	336	106%	392	100%	399	99%	411	99%	352	103%	392	99%	399	98%	409	98%
	P70_SMTR_SH11	336	106%	392	100%	399	99%	409	98%	352	103%	392	99%	398	98%	407	98%
	P60_SMTR_SH14	332	105%	391	99%	398	98%	415	100%	335	98%	390	99%	395	98%	410	99%
	P60_SMTR_SH11	332	105%	391	99%	397	98%	413	99%	335	98%	390	99%	395	97%	408	98%
_	P50_SMTR_SH14	310	98%	392	100%	404	100%	427	102%	309	90%	392	99%	401	99%	417	100%
.0n	P50_SMTR_SH11	310	98%	392	100%	402	100%	423	101%	309	90%	391	99%	399	99%	413	99%
(~	P70_HFC_SH14	316	100%	394	100%	403	100%	426	102%	317	93%	394	100%	403	100%	420	101%
	P70_HFC_SH11	317	100%	394	100%	401	99%	423	101%	323	94%	393	100%	401	99%	417	100%
	P60_HFC_SH14	318	101%	396	101%	418	103%	438	105%	320	94%	397	101%	412	102%	429	103%
	P60_HFC_SH11	318	101%	397	101%	414	102%	431	103%	320	94%	396	100%	409	101%	423	102%
	P50_HFC_SH14	358	113%	402	102%	421	104%	446	107%	366	107%	401	101%	413	102%	433	104%
	P50_HFC_SH11	357	113%	400	102%	415	103%	437	105%	364	106%	399	101%	408	101%	427	103%
	Rgd	297		394		405		415		350		397		411		418	
	P70_SMTR_SH14	274	92%	390	99%	398	98%	408	98%	304	87%	392	99%	400	97%	409	98%
	P70_SMTR_SH11	274	92%	390	99%	397	98%	406	98%	304	87%	392	99%	399	97%	408	98%
	P60_SMTR_SH14	291	98%	391	99%	398	98%	410	99%	318	91%	392	99%	399	97%	407	97%
	P60_SMTR_SH11	291	98%	391	99%	398	98%	409	98%	318	91%	392	99%	398	97%	405	97%
_	P50_SMTR_SH14	349	118%	393	100%	400	99%	416	100%	362	103%	393	99%	398	97%	415	99%
.0n	P50_SMTR_SH11	349	118%	393	100%	399	99%	414	100%	362	103%	393	99%	397	97%	412	99%
5	P70_HFC_SH14	277	93%	395	100%	410	101%	421	101%	308	88%	397	100%	409	100%	418	100%
	P70_HFC_SH11	277	93%	394	100%	407	101%	417	100%	308	88%	398	100%	407	99%	414	99%
	P60_HFC_SH14	297	100%	398	101%	409	101%	423	102%	330	94%	399	101%	406	99%	420	101%
	P60_HFC_SH11	297	100%	397	101%	407	100%	419	101%	330	94%	397	100%	403	98%	416	99%
	P50_HFC_SH14	342	115%	400	102%	417	103%	443	107%	350	100%	401	101%	416	101%	434	104%
	P50_HFC_SH11	341	115%	399	101%	415	103%	436	105%	356	102%	399	101%	411	100%	427	102%

: Yarı rijit irleşimli er eve sonucunun, aynı a ıklığa sahip rijit irleşimli er eve sonucuna lümü.

Çizelge 5.67 7.0*m* ve 9.0*m* a ıklıklı çerçevelerin, faya uzak ve faya yakın kayıtlar altında, ortalama 2.kat kolon gerilmeleri (*MPa*)

]	Faya zal	k ayıtlar	r					F	aya aki	n ayıtla	r		
	Çerçeve	0. Tas	arım D.	Tasar	ım D.	Maksin	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	235		366		388		391		257		374		391		392	
	P70_SMTR_SH14	257	109%	341	93%	389	100%	391	100%	268	105%	350	94%	390	100%	392	100%
	P70_SMTR_SH11	257	109%	341	93%	389	100%	391	100%	268	105%	349	93%	390	100%	391	100%
	P60_SMTR_SH14	260	111%	338	93%	387	100%	392	100%	265	103%	338	90%	390	100%	393	100%
	P60_SMTR_SH11	260	111%	337	92%	386	99%	392	100%	265	103%	338	90%	390	100%	393	100%
_	P50_SMTR_SH14	258	110%	342	93%	388	100%	393	100%	261	102%	345	92%	391	100%	393	100%
.0n	P50_SMTR_SH11	258	110%	340	93%	385	99%	392	100%	261	102%	344	92%	390	100%	393	100%
	P70_HFC_SH14	240	102%	363	99%	390	100%	393	100%	247	96%	374	100%	390	100%	394	101%
	P70_HFC_SH11	240	102%	361	99%	390	100%	392	100%	250	97%	372	99%	389	99%	393	100%
	P60_HFC_SH14	245	104%	373	102%	392	101%	394	101%	248	96%	368	98%	391	100%	394	101%
	P60_HFC_SH11	246	105%	374	102%	390	101%	392	100%	248	96%	361	97%	390	100%	391	100%
	P50_HFC_SH14	256	109%	387	106%	392	101%	397	102%	263	103%	379	101%	391	100%	392	100%
	P50_HFC_SH11	255	108%	380	104%	390	101%	393	101%	269	105%	379	101%	389	100%	391	100%
	Rgd	217		345		387		390		258		375		390		391	
	P70_SMTR_SH14	195	90%	293	85%	344	89%	372	95%	219	85%	315	84%	363	93%	388	99%
	P70_SMTR_SH11	195	90%	293	85%	343	89%	368	94%	219	85%	315	84%	361	92%	385	99%
	P60_SMTR_SH14	206	95%	302	87%	350	90%	384	98%	227	88%	320	85%	365	93%	382	98%
	P60_SMTR_SH11	206	95%	301	87%	349	90%	380	97%	227	88%	319	85%	363	93%	377	97%
_	P50_SMTR_SH14	226	104%	295	85%	332	86%	363	93%	232	90%	293	78%	335	86%	372	95%
.0n	P50_SMTR_SH11	226	104%	294	85%	327	84%	355	91%	232	90%	293	78%	331	85%	364	93%
6	P70_HFC_SH14	193	89%	306	89%	362	94%	384	98%	212	82%	337	90%	372	95%	384	98%
	P70_HFC_SH11	193	89%	305	88%	356	92%	374	96%	212	82%	338	90%	368	94%	378	97%
	P60_HFC_SH14	203	93%	334	97%	360	93%	378	97%	221	86%	332	89%	360	92%	383	98%
	P60_HFC_SH11	203	93%	331	96%	348	90%	364	93%	221	86%	326	87%	351	90%	376	96%
	P50_HFC_SH14	219	101%	323	94%	361	93%	390	100%	224	87%	319	85%	367	94%	388	99%
	P50_HFC_SH11	219	101%	321	93%	341	88%	371	95%	228	88%	315	84%	351	90%	380	<u>97%</u>

: Yarı rijit irleşimli er eve sonucunun, aynı a ıklığa sahip rijit irleşimli er eve sonucuna lümü.

Çizelge 5.68 7.0*m* ve 9.0*m* a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama 3.kat kolon gerilmeleri (*MPa*)

]	Faya zal	k ayıtla	r					F	aya aku	n ayıtla	r		
	Çerçeve	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.	0.5 Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	211		333		385		395		243		360		395		402	
	P70_SMTR_SH14	188	89%	285	86%	339	88%	372	94%	211	87%	322	89%	379	96%	391	97%
	P70_SMTR_SH11	188	89%	285	86%	337	88%	367	93%	211	87%	322	89%	378	96%	391	97%
	P60_SMTR_SH14	188	89%	270	81%	325	84%	363	92%	207	85%	291	81%	354	90%	383	95%
	P60_SMTR_SH11	188	89%	268	80%	314	82%	349	88%	207	85%	288	80%	344	87%	375	93%
-	P50_SMTR_SH14	170	81%	243	73%	289	75%	336	85%	187	77%	251	70%	310	79%	357	89%
.0n	P50_SMTR_SH11	170	81%	238	71%	276	72%	317	80%	187	77%	246	68%	302	77%	343	85%
(-	P70_HFC_SH14	198	94%	324	97%	382	99%	392	99%	220	91%	348	97%	391	99%	397	99%
	P70_HFC_SH11	197	94%	318	96%	370	96%	388	98%	222	91%	346	96%	391	99%	395	98%
	P60_HFC_SH14	188	89%	298	89%	357	93%	387	98%	207	85%	351	97%	389	99%	394	98%
	P60_HFC_SH11	189	90%	314	94%	350	91%	383	97%	207	85%	348	97%	381	97%	392	98%
	P50_HFC_SH14	176	83%	291	87%	346	90%	385	98%	196	81%	291	81%	351	89%	394	98%
	P50_HFC_SH11	175	83%	279	84%	329	85%	365	92%	194	80%	293	81%	351	89%	389	97%
	Rgd	186		292		348		379		221		328		380		393	
	P70_SMTR_SH14	149	80%	229	79%	283	81%	319	84%	167	75%	248	76%	299	79%	342	87%
	P70_SMTR_SH11	149	80%	229	78%	282	81%	312	82%	167	75%	248	76%	297	78%	334	85%
	P60_SMTR_SH14	140	76%	218	75%	265	76%	290	77%	157	71%	239	73%	288	76%	334	85%
	P60_SMTR_SH11	140	76%	218	75%	259	75%	279	74%	157	71%	239	73%	282	74%	327	83%
-	P50_SMTR_SH14	146	78%	205	70%	232	67%	258	68%	162	73%	214	65%	250	66%	302	77%
.0n	P50_SMTR_SH11	146	78%	203	70%	226	65%	248	66%	162	73%	212	65%	246	65%	296	75%
0,	P70_HFC_SH14	147	79%	249	85%	324	93%	361	95%	161	73%	279	85%	342	90%	382	97%
	P70_HFC_SH11	147	79%	246	84%	318	91%	343	91%	161	73%	279	85%	333	88%	373	95%
	P60_HFC_SH14	145	78%	260	89%	311	89%	334	88%	165	75%	281	86%	327	86%	358	91%
	P60_HFC_SH11	145	78%	256	88%	289	83%	320	84%	165	75%	281	86%	318	84%	349	89%
	P50_HFC_SH14	154	83%	226	78%	285	82%	332	88%	167	75%	287	87%	344	90%	353	90%
	P50_HFC_SH11	156	84%	219	75%	277	80%	320	84%	168	76%	303	92%	327	86%	343	87%

: Yarı rijit irleşimli er eve sonucunun, aynı a ıklığa sahip rijit irleşimli er eve sonucuna lümü.

Aynı kolon kesitlerine sahip ü üncü kat ortalama kolon gerilmeleri faya u ak ve faya yakın yer hareketleri altında 0. Tasarım deprem seviyesi dikkate alınmadan daha detaylı olarak incelenirse;

7.0m a ıklıklı rijit er evenin, ü üncü kat kolon gerilmeleri

	Faya uzak	Faya yakın
%70 kapasiteli, SMTR modelli çerçevede	e :%14~%6	: %11 ~ %3
%60 kapasiteli, SMTR modelli çerçevede	e : %20 ~ %8	: %20 ~ %5
%50 kapasiteli, SMTR modelli çerçevede	e : %29 ~ %15	: %32 ~ %11
%70 kapasiteli, HFC modelli çerçevede	: %4 ~ %1	: %4 ~ %1
%60 kapasiteli, HFC modelli çerçevede	: %11 ~ %2	: %3 ~ %2
%50 kapasiteli, HFC modelli çerçevede	: %16 ~ %2	: %19 ~ %2

9.0m a ıklıklı rijit er evenin, ü üncü kat kolon gerilmeleri

	Faya uzak	Faya yakın
%70 kapasiteli, SMTR modelli çerçevede	: %22 ~ %16	: %24 ~ %13
%60 kapasiteli, SMTR modelli çerçevede	: %25 ~ %23	: %27 ~ %15
%50 kapasiteli, SMTR modelli çerçevede	: %35 ~ %30	: %35 ~ %23
%70 kapasiteli, HFC modelli çerçevede	: %16 ~ %5	: %15 ~ %3
%60 kapasiteli, HFC modelli çerçevede	: %17 ~ %11	: %16 ~ %9
%50 kapasiteli, HFC modelli çerçevede	: %25 ~ %12	: %14 ~ %10

arasında a almıştır.

rnek er evelerde oluşan kolon gerilemeleri faya u ak ve faya yakın yer hareketi kayıtları altında en er davranış g stermektedir. Yukarıdaki sonu lara g re, tüm kolon kesitleri aynı olduğunda ve SMT modelli 0, 0 ve 0 kapasiteli irleşimler kullandığında, kolon gerilmeleri rijit er eve kolon gerilmelerine g re sırasıyla yaklaşık 13.5 (%3 ~ %24), %16 (%5 ~ %27) ve %23 (%11 ~ %35) oranında a almaktadır. Bunun yanında HFC modelli %70, 0 ve 0 kapasiteli irleşimler kullandığında, kolon gerilmeleri rijit er eve kolon gerilmelerine g re sırasıyla yaklaşık . (), %9.5 (%2 ~ %17) ve %13.5 (%2 ~ %25) oranında a almaktadır.

5.3.2.4 irleşim D nmeleri

Dinamik analizler sonucunda faya u ak ve faya yakın yer hareketleri altında rnek er evelerin her katındaki irleşimlerin maksimum d nme değerleri, 0. tasarım, tasarım, maksimum ve maksimum depremin .33 katı i in elirlenmiş ve Ek a da verilmiştir. Bunlar içinden 9.0*m* a ıklıklı er evelerin .katına ait maksimum irleşim d nme değerleri Şekil 5.30 da g sterilmiştir. Ayrıca her deprem seviyesi i in er evelerin her kattaki minimum, maksimum ve ortalama irleşim d nme değerleri Ek de verilmiştir.

Tüm deprem seviyeleri için, 18 adet yapay kayıt altında 7.0*m* a ıklıklı 0 irleşim kapasiteli, HFC modelli ve 0 pekleşme oranlı er evenin maksimum deprem seviyesi hari tüm yarı rijit er evelerin ortalama irleşim d nme değerleri kabul edilebilirlik sınırlarını sağlamaktadır. Ancak sonu lar tek tek incelendiğinde, tasarım ve maksimum deprem i in yapılan 864 adet analizden 67 tanesinde ka ul edile ilirlik sınırları aşılmıştır (Çizelge 5.69).

	D!	D!	D-L		Faya	n zal	k ay	ıtlar			Faya	ak	n ay	ntlar	
	Bir. Kon	Bir. Mod	Pek.	1. F	Kat	2.F	Kat	3.1	Kat	1.1	Kat	2.I	Kat	3.I	Kat
	кар	Moa	Oram	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD	TD	MD
	0/ 70		%40	-	-	-	-	-	-	-	-	-	-	-	-
	%/0		%10	-	-	-	-	-	-	-	-	-	-	-	-
	0/ 60	TR	%40	-	-	-	-	-	-	-	-	-	-	-	-
	%0U	SM	%10	-	-	-	-	-	-	-	-	-	-	-	-
	0/ 50	•1	%40	-	-	-	-	-	-	-	-	-	-	-	-
	%30		%10	-	-	-	-	-	-	-	-	-	-	-	-
	0/ 70		%40	-	-	-	-	-	-	-	-	-	-	2	-
	% /0		%10	-	-	-	-	1	-	-	-	-	-		-
	%60 %50	Ç	%40	-	-	-	-	4	-		-	-	-	2	-
		IH	%10	1	3	-	-	3	2	-	1	1	-	4	-
			%40	-	3	-	1	5	-	-	-	-	-	3	-
	7030		%10	4	6	-	-	4	-	1	1	-	1	4	-
	04 70		%40	-	-	-	-	-	-	-	-	-	-	-	-
	70 / 0	- 4	%10	-		-	-	-	-	-	-	-	-	-	-
	04.60	TR	%40	-	-	-	-	-	-	-	-	-	-	-	-
	7000	SM	%10	-	-	-	-	-	-	-	-	-	-	-	-
	% 50		%40	-	-	-	-	-	-	-	-	-	-	-	-
	70.00		%10	-	-	-	-	-	-	-	-	-	-	-	-
	%70		%40	-	-	-	-	-	-	-	-	-	-	-	-
	7070		%10	-	-	-	-	-	-	-	-	-	-	-	-
	%60	Ð	%40	-	-	-	-	-	-	-	-	-	-	1	-
	7000	IH	%10	-	-	-	-	1	-	-	-	-	-	4	-
	%50		%40	-	-	-	-	1	-	-	-	-	-	1	-
			%10	-	-	-	-	-	1	-	-	-	-	1	-

Çizelge 5.69 Ka ul edile ilirlik sınırının aşıldığı anali sayıları

Çizelge 5.69 da g rüldüğü ü ere ka ul edile ilirlik sınırı SMT irleşim davranış modelinin kullanıldığı hiçbir analizde aşılmamıştır. Ayrıca .0*m* a ıklıklı, HFC irleşim modeli kullanılan er evelerde sadece 3.kat seviyesinde ka ul edile ilirlik sınırları aşılmıştır. Bunun yanında ka ul edile ilirlik sınırının aşılması . ve 2. kat seviyelerine nispeten 3. kat seviyesinde yoğunlaşmıştır.

Ayrıca .33xmaksimum deprem seviyesi i in yapılan 432 adet analizden sadece 2 tanesinde irleşim dayanım a alması sınırı (0.052*rad*) aşılmıştır. Bu sınır;

Faya u ak yer hareketi kaydı altında .0m a ıklıklı, 0 irleşim kapasiteli, HF irleşim modelli ve 0 pekleşme oranlı er evenin .kat seviyesi,

Faya yakın yer hareketi kaydı altında .0m a ıklıklı, 0 irleşim kapasiteli, HF irleşim modelli ve 0 pekleşme oranlı er evenin 3.kat seviyesinde aşılmıştır.

7.0*m* ve 9.0*m* a ıklıklı er evelerin, faya u ak ve faya yakın yer hareketleri altında her kat ve her deprem seviyesi i in ortalama irleşim d nme değerleri Çizelge 5.70 ~ Çizelge 5.72'de verilmiştir. Bu çizelgelerde SMT irleşim davranış modelli er eveler, %70-SMTR-SH14 çerçevesinin sonu larıyla, HF irleşim modelli er eveler ise aynı kapasite ve pekleşme oranına sahip SMT modelli er evelerin sonu larıyla karşılaştırılmıştır.

Bu sonu lardan da g rüldüğü ü ere

Birleşim kapasitesinin a alması,

SMT yerine HF irleşim modelinin kullanılması,

Pekleşme oranının a alması

irleşimlerde oluşan d nmeleri arttırmaktadır.

Şekil 5.30 Maksimum . kat irleşim d nmeleri (.0m a ıklıklı er eveler, faya yakın yer hareketleri)

Çizelge 5.70 7.0m ve 9.0m a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama 1.kat irleşim d nmeleri (rad)

	Faya zak ayıtlar									Faya akın ayıtlar							
	Çerçeve	0. Tasa	arım D.	Tasar	ım D.	Maksin	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	-		-		-		-		-		-		-		-	
	P70_SMTR_SH14	0.010		0.016		0.022		0.027		0.010		0.016		0.022		0.026	
	P70_SMTR_SH11	0.010	100%	0.017	105%	0.024	109%	0.030	111%	0.010	100%	0.017	104%	0.023	108%	0.029	111%
	P60_SMTR_SH14	0.010	104%	0.016	101%	0.023	105%	0.030	112%	0.010	100%	0.015	94%	0.022	102%	0.028	108%
	P60_SMTR_SH11	0.010	104%	0.017	106%	0.025	115%	0.033	125%	0.010	100%	0.016	97%	0.024	111%	0.032	120%
г	P50_SMTR_SH14	0.010	104%	0.018	111%	0.026	122%	0.035	131%	0.010	99%	0.018	108%	0.025	117%	0.031	118%
.0n	P50_SMTR_SH11	0.010	104%	0.019	117%	0.029	133%	0.038	145%	0.010	99%	0.019	114%	0.027	128%	0.034	129%
(-	P70_HFC_SH14	0.009	93%	0.019	118%	0.024	112%	0.032	120%	0.009	89%	0.019	115%	0.024	110%	0.029	112%
	P70_HFC_SH11	0.009	93%	0.020	118%	0.026	111%	0.036	122%	0.009	90%	0.020	116%	0.026	110%	0.032	110%
	P60_HFC_SH14	0.010	95%	0.021	126%	0.030	133%	0.039	133%	0.010	95%	0.020	130%	0.028	126%	0.035	122%
	P60_HFC_SH11	0.010	95%	0.023	135%	0.033	135%	0.043	129%	0.010	95%	0.021	131%	0.030	127%	0.037	119%
	P50_HFC_SH14	0.012	117%	0.025	137%	0.033	126%	0.042	120%	0.012	118%	0.024	134%	0.030	117%	0.035	112%
	P50_HFC_SH11	0.012	116%	0.026	138%	0.036	124%	0.045	118%	0.013	130%	0.025	135%	0.031	114%	0.038	113%
	Rgd	-		-		-		-		-		-		-		-	
	P70_SMTR_SH14	0.007		0.014		0.019		0.023		0.008		0.015		0.020		0.023	
	P70_SMTR_SH11	0.007	100%	0.014	101%	0.020	105%	0.024	109%	0.008	100%	0.016	102%	0.022	107%	0.026	109%
	P60_SMTR_SH14	0.009	123%	0.015	108%	0.020	106%	0.025	109%	0.010	117%	0.016	104%	0.020	101%	0.024	101%
	P60_SMTR_SH11	0.009	123%	0.015	109%	0.021	112%	0.027	120%	0.010	117%	0.016	106%	0.022	107%	0.025	109%
_	P50_SMTR_SH14	0.009	136%	0.016	111%	0.021	109%	0.026	117%	0.010	118%	0.015	100%	0.020	100%	0.026	113%
.0m	P50_SMTR_SH11	0.009	136%	0.017	118%	0.022	117%	0.029	129%	0.010	119%	0.016	106%	0.022	107%	0.029	125%
6	P70_HFC_SH14	0.007	99%	0.016	114%	0.022	118%	0.026	116%	0.008	98%	0.018	117%	0.022	110%	0.025	108%
	P70_HFC_SH11	0.007	99%	0.016	116%	0.024	121%	0.029	118%	0.008	98%	0.019	122%	0.025	113%	0.027	105%
	P60_HFC_SH14	0.009	100%	0.019	128%	0.024	121%	0.028	116%	0.010	101%	0.019	119%	0.023	113%	0.027	114%
	P60_HFC_SH11	0.009	100%	0.020	133%	0.026	120%	0.032	118%	0.010	101%	0.020	121%	0.024	112%	0.029	115%
	P50_HFC_SH14	0.010	105%	0.020	127%	0.025	121%	0.034	128%	0.010	99%	0.019	121%	0.024	121%	0.031	119%
	P50_HFC_SH11	0.010	107%	0.022	130%	0.028	125%	0.038	131%	0.010	104%	0.019	119%	0.026	122%	0.033	113%

*: SMT

SMT irleşim davranış modelli er eve sonucunun, aynı a ıklığa ait 0-SMTR-SH14 çerçeve sonucuna bölümü. HFC irleşim modelli er eve sonucunun, aynı kapasite ve pekleşme oranına sahip SMT modelli er eve sonucuna lümü.

Çizelge 5.71 7.0m ve 9.0m a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama 2.kat irleşim d nmeleri (rad)

	Faya zak ayıtlar									Faya akın ayıtlar							
	Çerçeve	0. Tasa	arım D.	Tasar	ım D.	Maksin	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	-		-		-		-		-		-		-		-	
	P70_SMTR_SH14	0.006		0.011		0.016		0.020		0.007		0.011		0.016		0.021	
	P70_SMTR_SH11	0.006	100%	0.011	105%	0.017	109%	0.023	111%	0.007	100%	0.012	105%	0.017	109%	0.023	111%
	P60_SMTR_SH14	0.007	118%	0.013	120%	0.020	125%	0.025	120%	0.008	113%	0.013	117%	0.020	125%	0.025	121%
	P60_SMTR_SH11	0.007	118%	0.014	127%	0.022	138%	0.028	135%	0.008	113%	0.014	124%	0.022	138%	0.028	136%
г	P50_SMTR_SH14	0.007	122%	0.015	135%	0.022	138%	0.029	141%	0.008	115%	0.014	126%	0.021	134%	0.027	130%
.0n	P50_SMTR_SH11	0.007	122%	0.015	143%	0.024	150%	0.033	159%	0.008	115%	0.015	134%	0.023	146%	0.030	143%
(-	P70_HFC_SH14	0.007	108%	0.016	146%	0.022	136%	0.026	129%	0.007	107%	0.016	139%	0.022	137%	0.027	131%
	P70_HFC_SH11	0.007	108%	0.017	149%	0.024	139%	0.031	135%	0.007	110%	0.018	151%	0.024	138%	0.032	138%
	P60_HFC_SH14	0.007	103%	0.017	134%	0.025	126%	0.031	126%	0.008	102%	0.019	140%	0.025	126%	0.031	124%
	P60_HFC_SH11	0.007	104%	0.020	144%	0.028	131%	0.035	128%	0.008	102%	0.021	146%	0.028	127%	0.034	122%
	P50_HFC_SH14	0.009	119%	0.020	136%	0.029	133%	0.034	117%	0.010	125%	0.020	142%	0.027	126%	0.034	125%
	P50_HFC_SH11	0.009	119%	0.021	134%	0.030	125%	0.039	120%	0.010	134%	0.021	139%	0.029	126%	0.036	121%
	Rgd	-		-		-		-		-		-		-		-	
	P70_SMTR_SH14	0.005		0.010		0.015		0.019		0.006		0.011		0.016		0.020	
	P70_SMTR_SH11	0.005	100%	0.010	101%	0.016	108%	0.020	110%	0.006	100%	0.011	103%	0.017	108%	0.022	111%
	P60_SMTR_SH14	0.006	126%	0.011	111%	0.015	103%	0.020	107%	0.007	120%	0.012	103%	0.016	103%	0.021	104%
	P60_SMTR_SH11	0.006	126%	0.011	112%	0.016	110%	0.022	118%	0.007	120%	0.012	105%	0.018	111%	0.023	115%
_	P50_SMTR_SH14	0.007	149%	0.012	120%	0.018	119%	0.023	122%	0.008	135%	0.013	114%	0.018	113%	0.024	121%
.0m	P50_SMTR_SH11	0.007	149%	0.012	123%	0.019	128%	0.025	138%	0.008	135%	0.013	117%	0.019	121%	0.027	134%
6	P70_HFC_SH14	0.005	99%	0.013	125%	0.019	127%	0.023	126%	0.006	102%	0.014	130%	0.019	120%	0.024	124%
	P70_HFC_SH11	0.005	99%	0.013	129%	0.021	131%	0.026	125%	0.006	102%	0.015	135%	0.021	123%	0.027	124%
	P60_HFC_SH14	0.007	106%	0.016	145%	0.021	138%	0.024	121%	0.008	108%	0.016	142%	0.022	135%	0.025	122%
	P60_HFC_SH11	0.007	106%	0.017	149%	0.022	136%	0.027	125%	0.008	108%	0.018	151%	0.023	132%	0.027	120%
	P50_HFC_SH14	0.009	117%	0.016	131%	0.021	120%	0.028	124%	0.009	117%	0.017	133%	0.022	120%	0.028	119%
	P50_HFC_SH11	0.009	122%	0.017	135%	0.024	124%	0.033	130%	0.009	119%	0.018	138%	0.023	121%	0.033	126%

: SMT irleşim davranış modelli er eve sonucunun, aynı a ıklığa ait 0-SMTR-SH14 çerçeve sonucuna bölümü.

HFC irleşim modelli er eve sonucunun, aynı kapasite ve pekleşme oranına sahip SMT modelli er eve sonucuna lümü.

Çizelge 5.72 7.0m ve 9.0m a ıklıklı çerçevelerin, faya u ak ve faya yakın kayıtlar altında, ortalama 3.kat irleşim d nmeleri (rad)

	Faya zak ayıtlar									Faya akın ayıtlar							
	Çerçeve	0. Tasa	arım D.	Tasar	ım D.	Maksin	num D.	1.33 M	aks. D.	0. Tas	arım D.	Tasar	ım D.	Maksir	num D.	1.33 M	aks. D.
		Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*	Ort.	Oran*
	Rgd	-		-		-		-		-		-		-		-	
	P70_SMTR_SH14	0.006		0.010		0.013		0.018		0.007		0.011		0.017		0.021	
	P70_SMTR_SH11	0.006	100%	0.010	101%	0.014	107%	0.020	112%	0.007	100%	0.012	104%	0.019	111%	0.024	114%
	P60_SMTR_SH14	0.007	116%	0.013	130%	0.019	139%	0.024	133%	0.008	118%	0.014	126%	0.021	126%	0.027	125%
	P60_SMTR_SH11	0.007	116%	0.013	131%	0.020	149%	0.026	148%	0.008	118%	0.015	129%	0.023	138%	0.030	141%
г	P50_SMTR_SH14	0.008	125%	0.013	137%	0.020	149%	0.027	150%	0.009	123%	0.014	127%	0.021	124%	0.027	128%
7.0n	P50_SMTR_SH11	0.008	125%	0.013	140%	0.022	163%	0.030	172%	0.009	123%	0.015	132%	0.023	135%	0.030	143%
(-	P70_HFC_SH14	0.007	107%	0.015	156%	0.021	157%	0.027	150%	0.008	109%	0.019	170%	0.022	131%	0.030	140%
	P70_HFC_SH11	0.007	106%	0.017	169%	0.022	150%	0.030	149%	0.009	127%	0.018	153%	0.026	138%	0.034	142%
	P60_HFC_SH14	0.008	108%	0.023	184%	0.026	137%	0.028	118%	0.009	108%	0.025	172%	0.028	129%	0.031	116%
	P60_HFC_SH11	0.008	109%	0.023	178%	0.031	156%	0.032	123%	0.009	108%	0.026	181%	0.030	129%	0.035	119%
	P50_HFC_SH14	0.009	115%	0.028	209%	0.025	124%	0.032	122%	0.010	120%	0.025	177%	0.027	129%	0.035	127%
	P50_HFC_SH11	0.009	114%	0.026	195%	0.028	125%	0.037	122%	0.011	131%	0.027	183%	0.030	131%	0.040	132%
	Rgd	-		-		-		-		-		-		-		-	
	P70_SMTR_SH14	0.005		0.009		0.012		0.016		0.006		0.010		0.014		0.019	
	P70_SMTR_SH11	0.005	100%	0.009	100%	0.012	102%	0.018	110%	0.006	100%	0.010	100%	0.015	105%	0.022	114%
	P60_SMTR_SH14	0.006	122%	0.011	126%	0.016	133%	0.020	123%	0.007	120%	0.013	134%	0.019	137%	0.023	119%
	P60_SMTR_SH11	0.006	122%	0.011	126%	0.017	136%	0.021	131%	0.007	120%	0.013	134%	0.020	144%	0.025	131%
-	P50_SMTR_SH14	0.008	156%	0.012	139%	0.017	139%	0.022	133%	0.009	151%	0.014	141%	0.019	138%	0.024	125%
.0n	P50_SMTR_SH11	0.008	156%	0.012	139%	0.018	147%	0.024	148%	0.009	151%	0.014	143%	0.020	147%	0.027	138%
01	P70_HFC_SH14	0.005	102%	0.012	138%	0.020	165%	0.023	140%	0.006	101%	0.016	161%	0.021	150%	0.027	138%
	P70_HFC_SH11	0.005	102%	0.011	123%	0.026	205%	0.026	145%	0.006	101%	0.014	147%	0.024	162%	0.031	139%
	P60_HFC_SH14	0.007	110%	0.018	161%	0.023	139%	0.025	123%	0.008	114%	0.022	169%	0.024	129%	0.029	124%
	P60_HFC_SH11	0.007	110%	0.019	174%	0.025	150%	0.027	128%	0.008	114%	0.027	210%	0.028	140%	0.030	120%
	P50_HFC_SH14	0.009	117%	0.019	151%	0.025	145%	0.029	135%	0.011	120%	0.023	170%	0.026	137%	0.034	141%
	P50_HFC_SH11	0.009	120%	0.021	166%	0.027	153%	0.033	136%	0.011	126%	0.024	175%	0.027	133%	0.036	133%

: SMT irleşim davranış modelli er eve sonucunun, aynı a ıklığa ait 0-SMTR-SH14 çerçeve sonucuna bölümü.

HFC irleşim modelli er eve sonucunun, aynı kapasite ve pekleşme oranına sahip SMT modelli er eve sonucuna lümü.

5.4 Fourier Analizleri

ncelenen rnek er evelerin davranışlarını daha iyi anlaya ilmek i in frekans alanında analizler yapılmıştır. Yapay yer hareketi etkisindeki rnek er evelerin davranışları oyunca askın elastik tesi periyotlarını elirlemek i in yatay tepe ivme tepkilerine Fourier anali leri yapılmıştır. Ayrıca askın elastik tesi periyotlarının yer hareketi etkisi süresince değişimini g lemek i in pencere a lı Fourier anali leri de (indo ased Fourier transformation) yapılmıştır. Bu anali lerde pencere u unluğu 10*sn* olarak se ilmiş ve 8*sn*'lik bindirmelerle tüm yer hareketi süresi incelenmiştir.

5.4.1 İzlenen ntem

Fourier anali i ile elastik tesi periyotların elirlenmesinde i lenen yol, A N2 faya yakın yer hareketi kaydının maksimum deprem seviyesi altında, .0*m* a ıklıklı, SMT irleşim modelli ve 0 irleşim pekleşme oranlı d rt adet er eveye uygulanarak aşağıda etlenmiştir.

Çerçevelerin, A96N2 faya yakın kaydın maksimum deprem seviyesi i in elde edilen ve Fourier anali lerinde kullanılan yatay tepe ivme tepkileri Şekil 5.31'de verilmiştir. Ayrıca tepe deplasman tepkileri ise Şekil 5.32'de verilmiştir.

Yatay ivme tepkileri Fourier anali iyle frekans alanında incelenmiş ve elde edilen Fourier güç spektrumları Şekil 5.33 de verilmiştir. Şekilden de g rüldüğü ü ere

ijit irleşimli er evede, 0. sn ve 0.24sn periyotlu tepkiler en askın olanlarıdır.

0 irleşim kapasiteli er evede, 0. *sn* ve 0.26*sn* periyotlu tepkiler en askın olanlarıdır. Ancak er evede 0. 3*sn* ve 0.92*sn* periyotlu tepkiler de görülmektedir.

0 irleşim kapasiteli er evede, 0. *sn* ve 0.28*sn* periyotlu tepkiler en askın olanlarıdır. Ancak er evede, 0. 3*sn* ve 0.92*sn* periyotlu tepkiler de önemli ölçüde ulunmaktadır.

0 irleşim kapasiteli er evede, 0. sn ve 0.32sn periyotlu tepkiler en askın olanlarıdır. Ayrıca er evede, .0 sn periyotlu tepkiler de mevcuttur.

ijit irleşimli er evenin haricinde tüm er evelerde, irinci elastik periyotlarından daha üyük periyotlu tepkiler mevcuttur. Bu periyotların deprem kaydı süresi oyunca dağılımını görmek ve deprem süresinde er evenin sahip olduğu en yüksek elastik tesi periyodu elirlemek i in, tepe ivmelerine pencere a lı Fourier anali i yapılmıştır.

Şekil 5.31 Maksimum deprem seviyesinde A96N2 faya yakın yer hareketi kaydı altında, tepe noktasının yatay ivme tepkisi

Şekil 5.32 Maksimum deprem seviyesinde A96N2 faya yakın yer hareketi kaydı altında, tepe noktasının yatay deplasman tepkisi

Şekil 5.33 Tepe ivme tepkisinin Fourier analizi

Çer eveler i in yapılan pencere a lı Fourier anali lerinin sonu ları Şekil 5.34'de verilmiştir.

ijit irleşimli er evede, tüm yer hareketi oyunca en askın tepki 0. *sn* olmuştur. er evede oluşan maksimum tepe deplasmanı (2 mm), kaydın 0. saniyesinde ger ekleşmiştir.

0 irleşim kapasiteli er evede, en yüksek periyotlu askın tepki, yer hareketi kaydının 3sn civarında, 0. sn olarak ger ekleşmiştir. Ayrıca er evede oluşan maksimum tepe deplasmanı (2 mm), kaydın . saniyesinde ger ekleşmiştir.

0 irleşim kapasiteli er evede, en yüksek periyotlu askın tepki, yer hareketi kaydının sn civarında, .00sn olarak ger ekleşmiştir. Ayrıca er evede oluşan maksimum tepe deplasmanı (203mm), kaydın 2. saniyesinde ger ekleşmiştir.

0 irleşim kapasiteli er evede, en yüksek periyotlu askın tepki, yer hareketi kaydının sn ve sn civarında, .00sn olarak ger ekleşmiştir. Ayrıca er evede oluşan maksimum tepe deplasmanı (2 3mm), kaydın . saniyesinde ger ekleşmiştir.

Şekil 5.34 Tepe ivme tepkisinin pencere a lı Fourier analizi

5.4.2 Elastik Ötesi Periyotlar

7.0*m* ve 9.0*m* a ıklıklı, rijit irleşimli ve 0 pekleşme oranlı yarı rijit irleşimli er evelerin elastik tesi periyotlarını elirlemek i in, B lüm . . de a ıklanan y ntem tüm yapay kayıtların maksimum deprem seviyesi için uygulanmıştır. Elde edilen Fourier güç spektrumları Ek de verilmiştir. Elde edilen elastik ötesi periyotlar 7.0*m* ve 9.0*m* a ıklıklı er eveler i in sırasıyla Çizelge 5.73, Çizelge 5.74 de verilmiş ve Şekil 5.35, Şekil 5.36'da karşılaştırılmıştır.

aya zaklı	Yer Hareketi aydı	Rijit	%70 HFC	%60 HFC	%50 HFC	%70 SMTR	%60 SMTR	%50 SMTR
	Elastik Periyot	0.903	0.926	0.975	1.029	0.926	0.975	1.029
	Ambraseys (2003)	1.00	1.04	1.20	1.43	1.00	1.12	1.25
Uzak	Ambraseys (1996)	1.00	1.16	1.16	1.37	1.04	1.12	1.16
	Boore (1997)	1.00	1.12	1.20	1.37	1.00	1.12	1.20
	Ortalama	1.00	1.10	1.19	1.39	1.01	1.12	1.20
	Oran*	111%	119%	122%	135%	109%	115%	117%
	Ambraseys (2003)	0.97	1.16	1.16	1.37	1.00	1.12	1.20
n	Ambraseys (1996)	0.97	1.12	1.16	1.37	1.00	1.12	1.16
Yakır	Boore (1997)	1.00	1.12	1.16	1.37	1.00	1.12	1.20
	Ortalama	0.98	1.13	1.16	1.37	1.00	1.12	1.19
	Oran*	109%	122%	119%	133%	108%	115%	115%

Cizelge 5.73 7.0m A ıklıklı er evelerin elastik tesi periyotları (sn)

rtalama elastik tesi periyodun, elastik periyoda oranı

Çizelge 5.74 9.0 <i>m</i> A ıklıklı	er evelerin elastik	tesi periyotları (sn)

'aya zaklı	Yer Hareketi aydı	Rijit	%70 HFC	%60 HFC	%50 HFC	%70 SMTR	%60 SMTR	%50 SMTR
	Elastik Periyot	0.767	0.835	0.874	0.929	0.835	0.874	0.929
	Ambraseys (2003)	0.77	1.04	1.04	1.20	0.88	1.01	1.00
×	Ambraseys (1996)	0.77	1.00	1.04	1.20	0.94	0.97	1.04
Uzal	Boore (1997)	0.77	1.00	1.04	1.20	0.91	0.97	1.00
	Ortalama	0.77	1.01	1.04	1.20	0.91	0.98	1.01
	Oran*	100%	121%	119%	130%	109%	112%	109%
	Ambraseys (2003)	0.77	1.00	1.04	1.16	0.91	0.97	1.04
u	Ambraseys (1996)	0.77	1.00	1.04	1.16	0.91	0.94	1.00
akı	Boore (1997)	0.77	1.00	1.04	1.20	0.91	0.97	1.00
Y	Ortalama	0.77	1.00	1.04	1.17	0.91	0.96	1.01
	Oran*	100%	120%	119%	126%	109%	110%	109%

rtalama elastik tesi periyodun, elastik periyoda oranı

Şekil 5.35 7.0m A ıklıklı er evelerin elastik ve elastik tesi periyotları

Şekil 5.36 9.0m A ıklıklı er evelerin elastik ve elastik tesi periyotları

9.0m a ıklıklı rijit er eve hari tüm er evelerde periyot artışı olmuştur. En üyük periyot artışı HF irleşim modelli er evelerde ger ekleşmiştir. Ayrıca faya u ak ve faya yakın yer hareketleri altında elde edilen elastik tesi periyotlar ir irine ok yakındır.

Yarı rijit irleşimli er evelerin elastik tesi periyotlarının, rijit irleşimli er eve elastik tesi periyoduna oranı Şekil 5.37 de verilmiştir.

Şekil 5.37 Elastik tesi periyot oranı (yarı rijit er eve rijit er eve)

Yarı rijit ve rijit er evelerin elastik tesi periyotlarındaki oran, elastik periyotlarındaki oranlardan daha üyüktür. Ayrıca HF irleşim modelli er evelerde u artış daha ok olmaktadır. er eve tepe deplasmanı oranının, elastik tesi periyot oranına ağlı değişimi Şekil 5.38 de verilmiştir.

Şekil 5.38 Tepe deplasman oranının, elastik tesi periyot oranına ağlı değişimi

233

rafikteki i gilerde ilk nokta rijit irleşimli er eveye, ikinci nokta 0 irleşim kapasiteli er eveye, ü üncü nokta 0 irleşim kapasiteli er eveye ve son nokta da 0 irleşim kapasiteli çerçeveye aittir.

HF irleşimli er evelerin elastik tesi periyot oranları, SMT irleşimli er evelerin oranlarından daha üyüktür.

er evelerin faya u ak kayıtlar altındaki elastik tesi periyot oranları, faya yakın kayıtlar altındaki elastik tesi periyot oranlarına ok yakındır.

Tüm er evelerde, faya yakın kayıtlar altında oluşan tepe deplasman oranları, faya u ak kayıtlar altında oluşanlardan kü üktür.

9.0*m* a ıklıklı er evelerde oluşan elastik tesi periyot oranları, .0*m* a ıklıklı er evede oluşanlardan daha üyüktür. Bunun yanında .0*m* a ıklıklı er evelerde oluşan tepe deplasman oranları, .0*m* a ıklıklı er evede oluşanlardan daha küçüktür.

En yüksek tepe deplasman oranları .0*m* a ıklıklı HF irleşim modelli er evelerin faya u ak kayıtlar altındaki anali lerinde oluşmuştur.

En düşük tepe deplasman oranları .0*m* ve 9.0*m* a ıklıklı SMT irleşim modelli çerçevelerin faya yakın kayıtlar altındaki anali lerinde oluşmuştur.

5.5 Tepe Deplasmanı – lastik Spektral Deplasman İlişkisi

Doğrusal olmayan dinamik anali ler sonucunda elde edilen maksimum tepe deplasmanlarıyla, yer hareketi kaydı ellikleri arasındaki ilişkiyi elirlemek i in, yer hareketi kayıtlarının deplasman spektrumları incelenmiştir. Bu ama la, deplasman spektrumları ger ek yer hareketi kayıtlarına g re daha dü gün değişim g steren yapay yer hareketi kayıtları altında elde edilen sonu lar kullanılmıştır.

Öncelikle, her ir a alım ilişkisinin faya u ak ve faya yakın kayıtları altında elde edilen tepe deplasman oranlarının ortalaması elirlenmiştir. Ardından her ir a alım ilişkisine ait elde edilen elastik tesi periyotlardaki, spektral deplasman değerleri elirlenmiş ve yarı rijit irleşimli er evelerin, rijit irleşimli er eveye oranları hesaplanmıştır. Elde edilen u değerler, faya u ak ve faya yakın kayıtlar altında, HF ve SMT irleşim modelli er eveler i in sırasıyla Çizelge 5.75 ~ Çizelge 5.78 de verilmiştir. Elastik deplasman spektrum değerleri, her ne kadar, doğrusal olmayan davranışlar sonucunda er evede oluşacak deplasmanı direk yansıtmayacak olsada, yarı rijit irleşimli er eve değerinin, rijit irleşimli

Ta lolardan da g rüldüğü ü ere

Faya u ak kayıtlar altında, HF irleşim modelli yarı rijit er evelerde spektral deplasman ve tepe deplasmanı her durumda rijit çerçevelerden büyüktür.

Faya u ak kayıtlar altında, SMT irleşim modelli yarı rijit er evelerde spektral deplasmanlar rijit er eveden üyükken, .0m a ıklıklı er evelerde ve Am raseys
() a alım ilişkisiyle yapılan anali lerde tepe deplasmanları, rijit irleşimli çerçeveden küçüktür.

Faya yakın kayıtlar altında, HF irleşim modelli yarı rijit er evelerde spektral deplasman ve tepe deplasmanı her durumda rijit er evelerden üyüktür. Ancak oranlar faya u ak kayıtlar altında elde edilenlerden daha küçüktür.

Faya yakın kayıtlar altında, SMT irleşim modelli yarı rijit er evelerde

- .0m a ıklıklı er evelerde tüm kayıtlarda ve Boore () kaydı altında .0m
 a ıklıklı er evelerde, spektral deplasmanlar rijit er eveden üyüktür.
- Tepe deplasmanları her durumda rijit çerçeveden küçüktür.

		7.0m Açıklıklı				9.0m A	çıklıklı		
		Rijit	%70	%60	%50	Rijit	%70	%60	%50
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.04	1.20	1.43	0.77	1.04	1.04	1.20
Spektral Dep. ran1 ^[2]			107%	135%	177%		169%	169%	214%
Tepe Deplasman ranı	A03F_2		120%	121%	143%		98%	126%	137%
	A03F_3		122%	149%	159%		123%	125%	137%
	A03F_4		137%	156%	162%		122%	127%	155%
rtalama Tepe	D. ran1 ^[3]		126%	142%	155%		114%	126%	143%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.16	1.16	1.37	0.77	1.00	1.04	1.20
Spektral Dep.	ran1 ^[2]		103%	103%	115%		131%	133%	136%
Тере	A96F_2		109%	106%	110%		116%	115%	99%
Deplasman	A96F_3		111%	123%	112%		112%	105%	104%
ranı	A96F_4		114%	115%	112%		110%	115%	130%
rtalama Tepe	D. ran1 ^[3]		111%	114%	111%		113%	111%	111%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.12	1.20	1.37	0.77	1.00	1.04	1.20
Spektral Dep.	ran1 ^[2]		114%	123%	143%		137%	143%	168%
Tepe	B97F_2		114%	123%	127%		105%	116%	126%
Deplasman	B97F_3		114%	141%	142%		116%	121%	130%
ranı	B97F_4		127%	144%	146%		119%	124%	141%
rtalama Tepe	D. rani ^[3]		119%	136%	138%		113%	120%	132%

Çizelge 5.75 Faya u ak kayıtlar altında, HF irleşim modelli er evelerin spektral deplasman oranları ve tepe deplasman oranları

Maksimum deprem seviyesinde ilgili a alım ilişkisine ait ü adet kayıt i in hesaplanan elastik tesi periyotların ortalaması.

2 Yarı rijit irleşimli er evenin elastik tesi periyoduyla hesaplanan spektral deplasmanın, rijit er evenin elastik tesi periyoduyla hesaplanan spektral deplasmanına oranı. Deplasman spektrumu olarak ilgili a alım ilişkisinin elastik deplasman spektrumu kullanılmıştır.

3 ayrı deprem seviyesi (tasarım, maksimum ve .33 maksimum deprem seviyeleri) için hesaplanan, yarı rijit irleşimli er evenin tepe deplasmanının rijit irleşimli er evenin tepe deplasmanına oranının ortalaması.

		7.0m Açıklıklı				9.0m A	çıklıklı		
		Rijit	%70	%60	%50	Rijit	%70	%60	%50
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.00	1.12	1.25	0.77	0.88	1.01	1.00
Spektral Dep. ran1 ^[2]			100%	121%	144%		127%	161%	158%
Tepe	A03F_2		95%	99%	100%		95%	96%	100%
Deplasman ranı	A03F_3		103%	112%	122%		100%	101%	108%
	A03F_4		103%	115%	143%		98%	101%	112%
rtalama Tepe	D. ranı ^[3]		100%	109%	122%		97%	99%	107%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.04	1.12	1.16	0.77	0.94	0.97	1.04
Spektral Dep.	ran1 ^[2]		101%	103%	103%		95%	100%	113%
Тере	A96F_2		90%	93%	91%		92%	87%	88%
Deplasman	A96F_3		88%	98%	98%		95%	88%	90%
ranı	A96F_4		95%	98%	104%		105%	99%	110%
rtalama Tepe	D. ranı ^[3]		91%	96%	97%		97%	91%	96%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.00	1.12	1.20	0.77	0.91	0.97	1.00
Spektral Dep.	ranı ^[2]		100%	114%	123%		108%	120%	127%
Tepe	B97F_2		91%	93%	92%		93%	93%	92%
Deplasman	B97F_3		98%	105%	111%		102%	95%	101%
ranı	B97F_4		99%	109%	129%		100%	100%	109%
rtalama Tepe	D. ranı ^[3]		96%	102%	110%		98%	96%	101%

Çizelge 5.76 Faya u ak kayıtlar altında, SMT irleşim modelli er evelerin spektral deplasman oranları ve tepe deplasman oranları

Maksimum deprem seviyesinde ilgili a alım ilişkisine ait ü adet kayıt i in hesaplanan elastik tesi periyotların ortalaması.

2 Yarı rijit irleşimli er evenin elastik tesi periyoduyla hesaplanan spektral deplasmanın, rijit er evenin elastik tesi periyoduyla hesaplanan spektral deplasmanına oranı. Deplasman spektrumu olarak ilgili a alım ilişkisinin elastik deplasman spektrumu kullanılmıştır.

3 ayrı deprem seviyesi (tasarım, maksimum ve .33 maksimum deprem seviyeleri) i in hesaplanan, yarı rijit irleşimli er evenin tepe deplasmanının rijit irleşimli er evenin tepe deplasmanına oranının ortalaması.

		7.0m Açıklıklı					9.0m A	çıklıklı	
		Rijit	%70	%60	%50	Rijit	%70	%60	%50
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	0.97	1.16	1.16	1.37	0.77	1.00	1.04	1.16
Spektral Dep.	ranı ^[2]		116%	116%	127%		119%	124%	137%
Tepe	A03N_2		111%	113%	121%		112%	112%	100%
Deplasman ranı	A03N_3		111%	128%	120%		104%	101%	104%
	A03N_4		118%	123%	117%		107%	110%	125%
rtalama Tepe	D. rani ^[3]		113%	121%	119%		108%	108%	110%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	0.97	1.12	1.16	1.37	0.77	1.00	1.04	1.16
Spektral Dep.	ran1 ^[2]		102%	103%	114%		110%	110%	113%
Тере	A96N_2		104%	101%	107%		114%	102%	90%
Deplasman	A96N_3		108%	106%	105%		98%	95%	101%
ranı	A96N_4		105%	111%	108%		99%	103%	108%
rtalama Tepe	D. ran1 ^[3]		106%	106%	107%		104%	100%	100%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.12	1.16	1.37	0.77	1.00	1.04	1.20
Spektral Dep.	ran1 ^[2]		110%	114%	132%		127%	131%	148%
Tepe	B97N_2		111%	106%	118%		105%	108%	111%
Deplasman	B97N_3		113%	134%	127%		109%	107%	112%
ranı	B97N_4		121%	131%	128%		106%	108%	126%
rtalama Tepe	D. ran1 ^[3]		115%	124%	125%		107%	108%	116%

Çizelge 5.77 Faya yakın kayıtlar altında, HF irleşim modelli er evelerin spektral deplasman oranları ve tepe deplasman oranları

[1] Maksimum deprem seviyesinde ilgili a alım ilişkisine ait ü adet kayıt i in hesaplanan elastik tesi periyotların ortalaması.

2 Yarı rijit irleşimli er evenin elastik tesi periyoduyla hesaplanan spektral deplasmanın, rijit çerçevenin elastik ötesi periyoduyla hesaplanan spektral deplasmanına oranı. Deplasman spektrumu olarak ilgili a alım ilişkisinin elastik deplasman spektrumu kullanılmıştır.

3 ayrı deprem seviyesi (tasarım, maksimum ve .33 maksimum deprem seviyeleri) i in hesaplanan, yarı rijit irleşimli er evenin tepe deplasmanının rijit irleşimli er evenin tepe deplasmanına oranının ortalaması.

		7.0m Açıklıklı				9.0m A	çıklıklı		
		Rijit	%70	%60	%50	Rijit	%70	%60	%50
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	0.97	1.00	1.12	1.20	0.77	0.91	0.97	1.04
Spektral Dep. rani ^[2]			101%	113%	120%		89%	99%	111%
Tepe	A03N_2		87%	88%	88%		94%	86%	85%
Deplasman ranı	A03N_3		89%	99%	104%		94%	85%	87%
	A03N_4		95%	103%	109%		102%	95%	108%
rtalama Tepe	D. rani ^[3]		90%	97%	100%		97%	89%	93%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	0.97	1.00	1.12	1.16	0.77	0.91	0.94	1.00
Spektral Dep.	ranı ^[2]		100%	102%	103%		84%	89%	99%
Tepe	A96N_2		86%	85%	83%		90%	84%	80%
Deplasman	A96N_3		84%	93%	95%		92%	81%	84%
ranı	A96N_4		95%	99%	95%		99%	87%	99%
rtalama Tepe	D. rani ^[3]		89%	92%	91%		94%	84%	88%
Elastik Ötesi P	eriyot (<i>sn</i>) ^[1]	1.00	1.00	1.12	1.20	0.77	0.91	0.97	1.00
Spektral Dep.	ran1 ^[2]		100%	110%	117%		100%	112%	118%
Tepe	B97N_2		87%	89%	88%		92%	89%	86%
Deplasman	B97N_3		91%	102%	106%		95%	85%	89%
ranı	B97N_4		94%	103%	112%		97%	91%	106%
rtalama Tepe	D. rani ^[3]		91%	98%	102%		95%	88%	94%

Çizelge 5.78 Faya yakın kayıtlar altında, SMT irleşim modelli er evelerin spektral deplasman oranları ve tepe deplasman oranları

Maksimum deprem seviyesinde ilgili a alım ilişkisine ait ü adet kayıt i in hesaplanan elastik tesi periyotların ortalaması.

[2] Yarı rijit irleşimli er evenin elastik tesi periyoduyla hesaplanan spektral deplasmanın, rijit er evenin elastik tesi periyoduyla hesaplanan spektral deplasmanına oranı. Deplasman spektrumu olarak ilgili a alım ilişkisinin elastik deplasman spektrumu kullanılmıştır.

3 ayrı deprem seviyesi (tasarım, maksimum ve .33 maksimum deprem seviyeleri) i in hesaplanan, yarı rijit irleşimli er evenin tepe deplasmanının rijit irleşimli er evenin tepe deplasmanına oranının ortalaması.

Aynı a ıklığa, aynı irleşim kapasitesi oranına ve aynı irleşim modeline sahip er evelerde oluşan tepe deplasman oranları, spektral deplasman oranlarına g re sıralı şekilde Çizelge 5.79 ~ Çizelge 5.82 de verilmiştir.

12 adet tablonun tanesinde en kü ük spektral deplasman oranı Am raseys () faya yakın a alım ilişkisinde ıkmıştır. Bunun yanında en kü ük tepe deplasman oranı her durumda Am raseys () faya yakın a alım ilişkisinde olmuştur.

12 adet tablonun 10 tanesinde en üyük spektral deplasman oranı Am raseys (2003) faya u ak a alım ilişkisinde ıkmıştır. Bunun yanında en üyük tepe deplasman oranı her durumda Am raseys (2003) faya u ak a alım ilişkisinde olmuştur.

Sonu ların ok üyük ir oğunluğunda spektral deplasman oranı arttık a, tepe deplasman oranı da artmaktadır. Bu koşulun ger ekleşmediği durumlarda da sonu lar ir irine ok yakındır.

er evelerin tepe deplasman oranlarının, spektral deplasman oranlarıyla olan ilişkisi, HF ve SMT irleşim modelli er eveler i in sırasıyla Şekil 5.39 ve Şekil 5.40 da g sterilmiştir.

HF irleşim modelli er evelerde

Spektral deplasman oranlarıyla, tepe deplasman oranları yaklaşık aynı değerlerde olmaktadır. Ancak .0m a ıklıklı er evelerde, tepe deplasman oranları, spektral deplasman oranlarından ira daha üyük olurken, .0m a ıklıklı er evelerde u durum tam tersidir.

.0m a ıklıklı er evelerde oluşan tepe deplasman oranları, .0m a ıklıklı er evelerde oluşanlardan daha üyüktür.

- SMT irleşim modelli er evelerde
 - Tepe deplasman oranları spektral deplasman oranlarından daha kü üktür. Bu a alma .0m a ıklıklı er evelerde, .0m a ıklıklı er evelerden daha elirgin olmaktadır.

.0m a ıklıklı er evelerde, 30 a varan spektral deplasman artışlarına kadar her durumda tepe deplasman oranları 00 ün altında kalmıştır.

.0m a ıklıklı er evelerde oluşan tepe deplasman oranları, .0m a ıklıklı er evelerde oluşanlardan daha üyüktür.

%70 irleşim	apasiteleri		%60 irleşim	apasiteleri		% 0 irleşim	apasiteleri	
er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı	er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı	er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı
A. (), faya yakın	102%	106%	A. (), faya yakın	103%	106%	A. (), faya yakın	114%	107%
A. (1996), faya uzak	103%	111%	A. (1996), faya uzak	103%	114%	A. (1996), faya uzak	115%	111%
A. (2003), faya uzak	107%	126%	B. (), faya yakın	114%	124%	A. (2003), faya yakın	127%	119%
B. (), faya yakın	110%	115%	A. (2003), faya yakın	116%	121%	B. (1997), faya yakın	132%	125%
B. (1997), faya uzak	114%	119%	B. (1997), faya uzak	123%	136%	B. (1997), faya uzak	143%	138%
A. (2003), faya yakın	116%	113%	A. (2003), faya uzak	135%	142%	A. (2003), faya uzak	177%	155%

Çizelge 5.79 .0m A ıklıklı, HF irleşim modelli er evelerin, spektral deplasman oranlarına g re sıralı tepe deplasman oranları

Çizelge 5.80 7.0m A ıklıklı, SMTR irleşim modelli er evelerin, spektral deplasman oranlarına g re sıralı tepe deplasman oranları

%70 irleşim	apasiteleri		%60 irleşim	apasiteleri		% 0 irleşim	apasiteleri	
er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı	er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı	er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı
A. (2003), faya uzak	100%	100%	A. (), faya yakın	102%	92%	A. (), faya yakın	103%	91%
B. (1997), faya uzak	100%	96%	A. (1996), faya uzak	103%	96%	A. (1996), faya uzak	103%	97%
B. (), faya yakın	100%	91%	B. (), faya yakın	110%	98%	B. (), faya yakın	117%	102%
A. (), faya yakın	100%	89%	A. (2003), faya yakın	113%	97%	A. (2003), faya yakın	120%	100%
A. (2003), faya yakın	101%	90%	B. (1997), faya uzak	114%	102%	B. (1997), faya uzak	123%	110%
A. (1996), faya uzak	101%	91%	A. (2003), faya uzak	121%	109%	A. (2003), faya uzak	144%	122%

%70 irleşim	apasiteleri		%60 irleşim	apasiteleri		% 0 irleşim	apasiteleri	
	Spektral	Tepe	V	Spektral	Tepe	Ul4l-	Spektral	Tepe
er Hareketi aydı	Dep. Oranı	Dep. Oranı	Yer Hareketi ayal	Dep. Oranı	Dep. Oranı	er Hareketi aydı	Dep. Oranı	Dep. Oranı
A. (), faya yakın	110%	104%	A. (), faya yakın	110%	100%	A. (), faya yakın	113%	100%
A. (2003), faya yakın	119%	108%	A. (2003), faya yakın	124%	108%	A. (1996), faya uzak	136%	111%
B. (), faya yakın	127%	107%	B. (), faya yakın	131%	108%	A. (2003), faya yakın	137%	110%
A. (1996), faya uzak	131%	113%	A. (1996), faya uzak	133%	111%	B. (), faya yakın	148%	116%
B. (1997), faya uzak	137%	113%	B. (1997), faya uzak	143%	120%	B. (1997), faya uzak	168%	132%
A. (2003), faya uzak	169%	114%	A. (2003), faya uzak	169%	126%	A. (2003), faya uzak	214%	143%

Çizelge 5.81 .0m A ıklıklı, HF irleşim modelli er evelerin, spektral deplasman oranlarına g re sıralı tepe deplasman oranları

Çizelge 5.82 .0m A ıklıklı, SMT irleşim modelli er evelerin, spektral deplasman oranlarına g re sıralı tepe deplasman oranları

%70 irleşim	apasiteleri		%60 irleşim	apasiteleri		% 0 irleşim	apasiteleri	
er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı	Yer Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı	er Hareketi aydı	Spektral Dep. Oranı	Tepe Dep. Oranı
A. (), faya yakın	84%	94%	A. (), faya yakın	89%	84%	A. (), faya yakın	99%	88%
A. (2003), faya yakın	89%	97%	A. (2003), faya yakın	99%	89%	A. (2003), faya yakın	111%	93%
A. (1996), faya uzak	95%	97%	A. (1996), faya uzak	100%	91%	A. (1996), faya uzak	113%	96%
B. (), faya yakın	100%	95%	B. (), faya yakın	112%	88%	B. (), faya yakın	118%	94%
B. (1997), faya uzak	108%	98%	B. (1997), faya uzak	120%	96%	B. (1997), faya uzak	127%	101%
A. (2003), faya uzak	127%	97%	A. (2003), faya uzak	161%	99%	A. (2003), faya uzak	158%	107%

Şekil 5.39 HFC irleşim modelli er evelerin tepe – spektral deplasman oranı ilişkisi

Şekil 5.40 SMTR irleşim modelli er evelerin tepe – spektral deplasman oranı ilişkisi

6. SONUÇLAR

Bu alışmada, depremselliği yüksek lgelerde enerji s nümlendirmesinin kiriş kolon düğüm noktalarında oluşacağı yarı rijit irleşimli (kısmi dayanımlı), a katlı üyük a ıklıklı çerçeveler tasarlanmıştır. Yarı rijit irleşimli olarak tasarlanan u er evelerle;

ü lü kolon ayıf kiriş ilkesinin gerekliliğinin ortadan kaldırılması ve daha ekonomik kesitler kullanılması,

Kesitlerde oluşan a almalarla ve kullanılan yarı rijit irleşimlerle, sistem periyodunun artması ve gelen deprem etkilerinin a altılması,

Sahada kaynak gerektirmeyen irleşim tipleri kullanılarak, yapım sürecinin hı landırılması, kalifiye iş ilik gereksiniminin a altılması ve kalite kontrollerinin daha güvenli yapılabilmesi,

Sadece dış er eveleri yatay yük taşıyan sistemlere alternatif ekonomik ve güvenli sistemlerin araştırılması hedeflenmiştir.

Bu amaçla 7.0*m* ve 9.0*m* a ıklığa sahip, farklı irleşim kapasiteli (rijit, moment taşıma kapasitesinin kiriş taşıma kapasitesine oranı 0, 0 ve 0 olan yarı rijit irleşimli) adet er eve tasarlanmıştır. Ayrıca irleşim pekleşme oranın ve irleşim histeretik davranış modelinin sonuçlar üzerindeki etkilerini inceleyebilmek için, yarı rijit irleşimli er eveler iki farklı pekleşme oranı (0 ve 0) ve iki farklı histeretik davranış modeli (ü doğrulu kinematik pekleşmeli model, SMT ve rijitlik a alması g steren sa it eksenel kuvvet altında histeretik davranış modeli, HF) g nüne alınarak incelenmiştir.

Örnek çerçevelerin tasarımı AIS (200 a, 200) ve AS E -05 yönetmeliklerine uygun olarak yapılmıştır. Ancak yarı rijit irleşimli er evelerin tasarımında, AIS 200 a y netmeliğinde ulunan irleşimin sahip olması gereken minimum taşıma kapasitesi ile ilgili koşul ve güçlü kolon- ayıf kiriş ilkesi kullanılmamıştır. Bunun yerine kolonlar irleşimlerden daha gü lü olacak şekilde tasarlanmıştır. Yarı rijit irleşimler ise AIS tasarım raporlarında ulunan akma i gileri metoduna dayalı y ntem ile tasarlanmış ve aşlangı rijitlikleri elemana dayalı y ntem ile elirlenmiştir.

Tasarlanan 26 adet örnek çerçevenin deprem performansları değer, doğrusal olmayan statik itme, aman tanım alanında doğrusal olmayan dinamik anali ve Fourier analizleriyle değerlendirilmiştir. Statik itme anali leriyle, yapıların kapasite eğrileri, lokal ve glo al sınır değerleri ger ekleşme anları, performans parametreleri, plastik mafsal oluşum sıraları ve yerleri, hedef deplasman ve ka ul edile ilirlik değerleri elirlenmiştir. Dinamik anali lerde 25

adet ger ek yer hareketi 3 farklı deprem seviyesine g re l eklendirilmiş ve 26 örnek çerçeveye 19 0 adet anali yapılmıştır. Devamında ise literatürde sıklıkla kullanılan 3 farklı a alım ilişkisinden adet faya uzak ve 9 adet faya yakın yapay yer hareketi üretilerek 4 farklı deprem seviyesi i in l eklendirilmiştir. Elde edilen kayıtlar altında 26 örnek çerçeveye 1872 adet anali yapılmıştır. Anali ler neticesinde, er evelerin maksimum kesme kuvveti – maksimum deplasman değerleri, kat telemeleri, kiriş, kolon gerilmeleri ve yay d nmeleri, plastik mafsal sayıları ve irleşim d nmeleri elirlenmiştir. Ayrıca çerçevelerin tepe ivme tepkileri Fourier anali iyle incelenmiş ve elastik ötesi periyotları elirlenmiştir. Son olarak yarı rijit irleşimli (kısmi dayanımlı) er evelerin, rijit irleşimli er evelere g re daha elverişli sonu lar verdiği koşullar araştırılmıştır.

7.0*m* a ıklıklı, 0 irleşim kapasiteli, HF davranış modelli ve 0 irleşim pekleşmeli çerçeve haricindeki tüm çerçeve kolonlarının, kirişlerinin, irleşimlerinin ve kat ötelemelerinin tüm deprem seviyelerinde ka ul edile ilirlik şartlarının hepsini sağladığı ve deprem etkileri altında güvenilir ir performansa sahip oldukları g rülmüştür. Ayrıca faya yakın kayıtlar altında, SMT irleşim modelli tüm yarı rijit er evelerde, rijit irleşimli er eveden daha a tepe deplasmanı oluşmuştur. Hem faya yakın, hem de faya u ak kayıtlar altında en düşük tepe deplasmanları .0*m* a ıklıklı er evelerde 0 irleşim kapasiteli, .0*m* a ıklıklı er evelerde ise 0 irleşim kapasiteli yarı rijit er evede g lenmiştir.

6.1 Analiz Sonuçları

6.1.1 Özdeğer Analizleri

Örnek çerçevelerin değer anali leri sonucunda elde edilen elastik periyotları, irleşim rijitliği a aldık a artmıştır. Bu artış 7.0m ve 9.0m a ıklıklı er evelerin . periyotlarında sırasıyla;

- %70 irleşim kapasiteli çerçevede %2.5 ile %8.9,
- %60 irleşim kapasiteli çerçevede %8.0 ile %14.0,
- %50 irleşim kapasiteli çerçevede %14.0 ile 2. olmuştur.

rüldüğü ü ere 9.0*m* a ıklıklı er evelerdeki artış, 7.0*m* a ıklıklı er evelerden daha büyüktür.

6.1.2 Statik İtme Analizleri

Yapılan anali lerde birleşimin taşıma kapasitesi azaldık a, er evenin aşlangı rijitliği ve toplam yatay yük taşıma kapasitesi a almıştır. Ayrıca irleşimin pekleşme oranının artması sistemin elastik tesi davranışındaki kapasitesini arttırmıştır.

Rijit irleşimli er evelerde ilk akma kiriş elemanında ger ekleşirken, yarı rijit irleşimli er evelerde ilk akma irleşimlerde ve rijit er eveye nispeten olduk a erken ir zamanda meydana gelmiştir. Yarı rijit irleşimli er evelerde, 0 irleşim kapasiteli ve 0 pekleşme oranlı er evelerin dışında kirişlerde akma g lenmemiştir.

Yarı rijit irleşim kapasitesinin a alması, irleşimlerin ilk akma, can güvenliği, g menin önlenmesi ve lokal g me sınırlarına ulaşılma anını ne ekmektedir. Bunun yanında tüm er evelerde, kolonların sınır durumlarının ger ekleşme anları ir irlerine yakın tepe deplasmanlarında olmuştur. Ayrıca irleşimin pekleşme oranının artması, kolonların sınır durumlarının ger ekleşme anlarını nemli derecede ne ekmiştir.

rnek er evelerin glo al g me sınırları, 3 adet glo al ve 2 adet lokal g me sınır durumu i in incelenmiştir. ncelenen 3 adet glo al g me sınırından sadece ikisi yapılan anali sınırları i inde ger ekleşmiştir. Bu sınır durumlarından 3 kat telemesi sınır durumu tüm çerçevelerde %2.5 (287*mm*) ile %2.7 (303*mm*) arasındaki tepe teleme a ılarında ger ekleşmiştir. Birleşim kapasitesinin a almasının 3 kat telemesi sınır durumuna ulaşılma anına nemli bir etkisinin olmadığı g rülmüştür. Bunun yanında yarı rijit irleşim kapasitesinin a alması, er evelerde g me mekani masına ulaşılma anını ne ekmiştir. Buna karşın irleşimin pekleşme oranının artması ise g me mekani masına ulaşılma anını geciktirmiştir.

rnek er evelere ait performans parametreleri her ir g me sınır durumu i in ayrı ayrı incelenmiştir. Hem global hem de lokal göçme sınır durumlarında yarı rijit irleşim kapasitesinin a alması er evenin dayanım $\begin{pmatrix} d \end{pmatrix}$ ve dayanım $\begin{pmatrix} i \end{pmatrix}$ katsayısını a altmaktadır.

7.0m a ıklıklı yarı rijit irleşimli er evelerin dayanım katsayısı, rijit er eveye g re

%3 kat ötelemesi g me sınır durumu i in ile 3 arasında,

9.0m a ıklıklı yarı rijit irleşimli er evelerin dayanım katsayısı, rijit er eveye g re

%3 kat ötelemesi g me sınır durumu i in 20 ile arasında,

me mekani ması sınır durumu i in ile arasında a almıştır.

dayanım katsayılarına akıldığında ise sadece 9.0*m* a ıklıklı rijit çerçevede ve %40 pekleşme oranlı, 0 irleşim kapasiteli er evede 1.0'den büyük değerler g rülmüştür. Buna g re u er evelerde tasarım depremi etkisi altında elastik davranış eklenmektedir. Buna karşılık diğer tüm çerçevelerin elastik ötesi davranış g stermesi eklenmektedir. Ayrıca yarı rijit irleşim kapasitesinin a alması dayanım katsayısını a altmıştır. dayanım katsayısının a alması ise elastik tesi lgede oluşan davranışın artması olarak yorumlanabilir.

er evelerin kapasite eğrilerine elasto plastik idealizasyon (EP) yapılarak elde edilen süneklik değerleri, ilineer ideali asyon (B) yapılarak elde edilenlere g re daha kü üktür. 3 Kat telemesi sınır durumu i in irleşim kapasitesinin a alması süneklik dü eyinde nemli ir değişime yol a mamıştır. me mekani ması oluşması sınır durumu i in yarı rijit irleşimli er evelerin süneklikleri, rijit er eve sünekliğine g re daha düşüktür. 7.0*m* a ıklıklı rijit er evede anali sınırları i inde g me mekani ması oluşmadığından süneklik hesaplanamamıştır. .0*m* a ıklıklı rijit er evede ise süneklik B da 3., EP da 3. olarak hesaplanıştır. Yarı rijit er eve süneklikleri ise

7.0 <i>m</i> a ıklıklı yarı rijit er evelerde; B	da 3.3 ile 3.7 ve EP	da 2.4 ile 3.2,
9.0m a ıklıklı yarı rijit çerçevelerde; B	da 3.1 ile 3.3 ve EP	da 2.1 ile 2.6

arasında değişmektedir.

Rijit çerçevelerde plastik mafsallar kiriş ve kolon u larında, yarı rijit er evelerde ise kiriş kolon irleşim lgelerinde ve kolon u larında oluşmuştur. Ancak 7.0*m* a ıklıklı, 0 irleşim kapasiteli ve 0 pekleşme oranlı er evede kiriş u larında da plastik mafsallar g lenmiştir. Genellikle tüm çerçevelerin g me mekani masını, kiriş veya irleşim mekani maları oluşturmuştur. Ancak 7.0*m* a ıklıklı, 0, 0 irleşim kapasiteli ve %40 irleşim pekleşme oranlı, er evelerin mekani maları ikinci kat kolonlarının mafsallaşmasıyla oluşmuştur.

Birleşim kapasitesinin a alması, hedef deplasman değerini arttırmıştır. Bunun yanında irleşim pekleşme oranı, hesaplanan hedef deplasman değerini değiştirmemiştir. rnek er evelerin tüm kiriş, kolon ve irleşim elemanları, can güvenliği performans seviyesi şartlarını sağlamıştır.

Taban Kesme Kuvveti – Tepe Deplasmanı İlişkisi

Yapı elastik sınırlar i inde olduğunda, statik itme ve dinamik anali sonu ları ir irine daha yakın sonu lar vermiştir. Dinamik anali lerin ok üyük ir oğunluğunda elde edilen maksimum ta an kesme kuvvetleri, statik itme anali iyle elde edilen değerden daha üyük olmuştur. Dinamik analizler sonucunda irleşim kapasitesi a aldık a, aynı yer hareketi altında oluşan taban kesme kuvvetinin de a aldığı g lenmiştir. Ayrıca HF tipi irleşim modeli kullanılan anali lerde, SMT modeli kullanılanlara g re daha fa la tepe deplasmanı oluşmuştur.

Tepe Deplasmanı ve Kat Ötelemeleri

25 adet gerçek yer hareketi kaydı altında tüm deprem seviyeleri için, hem yarı rijit hem de rijit irleşimli er evelerin ortalama kat teleme değerleri kabul edilebilirlik sınırlarını sağlamıştır. Ancak sonuçlar tek tek incelendiğinde, tasarım depremi ve maksimum deprem i in yapılan 300 adet anali den tanesinde ka ul edile ilirlik sınırları aşılmıştır. Ka ul edile ilirlik sınırı 11 adet SMTR modelli, 64 adet HFC modelli yarı rijit er eve anali inde ve 2 adet rijit irleşimli er eve anali inde aşılmıştır.

er ek yer hareketi kayıtları altında 7.0*m* a ıklıklı, HF irleşim modelli er evelerin haricinde, tüm yarı rijit irleşimli er evelerin ortalama tepe deplasmanlarında (her bir deprem seviyesi i in 2 yer hareketi kaydının ortalaması) rijit çerçeveye göre azalmalar g rülmüştür. SMT irleşim modelli er evelerde u a almalar 3 merte elerine kadar artmıştır. Bunun yanında ortalama tepe deplasmanlardaki maksimum artış SMTR modelli çerçevelerde %20'lere, HF irleşim modelli er evelerde lara kadar varmıştır. Ayrıca, tasarım deprem seviyesi i in SMT irleşim modelli yarı rijit er evelerin hepsinde, rijit irleşimli er evelerin bepsinde, rijit irleşimli er evelerin hepsinde, rijit irleş

er evelerde oluşan maksimum tepe deplasmanları, yer hareketi kaydına ağlı olarak ayrı ayrı incelendiğinde ve tüm deprem seviyelerinin ortalaması g nüne alındığında

7.0m açıklıklı, SMTR irleşim modelli yarı rijit çerçevelerde, 12 adet gerçek kayıtta

7.0m açıklıklı, HFC irleşim modelli yarı rijit er evelerde, 3 adet gerçek kayıtta

9.0m açıklıklı, SMTR irleşim modelli yarı rijit çerçevelerde, 15 adet gerçek kayıtta,

9.0*m* açıklıklı, HFC irleşim modelli yarı rijit çerçevelerde; **7 adet gerçek** kayıtta rijit irleşimli er evelerden daha a tepe deplasmanı oluşmuştur.

Yarı rijit irleşim kullanılmasıyla, maksimum tepe deplasmanlarında ve kat telemelerinde oluşan a almalar genellikle elirli yer hareketi kayıtlarında (SHI090, HBCR140, HBCR230,

APO 0, APO00, vd.) yoğunlaşmaktadır. Bu nedenle ü ayrı a alım ilişkisi kullanılarak faya u ak ve faya yakın yapay yer hareketleri üretilmiş ve yer hareketi kayıtlarının sonu lara etkisi daha detaylı incelenmiş ve aşağıda verilmiştir.

adet yapay yer hareketi kaydı altında tüm deprem seviyeleri i in, hem yarı rijit hem de rijit irleşimli er evelerin ortalama kat teleme değerleri kabul edilebilirlik sınırlarını sağlamıştır. Ancak sonu lar tek tek incelendiğinde, tasarım ve maksimum deprem seviyesi i in yapılan 3 adet anali den 2 tanesinde ka ul edile ilirlik sınırları aşılmıştır. Ka ul edile ilirlik sınırının aşıldığı 2 adet anali in tamamı HF modelli yarı rijit er evelerin tasarım deprem seviyesinde ger ekleşmiştir.

Yapay yer hareketi kayıtları altında .0*m* a ıklıklı, HF irleşim modelli er evelerin faya u ak yer hareketi altındaki anali leri haricinde, tüm yarı rijit irleşimli er evelerin ortalama tepe deplasmanlarında (her deprem seviyesi ve faya u aklık i in yer hareketi kaydının ortalaması) a almalar g rülmüştür. SMT irleşim modelli er evelerde u a almalar merte elerine kadar artmıştır. Ortalama tepe deplasmanlardaki maksimum artış ise SMTR modelli çerçevelerde %23'lere, HFC modelli çerçevelerde %4 lere kadar varmıştır. Ayrıca yarı rijit irleşimli er evelerin ortalama tepe deplasmanlarının, rijit er eve deplasmanlarına oranı faya yakın kayıtlar altında faya u ak kayıtlara na aran daha küçük olmuştur.

Yarı rijit irleşimli er evelerin ortalama tepe deplasmanlarının (tüm irleşim pekleşme oranları ve tüm deprem seviyeleri i in yapılan anali lerin ortalaması) rijit er eve sonu larına oranı, .0m ve 9.0m a ıklıklı er eveler i in sırasıyla Şekil 6.1 ve Şekil 6.2 de verilmiştir.

Şekil 6.1 7.0*m* a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe deplasman oranları

Şekil 6.2 9.0*m* a ıklıklı er evelerin faya u ak ve yakın kayıtlar altında ortalama tepe deplasman oranları

Hem faya yakın hem de faya uzak yer hareketi kayıtları altında en küçük ortalama tepe deplasmanları;

7.0m açıklıklı çerçevelerde, %70 birleşim kapasiteli SMTR modelli

9.0m açıklıklı çerçevelerde, %60 birleşim kapasiteli SMTR modelli

er evelerde oluşmuştur. Ayrıca faya yakın yer hareketleri altında, SMTR modelli tüm yarı rijit çerçevelerde, rijit irleşimli er eveden daha az ortalama tepe deplasmanı oluşmuştur.

Yapay yer hareketi kayıtları altında .0*m* a ıklıklı, HF irleşim modelli er evelerin haricinde, tüm yarı rijit irleşimli er evelerin ortalama kat telemelerinde (her ir deprem seviyesi ve faya u aklık i in yer hareketi kaydının ortalaması) rijit çerçeveye göre azalmalar g rülmüştür. SMT irleşim modelli er evelerde u a almalar 20 merte elerine kadar artmıştır. Bunun yanında ortalama kat telemelerindeki maksimum artış SMT modelli er evelerde 2 lara, HF irleşim modelli er evelerde lere kadar varmıştır.

Hem faya yakın hem de faya u ak yer hareketi kayıtları altında en kü ük ortalama kat ötelemeleri;7.0*m* ve 9.0*m* a ıklıklı er evelerde, 0 veya 0 irleşim kapasiteli SMT modelli er evelerde oluşmuştur. Ayrıca faya yakın yer hareketleri altında, SMTR modelli tüm yarı rijit er evelerde ve tüm katlarda, rijit irleşimli er eveden daha a ortalama kat telemesi oluşmuştur.

er evelerde oluşan maksimum kat telemeleri, yer hareketi kaydına ağlı olarak ayrı ayrı incelendiğinde ve tüm deprem seviyelerinin ortalaması g nüne alındığında

7.0*m* açıklıklı, SMTR modelli yarı rijit çerçevelerde, 4 adet faya uzak ve tüm (9 adet) faya yakın yapay kayıtta

7.0m açıklıklı, HFC modelli yarı rijit er evelerde, 1 adet faya yakın yapay kayıtta

9.0*m* açıklıklı, SMTR modelli yarı rijit er evelerde, 6 adet faya uzak ve tüm (9 adet) faya yakın yapay kayıtta

9.0m açıklıklı, HFC modelli yarı rijit er evelerde, 3 adet faya yakın yapay kayıtta

rijit irleşimli er evelerden daha a kat ötelemesi oluşmuştur.

Kiriş Gerilmeleri ve Yay Dönmeleri

25 adet gerçek yer hareketi kaydı altında tüm deprem seviyeleri için, rijit irleşimli çerçevelerin ortalama kiriş gerilmeleri, her kat i in akma gerilmesini aşmıştır. Buna karşın yarı rijit irleşimli er evelerin hi irinde ortalama kiriş gerilmeleri akma değerini aşmamıştır. Beklenildiği ü ere yarı rijit irleşim kapasitesinin ve irleşim pekleşme oranının a alması kiriş gerilmelerini ciddi miktarda a altmıştır. Ayrıca HF irleşim davranış modelli anali lerde elde edilen kiriş gerilmeleri, SMT modelli ümlerden daha yüksek olmuştur. 7.0*m* ve 9.0*m* a ıklıklı, hem rijit hem de yarı rijit irleşimli er evelerin kiriş yay d nmeleri her deprem seviyesi i in ka ul edile ilirlik sınırlarını tüm anali lerde sağlamıştır.

Kolon Gerilmeleri ve Yay Dönmeleri

er evelerin tüm kolon kesitleri aynı olduğu 3. katlarında 0, 0 ve 0 irleşim kapasiteli yarı rijit er evelerde oluşan kolon gerilmeleri rijit er eve kolon gerilmelerine g re sırasıyla

er ek yer hareketi kayıtları altında

SMTR modelli çerçevelerde, %10 (%4~%16), %13.5 (%6~%21) ve %20 (%11~%29),

HFC modelli çerçevelerde, %8 (%2~%14), %10.5 (%3~%18) ve %12.5 (%5~%20)

Yapay yer hareketi kayıtları altında

SMTR modelli çerçevelerde, %13.5 (%3~%24), %16 (%5~%27) ve %23 (%11~%35)

HFC modelli çerçevelerde, %8.5 (%1~%16), %9.5 (%2~%17) ve %13.5 (%2~%25)

oranında a almıştır.

Ayrıca 0 pekleşme oranlı irleşim yerine 0 pekleşme oranlı irleşim kullanmak kolon gerilmelerini $\%1\sim\%5$ civarında arttırmıştır. Bununla era er kolon gerilemeleri faya u ak ve faya yakın yer hareketi kayıtları altında en er davranış g stermiştir. 7.0*m* ve 9.0*m* a ıklıklı, hem rijit hem de yarı rijit irleşimli er evelerin kolon yay d nmeleri her deprem seviyesi i in tüm anali lerde ka ul edile ilirlik sınırlarını sağlamıştır.

Kolonlarda Oluşan Plastik Mafsallar

er ek yer hareketi kayıtları altında, kolonlarda oluşan plastik mafsal sayıları katlar a ında incelendiğinde, en ok plastik mafsalın irinci katta, en a mafsalın ise ü üncü katta oluştuğu g rülmüştür. .0*m* a ıklıklı ve HF irleşim modelli er evelerin tasarım deprem seviyesine ait anali sonu ları hari tüm anali lerde, yarı rijit irleşim kullanılmasıyla kolonlarda oluşan plastik mafsal sayılarında ciddi a almalar g lenmiştir.

Birleşim Dönmeleri

25 adet gerçek yer hareketi kaydı altında tüm deprem seviyeleri için, yarı rijit irleşimli çerçevelerin hepsinde ortalama irleşim d nme değerleri, ka ul edile ilirlik sınırlarını sağlamıştır. Ancak sonu lar tek tek incelendiğinde, tasarım depremi ve maksimum deprem seviyesi i in yapılan 200 adet anali den tanesinde ka ul edile ilirlik sınırları asılmıştır. Ka ul edile ilirlik sınırı 16 adet SMT irlesim davranış modelli ve 139 adet HFC modelli yarı rijit er eve analizinde aşılmıştır. Bunun yanında ka ul edile ilirlik sınırının aşılması . ve 2. kat seviyelerine nispeten 3. kat seviyesinde yoğunlaşmıştır. Bunun da en üyük nedenlerinden iri, u kattaki hareketli yükün ok a olması ve kiriş oyutlarının kü ük olmasıdır. Kü ük olan kiriş kapasitelerinin kullanılması da irleşim kapasitelerinin daha küçük olmasına yol a maktadır. Ayrıca .33 maksimum deprem seviyesi i in yapılan 650 adet analizden 49 tanesinde irleşim dayanım a alması sınırı (0.052*rad*) aşılmıştır. Dayanım irleşim davranış modelli ve 3 adet HF a alması sınırı 10 adet SMT irlesim davranıs modelli yarı rijit er eve anali inde aşılmıştır. Dayanım a alması sınırının aşıldığı analizin; 16 adeti CPM000, 7 adeti HE11230, 7 adeti CLS000 ve 5 adeti GAZ090 kayıtlarında ger eklesmistir.

18 adet yapay kayıt altında tüm deprem seviyeleri için, 7.0*m* a ıklıklı 0 irleşim kapasiteli, HF modelli ve 0 pekleşme oranlı er evenin maksimum deprem seviyesi hari tüm yarı rijit er evelerin ortalama irleşim d nme değerleri ka ul edile ilirlik sınırlarını sağlamaktadır. Ancak sonu lar tek tek incelendiğinde, tasarım ve maksimum deprem i in yapılan adet analizden 67 tanesinde ka ul edile ilirlik sınırları aşılmıştır. Kabul edile ilirlik sınırı SMT irleşim davranış modelinin kullanıldığı hi ir anali de aşılmamıştır. Ayrıca .33 maksimum deprem seviyesi i in yapılan 432 adet analizden sadece 2 tanesinde irleşim dayanım a alması sınırı (0.052*rad*) aşılmıştır.

Yapılan anali lerde

Birleşim kapasitesinin a alması,

SMT yerine HF irleşim modelinin kullanılması,

Pekleşme oranının a alması

irleşimlerde oluşan d nmeleri arttırmıştır.

Ayrıca yapılan anali lerde maksimum irleşim d nme değerleriyle maksimum kat öteleme değerleri genellikle ir irine yakın sonu lar vermiştir. Kat telemesi ve irleşim d nmesi i in can güvenliği performans seviyesine ait ka ul edile ilirlik sınırları ir irine yakın değerlerdir. rnek er evelerde u iki sonucun ir irine yakın ıktığı g nüne alınırsa, tasarım depremi altında her iki sınırı da sağlayacak er eveler tasarlamak mümkündür. Ancak göçmenin nlenmesi performans seviyesi i in, irleşim d nmesi sınırı, kat telemesi sınırının 0 i kadardır. Bu da maksimum deprem seviyesi altında, irleşim d nmesi sınırını sağlayacak er eve tasarımını ekonomik olmaktan u aklaştırmaktadır.

Fourier Analizleri

7.0*m* ve 9.0*m* a ıklıklı, rijit irleşimli ve 0 pekleşme oranlı yarı rijit irleşimli er evelerin elastik tesi periyotları, tüm yapay yer hareketi kayıtlarının maksimum deprem seviyesinde Fourier anali iyle elirlenmiştir. Analizler sonucunda 9.0*m* a ıklıklı rijit er eve hari tüm er evelerde periyot artışı olmuştur. En üyük elastik ötesi periyot artışı ise HF irleşim modelli er evelerde ger ekleşmiştir. Ayrıca faya u ak ve faya yakın yer hareketleri altında çerçevelerin elastik ötesi periyotları ir irine ok yakın ıkmıştır.

Yarı rijit çerçevenin elastik ötesi periyodunun rijit çerçevenin elastik ötesi periyoduna oranı, elastik periyotlardaki orandan daha büyüktür. Elastik tesi periyot oranı ile tepe deplasman oranı arasındaki ilişki Şekil 6.3 de verilmiştir.

Şekil 6.3 Tepe deplasman oranının, elastik tesi periyot oranına ağlı değişimi

HF irleşim modelli er evelerde SMT irleşim modelli er evelere g re daha büyük elastik tesi periyot oranı g lenmiştir.

9.0*m* a ıklıklı er evelerde oluşan elastik tesi periyot oranları, .0*m* a ıklıklı er evede oluşanlardan daha üyüktür. Bunun yanında .0*m* a ıklıklı er evelerde oluşan tepe deplasman oranları, .0*m* a ıklıklı er evede oluşanlardan daha kü üktür.

Faya uzak yer hareketi etkisindeki HFC modelli çerçevelerde, elastik ötesi periyot oranı arttık a, tepe deplasman oranı da artmaktadır. Bunun yanında faya yakın yer hareketi etkisindeki SMTR modelli çerçevelerde, elastik ötesi periyot oranı arttık a, tepe deplasman oranı nce a alıp lokal ir minimum seviyesine ulaştıktan sonra artmaktadır (.0*m* a ıklıklı er evede minimum tepe deplasman oranı 0 kapasiteli er evede oluşurken, .0*m* a ıklıklı er evede 0 kapasiteli er evede oluşmuştur).

Tepe Deplasmanı-Elastik Spektral Deplasman İlişkisi

Doğrusal olmayan dinamik anali ler sonucunda elde edilen maksimum tepe deplasmanlarıyla, yer hareketi kaydı ellikleri arasındaki ilişkiyi elirlemek i in, yer hareketi kayıtlarının deplasman spektrumları incelenmiştir. ncelikle, her ir a alım ilişkisinin faya u ak ve faya yakın kayıtları altında elde edilen tepe deplasman oranlarının ortalaması elirlenmiştir. Ardından her ir a alım ilişkisine ait elde edilen elastik tesi periyotlardaki, spektral deplasman değerleri elirlenmiş ve yarı rijit irleşimli er evelerin, rijit irleşimli er eveye oranları hesaplanmıştır.

Faya uzak ve yakın kayıtlar altında, HF modelli yarı rijit er evelerde spektral deplasman ve tepe deplasmanı her durumda rijit çerçevelerden büyüktür. Ancak faya yakın kayıtlar altındaki fark faya u ak kayıtlar altındakilerden daha kü üktür.

Faya u ak kayıtlar altında, SMT modelli er evelerde spektral deplasmanlar her durumda rijit çerçeveden büyükken, 9.0m a ıklıklı er evelerde ve Am raseys () a alım ilişkisiyle yapılan anali lerde tepe deplasmanları, rijit er eveden kü üktür.

Faya yakın kayıtlar altında, SMT irleşim modelli yarı rijit er evelerde

- .0m a ıklıklı er evelerde tüm kayıtlarda ve Boore () kaydı altında .0m
 a ıklıklı er evelerde, spektral deplasmanlar rijit er eveden üyüktür.
- o Tepe deplasmanları her durumda rijit er eveden kü üktür.

Tepe deplasman oranının spektral deplasman oranına ağlı değişimi Şekil 6.4'de verilmiştir.

Şekil 6.4 Yarı rijit er evelerin tepe – spektral deplasman oranı ilişkisi

HF irleşim modelli er evelerde

Spektral deplasman oranıyla, tepe deplasman oranı yaklaşık aynı değerde olmaktadır. Ancak .0m a ıklıklı er evelerde, tepe deplasman oranları, spektral deplasman oranlarından ira üyük olurken, .0m a ıklıklı er evelerde u durum tam tersidir.

SMT irleşim modelli er evelerde

Tepe deplasman oranları spektral deplasman oranlarından daha kü üktür. Bu a alma .0m a ıklıklı er evelerde, .0m a ıklıklı er evelerden daha elirgin olmaktadır.

.0m a ıklıklı er evelerde, 30 a varan spektral deplasman oranlarına kadar her durumda tepe deplasman oranları 00 ün altında kalmıştır.

6.2 Genel Değerlendirme

Depremselliği yüksek lgelerde, a katlı üyük a ıklıklı çerçeveler, enerji sönümlenmesinin kiriş kolon düğüm noktalarında oluşacağı yarı rijit irleşimli olarak tasarlanmış ve;

Güçlü kolon ayıf kiriş ilkesinin gerekliliği ortadan kaldırılarak daha ekonomik kesitler kullanılmış,

Kesitlerde oluşan a almalarla ve kullanılan yarı rijit irleşimlerle, sistem periyodu arttırılmış ve dolayısıyla gelen deprem etkileri a altılmış,

Sahada kaynak gerektirmeyen irleşim tipleri kullanılarak, yapım süreci hı landırılmış, kalifiye iş ilik gereksinimi a altılmış ve kalite kontrollerinin daha güvenli yapıla ilmesi sağlanmış,

Sadece dış er eveleri yatay yük taşıyan sistemlere alternatif ekonomik ve güvenli sistemler araştırılmış,

Ayrıca rijit irleşimli er evelere g re en uygun sonu ların oluştuğu koşullar elirlenmiştir.

.0m a ıklıklı, 0 irleşim kapasiteli, HF davranış modelli ve 0 irleşim pekleşmeli çerçeve haricindeki tüm çerçeve kolonlarının, kirişlerinin, irleşimlerinin ve kat ötelemelerinin tüm deprem seviyelerinde ka ul edile ilirlik şartlarının hepsini sağladığı ve deprem etkileri altında güvenilir ir performansa sahip oldukları g rülmüştür.

Yapılan değer ve statik itme analizleri neticesinde, yarı rijit irleşim kullanılmasıyla çer evelerin elastik periyotlarının arttığı, taşıma kapasitelerinin, dayanım, dayanım ve süneklik değerlerinin a aldığı elirlenmiştir. Ancak u sonu lar değerlendirilirken, statik itme analizinin sadece kapasite elirlemeye y nelik ir anali olduğu ve deprem etkileri altındaki istemlerle ilgili ir ilgi i ermediği de g nünde ulundurulmalıdır. Hem kapasite hem de deprem etkileri altında oluşan istem değerlerinin irlikte incelenmesini sağlayan aman tanım alanında dinamik ve Fourier anali leri neticesinde, yarı rijit irleşim kullanılmasıyla

er evelerin elastik tesi periyotlarının arttığı,

er evelerde oluşan ta an kesme kuvvetlerinin a aldığı,

Kirişlerde oluşan gerilmelerin ciddi derecede a aldığı,

Aynı kesitler kullanıldığında kolon gerilmelerinin a aldığı,

Kolonlarda oluşan plastik mafsal sayılarının a aldığı,

Yer hareketi kaydına ağlı olarak tepe deplasmanlarının ve kat telemelerinin a aldığı elirlenmiştir. Ayrıca irleşim kapasitesi ve pekleşme oranı a aldık a ve histeretik davranışta rijitlik a alması ger ekleştik e, irleşimlerde oluşan d nmelerin arttığı elirlenmiştir. Faya yakın yer hareketi etkisinde ü doğrulu kinematik pekleşmeli (SMT) irleşim modelinin kullanıldığı tüm er evelerde, rijit irleşimli er evelerden daha a tepe teleme deplasmanı oluşmuştur. Ayrıca hem faya yakın hem de faya u ak yer hareketleri etkisinde en kü ük tepe deplasmanı .0m a ıklıklı er evelerde 0 irleşim kapasiteli, .0m a ıklıklı er evelerde 2 lenmiştir (Çizelge 6.1).

	7.0m Açıklıklı			9.0m Açıklıklı			
Çerçeve Tipi	Tepe Deplasman Oranı		Çerçeve	Tepe Depla	Çerçeve		
	Faya uzak	Faya yakın	Agirligi (<i>ton</i>)	Faya uzak Faya	Faya yakın	Agirligi (<i>ton</i>)	
Rijit			9.9			14.3	
%70-SMTR	%97	%91	10.0	%97	%93	14.1	
%60-SMTR	%102	%95	9.5	%95	%87	13.4	
%50-SMTR	%106	%95	9.0	%101	%90	12.6	

Çizelge 6.1 er eve ağırlıkları ve tepe deplasman oranları

9.0*m* a ıklıklı rijit er eve yerine 0 irleşim kapasiteli SMT modelli yarı rijit irleşimli er eve kullanılmasıyla tepe deplasmanları faya u ak kayıtlar altında , faya yakın kayıtlar altında 3 oranında a alırken çerçeve ağırlığı da oranında a almıştır.

Yapılan u alışma neticesinde enerji s nümlendirmesi kiriş u ları yerine yarı rijit irleşimlerde oluşan, a katlı üyük a ıklıklı yapıların depremselliği yüksek lgelerde güvenli olarak kullanıla ileceği elirlenmiştir. Ayrıca a katlı üyük a ıklıklı sistemlerde rijit irleşimli yapıların en uygun üm olmadığı, irleşim rijitliği ve kapasitesi değiştirilerek en uygun üme ulaşıla ileceği de g sterilmiştir. Yarı rijit irleşimli olarak tasarlanacak çerçevelerde:

Yarı rijit irleşimlerin evrimsel yükler altında mümkün olan en a rijitlik a almasını g sterecek şekilde tasarlanması gerekir.

Birleşimlerin kapasiteleri a aldık a d nmeleri arttığından 0 veya daha a kapasiteli irleşimlerin tercih edilmemesinde fayda vardır.

Düşey yüklerin a olduğu ve dolayısıyla kiriş kesitlerinin kü ük olduğu katlarda irleşim kapasitelerinin diğer katlara g re daha üyük se ilmesinde fayda vardır.

Yarı rijit irleşimli er eve kirişlerinin düşey yükler altındaki tasarımında, kiriş u ları mafsallı olarak ka ul edilmektedir. Bunun yerine, irleşim taşıma kapasitelerinin de dikkate alınması daha ekonomik kiriş kesitleri se ilmesini sağlaya ilir.

Bu alışmada ulaşılan sonu lar, te in eşitli lümlerinde elirtilen ka uller altında, sadece incelenen er eveler i in yapılmıştır. Bu sonu ların diğer elliklerdeki yapılara da genellenmesi i in ellikle deneysel ve analitik olmak ü ere ir ok alışmanın yapılması gereklidir.

6.3 Gelecek Çalışmalara Yönelik Öneriler

Enerji sönümlenmesinin kiriş-kolon düğüm noktalarında olacağı, yarı rijit irleşimli er evelerin davranışlarının daha doğru tespit edile ilmesi ve rijit irleşimli er evelerin ekonomik ve güvenilir ir alternatifi olarak uygulamada kullanıla ilmesi i in farklı elliklere sahip çer evelerin tam l ekli deneylerinin yapılması gerekmektedir. Bununla era er yarı rijit irleşim davranışının daha iyi elirlene ilmesi i in, ellikle sünek davranış g sterecek ve gevrek kırılmaları nlenmiş şekilde tasarlanmış irleşimlere ait deneylerin, çevrimsel yükler altında yapılması gerekmektedir. Ayrıca irleşimlerin, evrimsel yükler altında kinematik pekleşmeli davranış g stermesi i in gereken tasarım şartlarının da deneysel olarak elirlenip y netmeliklere yansıtılması gerekmektedir.

Mevcut yönetmeliklerin hi irinde depremselliği yüksek lgelerde tasarlanacak yarı rijit irleşimli er eveler i in tamamlanmış ir tasarım prosedürü ulunmamaktadır. Bu eksikliğin giderilmesi i in daha ir ok analitik ve deneysel alışmanın yapılması gerekmektedir. Bunun i in farklı a ıklıklara ve kat sayılarına sahip yarı rijit irleşimli er evelerin davranışlarının da analitik olarak değerlendirilmesinde yarar vardır. Ayrıca mevcut y netmeliklerde, yarı rijit irleşimli er evelerin taşıyıcı sistem davranış katsayılarına y nelik ir ilgi ulunmadığından, u konuda da ilave alışmalar yapılmalıdır.

KAYNAKLAR

Ackroyd, M.H., (1987), "Simplified Frame Design of Type PR Construction", Engineering Journal, 24 (4), 141-146.

Akbas, B. ve Shen, J., (2003), "Seismic Behavior of Steel Buildings with Combined Rigid and Semi Rigid Frames", Turkish Journal of Engineering Environment Science, 27, 253-264

Ambraseys, N.N., Simpson, K.A. ve Bommer, J.J., (1996), "Prediction of Horizontal Response Spectra in Europe", Earthquake Engineering and Structural Dynamics, 25, 371-400

Ambraseys, N.N ve Douglas J., (2003), "Near Field Horizontal and Vertical Earthquake Ground Motions" Soil Dynamics and Earthquake Engineering, 23, 1-18

American Institute of Steel Construction, Inc., (2003), "Steel Design Guide Series 5, Low and Medium Rise Steel Buildings", AISC.

American Institute of Steel Construction, Inc., (2003a), "Steel Design Guide Series 4, Extended End - Plate Moment Connections", AISC.

American Institute of Steel Construction, Inc., (2003b), "Steel Design Guide Series 13, Column Stiffening at Moment Connections", AISC.

American Institute of Steel Construction, Inc., (2003c), "Steel Design Guide Series 16, Flush and Extended Multiple - Row Moment End-Plate Connections", AISC.

American Institute of Steel Construction, Inc., (2005a), "Seismic Provisions for Structural Steel Buildings", AISC 341S1-05

American Institute of Steel Construction, Inc., (2005b), "Specification for Structural Steel Buildings", AISC 360-05

American Institute of Steel Construction, Inc., (2005c), "Steel Construction Manual", Thirteenth Edition, AISC.

American Society of Civil Engineers, (2006), "Minimum Design Loads for Building and Other Structures", ASCE SEI 7-05

Antoniou, S. ve Pinho, R., (2004), "Advantages and Limitations of Adaptive and Non-Adaptive Force-Based Pushover Procedures", Journal of Earthquake Engineering, 8, 4, 497-522.

Applied Technology Council, (2008), "Quantification of Building Seismic Performance Factors", ATC 63 Project Report %90 Draft, Redwood City, California.

Astaneh-Asl, A., (1995), "Seismic Design of Bolted Steel Moment Resisting Frames", Steel Tips, Structural Steel Education Council, Moraga, CA

Awkar, J.C. ve Lui, E.M., (1999), "Seismic Analysis and Response of Multistory Semi Rigid Frames", Engineering Structures, 21, 425-441

Aydınoğlu, M.N, (2003), "An Improved Pushover Procedure for Engineering Practice: Incremental Response Spectrum Analysis (IRSA). International Workshop on Performancebased Seismic Design: Concepts and Implementation" Edited by P. Fajfar and H. Krawinkler, Bled, Slovenia, 28 June – 1 July 2004, Pacific Earthquake Engineering Center, University of California, Berkeley, PEER Report 2004/05, 345-356

Bernuzzi, C., Zandonini, R. ve Zanon, P., (1996), "Experimental Analysis and Modeling of Semi Rigid Steel Joints under Cyclic Reversal Loading", Journal of Constructional Steel Research, 38, 2, 95-123

Bommer, J.J. ve Acevedo, A.B., (2004), "The Use of Real Earthquake Accelerograms as Input to Dynamic Analysis", Journal of Earthquake Engineering, 8, 43–91.

Bommer, J.J., Scott, S.G. ve Sarma, S.K.,(2000), "Hazard-Consistent Earthquake Scenarios", Soil Dynamics and Earthquake Engineering ,19, 4, 219–31.

Boore, D.M., Joyner, W.B. ve Fumal, T.E., (1997), "Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work" Seismological Research Letters, 68, 1.

Borgsmiller, J.T., (1995), "Simplified Method for Design of Moment End-Plate Connections", M.S. Thesis, Department of Civil Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Borgsmiller, J.T., Sumner, E.A., ve Murray, T.M., (1995), "Extended Unstiffened Moment End-Plate Connection Tests", Research Report No. CE/VPI-ST-95/13, Department of Civil Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Bracci, J.M., Kunnath, S.K ve Reinhorn, A.M., (1997), "Seismic Performance and Retrofit Evaluation of RC Structures", ASCE, 123, 1, 3-10

Broderick, B.M. ve Elnashai, A.S., (1996), "Seismic Response of Composite Frames-I. Response Criteria and Input Motion", Engineering Structures, 18, 9, 696–706.

Campell, K.W., (1985), "Strong Motion Attenuation Relationships: A Ten Year Prospective", Earthquake Spectra, 1, 759 - 804

Calado, L., De Matteis, G. ve Landolfo, R., (2000), "Experimental Response of Top and Seat Angle Semi Rigid Steel Frame Connections", Materials and Structures, 33, 499-510.

Chen, W.F., Toma, S., (1994), "Advanced Analysis of Steel Frames – Theory, Software and Applications", CRC Press.

Chopra, A.K., (2000), "Dynamics of Structures: Theory and Applications to Earthquake Engineering (2nd Edition)", Prentice Hall.

Chopra, A.K. ve Goel, R.K. (2002), "A Modal Pushover Analysis for Estimating Seismic Demands for Buildings" Earthquake Engineering and Structural Dynamics, 31, 3, 561-582.

Christopher, J.E., (1996), "Semi-Rigid Frame Design and Analysis Techniques" Ph.D. Dissertation submitted to University of Pittsburg

Chui, P.P.T. ve Chan, S.L., (1996), "Transient Response of Moment Resistant Steel Frames with Flexible and Hysteretic Joints", Journal of Constructional Steel Research, 39, 3, 221-243

Coelho G.A., Bijlaard, F.S.K., Silva, L.S., (2004), "Experimental Assessment of the Ductility of Extended End Plate Connections" Engineering Structures, 26, 1185-1206

COSMOS Virtual Data Center [Online], Consortium of Organizations for Strong-Motion Observation.

Douglas, J., (2001), "A Comprehensive Worldwide Summary of Strong Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000)", ESEE Research Report No. 01-1, Department of Civil Engineering and Environmental Engineering, Imperial College, London, UK

Douglas, J., (2002), "Errata of and Additions to ESEE Report No. 01-1 'A Comprehensive Worldwide Summary of Strong Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000)", ESEE Research Report No. 01-1'", ESEE Research Report No. 01-1, Department Research Report, Department of Civil Engineering and Environmental Engineering, Imperial College, London, UK Douglas, J., (2004), "Ground Motion Estimation Equations 1964 to 2003. Re-Issue of ESEE Research Report No. 01-1 'A Comprehensive Worldwide Summary of Strong Motion Attenuation Relationships for Peak Ground Acceleration and Spectral Ordinates (1969 to 2000)'. Technical Report No. 04-001-SM, Department of Civil Engineering and Environmental Engineering, Imperial College, London, UK

Di Sarno, L., Elnashai, A.S. ve Nethercot, D.A., (2003), "Seismic Performance Assessment of Stainless Steel Frames", Journal of Constructional Steel Research, 59, 1289-1319.

ECCS, 1986, "Recommended Testing Procedure for Assessing the Behavior of Structural Steel Elements under Cyclic Loads", 45, European Convention for Constructional Steelwork, Brussels

Elghazouli, A.Y., Castro, J.M. ve Izzuddin, B.A., (2008), "Seismic Performance of Composite Moment Resisting Frames", Engineering Structures, 30, 1802-1819.

Elnashai, A.S. ve Elghazouli, A.Y., (1994), "Seismic Behavior of Semi Rigid Steel Frames", Journal of Constructional Steel Research, 29, 149-174

Elnashai, A.S., Elghazouli, A.Y., ve Denesh-Ashtiani, F.A., (1998), "Response of Semi Rigid Steel Frames to Cyclic and Earthquake Loads", Journal of Structural Engineering, 124, 8, 857-867

Elnashai, A.S. ve McClure, D,C., (1996), "Effect of Modelling Assumptions and Input Motion Characteristics on Seismic Design Parameters of RC Bridge Piers", Earthquake Engineering and Structural Dynamics, 25, 435-463.

Elnashai, A.S., (2001), "Advanced Inelastic Static (pushover) Analysis for Earthquake Applications", Journal of Structural Engineering and Mechanics, 12, 1, 51-69.

Elnashai, A.S., (2002), "Do We Really Need Inelastic Dynamic Analysis?", Journal of Earthquake Engineering, 6, Special Issue 1, 123-130.

Elnashai A.S. ve Mwafy, A.M., (2002), "Overstregth and Force Reduction Factors of Multistory Reinforced Concrete Buildings", The Structural Design of Tall Buildings, 11, 329-351.

Elnashai, A.S., Papanikolaou, V. ve Lee, D.H., (2002), "Zeus-NL - A System for Inelastic Analysis of Structures" Mid-America Earthquake Center, University of Illinois Urbana – Champaign.

Elnashai, A.S., Papanikolaou, V. ve Lee, D.H., (2008), "Zeus-NL User Manual Version 1.8.1" Mid-America Earthquake Center, University of Illinois Urbana – Champaign.

Elnashai, A.S., (2006), "Assessment of seismic vulnerability of structures" Journal of Constructional Steel Research, 62. 1134-1147

Elnashai, A.S. ve Di Sarno, L., (2008), "Fundamentals of Earthquake Engineering" WILEY Press

Erdik M., Durukal, E., Siyahi, B., Fahjan, Y., Şeşetyan, K., Demircioğlu, M., ve Akman, H., (2003), "Depreme Dayanıklı Yapı Tasarımında Deprem Yer Hareketinin Belirlenmesi, Beşinci Ulusal Deprem Mühendisliği Konferansı.

Eurocode EN 1993-1-1, (2005), "Design of Steel Structures-Part 1-1: General Rules and Rules for Buildings", CEN, European Committee for Standardization, Brussels, Belgium.

Eurocode EN 1993-1-8, (2005), "Design of Steel Structures-Part 1-8: Design of Joints", CEN, European Committee for Standardization, Brussels, Belgium.

Eurocode ENV 1993-1-1:1992/A2, (1998), "Design of Steel Structures-Part 1-1: General Rules and Rules for Buildings, Annex J Joints in Building Frames", CEN, European Committee for Standardization, Brussels, Belgium.

Eurocode EN 1998-1, (2004), Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings", CEN, European Committee for Standardization, Brussels, Belgium.

Faella, C., Piluso, V. ve Rizzano, G., (2000), "Structural Steel Semi Rigid Connections; Theory, Design and Software" CRC Press

Fathi, M., Daneshjoo, F. ve Melchers, R.E., (2006), "A Method for Determining the Behavior Factor of Moment Resisting Steel Frames with Semi Rigid Connections", Engineering Structures, 28, 514-531

FEMA 350 (Federal Emergency Management Agency), (2000), "Recommended Seismic Design Criteria for New Steel Moment Frame Buildings", Washington D.C.

FEMA 355 (Federal Emergency Management Agency), (2000), "Seismic Design Criteria for Steel Moment Frame Structures", Washington D.C.

FEMA 356 (Federal Emergency Management Agency), (2000), "Prestandart and Commentary for the Seismic Rehabilitation of Buildings", Washington D. C.

FEMA 450 (Federal Emergency Management Agency), (2004), "NEHRP Recommend Provisions for Seismic Regulations for New Buildings and Other Structures", Washington D.C.

Foley, C.M. ve Vinnakota, S., (1999a), "Inelastic Behavior of Multistory Partially Restrained Steel Frames. Part I", Journal of Structural Engineering, 125, 8, 854-861

Foley, C.M. ve Vinnakota, S., (1999b), "Inelastic Behavior of Multistory Partially Restrained Steel Frames. Part II", Journal of Structural Engineering, 125, 8, 862-869

Gasparini, D. A. ve Vanmarcke, E.H., (1976) "Simulated Earthquake Motions Compatible with Prescribed Response Spectra" Department of Civil Engineering, Research Report R76-4, Massachusetts Institute of Technology, Cambridge, MA, USA.

Geschwindner, L.F., (1991), "A Simplified Look At Partially Restrained Connections", Engineering Journal, 28 (2), 73-78.

Geschwindner L.F. ve Disque, R.O., (2005), "Flexible Moment Connections for Unbraced Frames Subject to Lateral Forces – A Return to Simplicity" Engineering Journal, Second Quarter, 99-112

Ghobarah, A., Osman, A. ve Korol, R.M., (1990), "Behavior of Extended End Plate Connections under Cyclic Loading", Engineering Structures, 12, 15-26

Ghobarah, A., Korol, R.M. ve Osman, A., (1992), "Cyclic Behavior of Extended End Plate Joints", Journal of Structural Engineering, ASCE, 118, 5, 1333-1353

Gong, Y., (2003), "Performance Based Design of Steel Building Frameworks under Seismic Loading" PhD Thesis.

Housner G.W., (1952) "Spectrum Intensities of Strong Motion Earthquakes" Eartquake Engineering Research Institute from Proceedings of the Symposium on Earthquakes and Blast effects on Structures, University of California at Los Angeles, June 1952, pp. 20-36)

Idriss, I.M., (1978), "Characteristics of Earthquake Ground Motions", Earthquake Engineering and Soil Dynamics, ASCE, 3, 1151-1265.

Johansen, K.W., (1972), "Yield Line Formulae for Slabs", Cement and Concrete Association, London, England

Joyner, W.B and Boore, D.M., (1988), "Measurement, Characterization and Prediction of Strong Motion" Proceedings of Earthquake Engineering and Soil Dynamics II, Geotechnical Division, ASCE, 43 - 102

Kennedy, N.A., Vinnakota, S. Sherbourne, A.N., (1981), "The Split Tee Analogy in Bolted Splices and Beam-Column Connections", Proceedings of the International Conference: Joints in Structural Steelwork: The Design and Performance of Semi-Rigid and Rigid Joints in Steel and Composite Structures and Their Influence on Structural Behaviour, Teesside Polytechnic, Middleborough, Cleveland, England

Krawinkler, H., (1978), "Shear in Beam – Column Joints in Seismic Design of Steel Frames", Engineering Journal, 15, Third Quarter.

Krawinkler, H. ve Seneviratna, G.D.P.K., (1998), "Pros and Cons of A Pushover Analysis of Seismic Performance Evaluation", Engineering Structures, 20, 4-6, 452–64.

Kishi, N. ve Chen, W. F., (1990), "Moment Rotation Relations of Semi Rigid Connections with Angles", Journal of Structural Engineering, 116, 7, 1813-1834

Korol, R.M., Ghobarah, A. ve Osman, A., (1990), "Extended End Plate Connections under Cyclic Loading: Behavior and Design", Journal of Constructional Steel Research, 16, 4, 253-279

Kukreti, A.R. ve Abolmaali, A.S., (1999), "Moment Rotation Hysteresis Behavior of Top and Seat Angle Steel Frame Connections", Journal of Structural Engineering, 125, 8, 810-820

Lam, N., Wilson, J. ve Hutchinson, G., (2000), "Generation of Synthetic Earthquake Accelerograms Using Seismological Modelling: A Review", Journal of Earthquake Engineering, 4, 3, 321-354.

Lui, E.M. ve Lopez, A., (1997), "Dynamic Analysis and Response of Semi Rigid Frames" Engineering Structures, 19, 8, 644-654

Madas, P.J. ve Elnashai, A.S., (1992), "A Component Based Model for the Response of Beam-Column Connection", Tenth World Conference of Earthquake Engineering, Madrid, Spain

Maison, B.F. ve Kasai, K., (2000), "Seismic Performance of 3 and 9 Story Partially Restrained Moment Frame Buildings", SAC/BD-99/16, SAC Joint Venture

Maison, B.F., Kasai, K. ve Mayangarum, A., (2000a), "Effects of Partially Restrained Connection Stiffness and Strength on Frame Seismic Performance", SAC/BD-99/17, SAC Joint Venture

Maison, B.F., Rex, C.O., Lindsey, S.D. ve Kasai, K., (2000b), "Performance of PR Moment Frame Buildings in UBC Seismic Zones 3 and 4", Journal of Structural Engineering, 126,1,108-116

Martinez-Rueda, J.E., (1997), "Energy Dissipation Devices for Seismic Upgrading of RC Structures", PhD thesis, University of London

Martinez-Rueda, J.E., (1998), "Scaling Procedure for Natural Accelerograms Based on A System of Spectrum Intensity Scales", Earthquake Spectra, 14, 135-152.

Matsumura, K., (1992), "On the Intensity Measure of String Motions Related to Structural Failures", Proceedings 10WCEE, Vol.1, pp. 375-380

Mele, E., Di Sarno, L. ve De Luca, A., (2004), "Seismic Behaviour of Perimeter and Spatial Steel Frames", Journal of Earthquake Engineering, 8, 3, 457-496.

Meng, R.L., (1996), "Design of Moment End-Plate Connections for Seismic Loading", Ph.D. Dissetation submitted to Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Mwafy, A.M. ve Elnashai A.S., (2001), "Static Pushover versus Dynamic Collapse Analysis of RC Buildings", Engineering Structures, 23, 5, 407–24.

Mwafy, A.M. ve Elnashai A.S., (2002), "Calibration of Force Reduction Factors of RC Buildings", Journal of Earthquake Engineering, 6, 2, 239 - 273

Nader, M.N. ve Astaneh, A.A., (1991), "Dynamic Behavior of Flexible, Semirigid and Rigid Steel Frames", Journal of Construction Steel Research, 18, 179-192

Nader, M.N. ve Astaneh, A.A., (1992), "Seismic Behavior and Design of Semirigid Steel Frames", UCB/EERC-92/06, University of California at Berkeley

Nader, M.N. ve Astaneh, A.A., (1996), "Shaking Table Tests of Rigid, Semirigid and Flexible Steel Frames", Journal of Structural Engineering, 122, 6, 589-596

Nau, J.M. ve Hall, W.J., (1984), "Scaling Methods for Earthquake Response Spectra", Journal of Structural Engineering, 110, 7, 1533-1548.

Park, R., (1988), "State-of-The Art Report: Ductility Evaluation from Laboratory and Analytical Testing", In Proceedings 9th WCEE, IAEE, Tokyo–Kyoto, Japan VIII, 605–616.

PEER Strong-Motion Database [Online], Pacific Earthquake Engineering Research.

Popov, E. ve Tsai, K.C., (1989), "Performance of Large Seismic Steel Moment Connections under Cyclic Loads", Engineering Journal, Second Quarter, 12, 51-60.

Ravindra, M.K. ve Galambos, T.V., (1978), "Load and Resistance Factor Design for Steel", Proceedings American Society of Civil Engineers, 104, 1337 - 1353

Rizzano, G., (2006), "Seismic Design of Steel Frames with Partial Strength Joints", Journal of Earthquake Engineering, 10, 5, 725-747

SAC., (1995), "Analytical and Field Investigations of Buildings by the Northridge Earthquake of January 17, 1994", SAC/BD- 95/04, SAC Joint Venture

Salazar, A.R. ve Haldar, A., (2001), "Energy Dissipation at PR Frames Under Seismic Loading", Journal of Structural Engineering, 127, 5, 588-592

Sawada, T., Hirao, K., Yamamoto, H. ve Tsujihara, O., (1992). "Relation between maximum amplitude ratio and spectral parameters of earthquake ground motion," Proceedings of 10th World Conference on Earthquake Engineering, Madrid, Spain, 2:617-622

Sekulovic, M. ve Danilovic, M.N., (2008), "Contribution to Transient Analysis of Inelastic Steel Frames with Semi Rigid Connection", Engineering Structures, 30, 976-989

Shen, J. ve Astaneh-Asl, A., (1999), "Hysteretic Behavior of Bolted Angle Connections", Journal of Constructional Steel Research, 51, 201-218

Shi, Y. J., Chan L. S., ve Wong L.Y., (1996), "Modeling for Moment-Rotation Characteristics for End – Plate Connections, 122, 11, 1300-1306

Shi, G., Shi, Y. ve Wang, Y., (2007), "Behavior of End Plate Moment Connections Under Earthquake Loading", Engineering Structures, 29, 703-716

Srouji, R., Kukreti, A.R. and Murray, T.M., (1983), "Yield Line Analysis of End Plate Connections with Bolt Force Predictions", Research Report No. FSEL/MBMA 83-05, University of Oklahoma, Norman

Sumner, E.A., Murray, T.M., (2000), "Cyclic Testing of Bolted Moment End Plate Connections", Report No. SAC/BD-00/21, SAC Joint Venture

Sumner, E.A., (2003), "Unified Design of Extended End-Plate Moment Connections Subject to Cyclic Loading", Ph.D. Dissetation submitted to Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Tsai, K.C. ve Popov, E., (1990), "Cyclic Behavior of End Plate Moment Connections", Journal of Structural Engineering, 116, 11, 2917-2930

Thermou, G, E., Elnashai A. S., Plumier, A. ve Doneux. C., (2004), "Seismic Design and Performance of Composite Frames", Journal of Constructional Steel Research, 60, 31-57.

Trifunac, M.D ve Brady, A.G., (1976), "Correlations of Peak, Velocity and Displacement with Earthquake Magnitude, Distance and Site Conditions" Earthquake Engineering and Structural Dynamics, 4, 455 - 471

UBC (1997), "Uniform Building Code", International Conference of Building Officials, Whittier, California

Whittaker, A., Constantinou, M. ve Tsopelas, P., (1998), "Displacement Estimates for Performance-Based Seismic Design", Journal of Structural Engineering, 124, 8, pp.905-912.

Yang, C.M. ve Kim, Y.M., (2007), "Cyclic Behavior of Bolted and Welded Beam to Column Joints", International Journal of Mechanical Sciences, 49, 635-649

Yorgun, C. ve Bayramoglu, G., (2001), "Cyclic Tests for Welded Plate Sections with End Plate Connections", Journal of Constructional Steel Research, 57, 1309-1320

Youssef, N.F.G., Bonowitz, D. ve Gross, J.L., (1995), "A Survey of Steel Moment Resisting Frame Buildings Affected by the 1994 Northridge Earthquake" Report No: NISTR 56254, National Institute for Science and Technology, Gaithersburg, Maryland, USA.

ZEUS-NL, [Computer Software], (2008), Urbana, IL: MAE Center.

Zhu, T.J., Heidebrecht, A.C. ve Tso, W. K., (1988), "Effect of Peak Ground Acceleration to Velocity Ratio on the Ductility Demand of Inelastic Systems" Earthquake Engineering and Structural Dynamics, 16, 1, 63-79.

EKLER

Ek 1 AISC Yöntemine göre yar rijit birleşim tasar m ak ş şemas

Ek 2 Eurocode yöntemine göre yar rijit birleşim tasar m ak ş şemas

Ek 3 AISC ve Eurocode yöntemlerine göre uzat lm ş al n levhal , bulonlu birleşim tasar m örnek hesaplar

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Stage :	Multiple Row Extended Unstiffened 1/2 End-Plate Connection			
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

CONNECTING MEMBERS

Column Section	W12X106	•
Beam Section	W21X73	▼
Connection Restrained Factor	60%	

COLUMN & BEAM CROSS SECTION PROPERTIES

		Column	Beam	
		W12X106	W21X73	
Nominal weight per unit length	W :	1547	1065	N/m
Cross sectional area	A :	2.01E-02	1.39E-02	m²
Overall depth of member	d :	0.328	0.538	m
Flange width	b _f :	0.310	0.211	m
Flange thickness	t _f :	0.025	0.019	m
Web thickness	t _w :	0.015	0.012	m
Dist. from flange face to web toe of fillet	k _{des} :	0.040	0.031	m
Dist.from tip of flange to flange toe of fillet	k ₁ :	0.029	0.022	m
Workable gage	g _{min} :	0.140	-	m
Plastic section modulus about the x-axis	Z _x :	2.69E-03	2.82E-03	m³

Righthand beam mom. (considered joint)	M _{j,b1,Ed} :	1	kN.m
Lefthand beam moment	$M_{j,b2,Ed}$:	-0.6	kN.m
Transformation Parameter	β:	1.6	-

STIFFENING OPTIONS OF COLUMN

_		
0	Unstiffened	

• Stiffened (Single)

– DOUBLER PLATES –

O Stiffened (Double)

Width of doubler plate	w _{dp} :	0.277	m	
Depth of doubler plate	d _{dp} :	0.829	m	~~~~
Thickness of doubler plate	t _{dp} :	0.015	m	

- TRAN	s. st	IFFENE	ER —

Unstiffened

O Stiffened (Full)

Yield line mechanism para.	Yc:	4.597	m
Width of transverse stiffener	W _{ts} :	0.000	m
Length of transverse stiffener	I _{ts} :	0.000	m
Thickness of trans. stiffener	t _{ts} :	0.000	m
Clip	clip :	0.000	m

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Stage :	Multiple Row Extended Unstiffened 1/2 End-Plate Connection			
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

COLUMN & BEAM MATERIAL PROPERTIES

- SECTION MATERIAL	Minimum yield stress	F _y :	345000	kN/m²
O A 36	Tensile Stress	F _u :	450000	kN/m²
• A 992	Ratio of expected yield stress	R _y :	1.1	-
	Modulus of elasticity	E :	2E+08	kN/m ²

END PLATE MATERIAL PROPERTIES

- PI	LATE MATERIAL —
)	A 36 Grade 36
()	A 572 Grade 50

Minimum yield stress	F _y :	250000 kN/m ²
Tensile Stress	F _u :	400000 kN/m ²

BOLT MATERIAL PROPERTIES

BOLT MATERIALNominal tensile stress F_{nt} :780000kN/m²O A 325Nominal shear stress F_{nv} :414000kN/m² \bullet A 490Bolt number in one row n_b :2

DOUBLER PLATE MATERIAL

PLATE MATERIAL
 O
 A 36 Grade 36
 A 572 Grade 50

Minimum yield stress	F _y :	345000	kN/m ²
Tensile Stress	F _u :	450000	kN/m²

TRANSVERSE STIFFENER MATERIAL

	_ATE MATERIAL	1
0	A 36 Grade 36	
۲	A 572 Grade 50	
]

Minimum yield stress	F _y :	345000	kN/m²
Tensile Stress	F _u :	450000	kN/m²

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Stage : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By : Nihan DOGRAMACI Date : 9/15/2009 4:31				

CONNECTION GEOMETRY FOR END PLATE

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Stage : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

CONNECTION GEOMETRY FOR UNSTIFFENED COLUMN FLANGE

CONNECTION GEOMETRY FOR STIFFENED COLUMN FLANGE

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By : Nihan DOGRAMACI Date : 9/15/2009 4:31				

SELECTED DESIGN PROCEDURE

DESIGN PROCE	DURES
0	PROCEDURE 1 (Thick End Plate & Smaller Diameter Bolts)
۲	PROCEDURE 2 (Thin End Plate & Larger Diameter Bolts)

CONNECTION DESIGN MOMENT

*

Span of beam (column center to center)	L _h :	9.000	m
Shear at plastic hinge from load comb.	V _{D&L} :	0.00	kN
Shear at the plastic hinge	V _u :	289.31	kN

*	Expected moment at the plastic hinge	M _{pe} :	1176.6	kN.m
*	Plastic hinge dist. from face of column	L _p :	0.269	m
*	Moment at the face of the column	M _{fc} :	1254.5	kN.m
	Connection design moment	M _{uc} :	583.4	kN.m

DESIGN PROCEDURE 1 (Thick End-Plate & Smaller Diameter Bolts)

	Resistance factor for bolt rupture	φ:	0.75		
*	Sum of lever arms of bolt rows	Σd_n :	1.400	m	
*	Required bolt diameter	d _{b,req} :	0.021	m	
	Selected bolt diameter	d _b :	0.022	m	
*	Bolt tensile stregth	P _t :	302.60	kN	
*	Nominal strength with bolt rupture	M _{np} :	847.1	kN.m	No prying action
	Connection strength with bolt rupture	φ M _{np} :	635.3	kN.m	

	Resistance factor for end-plate yield	ϕ_{b} :	0.90	
*	Required end-plate thickness	t _{p,req} :	0.027	m
	Selected end plate thickness	t _p :	0.032	m
*	Nominal strength with end plate yielding	M _{pl} :	1120.1	kN.m
	Connection strength with endplate yielding	$\phi_b M_{pl}$:	1008.1	kN.m

End-plate thickness	t _p :	0.032	m
Bolt diameter	d _b :	0.022	m
Connection stregth	φ	635.3	kN.m

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title :	Multiple Row Extended Unstiffened 1/2	End-Plate	e Connection	
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

DESIGN PROCEDURE 2 (Thin End-Plate & Larger Diameter Bolts)

	Resistance factor for end-plate yield	ф _b :	0.90	
*	Required end-plate thickness	t _{p,req} :	0.024	m
	Selected end plate thickness	t _p :	0.024	m
*	Nominal strength with endplate yielding	M _{pl} :	648.3	kN.m
	Connection strength with endplate yielding	φ _b M _{pl} :	583.4	kN.m
	Trial bolt diameter	d _b :	0.032	m
*	Width of end-plate per bolt	w' :	0.085	m
*	Dist. from interior bolt to the prying force	a _i :	0.039	m
*	Flange force per bolt	F' _i :	171.69	kN
*	Bolt prying force for inside bolts	Q _{max,i} :	64.48	kN
*	Dist. from outer bolt to the prying force	a _o :	0.039	m
*	Flange force per bolt	F' _o :	171.69	kN
*	Bolt prying force for outside bolts	Q _{max,o} :	64.48	kN
	Resistance factor for bolt rupture	φ:	0.75	
*	Bolt tensile strength	P _t :	617.55	kN
	Specified pretension	T _b :	453.70	kN
*	Nominal stregth with bolt rupture	M _q :	1476.6	kN.m
	Connection strength with bolt rupture	φ M _q :	1107.4	kN.m
				1

End-plate thickness	t _p :	0.024	m
Bolt diameter	d _b :	0.032	m
Connection stregth	φ	583.4	kN.m

SELECTED DESIGN PROCEDURE RESULTS

End-plate thickness	t _p :	0.024	m
Bolt diameter	d _b :	0.032	m
Connection stregth	φ M _n :	583.4	kN.m

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title :	Multiple Row Extended Unstiffened 1/2	End-Plate	e Connection	
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

BEAM SIDE DESIGN

Connection design moment	M _{uc} :	583.4	kN.m
Selected bolt diameter	d _b :	0.032	m
Selected end plate thickness	t _{pl} :	0.024	m
Connection strength	φM _n :	583.4	kN.m
Shear at the plastic hinge	V _u :	289.31	kN

Factored Beam Flange Force

*

V			
Factored beam flange force	F _{fu} :	1122.69	kN
Number of bolt rows resisting flange force	n :	3	-

Shear Yielding of Extended Portion of End-Plate

*	Required shear str. of extended portion	R _d :	374.23	kN]
	Resistance factor for shear strength	φ:	0.90	-	
*	Design shear yielding strength	φR _n :	847.81	kN	ОК

Shear Rupture of Extended Portion of End-Plate

*	Required shear str. of extended portion	R _d :	374.23	kN	
	Resistance factor for shear strength	φ:	0.75	-	
*	Net area of the end-plate	A _n :	0.0046	m²	
*	Design shear rupture strength	φR _n ∶	826.72	kN	OK

Compression Bolts Shear Rupture Strength

Resistance factor for shear strength	φ:	0.75	-	
Number of bolts at the compression flange	n _b :	6	-	
Nominal gross area of bolt	A _b :	0.0008	m²	
Design shear rupture strength	φR _n :	1474.99	kN	ΟK

Compression Bolts Bearing / Tear Out Strength

	Resistance factor for bearing strength	φ:	0.75	-	
	Number of inner bolts	n _i :	4	-	
*	Clear distance for inner bolts	L _{c,i} :	0.067	m]
*	Nominal bearing strength of one inner bolt	R _{n,i} :	736.21	kN	
	Number of outer bolts	n _o :	2	-	
*	Clear distance for outer bolts	L _{c,o} :	0.043	m]
*	Nominal bearing strength of one outer bolt	R _{n,o} :	502.38	kN	
*	Design bearing strength of comp. bolts	φR _n :	2260.71	kN	ОК

Weld Design
(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME			
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection			
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31

COLUMN SIDE DESIGN (UNSTIFFENED)

Compression Bolts Bearing / Tear Out Strength

	Resistance factor for bearing strength	φ:	0.75	-]
	Number of bolts	n :	6	-	
*	Clear distance	L _c :	0.067	m	
*	Nominal bearing strength of one bolt	R _{n,i} :	862.26	kN]
*	Design bearing strength of comp. bolts	φR _n :	3880.15	kN	ОК

Column Flange Strength for Flexural Yielding

	Resistance factor for bending	ф _b :	0.90	-	
	Column flange yield line mech. parameter	Y _c :	4.597	m	
*	Nominal column flange yield strength	M _{cf} :	1002.9	kN.m	
*	Design column flange yield strength	φM _{cf} :	902.6	kN.m	OK
*	Equivalent unstiff. column design force	φR _n :	1736.82	kN	~

Local Web Yielding Strength

	Resistance factor for web local yielding	φ:	1.00	-	
	Web thickness	t _w :	0.031	m	
	Factor for column end located joint	C _t :	1	-	
	Dist. from flange face to web toe of fillet	k _c :	0.040	m	
	Groove weld reinforcement leg size	a _{pf} :	0.006	m	
*	Length of bearing	N :	0.031	m	
*	Design local web yielding strength	φR _n :	3443.74	kN	OK

Web Buckling Strength

Resistance factor for web buckling	φ:	0.90	-	
Web thickness	t _w :	0.031	m	
Clear column web length	h :	0.247	m	
Design web buckling strength	φR _n :	21625.14	kN	ОК

Web Crippling Strength

*

	Resistance factor for web crippling	φ:	0.75	-	
	Web thickness	t _w :	0.031	m	
	Groove weld reinforcement leg size	a _{pf} :	0.006	m	
*	Length of bearing	N :	0.080	m	
*	Design web crippling strength	φ R _n :	8620.56	kN	OK

Required Strength for Continuity Plates

۴	Required strength for continuity plates	F _{su} :	0.000 kN

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME			
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection			
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31

DOUBLER PLATE SIDE DESIGN

Shear Yielding of The Column Web Panel Zone

*	Transformation Parameter	β:	1.6	-	
*	Connection design moment	M _{uc} :	583.4	kN.m	
	Factored beam flange force	F _{fu} :	1122.69	kN	
*	Factored panel zone shear force	V _u :	1796.31	kN	
	Res. factor for web panel shear yielding	φ:	0.75	-	
	Ratio of column axial stress	P_u / P_y :	0.75	-	
*	Design web panel zone shear strength	φR _v :	957.65	kN	Doubler Plate Required

Required Strength for Web Doubler Plate

* Required strength for web doubler plate	V _{u dp} : 838.66 kN
---	-------------------------------

Shear / Plate Buckling Strength of Column Web Panel Zone

*	Moment arm between conc. flange forces	d _m :	0.520	m	
*	Min. thick.of unreinforced column web	t _{w min} :	0.009	m	OK

Design of Web Doubler Plates for Strength

	Res.factor for doubler plate shear yielding	φ:	0.90	-	
	Thickness of doubler plate	t _{dp} :	0.015	m	
ł	Design shear strength of doubler plate	φR _{v dp} :	945.80	kN	OK

Design of Web Doubler Plates for Unbalanced Force

	Res.f.of doubler plate for unbalanced force	φ:	0.90	-	
*	Min. thick.of doubler plates	t _{dp min} :	0.000	m	OK
*	Min. thick.of column web	t _{wc min} :	0.000	m	OK

Design of Web Doubler Plates for Shear Buckling

	-	-			
*	Moment arm between conc. flange forces	d _m :	0.520	m	
	Thickness of transverse stiffener	t _{ts} :	0.000	m	
*	Min. thick.of doubler plates	t _{dp min} :	0.009	m	ΟK

Connecting Web Doubler Plates to Column Flanges

Complete joint penetration groove welds

Connecting Web Doubler Plates to Column Web

Minimum size fillet weld

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

TRANSVERSE STIFFENER (CONTINUITY PLATE) SIDE DESIGN

Required strength for continuity plate	R _{u st} :	0.00	kN
Req.str.for continuity pl. from left side	R _{u st2} :	0.00	kN

Column Flange Strength for Flexural Yielding

F	Resistance factor for bending	ф _b :	0.90	-	
C	Column flange yield line mech. parameter	Y _c :	4.597	m	
* N	Nominal column flange yield strength	M _{cf} :	1002.9	kN.m	
* C	Design column flange yield strength	φM _{cf} :	902.6	kN.m	ОК

Design of Transverse Stiffeners for Strength

		-			
	Res.factor for continuity plate yielding	φ:	0.90	-	
*	Area of continuity plates	A _{st} :	0.0000	m²	
*	Design strength of continuity plate	φR _{n st} :	0.000	kN	OK

Design of Transverse Stiffeners for Unbalanced Force

	Res.f.of continuity pl.for unbalanced force	φ:	0.90	-	
*	Min. thickness of continuity plates	t _{st min} :	0.000	m	OK

Connecting Transverse Stiffeners to Column Flanges

Complete joint penetration groove welds

Connecting Transverse Stiffeners to Column Panel Zone

Double sided fillet welds

	Resistance factor of fillet weld	φ:	0.75	-	
	Filler metal strength	F _{EXX} :	482580	kN/m²	
*	Required fillet weld leg size	w :	0.000	m	οк
	Selected fillet weld leg size	w :	0.000	m	
*	Design strength of fillet welds	φR _{n w} :	0.00	kN	

*	Sum of design strengths of continuity pl.	$\phi R_{n max}$:	0.00	kN	ОК
*	Shear strength of continuity plate	$\phi R_{n max}$:	0.00	kN	ОК
	Panel zone material thickness	t _{pz} :	0.015	m	
	Panel zone material strength	F _y :	345000	kN/m ²	
*	Shear yield strength of col. panel zone	$\phi R_{n max}$:	945.80	kN	OK

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

End-plate thickness	t _p :	0.024	m
Bolt diameter	d _b :	0.032	m

Partial safety factor	γ _{м0} :	1	-
	γ _{M1} :	1	-
	γ _{M2} :	1.25	-
Transformation Parameter	β:	1.6	-

- * SUPPLEMENTARY WEB PLATE -
- * O Unstiffened

*

- Stiffened (Single)
- O Stiffened (Double)

Plate thickness	t _s :	0.015	m
Plate width	b _s :	0.247	m

*		Plate thickness	t _{ts} :	0.000	m
*	Unstiffened	Plate width	w _{ts} :	0.000	m
	O Stiffened (Full Depth)	Fillet weld leg size	w _{tf} :	0.006	m
*		Plastic moment res.	M _{pl,st,Rd} :	0.0	kN.m

COLUMN WEB PANEL IN SHEAR

*	Column web slenderness control	d/t _w :	21.148	<	69 ε :	56.947
*	Shear area of the column	A _{vc} :	0.0095	m²		
*	Column web shear resistance	V _{wp,Rd} :	1707.67	kN		
		$V_{\text{wp,Rd}}/\beta$:	1067.30	kN	1	

COLUMN WEB IN TRANSVERSE COMPRESSION

	Throat thick. of weld (endplate & beam f.)	a _p :	0.004	m	
*	Column web thickness	t _{wc} :	0.023	m	1
*	Eff. width of column web in compression	b _{eff,c,wc} :	0.282	m	1
*	Plate slenderness	λ _p :	0.439	-	
*		ω ₁ :	0.787	-	
*	Reduction factor for interaction with shear	ω ₂ :	0.538	-	Ĩ
*		ω:	0.638	-	1
*	Reduction factor for long. comp. stress	k _{wc} :	1	-	
*	Reduction factor for plate buckling	ρ:	1.000	-]
*	Column web transverse comp. resistance	$F_{c,wc,Rd}$:	1440.19	kN	٥ŀ

BEAM FLANGE AND WEB IN COMPRESSION

*	Design moment resistance of beam cs.	M _{c,Rd} :	972.4	kN.m
*	Design comp.res.of beam flange and web	F _{c,fb,Rd} :	1067.30	kN

(3x9ı	m) BAY - (2x3.60m & 4.20m) FLOOR -	60% - FF	RAME
Project Title :	Multiple Row Extended Unstiffened 1/2	End-Plate	e Connection
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31

BOLT ROW 1 h₁: 0.579 m

INDIVIDUAL ROW - BOLT ROW 1

Column Flange In Transverse Bending		Inner	
Unstiffened column flange effective length		Bolt R.1	
Radius of the fillet of the web to flange	r _c :	0.021	m
Dist.of bolt axis to edge of column flange	e :	0.085	m
Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060	m
Dist. between plastic hinges in thin flange	m :	0.045	m
Dist. between bolt axis and prying force	n :	0.057	m
Eff.L.of ind.considered bolt for cir.pattern	I _{eff,cp,i} :	0.286	m
Eff.L.of ind.considered bolt for non.cir.pat.	I _{eff,nc,i} :	0.288	m
		A 11 0///	

			Adj. Stff.	
	Stiffened column flange effective length		Bolt R.1	
	Dist. between plastic hinges in thin flange	m ₂ :	0.054	m
*		λ1:	0.348	-
*		λ ₂ :	0.416	-
		α:	8.000	-
*	Eff.L.of ind.considered bolt for cir.pattern	$I_{\rm eff,cp,i}$:	0.286	m
*	Eff.L.of ind.considered bolt for non.cir.pat.	$I_{eff,nc,i}$:	0.364	m

*	Effective length for mode 1	$\Sigma I_{eff,1,i}$:	0.286	m	
*	Effective length for mode 2	$\Sigma I_{eff,2,i}$:	0.288	m	
*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	15.6	kN.m	
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	15.7	kN.m	
	Reduction factor	k ₂ :	0.9	-	
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	
*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	1370.68	kN	
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	801.42	kN	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	889.27	kN	OK
*	Design tension resist. of column flange	F _{t,fc,Rd} :	801.42	kN	

Column Web In Transverse Tension

*	Effective thickness of the column web	t _{w,eff} :	0.023	m	
*	Effective width of the column web	b _{eff,t,wc} :	0.286	m	
*		ω ₁ :	0.783	-	
*	Reduction factor for interaction with shear	ω ₂ :	0.533	-	
*		ω:	0.633	-	
*	Design tran. tension resist.of column web	F _{t,wc,Rd} :	1448.84	kN	ОК

(3x9ı	m) BAY - (2x3.60m	& 4.20m)	FLOOR -	60% - FF	RAME
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection					e Connection
Designed By :	Nihan DOGRAMACI			Date :	9/15/2009 4:31
			Outside		
End Plate In Bendin	g		Bolt R.1		_
Throat thick.of weld (endplate & beam f.)	a _p :	0.004	m	
Width of end plate		b _p :	0.260	m	

w :

0.140 m

Dist.of bolt axis to edge of end plate	e :	0.060	m
Dist. of bolt axis to top edge of end plate	e _x :	0.060	m
Min. dist. of bolt axis to top edge of endp.	e _{min} :	0.060	m
Dist. between plastic hinges in thin flange	m _x :	0.045	m
Dist. between bolt axis and prying force	n :	0.056	m
Eff.L.of ind.considered bolt for cir.pattern	I _{eff,cp,i} :	0.261	m
Eff.L.of ind.considered bolt for non.cir.pat.	I _{eff,nc,i} :	0.130	m
Effective length for mode 1	$\Sigma I_{eff,1,i}$:	0.130	m
Effective length for mode 2	$\Sigma I_{eff,2,i}$:	0.130	m

Distance between vertical bolt axis

*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	4.7	kN.m	
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	4.7	kN.m	
	Reduction factor	k ₂ :	0.9	-	
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	
*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	422.11	kN	
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	587.84	kN	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	889.27	kN	OK
*	Design tension resist. of end-plate	F _{t,ep,Rd} :	422.11	kN	

Effective Design Tension Resistance Of Bolt Row 1

*	Eff. design tansian resistance of Polt P1	F _{t1,Rd} :	422.11 kN
*	EII. design tension resistance of Bolt RT	F _{t1,Rd} :	422.11 kN
*	Eff. design tension resistance of Bolt R1	F _{t1,Rd} :	422.11 kN

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

BOLT ROW 2 h₂: 0.460 m

INDIVIDUAL ROW - BOLT ROW 2

Column Flange In Transverse Bending	g Inner		
Unstiffened column flange effective length		Bolt R.2	
Radius of the fillet of the web to flange	r _c :	0.021	m
Dist.of bolt axis to edge of column flange	e :	0.085	m
Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060	m
Dist. between plastic hinges in thin flange	m :	0.045	m
Dist. between bolt axis and prying force	n :	0.057	m
Eff.L.of ind.considered bolt for cir.pattern	I _{eff,cp,i} :	0.286	m
Eff.L.of ind.considered bolt for non.cir.pat.	I _{eff,nc,i} :	0.288	m

			Adj. Stiff	
	Stiffened column flange effective length		Bolt R.2	
	Dist. between plastic hinges in thin flange	m ₂ :	0.054	m
*		λ1:	0.348	-
*		λ ₂ :	0.416	-
		α:	8.000	-
*	Eff.L.of ind.considered bolt for cir.pattern	$I_{\rm eff,cp,i}$:	0.286	m
*	Eff.L.of ind.considered bolt for non.cir.pat.	$I_{eff,nc,i}$:	0.364	m

*	Effective length for mode 1	$\Sigma I_{eff,1,i}$:	0.286	m	
*	Effective length for mode 2	$\Sigma I_{eff,2,i}$:	0.288	m	
*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	15.6	kN.m	
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	15.7	kN.m	
	Reduction factor	k ₂ :	0.9	-	
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	
*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	1370.68	kN	
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	801.42	kN	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	889.27	kN	OK
	Design tension resist. of column flange	F _{t,fc,Rd} :	801.42	kN	

Column Web In Transverse Tension

*	Effective thickness of the column web	t _{w,eff} :	0.023	m	
*	Effective width of the column web	b _{eff,t,wc} :	0.286	m	1
		ω ₁ :	0.783	-	
	Reduction factor for interaction with shear	ω ₂ :	0.533	-	
		ω:	0.633	-	
*	Design tran. tension resist.of column web	F _{t,wc,Rd} :	1448.84	kN	ОК

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

	Below first			
	End Plate In Bending		Bolt R.2	
*		λ ₁ :	0.500	-
*		λ ₂ :	0.373	-
		α:	6.100	-
	Throat thick.of weld (endplate & beam f.)	a _p :	0.004	m
	Throat thick.of weld (endplate & beam w.)	a _p :	0.003	m
	Dist.of bolt axis to edge of end plate	e :	0.060	m
	Dist. between plastic hinges in thin flange	m ₂ :	0.045	m
	Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060	m
	Dist. between plastic hinges in thin flange	m :	0.060	m
*	Dist. between bolt axis and prying force	n :	0.060	m
*	Eff.L.of ind.considered bolt for cir.pattern	I _{eff,cp,i} :	0.379	m
*	Eff.L.of ind.considered bolt for non.cir.pat.	I _{eff,nc,i} :	0.368	m
*	Effective length for mode 1	$\Sigma I_{\text{eff},1,i}$:	0.368	m
*	Effective length for mode 2	$\Sigma I_{\rm eff,2,i}$:	0.368	m

*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	13.4	kN.m	
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	13.4	kN.m	
	Reduction factor	k ₂ :	0.9	-	
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	
*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	889.71	kN	
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	666.86	kN	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	889.27	kN	OK
*	Design tension resist. of end-plate	F _{t,ep,Rd} :	666.86	kN	

Beam Web In Tension

*	Effective width of the beam web	b _{eff,t,wb} :	0.368	m	
*	Design tension resistance of beam web	$F_{t,wb,Rd}$:	1465.66	kN	OK

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By : Nihan DOGRAMACI Date : 9/15/2009 4:3				

BOLT GROUP - BOLT ROWS 2 & 1

	Column Flange In Transverse Bending		End	End	
	Unstiffened Column Flange		Bolt R.2	Bolt R.1	
	Distance between bolt rows	p:	0.119		m
	Radius of the fillet of the web to flange	r _c :	0.021		m
	Dist.of bolt axis to edge of column flange	e:	0.085		m
	Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060		m
	Dist. between plastic hinges in thin flange	m :	0.045		m
*	Dist. between bolt axis and prying force	n :	0.057		m
*	Eff.L.of group bolt for cir.pattern	I _{eff,cp,g} :	0.262	0.262	m
*	Eff.L.of group bolt for non.cir.pat.	I _{eff,nc,g} :	0.203	0.203	m
*	Effective length for mode 1	$\Sigma I_{eff,1,g}$:	0.407		m
*	Effective length for mode 2	$\Sigma I_{eff,2,g}$:	0.407		m

*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	22.2	kN.m	
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	22.2	kN.m	
	Reduction factor	k ₂ :	0.9	-	
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	
*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	1953.54	kN	1
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	1422.20	kN	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	1778.54	kN	OK
*	Design tension resist. of column flange	F _{t,fc,Rd} :	1422.20	kN	

Column Web In Transverse Tension (Unstiffened Column Flange)

*	Effective thickness of the column web	t _{w,eff} :	0.023	m]
*	Effective width of the column web	b _{eff,t,wc} :	0.407	m	
		ω ₁ :	0.662	-	
	Reduction factor for interaction with shear	ω ₂ :	0.404	-	·
		ω:	0.507	-	
*	Design tran. tension resist.of column web	$F_{t,wc,Rd}$:	1655.06	kN	OK

Effective Design Tension Resistance Of Bolt Row 2

*		F _{t2,Rd} :	666.86 kN
*	Eff. design tension resistance of Polt P2	F _{t2,Rd} :	645.19 kN
*		F _{t2,Rd} :	645.19 kN
*		F _{t2,Rd} :	645.19 kN
*	Eff. design tension resistance of Bolt R2	F _{t2,Rd} :	645.19 kN

(3x9ı	m) BAY - (2x3.60m & 4.20m) FLOOR -	60% - FF	RAME
Project Title :	Multiple Row Extended Unstiffened 1/2	End-Plate	e Connection
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31

BOLT ROW 3 h₃ : 0.360 m

INDIVIDUAL ROW - BOLT ROW 3

	Column Flange In Transverse Bending		Inner/Ot.In.	
	Unstiffened & Stiffened		Bolt R.3	
	Radius of the fillet of the web to flange	r _c :	0.021	m
	Dist.of bolt axis to edge of column flange	e:	0.085	m
	Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060	m
	Dist. between plastic hinges in thin flange	m :	0.045	m
*	Dist. between bolt axis and prying force	n :	0.057	m
*	Eff.L.of ind.considered bolt for cir.pattern	I _{eff,cp,i} :	0.286	m
*	Eff.L.of ind.considered bolt for non.cir.pat.	I _{eff,nc,i} :	0.288	m
*	Effective length for mode 1	$\Sigma I_{eff,1,i}$:	0.286	m
*	Effective length for mode 2	$\Sigma I_{eff,2,i}$:	0.288	m

*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	15.6	kN.m
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	15.7	kN.m
	Reduction factor	k ₂ :	0.9	-
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN

*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	1370.68	kN	
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	801.42	kN	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	889.27	kN	OK

*	Design tension resist. of column flange	F _{t,fc,Rd} :	801.42 kN

Column Web In Transverse Tension

Effective thickness of the column web	t _{w,eff} :	0.023	m	
Effective width of the column web	b _{eff,t,wc} :	0.286	m	
	ω ₁ :	0.783	-	
Reduction factor for interaction with shear	ω ₂ :	0.533	-	
	ω:	0.633	-	
Design tran. tension resist.of column web	F _{t,wc,Rd} :	1448.84	kN	Oł

(3x9ı	m) BAY - (2x3.60m & 4.20m) FLOOR -	60% - FF	RAME
Project Title :	Multiple Row Extended Unstiffened 1/2	End-Plate	e Connection
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31

		Other inne	r
End Plate In Bending		Bolt R.3	
Throat thick.of weld (endplate & beam w.)	a _p :	0.003	m
Dist.of bolt axis to edge of end plate	e :	0.060	m
Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060	m
Dist. between plastic hinges in thin flange	m :	0.060	m
Dist. between bolt axis and prying force	n :	0.060	m
Eff.L.of ind.considered bolt for cir.pattern	I _{eff,cp,i} :	0.379	m
Eff.L.of ind.considered bolt for non.cir.pat.	I _{eff,nc,i} :	0.316	m
Effective length for mode 1	$\Sigma I_{eff,1,i}$:	0.316	m
Effective length for mode 2	$\Sigma I_{eff,2,i}$:	0.316	m

*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	11.5	kN.m
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	11.5	kN.m
	Reduction factor	k ₂ :	0.9	-
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN

*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	765.40	٨N	1
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	635.75 l	<n< td=""><td></td></n<>	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	889.27 I	٨N	οк

*	Design tension resist. of end-plate	F _{t,ep,Rd} :	635.75 kN

Beam Web In Tension

*	Effective width of the beam web	b _{eff,t,wb} :	0.316	m	
*	Design tension resistance of beam web	F _{t,wb,Rd} :	1260.88	kN	OK

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

BOLT GROUP - BOLT ROWS 3 & 2

*

Column Flange In Transverse Bending

		End	End	_
Unstiffened column flange effective length		Bolt R.3	Bolt R.2	
Distance between bolt rows	p:	0.100		m
Radius of the fillet of the web to flange	r _c :	0.021		m
Dist.of bolt axis to edge of column flange	e :	0.085		m
Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060		m
Dist. between plastic hinges in thin flange	m :	0.045		m
Dist. between bolt axis and prying force	n :	0.057		m
Eff.L.of group bolt for cir.pattern	I _{eff,cp,g} :	0.243	0.243	m
Eff.L.of group bolt for non.cir.pat.	I _{eff,nc,g} :	0.194	0.194	m

Other End Adj. Stiff				
Stiffened column flange effective length		Bolt R.3	Bolt R.2	
Dist. between plastic hinges in thin flange	m ₂ :	0.054		m
	λ ₁ :	0.348		-
	λ ₂ :	0.416		-
	α:	8.000		-
Eff.L.of group bolt for cir.pattern	I _{eff,cp,g} :	0.243	0.243	m
Eff.L.of group bolt for non.cir.pat.	I _{eff,nc,g} :	0.194	0.269	m
Effective length for mode 1	$\Sigma I_{eff,1,g}$:	0.388		m
Effective length for mode 2	$\Sigma I_{eff,2,g}$:	0.388		m
Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	21.2	kN.m	
Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	21.2	kN.m	
Reduction factor	k ₂ :	0.9	-	
Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	
Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	1863.31	kN	
Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	1402.15	kN	
Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	1778.54	kN	ОК
	I			I

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

Column Web In Transverse Tension

*	Effective thickness of the column web	t _{w,eff} :	0.023	m	
*	Effective width of the column web	b _{eff,t,wc} :	0.388	m	
		ω ₁ :	0.680	-	
	Reduction factor for interaction with shear	ω ₂ :	0.420	-]
		ω:	0.524	-	
*	Design tran. tension resist.of column web	F _{t,wc,Rd} :	1630.53	kN	OK

End Plate In Bending	
----------------------	--

	End Plate In Bending			Below first	
			Bolt R.3	Bolt R.2	
	Distance between bolt rows	р:	0.100		m
*		λ ₁ :	0.500		-
*		λ ₂ :	0.373		-
		α:	6.100		-
	Throat thick.of weld (endplate & beam f.)	a _p :	0.004		m
	Throat thick.of weld (endplate & beam w.)	a _p :	0.003		m
	Dist.of bolt axis to edge of end plate	e :	0.060		m
	Dist. between plastic hinges in thin flange	m ₂ :	0.045		m
	Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060		m
	Dist. between plastic hinges in thin flange	m :	0.060		m
*	Dist. between bolt axis and prying force	n :	0.060		m
*	Eff.L.of group bolt for cir.pattern	I _{eff,cp,g} :	0.289	0.289	m
*	Eff.L.of group bolt for non.cir.pat.	I _{eff,nc,g} :	0.208	0.259	m
*	Effective length for mode 1	$\Sigma I_{eff,1,g}$:	0.468		m
*	Effective length for mode 2	$\Sigma I_{\rm eff,2,g}$:	0.468		m

*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	17.1	kN.m	
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	17.1	kN.m	
	Reduction factor	k ₂ :	0.9		
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	
*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	1131.75	kN	
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	1171.65	kN	1
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	1778.54	kN	ОК
*	Design tension resist. of end-plate	F _{t,ep,Rd} :	1131.75	kN	1

Beam Web In Tension

*	Effective width of the beam web	b _{eff,t,wb} :	0.468	m	
*	Design tension resistance of beam web	F _{t,wb,Rd} :	1864.38	kN	OK

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME					
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection					
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31		

BOLT GROUP - BOLT ROWS 3 & 2 & 1

Column Flange In Transverse Bending (Unstiffened Column Flange)

			End	Inner	End	
			Bolt R.3	Bolt R.2	Bolt R.1	
	Distance between bolt rows	р:	0.100	0.118796		m
	Radius of the fillet of the web to flange	r _c :	0.021			m
	Dist.of bolt axis to edge of column flange	e:	0.085			m
	Min. dist. of bolt axis to edge of cf. or ep.	e _{min} :	0.060			m
	Dist. between plastic hinges in thin flange	m :	0.045			m
*	Dist. between bolt axis and prying force	n :	0.057			m
*	Eff.L.of group bolt for cir.pattern	I _{eff,cp,g} :	0.243	0.219	0.262	m
*	Eff.L.of group bolt for non.cir.pat.	I _{eff,nc,g} :	0.194	0.109	0.203	m
*	Effective length for mode 1	$\Sigma I_{eff,1,g}$:	0.507			m
*	Effective length for mode 2	$\Sigma I_{eff,2,g}$:	0.507			m

*	Flexural resistance of T-stub (Mode-1)	M _{pl,1,Rd} :	27.6	kN.m]
*	Flexural resistance of T-stub (Mode-2)	M _{pl,2,Rd} :	27.6	kN.m	
	Reduction factor	k ₂ :	0.9	-	
*	Design tension resistance of a bolt	F _{t,Rd} :	444.64	kN	1
*	Design resistance of T-stub (Mode-1)	F _{T,1,Rd} :	2433.62	kN	
*	Design resistance of T-stub (Mode-2)	F _{T,2,Rd} :	2022.92	kN	
*	Design resistance of T-stub (Mode-3)	F _{T,3,Rd} :	2667.81	kN	OK
*	Design tension resist. of column flange	F _{t,fc,Rd} :	2022.92	kN]

Column Web In Transverse Tension (Unstiffened Column Flange)

*	Effective thickness of the column web	t _{w,eff} :	0.023	m	
*	Effective width of the column web	b _{eff,t,wc} :	0.507	m	
		ω ₁ :	0.578	-	-
	Reduction factor for interaction with shear	ω ₂ :	0.334	-	
		ω:	0.432	-	
*	Design tran. tension resist.of column web	F _{t,wc,Rd} :	1755.47	kN	!!!

Effective Design Tension Resistance Of Bolt Row 3

*	Eff. design tension resistance of Bolt R3	F _{t3,Rd} :	635.75	kN	
*		Eff. design tension resistance of Bolt D2	F _{t3,Rd} :	0.00	kN
*		F _{t3,Rd} :	0.00	kN	
*		F _{t3,Rd} :	0.00	kN	
*	Eff. design tension resistance of Bolt R3	F _{t3,Rd} :	0.00	kN	

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME								
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection								
Designed By :	Nihan DOGR	AMACI	Date :	9/15/2009 4:31				
BOLT ROW 4	h ₄ :	0.159 m						

DESIGN MOMENT RESISTANCE OF BEAM TO COLUMN JOINT

h₅: 0.059 m

BOLT ROW 5

Design moment resistance of joint	M _{j,Rd} :	541.4	kN.m
Dist. from bolt R5 to center of comp.	h ₅ :	0.059	m
Eff. design tension resistance of Bolt R5	F _{t5,Rd} :		kN
Dist. from bolt R4 to center of comp.	h ₄ :	0.159	m
Eff. design tension resistance of Bolt R4	F _{t4,Rd} :		kN
Dist. from bolt R3 to center of comp.	h ₃ :	0.360	m
Eff. design tension resistance of Bolt R3	F _{t3,Rd} :	0.00	kN
Dist. from bolt R2 to center of comp.	h ₂ :	0.460	m
Eff. design tension resistance of Bolt R2	F _{t2,Rd} :	645.19	kN
Dist. from bolt R1 to center of comp.	h ₁ :	0.579	m
Eff. design tension resistance of Bolt R1	F _{t1,Rd} :	422.11	kN

(3x9r	n) BAY	′ - (2x3	3.60m	&	4.20m) FLC	OR	- 60	% -	FRA	ME

Project Title :	Multiple Row Extended Unstiffened 1/2 End-Plate Connection						
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31				

End-plate thickness	t _p :	0.024	m
Bolt diameter	d _b :	0.032	m

Transverse plate existance	1	-
Doubler plate existance and type	2	-

Transverse plate thickness	t _{ts} :	0.000	m
Trans.plate-column fla.fillet weld leg size	w _{tf} :	0.006	m
Throat thick. of weld (endplate & beam f.)	a _p :	0.004	m
Throat thick.of weld (endplate & beam w.)	a _p :	0.003	m
Shear area of the column	A _{vc} :	0.0102	m²
Column web effective thickness	t _{wc} :	0.031	m

*

*

AISC 🔻

Stiffness Coefficients for Column Flange in Bending & Column Web in Tension

		end	inner	inner	inner	inner	
		Bolt R1	Bolt R2	Bolt R3	Bolt R4	Bolt R5	
Radius of fillet	r _c :	0.021	0.021	0.021	0.021	0.021	m
Column flange thick.	t _{fc} :	0.025	0.025	0.025	0.025	0.025	m
Column web thick.	t _{wc} :	0.031	0.031	0.031	0.031	0.031	m
Depth of column web	d _c :	0.247	0.247	0.247	0.247	0.247	m
Pitch distance	p:	0.119	0.109	0.150	0.150	0.109	m
Flange outer dist.	e :	0.085	0.085	0.085	0.085	0.085	m
Plastic hinge dist.	m :	0.045	0.045	0.045	0.045	0.045	m
Plastic hinge dist.	m ₂ :	0.000	0.000			0.000	m
	λ ₁ :	0.348	0.348			0.348	-
	λ2:	0.000	0.000			0.000	-
	α:	0.000	0.000			0.000	-
Effective length	l _{eff} :	0.203	0.109	0.150	0.150	0.109	m
CFB stiffness	k ₄ :	0.031	0.017	0.023	0.023	0.017	m
Effective width	b _{eff,t,wc} :	0.203	0.109	0.150	0.150	0.109	m
CWT stiffness	k ₃ :	0.018	0.010	0.013	0.013	0.010	m

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

Stiffness Coefficient for End Plate in Bending

		outside	below first	other in.	other in.	below first	_
		Bolt R1	Bolt R2	Bolt R3	Bolt R4	Bolt R5	
Web weld thickness	a _{pw} :	0.003	0.003	0.003	0.003	0.003	m
Flange weld thick.	a _{pf} :	0.004	0.004			0.004	m
Endplate thickness	t _p :	0.024	0.024	0.024	0.024	0.024	m
Plastic hinge dist.	m :		0.060	0.060	0.060	0.060	m
Plastic hinge dist.	m _x :	0.045					m
Plastic hinge dist.	m ₂ :		0.045			0.045	m
Plate outer distance	e :	0.060	0.060	0.060	0.060	0.060	m
Plate outer distance	e _x :	0.060					m
	λ ₁ :		0.500			0.500	-
	λ ₂ :		0.373			0.373	-
	α:		6.100			6.100	-
Bolt gage	w :	0.140					m
Endplate width	b _p :	0.260					m
Pitch distance	p:		0.100	0.150	0.150	0.100	m
Effective length	l _{eff} :	0.130	0.259	0.150	0.150	0.259	m
EPB stiffness	k ₅ :	0.018	0.015	0.009	0.009	0.015	m

Stiffness Coefficient for Bolts in Tension

*

		Bolt R1	Bolt R2	Bolt R3	Bolt R4	Bolt R5	
Bolt diameter	d _b :	0.032	0.032	0.032	0.032	0.032	m
Area of bolt	A _s :	0.0008	0.0008	0.0008	0.0008	0.0008	m²
Head height	h _{head} :	0.020	0.020	0.020	0.020	0.020	m
Washer thickness	t _{washer1} :	0.003	0.003	0.003	0.003	0.003	m
Column flange thic.	t _{fc} :	0.025	0.025	0.025	0.025	0.025	m
Endplate thickness	t _p :	0.024	0.024	0.024	0.024	0.024	m
Washer thickness	t _{washer2} :	0.003	0.003	0.003	0.003	0.003	m
Nut height	h _{nut} :	0.031	0.031	0.031	0.031	0.031	m
Bolt elongation len.	L _b :	0.082	0.082	0.082	0.082	0.082	m
BT stiffness	k ₁₀ :	0.016	0.016	0.016	0.016	0.016	m

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title :	ect Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection			
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

Effective Stiffness Coefficients for Bolt Rows

*

*

		Bolt R1	Bolt R2	Bolt R3	Bolt R4	Bolt R5	
Eff. stiff. for bolt row	k _{eff} :	0.005	0.003	0.003	0.003	0.003	m
Lever arm	h :	0.579	0.460	0.360	0.159	0.059	m
	k _{eff} h :	0.0028	0.0016	0.0012	0.0005	0.0002	m²
	k _{eff} h ² :	1.62E-03	7.18E-04	4.35E-04	8.52E-05	1.20E-05	m ³

Equaivalent Stiffness Coefficients for Bolt Rows

*	Equivalent lever arm	z _{eq} :	0.455	m
*	Equivalent stiffness coefficient	k _{eq} :	0.014	m

Stiffness Coefficient for Column Web Panel in Shear

Shear area of the column	A _{vc} :	0.0102	m²
Transformation parameter	β:	1.6	-
Stiffness coef. column web panel shear	k ₁ :	0.005	m

Stiffness Coefficient for Column Web in Compression

*	Thickness of column web	t _{wc} :	0.031	m
	Clear depth of the column web	d _c :	0.247	m
*	Effective width of column web	b _{eff,c,wc} :	0.282	m
*	Stiffness coef. column web panel in comp.	k ₂ :	0.025	m

Initial Rotational Stiffness of Joint

*	Initial rotational stiffness	S _{j,ini} :	137521 kN.m/rad

(3x9m) BAY - (2x3.60m & 4.20m) FLOOR - 60% - FRAME				
Project Title : Multiple Row Extended Unstiffened 1/2 End-Plate Connection				
Designed By :	Nihan DOGRAMACI	Date :	9/15/2009 4:31	

TRILINEAR MOMENT CURVATURE OF PARTIALLY RESTRAINED CONNECTIONS

Plastic Moment According to AISC	M _{j,p} :	583.4	kN.m
O Plastic Moment According to EC3	M _{j,p} :	541.4	kN.m
Plastic Moment	M _{j,p} :	583.4	kN.m
Initial Rotational Stiffness	Κ φ :	137 521	kN.m/rad
First Yielding Moment	М _{ј,у} :	389.0	kN.m
Post Yielding Rotational Stiffness	Κ φ, _y :	19 744	kN.m/rad
Plastic Rotational Stiffness	Κ φ, _p :	10 455	kN.m/rad
Secant Rotational Stiffness	Kφ, _{sec} :	46 017	kN.m/rad
Connection Typology Factor	ξ:	2.70	-

Span of the beam (center to cen. of col.)	L _b :	9.00	m
Second moment of area of the beam	l _b :	6.66E-04	m⁴
Limit for rigit zone stiffness	S _R :	369 983	kN.m/rad
Limit for pinned zone stiffness	S _P :	7 400	kN.m/rad

Ek 4 Gerçek yer hareketi kayıtları

		T 1	01/16/1005	IZ (İ)	0	· 0 1		$\mathbf{M} = \mathbf{D} \mathbf{C} \mathbf{A} (\mathbf{C})$	0.212		
		l arih	: 01/16/1995	Kay t Istasyonu	: 5	nin Osaka		Maks. PGA (g)	: 0.212		
		Deprem	: Kobe	Depremin Bileşer	ni : S.	HI090		Maks. PGV (<i>cm</i> /s)	: 27.9		
		Büyüklük (M)	: 6.9	Zemin S n f (V_{S})	$_{30}, m/s)$: 23	56		Maks. PGD (<i>cm</i>)	: 7.64		
		Data Kaynağ	: CUE	Kaynağa Uzakl k	(<i>km</i>) : 19	9.15		Analizde kullan lan süre	e : 30 <i>sn</i>		
Yer ivmesi, $\ddot{u}_g(g)$		Yer Hareketi Kayıtları						Normalize Spektrımlar			
	0.4 · 0.2 · 0.0 ·	ÅvyvA	*****	·····							
	-0.2 •				7	()	Spel				
	-0.4 •				Zam	an (<i>sn</i>)	0.0 -	Perivot (sn)		
		0	10	20	30	40	0 0	0 0.5 1.0	1.5 2.0		
Yer h z , \dot{u}_{g} (cm/s)	40 •							\sim	<u>^</u>		
	20 · 0 ·	~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(<i>us/us</i>) 200 - H		\sim		
	-20 ·		V W	v	Zam	an (<i>sn</i>)	- 001 Spektral	Periyot (sn)		
		0	10	20	30	40	0 0	0 0.5 1.0	1.5 2.0		
5. , u _g (<i>cm</i>)	10 .	1					90 -				
	5 •		MA	M			nan (<i>cm</i>) 9		\sim		
epla	0 •			$ \frac{1}{\sqrt{2}} \frac{1}{2$	\sim	\sim	lasn	\sim /			
Yer d	-5 ·				Zam	an (<i>sn</i>)	- 05 Dep	Perivot (sn)		
	-10	0	10	20	30	4		.0 0.5 1.0	1.5 2.0		

Ek 5 Yapay yer hareketi kayıtları

Ek 6 Plastik mafsal oluşum yerleri ve s ralar

d) %50 kapasiteli birleşimli

Şekil Ek 6.2 Örnek çerçevelerin plastik mafsal oluşum yerleri ve s ralar (7.0m aç kl kl, %40 birleşim pekleşme oranl)

Şekil Ek 6.3 Örnek çerçevelerin plastik mafsal oluşum yerleri ve s ralar (9.0m aç kl kl, %10 birleşim pekleşme oranl)

c) %60 kapasiteli birleşimli

d) %50 kapasiteli birleşimli

Şekil Ek 6.4 Örnek çerçevelerin plastik mafsal oluşum yerleri ve s ralar (9.0m aç kl kl, %40 birleşim pekleşme oranl)

Ek 7 Maksimum kat kesme kuvveti – maksimum kat ötelemeleri

c) %60 kapasiteli birleşimli

d) %50 kapasiteli birleşimli

Şekil Ek 7.1 Maksimum kat kesme kuvveti – maksimum kat ötelemesi ilişkisi (7.0*m* aç kl kl çerçeveler, 1. kat)

Sekil Ek 7.2 Maksimum kat kesme kuvveti – maksimum kat ötelemesi ilişkisi (7.0*m* aç kl kl cerceveler, 2. kat)

Şekil Ek 7.3 Maksimum kat kesme kuvveti – maksimum kat ötelemesi ilişkisi (7.0*m* aç kl kl çerçeveler, 3. kat)

Şekil Ek 7.4 Maksimum kat kesme kuvveti – maksimum kat ötelemesi ilişkisi (9.0*m* aç kl kl çerçeveler, 1. kat)

Sekil Ek 7.5 Maksimum kat kesme kuvveti – maksimum kat ötelemesi ilişkisi (9.0*m* aç kl kl cerceveler, 2. kat)

c) 7600 kapasiten onteşinin d) 7650 kapasiten onteşinin

Şekil Ek 7.6 Maksimum kat kesme kuvveti – maksimum kat ötelemesi ilişkisi (9.0m aç kl kl çerçeveler, 3. kat)

Ek 8a Maksimum tepe deplasman oranları ve maksimum kat öteleme oranları

Şekil Ek 8a.1 Maksimum tepe deplasman oranlar (7.0*m* aç kl kl çerçeveler)

a) Tasar m depremi

c) 1.33xMaksimum Deprem

0.026

0.026

0.026

AA/0000000

0.029

0.029

0.030

0.030

0.031

0.029

 \mathbf{O}

0.033

0.033

0.034

0.034

-MA

0

0

Α

Α

ΔΔ

Kat Öteleme Oran

X

X

×

X

Şekil Ek 8a.2 Maksimum 1. kat öteleme oranlar (7.0*m* aç kl kl çerçeveler)

b) Maksimum deprem

Şekil Ek 8a.3 Maksimum 2. kat öteleme oranlar (7.0*m* aç kl kl çerçeveler)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

a) Tasar m depremi

b) Maksimum deprem

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Kat Öteleme Oran

c) 1.33xMaksimum Deprem

Şekil Ek 8a.4 Maksimum 3. kat öteleme oranlar (7.0*m* aç kl kl çerçeveler)

0.024

0.023

0.023

0.023

0.024

0.024

0.024

0.027

0.029

MANA

0.030

0.029

0.029

X----

0.028

COCIMICO

XXXXXX

Şekil Ek 8a.5 Maksimum tepe deplasman oranlar (9.0*m* aç kl kl çerçeveler)

 $0.00 \ 0.01 \ 0.02 \ 0.03 \ 0.04 \ 0.05 \ 0.06 \ 0.07$

a) Tasar m depremi

b) Maksimum deprem

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Kat Öteleme Oran

c) 1.33xMaksimum Deprem

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.025

0.023

0.023

0.023

0.023

0.028

0.026

XXX

×00

032

0.031

X XX X X X

×

Kat Öteleme Oran

×

×

0.026

0.026

0.026

0.026

Şekil Ek 8a.6 Maksimum 1. kat öteleme oranlar (9.0*m* aç kl kl çerçeveler)

0.019

0.017

0.017

) ()) 💮

0.018

0.018

0.019

0.019

0.020

0.020

KXX

KOOX -

0.1010

·) •]((·))

0.021

0.021

0.024

0.022

X

×

Şekil Ek 8a.7 Maksimum 2. kat öteleme oranlar (9.0*m* aç kl kl çerçeveler)

a) Tasar m depremi

0.026

0.029

0.030

0.029

0.030

0.030

XXXXXXXXXXX

0.031

0.032

0.033

0.034

0.035

0.035

XXXCOBDOOXX

ХХ

0.038

Kat Öteleme Oran

0

c) 1.33xMaksimum Deprem

Şekil Ek 8a.8 Maksimum 3. kat öteleme oranlar (9.0*m* aç kl kl çerçeveler)

b) Maksimum deprem

C	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.011	0.015	0.020	0.015	0.021	0.027	0.020	0.027	0.038
P70_SMTR_SH14	0.011	0.014	0.018	0.015	0.020	0.029	0.019	0.026	0.043
P70_SMTR_SH11	0.011	0.014	0.018	0.015	0.020	0.030	0.019	0.027	0.044
P60_SMTR_SH14	0.011 0.014		0.021	0.016	0.021	0.035	0.022	0.029	0.050
P60_SMTR_SH11	0.011	0.014	0.021	0.016	0.021	0.035	0.022	0.029	0.052
P50_SMTR_SH14	0.011	0.015	0.025	0.015	0.022	0.040	0.019	0.030	0.057
P50_SMTR_SH11	0.011	0.014	0.025	0.015	0.022	0.041	0.019	0.030	0.059
P70_HFC_SH14	0.011	0.016	0.020	0.016	0.023	0.029	0.020	0.030	0.043
P70_HFC_SH11	0.010	0.016	0.020	0.016	0.024	0.030	0.020	0.030	0.044
P60_HFC_SH14	0.012	0.016	0.023	0.019	0.025	0.035	0.024	0.032	0.050
P60_HFC_SH11	0.012	0.016	0.023	0.019	0.025	0.036	0.024	0.034	0.052
P50_HFC_SH14	0.009	0.018	0.025	0.013	0.026	0.040	0.020	0.033	0.057
P50_HFC_SH11	0.009	0.019	0.027	0.013	0.026	0.041	0.021	0.035	0.060

Çizelge Ek 8b.1 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum tepe deplasman oranları

Çizelge Ek 8b.2 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum tepe deplasman oranları

C	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.011	0.015	0.019	0.015	0.020	0.027	0.020	0.025	0.033
P70_SMTR_SH14	0.011	0.014	0.019	0.015	0.019	0.025	0.017	0.025	0.032
P70_SMTR_SH11	0.011	0.014	0.019	0.015	0.019	0.025	0.017	0.025	0.033
P60_SMTR_SH14	0.011	0.013	0.018	0.014	0.019	0.024	0.019	0.026	0.036
P60_SMTR_SH11	0.011	0.013	0.019	0.014	0.019	0.024	0.019	0.026	0.037
P50_SMTR_SH14	0.010	0.013	0.018	0.015	0.020	0.030	0.019	0.027	0.045
P50_SMTR_SH11	0.010	0.014	0.018	0.014	0.020	0.031	0.019	0.027	0.047
P70_HFC_SH14	0.011	0.016	0.024	0.018	0.022	0.029	0.021	0.027	0.038
P70_HFC_SH11	0.011	0.015	0.023	0.018	0.022	0.030	0.022	0.028	0.040
P60_HFC_SH14	0.011	0.015	0.021	0.014	0.023	0.031	0.021	0.029	0.038
P60_HFC_SH11	0.011	0.015	0.023	0.015	0.023	0.029	0.021	0.028	0.039
P50_HFC_SH14	0.011	0.016	0.022	0.019	0.024	0.030	0.024	0.032	0.045
P50_HFC_SH11	0.010	0.016	0.023	0.019	0.023	0.031	0.024	0.032	0.047

Ek 8b Minimum, ortalama, maksimum tepe deplasman ve kat öteleme oranları

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.011	0.014	0.019	0.014	0.020	0.029	0.016	0.026	0.046
P70_SMTR_SH14	0.010	0.014	0.021	0.014	0.019	0.033	0.017	0.026	0.053
P70_SMTR_SH11	0.010	0.014	0.020	0.014	0.019	0.033	0.017	0.026	0.053
P60_SMTR_SH14	0.011	0.014	0.023	0.015	0.021	0.042	0.017	0.029	0.064
P60_SMTR_SH11	0.011	0.014	0.023	0.015	0.021	0.042	0.017	0.029	0.063
P50_SMTR_SH14	0.010	0.015	0.028	0.014	0.022	0.049	0.017	0.030	0.071
P50_SMTR_SH11	0.010	0.015	0.028	0.014	0.022	0.049	0.017	0.030	0.071
P70_HFC_SH14	0.010	0.015	0.023	0.016	0.023	0.033	0.017	0.031	0.053
P70_HFC_SH11	0.010	0.016	0.023	0.014	0.023	0.033	0.018	0.029	0.053
P60_HFC_SH14	0.012	0.016	0.023	0.019	0.025	0.042	0.022	0.033	0.064
P60_HFC_SH11	0.012	0.017	0.024	0.018	0.025	0.042	0.020	0.033	0.064
P50_HFC_SH14	0.009	0.018	0.028	0.014	0.027	0.049	0.019	0.034	0.071
P50_HFC_SH11	0.009	0.018	0.028	0.015	0.026	0.048	0.017	0.034	0.071

Çizelge Ek 8b.3 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 1. kat öteleme oranları

Çizelge Ek 8b.4 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 1. kat öteleme oranları

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem			
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks	
Rgd	0.010	0.014	0.021	0.013	0.019	0.026	0.017	0.025	0.038	
P70_SMTR_SH14	0.010	0.013	0.019	0.014	0.017	0.024	0.016	0.023	0.035	
P70_SMTR_SH11	0.010	0.013	0.019	0.014	0.017	0.023	0.016	0.023	0.035	
P60_SMTR_SH14	0.009	0.013	0.020	0.011	0.018	0.028	0.016	0.023	0.045	
P60_SMTR_SH11	0.009	0.013	0.019	0.011	0.018	0.028	0.015	0.023	0.044	
P50_SMTR_SH14	0.011	0.014	0.020	0.014	0.019	0.036	0.017	0.026	0.056	
P50_SMTR_SH11	0.011	0.014	0.020	0.014	0.019	0.036	0.017	0.026	0.055	
P70_HFC_SH14	0.011	0.014	0.024	0.015	0.020	0.028	0.019	0.026	0.035	
P70_HFC_SH11	0.011	0.014	0.021	0.014	0.020	0.028	0.018	0.026	0.036	
P60_HFC_SH14	0.010	0.014	0.024	0.015	0.021	0.029	0.018	0.028	0.045	
P60_HFC_SH11	0.010	0.015	0.024	0.014	0.021	0.028	0.016	0.026	0.044	
P50_HFC_SH14	0.011	0.016	0.021	0.017	0.024	0.036	0.020	0.032	0.056	
P50_HFC_SH11	0.010	0.016	0.024	0.014	0.022	0.036	0.019	0.031	0.055	

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33x	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.014	0.018	0.023	0.018	0.025	0.033	0.024	0.032	0.044
P70_SMTR_SH14	0.013	0.017	0.022	0.019	0.024	0.034	0.024	0.031	0.050
P70_SMTR_SH11	0.013	0.017	0.022	0.019	0.024	0.035	0.024	0.032	0.053
P60_SMTR_SH14	0.013	0.017	0.026	0.020	0.026	0.041	0.026	0.034	0.058
P60_SMTR_SH11	0.013	0.018	0.026	0.020	0.026	0.043	0.027	0.035	0.063
P50_SMTR_SH14	0.013	0.018	0.030	0.019	0.027	0.047	0.024	0.036	0.068
P50_SMTR_SH11	0.013	0.018	0.031	0.019	0.027	0.050	0.024	0.037	0.074
P70_HFC_SH14	0.013	0.019	0.024	0.019	0.028	0.034	0.024	0.035	0.050
P70_HFC_SH11	0.013	0.019	0.024	0.019	0.028	0.035	0.024	0.035	0.053
P60_HFC_SH14	0.014	0.020	0.027	0.024	0.030	0.041	0.027	0.038	0.060
P60_HFC_SH11	0.014	0.020	0.027	0.024	0.030	0.043	0.027	0.040	0.064
P50_HFC_SH14	0.011	0.022	0.030	0.016	0.031	0.048	0.024	0.039	0.071
P50_HFC_SH11	0.011	0.022	0.031	0.016	0.031	0.050	0.026	0.041	0.075

Çizelge Ek 8b.5 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 2. kat öteleme oranları

Çizelge Ek 8b.6 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 2. kat öteleme oranları

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem			
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks	
Rgd	0.013	0.018	0.022	0.018	0.023	0.031	0.023	0.028	0.037	
P70_SMTR_SH14	0.012	0.017	0.024	0.018	0.023	0.028	0.021	0.029	0.037	
P70_SMTR_SH11	0.012	0.017	0.024	0.018	0.023	0.029	0.021	0.030	0.038	
P60_SMTR_SH14	0.013	0.016	0.022	0.017	0.023	0.029	0.023	0.030	0.039	
P60_SMTR_SH11	0.013	0.016	0.022	0.017	0.023	0.029	0.023	0.030	0.042	
P50_SMTR_SH14	0.012	0.016	0.021	0.017	0.024	0.033	0.022	0.031	0.049	
P50_SMTR_SH11	0.012	0.016	0.021	0.017	0.024	0.035	0.023	0.032	0.053	
P70_HFC_SH14	0.013	0.019	0.028	0.021	0.026	0.033	0.025	0.032	0.043	
P70_HFC_SH11	0.013	0.018	0.027	0.021	0.026	0.035	0.027	0.032	0.045	
P60_HFC_SH14	0.013	0.018	0.024	0.017	0.027	0.036	0.025	0.033	0.044	
P60_HFC_SH11	0.013	0.019	0.027	0.018	0.027	0.033	0.026	0.033	0.045	
P50_HFC_SH14	0.013	0.019	0.025	0.023	0.028	0.034	0.027	0.036	0.051	
P50_HFC_SH11	0.013	0.020	0.026	0.023	0.028	0.035	0.028	0.037	0.053	

	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem			
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks	
Rgd	0.011	0.017	0.029	0.015	0.024	0.039	0.017	0.029	0.043	
P70_SMTR_SH14	0.010	0.016	0.023	0.015	0.023	0.031	0.019	0.029	0.042	
P70_SMTR_SH11	0.010	0.016	0.023	0.015	0.023	0.031	0.019	0.030	0.045	
P60_SMTR_SH14	0.010	0.016	0.023	0.014	0.023	0.035	0.021	0.032	0.047	
P60_SMTR_SH11	0.010	0.016	0.023	0.014	0.024	0.036	0.022	0.033	0.050	
P50_SMTR_SH14	0.008	0.015	0.024	0.016	0.024	0.038	0.019	0.032	0.050	
P50_SMTR_SH11	0.008	0.015	0.024	0.016	0.024	0.040	0.019	0.034	0.055	
P70_HFC_SH14	0.011	0.019	0.030	0.018	0.027	0.035	0.023	0.033	0.044	
P70_HFC_SH11	0.011	0.019	0.027	0.017	0.029	0.043	0.022	0.035	0.046	
P60_HFC_SH14	0.011	0.020	0.034	0.022	0.028	0.037	0.023	0.036	0.049	
P60_HFC_SH11	0.010	0.020	0.031	0.021	0.030	0.049	0.026	0.039	0.058	
P50_HFC_SH14	0.008	0.020	0.034	0.013	0.029	0.042	0.024	0.037	0.054	
P50_HFC_SH11	0.008	0.022	0.047	0.015	0.029	0.042	0.024	0.041	0.065	

Çizelge Ek 8b.7 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 3. kat öteleme oranları

Çizelge Ek 8b.8 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 3. kat öteleme oranları

9	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem			
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks	
Rgd	0.010	0.016	0.025	0.014	0.021	0.039	0.018	0.026	0.044	
P70_SMTR_SH14	0.010	0.016	0.026	0.015	0.022	0.035	0.020	0.029	0.040	
P70_SMTR_SH11	0.010	0.016	0.026	0.015	0.023	0.035	0.020	0.030	0.041	
P60_SMTR_SH14	0.010	0.015	0.026	0.015	0.023	0.034	0.022	0.029	0.039	
P60_SMTR_SH11	0.010	0.015	0.026	0.015	0.023	0.034	0.022	0.030	0.041	
P50_SMTR_SH14	0.010	0.014	0.019	0.016	0.022	0.030	0.020	0.030	0.041	
P50_SMTR_SH11	0.010	0.014	0.019	0.015	0.022	0.031	0.020	0.031	0.044	
P70_HFC_SH14	0.010	0.018	0.028	0.020	0.026	0.038	0.022	0.032	0.043	
P70_HFC_SH11	0.010	0.018	0.028	0.020	0.026	0.038	0.022	0.033	0.045	
P60_HFC_SH14	0.012	0.017	0.027	0.018	0.027	0.034	0.023	0.034	0.046	
P60_HFC_SH11	0.012	0.018	0.029	0.018	0.027	0.035	0.023	0.035	0.052	
P50_HFC_SH14	0.012	0.019	0.027	0.021	0.027	0.037	0.025	0.035	0.047	
P50_HFC_SH11	0.012	0.020	0.037	0.022	0.028	0.037	0.026	0.038	0.052	

Ek 8c Gerçek yer hareketi kay tlar için tepe deplasman ve kat ötelemeleri karş laşt rmas

Cizelge Ek 8c.1 7.0m aç kl kl yar rijit çerçevelerin tepe deplasmanlar n n rijit çerçeve tepe deplasman na oran

Yer Hareketi Kayd ^[1]	Rgd ^[2]	P70_SMTR SH14 ^[3]	P70_SMTR _SH11	P60_SMTR _SH14	P60_SMTR _SH11	P50_SMTR _SH14	P50_SMTR _SH11	Ortalama ^[4]	P70_HFC_5 H14	P70_HFC_5 H11	P60_HFC_S H14	P60_HFC_S H11	P50_HFC_S H14	P50_HFC_S H11	Ortalama ^[5]
ARL360-1	0.015	95%	95%	102%	102%	90%	89%	95%	128%	119%	109%	110%	102%	101%	110%
ARL360-2	0.021	104%	105%	102%	102%	88%	88%		111%	112%	110%	108%	110%	112%	
ATMZ270-1	0.027	97%	97%	116%	116%	104%	104%	102%	121%	121%	124%	120%	138%	12776	118%
ATMZ270-2	0.020	96%	97%	101%	101%	105%	105%	102/0	111%	108%	111%	142%	110%	111%	110/0
ATMZ270-3	0.027	95%	96%	101%	102%	103%	102%		99%	100%	106%	113%	107%	106%	
BOL000-1	0.015	98%	98%	91%	91%	85%	86%	98%	121%	124%	108%	108%	90%	95%	108%
BOL000-2	0.021	92%	90%	89%	90%	98%	99%		111%	106%	94%	95%	104%	105%	
CAP000-1	0.024	98%	99%	79%	79%	91%	91%	90%	102%	105%	121%	121%	125%	204%	124%
CAP000-2	0.019	89%	90%	91%	91%	90%	91%	2070	115%	134%	124%	120%	123%	126%	12470
CAP000-3	0.024	91%	93%	92%	93%	93%	94%		119%	121%	103%	117%	121%	121%	
CAP090-1	0.014	84%	84%	88%	88%	81%	81%	94%	88%	88%	86%	90%	148%	135%	114%
CAP090-2	0.019	93%	93%	95%	95%	98%	97%		98%	126%	120%	117%	130%	133%	
CL S000-1	0.024	91%	92%	113%	101%	109%	12%	100%	130%	108%	114%	138%	11/%	119%	118%
CLS000-1 CLS000-2	0.014	104%	104%	109%	109%	110%	111%	10770	116%	106%	109%	110%	114%	123%	110 /0
CLS000-3	0.030	99%	100%	105%	106%	108%	109%		101%	102%	108%	114%	125%	140%	
CPM000-1	0.020	91%	90%	108%	109%	125%	127%	128%	99%	98%	108%	109%	126%	127%	130%
CPM000-2	0.025	118%	119%	140%	143%	161%	166%		118%	119%	141%	144%	162%	167%	
CPM000-3	0.037	114%	118%	134%	139%	152%	159%	069/	115%	118%	135%	140%	154%	160%	1209/
DZC180-1 DZC180-2	0.016	84% 94%	84%	102%	102%	90%	101%	9070	105%	98%	141%	148%	143%	134%	120%
DZC180-3	0.023	100%	100%	107%	107%	102%	101%		151%	121%	129%	129%	114%	116%	
DZC270-1	0.016	91%	91%	81%	81%	76%	76%	86%	103%	103%	92%	92%	98%	105%	105%
DZC270-2	0.021	93%	92%	83%	83%	75%	74%		106%	108%	94%	98%	117%	117%	
DZC270-3	0.025	98%	98%	92%	91%	89%	90%	1129/	103%	96%	116%	117%	111%	107%	1419/
EMY260-2	0.013	114%	115%	115%	115%	112%	112%	11270	12770	127%	143%	146%	148%	145%	14170
EMY260-3	0.013	114%	114%	112%	112%	111%	111%		14376	143%	132%	134%	133%	155%	
EMY350-1	0.015	93%	93%	88%	88%	98%	98%	108%	101%	101%	101%	96%	117%	115%	125%
EMY350-2	0.019	97%	96%	106%	107%	111%	111%		139%	113%	121%	125%	141%	137%	
EMY350-3	0.021	116%	117%	135%	136%	127%	126%	1100/	130%	131%	153%	157%	129%	151%	1000/
ERZEW-1 ERZEW-2	0.014	112%	112%	120%	120%	125%	126%	119%	120%	116%	124%	123%	131%	132%	128%
ERZEW-3	0.022	108%	111%	117%	120%	127%	130%		111%	116%	122%	153%	130%	134%	
GAZ090-1	0.017	89%	89%	81%	81%	86%	86%	93%	93%	96%	96%	95%	124%	116%	116%
GAZ090-2	0.023	98%	97%	95%	95%	98%	97%		129%	129%	119%	124%	132%	124%	
GAZ090-3	0.031	92%	93%	95%	95%	98%	103%		101%	103%	110%	116%	104%	172%	
HBCR140-1	0.018	70%	70%	71% 82%	71%	81% 82%	81%	81%	74%	73%	84%	84%	98%	92%	91%
HBCR140-2	0.023	82%	70% 80%	82% 86%	82% 86%	85% 96%	100%		95%	93%	92%	88%	97% 84%	83% 98%	
HBCR230-1	0.017	83%	83%	67%	67%	100%	100%	101%	80%	90%	94%	92%	121%	122%	108%
HBCR230-2	0.021	84%	84%	107%	108%	132%	131%		98%	130%	145%	134%	106%	100%	
HBCR230-3	0.028	98%	101%	124%	125%	109%	107%		121%	116%	111%	99%	89%	90%	
HE11230-1	0.011	104%	104%	97%	97%	139%	139%	121%	98%	91%	131%	136%	205%	209%	166%
HE11230-2 HE11230-3	0.017	109%	109%	112%	124%	153%	152%		109%	122%	202% 192%	203%	224% 169%	173%	
IZT090-1	0.017	86%	86%	77%	77%	68%	68%	82%	108%	103%	84%	84%	76%	75%	98%
IZT090-2	0.025	73%	72%	67%	67%	80%	82%		92%	119%	82%	91%	98%	119%	
IZT090-3	0.031	81%	84%	91%	95%	104%	110%		82%	86%	90%	113%	113%	142%	
KDZC180-1	0.017	104%	104%	107%	107%	93%	91%	105%	112%	112%	138%	137%	112%	108%	116%
KDZC180-2	0.024	92%	90%	112%	90%	132%	139%		96%	102%	98%	126%	134%	148%	
KDZC270-1	0.012	99%	99%	100%	100%	112%	111%	124%	131%	131%	130%	134%	141%	152%	157%
KDZC270-2	0.015	114%	115%	126%	126%	146%	147%		163%	143%	156%	152%	168%	167%	
KDZC270-3	0.020	127%	129%	137%	141%	146%	151%		170%	159%	173%	175%	188%	193%	
LOS000-1	0.018	60%	60%	100%	100%	60%	60%	69%	62%	62%	88%	88%	51%	51%	71%
LOS000-2 LOS000-3	0.027	57% 51%	51%	97%	96%	50%	50%		59% 54%	59% 53%	105%	104%	49% 53%	48% 56%	
NIS090-1	0.014	95%	95%	106%	106%	111%	111%	115%	107%	109%	102%	101%	164%	134%	129%
NIS090-2	0.018	111%	112%	120%	121%	130%	133%		125%	154%	121%	117%	154%	147%	
NIS090-3	0.023	111%	111%	120%	121%	134%	130%		108%	118%	136%	130%	162%	138%	
RIO360-1	0.015	99%	99%	99%	99%	91%	90%	93%	124%	113%	130%	121%	118%	143%	115%
KIU360-2 RIO360-2	0.022	90%	89%	82%	81%	88%	86%		102%	103%	111%	109%	110%	104%	
S1010-1	0.020	96%	96%	126%	126%	102%	103%	101%	122%	122%	11970	110%	145%	143%	112%
S1010-2	0.021	105%	105%	110%	109%	95%	93%		120%	124%	112%	110%	127%	92%	/0
S1010-3	0.028	103%	103%	97%	96%	78%	75%		91%	88%	105%	93%	116%	88%	
SHI090-1	0.013	92%	92%	84%	84%	83%	83%	96%	91%	91%	95%	89%	142%	137%	120%
SHI090-2	0.018	92%	92%	90%	90%	100%	100%		108%	94%	132%	126%	135%	125%	
SH1090-3 SVI 360-1	0.021	99%	99%	105%	106%	1210/	115%	1300/	121%	128%	128%	133%	142%	142%	1520/
SYL360-2	0.015	138%	138%	1470	147%	121%	12270	13970	163%	149%	158%	151%	17470	168%	13370
SYL360-3	0.023	142%	146%	153%	158%	164%	171%		153%	152%	163%	162%	171%	169%	
[1]: Kayd n n isi	minden sonr	a gelen nui	nara depre	em seviyes	sini belirti	r. (1: tasar	m deprem	i, 2: mak	simum dep	orem, 3: 1.	33xmaksi	mum depr	em)		

[1] Kayu nin isiminden sona geren numara deprem sevryesim bentur. (1. tasar in deprem, 2. maksimum deprem, 5. 1.55xmaksimum deprem
[2]: Rijit çerçeve için tepe öteleme oran .
[3]: Yar rijit çerçeveler için verilen değerler, yar rijit çerçevede gerçekleşen deplasman n, ayn sat rdaki rijit çerçeve deplasman na oran d r.

[4]: Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

Cizelge Ek 8c.2 7.0m aç kl kl yar rijit çerçevelerin 1. kat ötelemelerinin rijit çerçeve 1. kat ötelemelerine oran

Yer Hareketi Kayd ^[1]	Rgd ^[2]	70_SMTR 	70_SMTR _SH11	60_SMTR _SH14	60_SMTR _SH11	50_SMTR _SH14	50_SMTR _SH11	rtalama ^[4]	70_HFC_S H14	70_HFC_S H11	50_HFC_5 H14	50_HFC_5 H11	50_HFC_S H14	50_HFC_5 H11	rtalama ^[5]
ARL360-1	0.014	102%	102%	105%	105%	104%	104%	100%	129%	120%	2 129%	2 121%	125%	123%	0
ARL360-2	0.020	100%	98%	94%	91%	103%	102%		104%	102%	110%	98%	109%	107%	
ARL360-3	0.026	94%	90%	96%	95%	107%	105%	000/	97%	94%	101%	99%	111%	113%	10/0/
ATMZ270-1 ATMZ270-2	0.014	93%	93%	92% 94%	91% 91%	88% 82%	86% 81%	88%	98%	98%	103%	123%	125%	119%	106%
ATMZ270-3	0.023	86%	83%	75%	75%	81%	83%		92%	90%	95%	98%	109%	93%	
BOL000-1	0.018	104%	103%	99%	99%	87%	86%	90%	125%	127%	109%	105%	80%	80%	97%
BOL000-2	0.028	86%	84%	72%	72%	82%	83%		101%	97%	75%	74%	86%	87%	
CAP000-1	0.032	89%	89%	102%	102%	112%	112%	115%	149%	162%	150%	151%	167%	216%	171%
CAP000-2	0.014	102%	104%	114%	115%	129%	128%		151%	205%	172%	172%	186%	176%	
CAP000-3	0.016	115%	116%	140%	141%	131%	130%		176%	167%	179%	168%	171%	163%	
CAP090-1 CAP090-2	0.013	82% 92%	82% 92%	99%	99%	105%	106%	103%	89% 94%	89%	120%	130%	152%	132%	118%
CAP090-3	0.023	93%	93%	112%	111%	114%	114%		113%	97%	115%	111%	124%	111%	
CLS000-1	0.016	95%	94%	90%	89%	110%	110%	104%	108%	114%	143%	114%	104%	104%	113%
CLS000-2	0.020	110%	109%	108%	108%	100%	95%		120%	108%	122%	128%	122%	110%	
CPM000-1	0.025	123%	105%	121%	103%	146%	146%	135%	119%	114%	121%	121%	124%	125%	136%
CPM000-2	0.029	116%	116%	147%	147%	171%	170%	100 /0	116%	117%	147%	147%	170%	169%	10070
CPM000-3	0.046	114%	114%	138%	137%	155%	153%		114%	115%	139%	138%	155%	153%	
DZC180-1	0.017	90%	90%	82%	82%	98%	98%	94%	100%	99%	96%	140%	95%	92%	101%
DZC180-2 DZC180-3	0.021	89% 91%	89% 90%	97% 91%	97%	98%	98%		103%	104%	95%	92%	81%	89% 68%	
DZC270-1	0.015	92%	92%	87%	87%	83%	83%	85%	110%	109%	92%	92%	99%	101%	109%
DZC270-2	0.020	81%	81%	80%	80%	81%	80%		101%	93%	99%	89%	143%	133%	
DZC270-3 EMV260-1	0.025	109%	79%	87%	87%	99%	99%	106%	97%	84%	126%	123%	141%	122%	137%
EMY260-2	0.013	109%	109%	101%	102%	103%	102%	100 /0	149%	139%	13376	133%	138%	135%	137 /0
EMY260-3	0.025	107%	107%	104%	104%	102%	101%		141%	140%	135%	134%	132%	152%	
EMY350-1	0.012	95%	95%	97%	97%	110%	110%	112%	99%	100%	110%	107%	135%	128%	132%
EMY350-2 EMY350-3	0.016	101%	101%	116%	116%	123%	122%		152%	109%	133%	131%	148%	162% 161%	
ERZEW-1	0.021	108%	108%	118%	118%	120%	127%	115%	119%	117%	126%	139%	128%	128%	129%
ERZEW-2	0.023	109%	108%	117%	117%	125%	124%		131%	134%	119%	118%	128%	191%	
ERZEW-3	0.036	106%	105%	113%	110%	116%	113%	1000/	109%	108%	123%	159%	130%	118%	10/0/
GAZ090-1 GAZ090-2	0.013	110%	120%	126%	126%	100%	100%	109%	128%	125%	129%	128%	149%	14/%	126%
GAZ090-2 GAZ090-3	0.019	105%	104%	95%	93%	105%	105%		96%	91%	102%	99%	128%	172%	
HBCR140-1	0.016	81%	81%	95%	95%	105%	105%	105%	91%	91%	97%	97%	121%	113%	114%
HBCR140-2	0.019	92%	92%	110%	110%	121%	119%		135%	131%	137%	143%	138%	112%	
HBCR230-1	0.022	90%	90%	78%	78%	103%	103%	97%	80%	119%	115%	110%	108%	140%	114%
HBCR230-2	0.018	91%	91%	97%	99%	132%	129%	,,,,,	119%	134%	156%	131%	114%	104%	111/0
HBCR230-3	0.025	69%	67%	114%	113%	105%	96%		118%	94%	110%	91%	94%	88%	
HE11230-1	0.012	91%	91%	92%	92%	129%	133%	140%	102%	99%	130%	157%	204%	208%	186%
HE11230-2 HE11230-3	0.014	127%	127%	152%	157%	215% 165%	206% 148%		206%	158%	252%	247% 192%	275%	242% 177%	
IZT090-1	0.018	90%	90%	80%	80%	75%	75%	80%	87%	97%	81%	81%	78%	78%	96%
IZT090-2	0.027	73%	73%	64%	63%	80%	82%		80%	106%	75%	91%	114%	129%	
IZT090-3 KDZC180-1	0.035	62%	63%	84%	87%	106%	109%	13/1%	123%	65%	97%	118%	129%	154%	1/7%
KDZC180-2	0.014	94%	95%	125%	126%	154%	155%	13470	111%	103%	132%	133%	161%	161%	14//0
KDZC180-3	0.022	133%	134%	175%	175%	208%	208%		149%	151%	189%	188%	218%	217%	
KDZC270-1	0.014	97%	97%	89%	89%	101%	101%	117%	114%	114%	99%	111%	118%	129%	154%
KDZC270-2 KDZC270-3	0.017	95%	96%	106% 155%	107% 151%	126% 157%	124% 156%		145% 223%	123% 174%	134% 217%	129% 191%	159% 229%	148% 223%	
LOS000-1	0.017	59%	59%	89%	89%	56%	56%	61%	58%	58%	87%	87%	52%	52%	66%
LOS000-2	0.027	53%	53%	82%	80%	50%	50%		64%	56%	97%	90%	53%	55%	
LOS000-3	0.038	48%	47%	76%	70%	46%	45%	000/	46%	49%	88%	90%	51%	47%	1110/
NIS090-1 NIS090-2	0.015	82% 79%	82% 77%	87%	86% 99%	94%	94%	99%	95% 89%	125%	131%	85% 106%	106%	102%	111%
NIS090-3	0.020	89%	91%	124%	123%	132%	121%		105%	106%	118%	101%	151%	153%	
RIO360-1	0.012	107%	107%	121%	121%	115%	115%	108%	139%	137%	145%	145%	140%	181%	139%
RIO360-2	0.016	110%	108%	109%	105%	98%	94%		148%	144%	134%	123%	144%	142%	
S1010-1	0.021	109%	102%	104%	102%	108%	104%	120%	12/%	120%	152%	128%	142%	125%	140%
S1010-2	0.019	130%	129%	122%	123%	122%	120%	1-0/0	151%	147%	148%	149%	174%	131%	1.370
S1010-3	0.028	113%	113%	110%	110%	94%	89%		122%	116%	123%	110%	112%	106%	
SHI090-1	0.013	89%	89%	83%	83%	90%	90%	89%	79%	79%	96%	90%	145%	143%	115%
SH1090-2 SH1090-3	0.017	85% 83%	85% 82%	90% 90%	90% 88%	97% 99%	98%		97%	84% 116%	125% 124%	125% 125%	135% 137%	127%	
SYL360-1	0.014	110%	110%	114%	114%	116%	115%	132%	121%	121%	127%	127%	163%	147%	152%
SYL360-2	0.020	130%	129%	135%	133%	135%	133%		163%	145%	156%	152%	160%	155%	
SYL360-3	0.024	147%	145%	154%	150%	159%	155%	i 2. mal	164%	154%	174%	164%	175%	160%	
[1]. ⊾aya n n ismi	muen sonr	a geien nui	nara depre	m seviyes	sun venrtn	. (1. tasar	in depren	n, ∠. maks	simum aep	nem, 5: 1.	J J XIII aKSI	mum aepr	ciii)		

Rijit çerçeveleri kal de felmen ran.
 Rijit çerçeveleri kal de felmen ran.
 Yar rijit çerçeveleri kal de felmen ran.
 Yar rijit çerçeveleri kal de felmen ran.
 Yar rijit çerçeveleri kal de felmen ran.
 Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

Cizelge Ek 8c.3 7.0m aç kl kl yar rijit çerçevelerin 2. kat ötelemelerinin rijit çerçeve 2. kat ötelemelerine oran

Yer Hareketi Kayd ^[1]	Rgd ^[2]	0_SMTR SH14 ^[3]	0_SMTR _SH11	60_SMTR _SH14	60_SMTR _SH11	60_SMTR _SH14	60_SMTR _SH11	rtalama ^[4]	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_5 H11	rtalama ^[5]
API 360-1	0.018	01%	01%	101%	2 102%	05%	2. Q/%	00%	131%	127%	9 <u>4</u>	9 <u>4</u>	108%	103%	0
ARL360-2	0.025	103%	105%	107%	102%	95%	97%	<i>}77</i> 0	111%	112%	117%	115%	113%	117%	11570
ARL360-3	0.032	100%	102%	95%	94%	99%	102%		107%	106%	100%	101%	121%	132%	
ATMZ270-1	0.016	100%	100%	122%	122%	111%	112%	104%	119%	119%	121%	112%	132%	159%	113%
ATMZ270-2	0.025	97%	98%	102%	102%	106%	107%		108%	104%	104%	117%	111%	111%	
BOL000-1	0.033	94%	95%	90%	90%	83%	84%	102%	97%	98%	104%	109%	94%	94%	113%
BOL000-2	0.023	100%	100%	94%	95%	105%	107%	10270	113%	112%	104%	106%	109%	112%	11570
BOL000-3	0.027	104%	106%	113%	117%	127%	132%		107%	111%	118%	122%	133%	139%	
CAP000-1	0.015	93%	93%	85%	85%	97%	97%	97%	110%	118%	131%	133%	142%	203%	134%
CAP000-2	0.021	92%	93%	100%	101%	101%	102%		124%	138%	135%	134%	129%	137%	
CAP000-3	0.026	99% 86%	86%	90%	90%	84%	84%	94%	87%	87%	87%	90%	150%	141%	113%
CAP090-2	0.023	91%	92%	93%	94%	98%	99%	7470	93%	114%	120%	117%	128%	133%	11570
CAP090-3	0.029	91%	92%	99%	100%	108%	112%		100%	102%	113%	136%	117%	117%	
CLS000-1	0.018	105%	105%	114%	114%	125%	126%	109%	131%	133%	114%	117%	121%	121%	114%
CLS000-2	0.028	102%	103%	109%	110%	114%	115%		107%	104%	110%	111%	116%	117%	
CLS000-3	0.038	99%	07%	113%	115%	130%	134%	133%	100%	102%	113%	108%	131%	124%	135%
CPM000-2	0.029	118%	122%	140%	147%	164%	173%	15570	118%	122%	141%	148%	166%	174%	10070
CPM000-3	0.043	115%	122%	135%	146%	158%	171%		116%	123%	139%	148%	165%	173%	
DZC180-1	0.020	83%	83%	85%	85%	93%	93%	97%	98%	97%	90%	130%	100%	101%	117%
DZC180-2	0.024	93%	93%	102%	103%	104%	104%		102%	104%	132%	142%	138%	137%	
DZC180-3	0.028	99%	100%	10/% \$1%	109%	104%	102%	860/	145%	104%	01%	126%	109%	104%	10.49/
DZC270-1 DZC270-2	0.020	9278 91%	92%	81%	81%	75%	75%	00 /6	104 %	104%	9170 94%	91%	117%	116%	104 /0
DZC270-3	0.030	97%	98%	90%	90%	88%	90%		102%	96%	116%	119%	110%	103%	
EMY260-1	0.015	109%	109%	111%	111%	117%	117%	115%	127%	127%	145%	147%	150%	149%	142%
EMY260-2	0.022	114%	115%	116%	116%	117%	117%		141%	141%	144%	143%	137%	143%	
EMY260-3	0.026	117%	120%	116%	117%	116%	117%	1079/	141%	146%	133%	137%	136%	161%	1220/
EMY 350-1 EMY 350-2	0.017	92%	92% 97%	88% 108%	88%	113%	105%	107%	139%	99%	102%	97%	140%	139%	123%
EMY350-3	0.025	110%	112%	127%	130%	121%	122%		122%	125%	143%	147%	121%	140%	
ERZEW-1	0.017	111%	112%	120%	121%	128%	129%	119%	118%	116%	122%	123%	133%	135%	126%
ERZEW-2	0.026	108%	110%	114%	117%	124%	129%		115%	122%	118%	121%	129%	159%	
ERZEW-3	0.035	107%	113%	117%	125%	128%	136%	0.40/	109%	115%	120%	149%	131%	140%	11/0/
GAZ090-1 GAZ090-2	0.021	88%	88% 103%	8/%	8/%	89% 07%	89% 95%	94%	98%	130%	99%	124%	115%	109%	110%
GAZ090-2 GAZ090-3	0.020	91%	93%	91%	92%	100%	104%		102%	103%	110%	114%	110%	171%	
HBCR140-1	0.022	74%	74%	76%	76%	91%	92%	83%	72%	72%	91%	92%	99%	94%	91%
HBCR140-2	0.028	74%	73%	86%	87%	89%	89%		93%	93%	102%	110%	93%	87%	
HBCR140-3	0.033	76%	75%	88%	89%	91%	94%	10/0/	94%	96%	81%	81%	88%	105%	1140/
HBCR230-1 HBCR230-2	0.020	80% 88%	86% 88%	111%	112%	142%	142%	100%	104%	129%	153%	139%	134%	123%	114%
HBCR230-3	0.033	100%	103%	128%	131%	116%	115%		126%	121%	116%	103%	94%	102%	
HE11230-1	0.014	109%	109%	92%	92%	139%	140%	118%	95%	96%	126%	127%	191%	194%	153%
HE11230-2	0.022	112%	113%	108%	110%	146%	150%		99%	114%	174%	180%	198%	201%	
HE11230-3	0.033	96%	99%	113%	116%	137%	144%	979/	137%	148%	171%	166%	166%	165%	1000/
IZ1090-1 IZT090-2	0.021	85% 75%	85% 74%	/8% 74%	78% 74%	68% 90%	68% 93%	86%	05%	103%	80%	85%	102%	126%	100%
IZT090-3	0.036	86%	90%	96%	101%	110%	117%		85%	91%	94%	114%	112%	145%	
KDZC180-1	0.021	103%	104%	103%	103%	89%	88%	101%	109%	110%	132%	132%	109%	105%	111%
KDZC180-2	0.029	103%	103%	88%	88%	99%	104%		112%	111%	96%	92%	102%	107%	
KDZC180-3	0.034	91%	87%	104%	111%	122%	132%	1220/	100%	97%	109%	117%	124%	138%	1520/
KDZC270-1 KDZC270-2	0.014	90%	90%	98% 129%	98% 129%	114% 145%	114% 145%	122%	128% 159%	129% 145%	128%	153%	141% 161%	152%	134%
KDZC270-2	0.024	124%	126%	133%	136%	141%	146%		156%	154%	164%	167%	175%	182%	
LOS000-1	0.022	59%	59%	101%	102%	61%	61%	71%	60%	60%	91%	91%	51%	51%	72%
LOS000-2	0.033	58%	58%	98%	98%	59%	59%		59%	59%	104%	107%	49%	49%	
LOS000-3	0.044	54%	55%	95%	96%	54%	54%	1120/	55%	54%	116%	127%	54%	58%	1250/
NIS090-1 NIS090-2	0.017	106%	106%	121%	123%	122%	125%	11370	116%	143%	115%	111%	144%	137%	12570
NIS090-3	0.031	102%	104%	114%	117%	122%	121%		104%	96%	134%	131%	152%	126%	
RIO360-1	0.017	97%	97%	104%	104%	97%	96%	105%	124%	118%	136%	127%	129%	156%	130%
RIO360-2	0.023	100%	99%	101%	102%	115%	113%		121%	114%	128%	130%	143%	137%	
RIO360-3	0.029	104%	107%	116%	116%	115%	114%	0.40/	125%	129%	141%	140%	130%	118%	1000/
S1010-1 S1010-2	0.017	103%	104%	11/% 98%	98%	93%	93%	94%	123% 118%	124%	109% 101%	112% 101%	145% 117%	145% 97%	108%
S1010-2 S1010-3	0.027	95%	96%	84%	83%	70%	69%		89%	87%	87%	86%	102%	81%	
SHI090-1	0.016	92%	92%	86%	86%	83%	84%	97%	89%	89%	95%	89%	147%	140%	120%
SHI090-2	0.021	92%	92%	94%	94%	104%	105%		104%	92%	132%	126%	134%	127%	
SHI090-3	0.026	97%	98%	106%	106%	118%	118%	44-04	119%	126%	126%	134%	141%	145%	4.850/
SYL360-1 SVL360-2	0.014	109%	110%	125%	126%	137%	137%	145%	122%	122%	141%	142%	188%	172%	157%
SYL360-3	0.020	144%	140%	155%	159%	160%	174%		149%	151%	160%	159%	163%	166%	
[1]: Kayd n n ismi	inden sonr	a gelen nur	nara depre	em seviyes	ini belirti	r. (1: tasar	m deprem	ni, 2: maks	simum dep	orem, 3: 1.	33xmaksi	mum depr	em)		

Rijit çerçeveleri kal de felmen ran.
 Rijit çerçeveleri kal de felmen ran.
 Yar rijit çerçeveleri kal de felmen ran.
 Yar rijit çerçeveleri kal de felmen ran.
 Yar rijit çerçeveleri kal de felmen ran.
 Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

Cizelge Ek 8c.4 7.0m aç kl kl yar rijit çerçevelerin 3. kat ötelemelerinin rijit çerçeve 3. kat ötelemelerine oran

Yer Hareketi Kayd ^[1]	$\operatorname{Rgd}^{[2]}$	P70_SMTF SH14 ^[3]	P70_SMTF _SH11	P60_SMTF _SH14	P60_SMTF _SH11	P50_SMTF _SH14	P50_SMTF _SH11	Ortalama ^{[4}	P70_HFC_ H14	P70_HFC_ H11	P60_HFC_ H14	P60_HFC_ H11	P50_HFC_ H14	P50_HFC_ H11	Ortalama ^{[5}
ARL360-1 ARL360-2	0.017	105% 104%	104% 106%	103% 99%	104% 99%	78% 69%	77% 68%	91%	132% 120%	129% 124%	128% 113%	118% 112%	117% 118%	109% 110%	114%
ARL360-3	0.032	100%	101%	8.7%	85%	122%	121%	1199/	115%	114%	91%	168%	203%	215%	1609/
ATMZ270-1 ATMZ270-2	0.013	100%	100%	116%	119%	130%	135%	110 /0	140%	128%	154%	209%	148%	145%	100 /0
ATMZ270-3	0.033	105%	108%	120%	126%	134%	142%		118%	138%	126%	148%	140%	149%	
BOL000-1	0.019	90%	90%	87%	87%	74%	74%	84%	107%	133%	114%	112%	91%	90%	111%
BOL000-2	0.023	92%	93%	83%	82%	79%	78%		105%	104%	123%	126%	107%	106%	
CAP000-1	0.027	98%	98%	69%	69%	69%	68%	78%	101%	107%	100%	101%	104%	157%	104%
CAP000-2	0.029	92%	93%	77%	77%	68%	68%		90%	151%	102%	95%	82%	104%	
CAP000-3	0.038	87%	89%	77%	78%	65%	67%		85%	79%	95%	81%	112%	128%	
CAP090-1	0.015	86%	86%	96%	96%	106%	107%	119%	98%	98%	120%	165%	140%	127%	157%
CAP090-2	0.018	104%	105%	119%	119%	136%	136%		158%	230%	156%	160%	136%	130%	
CLS000-1	0.023	109%	109%	122%	123%	132%	133%	123%	130%	194%	152%	131%	137%	194%	134%
CLS000-2	0.028	112%	114%	126%	131%	137%	144%		114%	116%	131%	137%	143%	152%	
CLS000-3	0.040	107%	113%	119%	127%	127%	138%		110%	116%	124%	133%	137%	150%	
CPM000-1	0.029	75%	74%	62%	64%	68%	71%	90%	86%	85%	73%	69%	71%	74%	94%
CPM000-2 CPM000-2	0.032	/5%	/1%	/6%	120%	88%	102%		88%	80%	/8%	85%	89%	104%	
DZC180-1	0.031	96%	96%	100%	101%	95%	94%	113%	105%	108%	104%	123%	105%	136%	142%
DZC180-2	0.021	106%	107%	112%	114%	111%	113%		114%	114%	163%	184%	159%	154%	
DZC180-3	0.024	120%	122%	129%	135%	139%	146%		153%	146%	149%	160%	191%	194%	
DZC270-1	0.015	87%	87%	82%	82%	76%	76%	93%	96%	96%	89%	88%	113%	127%	118%
DZC270-2 DZC270-3	0.019	104%	103%	102%	101%	92% 91%	89% 93%		130%	133%	115%	138%	127%	137%	
EMY260-1	0.024	117%	116%	118%	117%	110%	108%	129%	145%	144%	162%	161%	155%	150%	153%
EMY260-2	0.015	135%	135%	133%	133%	129%	131%		159%	158%	156%	155%	147%	157%	
EMY260-3	0.017	137%	141%	132%	136%	144%	156%		143%	144%	134%	151%	153%	177%	
EMY350-1	0.015	88%	88%	74%	74%	75%	74%	92%	99%	99%	91%	88%	95%	95%	111%
EMY350-2 EMY350-3	0.021	91%	89%	85%	85%	91%	92%		136%	100%	105%	109%	123%	125%	
ERZEW-1	0.023	79%	79%	80%	80%	75%	74%	102%	109%	96%	132/6	98%	91%	90%	119%
ERZEW-2	0.019	107%	107%	109%	110%	116%	119%		124%	133%	125%	129%	125%	142%	
ERZEW-3	0.027	108%	111%	114%	119%	120%	127%		112%	130%	122%	134%	129%	137%	
GAZ090-1	0.020	81%	81%	69%	69%	76%	77%	100%	96%	101%	109%	149%	166%	146%	136%
GAZ090-2	0.025	93%	93%	104%	105%	111%	114%		138%	134%	129%	131%	167%	147%	
HBCR140-1	0.032	71%	71%	71%	71%	88%	88%	88%	84%	83%	74%	73%	135%	141%	110%
HBCR140-2	0.025	77%	76%	90%	91%	91%	91%		80%	78%	119%	119%	122%	126%	
HBCR140-3	0.028	87%	84%	102%	103%	115%	126%		100%	95%	131%	127%	142%	150%	
HBCR230-1	0.022	77%	77%	76%	76%	101%	103%	102%	81%	101%	101%	104%	114%	149%	115%
HBCR230-2 HBCR230-3	0.030	85%	86%	104%	10/%	111%	121%		99%	144%	123%	131%	124%	103%	
HE11230-1	0.035	115%	114%	99%	98%	112%	111%	105%	123%	121%	139%	166%	158%	160%	149%
HE11230-2	0.023	113%	114%	87%	87%	105%	110%		121%	128%	135%	139%	156%	172%	
HE11230-3	0.030	92%	92%	95%	98%	125%	125%		132%	144%	151%	188%	175%	180%	
IZT090-1	0.020	86%	86%	65%	65%	51%	50%	71%	109%	110%	72%	72%	61%	61%	82%
IZ1090-2 IZT090-3	0.028	85% 75%	83% 72%	61% 73%	61% 77%	68% 72%	/1%		82% 71%	98% 79%	82% 71%	//% 87%	70%	94%	
KDZC180-1	0.017	111%	111%	119%	119%	104%	102%	110%	133%	157%	196%	166%	140%	139%	134%
KDZC180-2	0.025	124%	125%	123%	121%	96%	87%		140%	141%	138%	136%	127%	103%	
KDZC180-3	0.032	122%	124%	110%	100%	85%	89%		128%	125%	128%	109%	104%	103%	
KDZC270-1	0.012	90%	90%	94%	94%	90%	90%	108%	110%	110%	146%	138%	125%	125%	135%
KDZC270-2 KDZC270-3	0.017	108%	106%	108%	107%	126%	131%		152%	125%	145%	138%	139%	139%	
LOS000-1	0.015	69%	69%	133%	134%	72%	72%	85%	76%	76%	116%	118%	57%	57%	91%
LOS000-2	0.023	66%	66%	123%	123%	69%	70%		77%	77%	106%	114%	59%	67%	
LOS000-3	0.032	58%	58%	114%	121%	59%	59%	1100/	73%	70%	152%	183%	75%	77%	
NIS090-1 NIS000-2	0.016	90%	90%	100%	100%	1199/	125%	110%	110%	109%	91%	91%	139%	120%	132%
NIS090-3	0.023	105%	101%	116%	123%	143%	162%		12270	154%	124%	137%	145%	188%	
RIO360-1	0.025	93%	93%	80%	80%	60%	60%	76%	120%	101%	96%	85%	83%	90%	90%
RIO360-2	0.039	74%	72%	58%	57%	63%	66%		82%	80%	71%	72%	89%	83%	
RIO360-3	0.043	67%	69%	79%	85%	101%	110%	4400/	76%	79%	86%	92%	112%	121%	10.00/
S1010-1 S1010-2	0.019	84%	84%	118%	118%	125%	124%	110%	101%	99%	130%	161%	123%	129%	124%
S1010-2 S1010-3	0.027	104%	107%	123%	12470	108%	107%		137%	138%	119%	120%	1497%	117%	
SHI090-1	0.013	90%	90%	75%	75%	64%	64%	94%	94%	94%	82%	77%	133%	136%	119%
SHI090-2	0.017	98%	97%	82%	82%	100%	99%		115%	99%	133%	132%	131%	140%	
SHI090-3	0.021	106%	106%	103%	106%	125%	133%	10-01	114%	122%	118%	127%	140%	148%	10501
SYL360-1 SYL360-2	0.016	97%	97%	101%	101% 125%	109%	110%	121%	109% 120%	109% 124%	117%	118%	155%	145% 146%	135%
SYL360-3	0.025	127%	133%	132%	143%	142%	157%		139%	144%	140%	149%	144%	154%	
[1]: Kayd n n ism	inden sonr	a gelen nur	nara depre	em seviyes	sini belirti	r. (1: tasar	m deprem	i, 2: mak	simum der	orem, 3: 1.	33xmaksi	mum depr	em)		

[1] Kayu nin isiminden sona geren numara deprem sevryesim bentur. (1. tasar in deprem, 2. maksimum deprem, 5. 1.55xmaksimum deprem
[2]: Rijit çerçeve için kat öteleme oran.
[3]: Yar rijit çerçeveler için verilen değerler, yar rijit çerçevede gerçekleşen deplasman n, ayn sat rdaki rijit çerçeve deplasman na oran d r.

[4]: Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

Cizelge Ek 8c.5 9.0m aç kl kl yar rijit çerçevelerin tepe deplasmanlar n n rijit çerçeve tepe deplasman na oran

Yer Hareketi Kayd [1]	Rgd ^[2]	0_SMTR SH14 ^[3]	0_SMTR _SH11	60_SMTR _SH14	50_SMTR _SH11	60_SMTR _SH14	60_SMTR _SH11	rtalama ^[4]	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	rtalama ^[5]
A PL 260, 1	0.016	2 V 404	R 9494	<u> </u>	PC 000/	2 970/	2. 820/	069/	<u>E</u> 00%	<u>6</u>	9 <u>4</u>	9 104%	Sd 07%	P5	0
ARL360-2	0.010	93%	92%	100%	101%	104%	105%	90 /6	112%	109%	104%	110478	112%	117%	107 /0
ARL360-3	0.024	101%	103%	106%	107%	102%	103%		106%	108%	112%	115%	110%	108%	
ATMZ270-1	0.016	78%	78%	79%	79%	77%	77%	99%	87%	87%	85%	85%	101%	107%	118%
ATMZ270-2	0.019	97%	97%	100%	100%	100%	100%		129%	161%	168%	153%	104%	105%	
A1MZ2/0-3	0.021	114%	115%	120%	121%	104%	121%	1019/	110%	100%	124%	130%	133%	135%	1269/
BOL000-1 BOL000-2	0.013	101%	101%	94% 99%	100%	93%	91%	101 70	110%	121%	142%	143%	128%	103%	120%
BOL000-3	0.021	102%	101%	108%	109%	117%	119%		142%	145%	136%	129%	126%	128%	
CAP000-1	0.017	75%	75%	70%	70%	60%	60%	75%	90%	89%	74%	74%	96%	140%	98%
CAP000-2	0.022	81%	81%	73%	72%	73%	73%		95%	95%	87%	88%	118%	103%	
CAP000-3	0.027	87%	87%	71%	70%	86%	86%	0.644	93%	105%	95%	94%	110%	114%	
CAP090-1 CAP090-2	0.016	82%	82%	/6%	/6% 810/	/0% 87%	/0%	80%	84%	84%	69% 02%	69% 104%	103%	11.4%	95%
CAP090-2 CAP090-3	0.019	98%	90% 96%	91%	92%	99%	99%		96%	103%	9270	97%	118%	121%	
CLS000-1	0.018	73%	73%	80%	80%	83%	83%	99%	74%	74%	80%	80%	107%	95%	107%
CLS000-2	0.021	96%	96%	104%	104%	105%	106%		101%	108%	123%	115%	120%	111%	
CLS000-3	0.025	111%	112%	119%	120%	121%	122%		123%	114%	133%	122%	123%	125%	
CPM000-1	0.018	103%	103%	101%	102%	99%	99%	108%	108%	109%	114%	115%	99%	99%	110%
CPM000-2 CPM000-2	0.027	85%	86%	89%	90%	112%	115%		91%	91%	89%	90%	152%	115%	
DZC180-1	0.030	92%	92%	84%	84%	74%	74%	80%	142%	117%	115%	139%	96%	96%	110%
DZC180-2	0.022	90%	90%	78%	78%	80%	80%	0070	111%	111%	96%	102%	105%	99%	110/0
DZC180-3	0.029	77%	76%	73%	72%	75%	75%		87%	89%	126%	135%	106%	105%	
DZC270-1	0.017	97%	97%	94%	94%	86%	85%	97%	145%	106%	109%	102%	100%	97%	119%
DZC270-2	0.022	100%	100%	98%	98%	89%	89%		132%	131%	124%	124%	113%	119%	
DZC2/0-3 EMV260-1	0.025	101%	10/%	107%	10/%	97%	98%	105%	102%	12/%	122%	117%	1/3%	1/24%	135%
EMY260-2	0.011	97%	97%	99%	99%	113%	113%	103 /6	133%	132%	162%	136%	145 %	14270	133 /0
EMY260-3	0.023	103%	104%	106%	107%	112%	113%		112%	111%	134%	137%	167%	173%	
EMY350-1	0.014	92%	92%	87%	87%	89%	89%	91%	96%	96%	95%	95%	99%	99%	104%
EMY350-2	0.021	92%	92%	89%	88%	82%	82%		98%	100%	112%	110%	110%	112%	
EMY350-3	0.025	100%	99%	88%	85%	100%	102%	1100/	108%	116%	96%	96%	117%	119%	10.40/
ERZEW-1 ERZEW-2	0.015	82%	82%	90%	90%	98%	98%	118%	90%	90%	90%	90%	109%	108%	124%
ERZEW-3	0.018	123%	125%	135%	138%	153%	160%		124%	127%	138%	148%	140%	164%	
GAZ090-1	0.016	102%	102%	77%	78%	91%	91%	89%	87%	87%	104%	103%	111%	137%	97%
GAZ090-2	0.023	97%	98%	89%	90%	94%	95%		93%	90%	87%	88%	112%	109%	
GAZ090-3	0.033	86%	87%	86%	87%	77%	78%		83%	76%	83%	83%	98%	116%	
HBCR140-1	0.016	119%	119%	96%	95%	78%	77%	96%	144%	142%	98%	97%	90%	91%	102%
HBCR140-2 HBCR140-3	0.019	08%	07%	98% 87%	97%	90% 78%	90% 76%		87%	87%	87%	92% 86%	01%	03%	
HBCR230-1	0.017	82%	82%	74%	74%	72%	72%	85%	79%	78%	95%	94%	66%	67%	91%
HBCR230-2	0.023	78%	78%	85%	86%	79%	82%		80%	87%	79%	78%	113%	114%	
HBCR230-3	0.027	89%	90%	92%	93%	110%	115%		89%	90%	96%	97%	118%	112%	
HE11230-1	0.019	83%	83%	64%	64%	61%	61%	91%	63%	63%	56%	56%	55%	53%	90%
HE11230-2	0.023	104%	104%	85%	85%	85%	85%		78%	83%	64%	68%	104%	114%	
IZT090-1	0.028	95%	95%	98%	98%	112%	112%	103%	113%	113%	152%	152%	1/8%	135%	135%
IZT090-2	0.017	90%	90%	110%	111%	108%	106%	10070	166%	169%	140%	136%	128%	125%	10070
IZT090-3	0.023	90%	90%	98%	98%	118%	126%		121%	122%	110%	112%	151%	133%	
KDZC180-1	0.013	99%	99%	119%	120%	134%	134%	128%	104%	104%	129%	143%	168%	169%	143%
KDZC180-2	0.017	117%	118%	137%	138%	138%	137%		129%	130%	155%	156%	143%	141%	
KDZC180-3	0.021	133%	134%	143%	144%	1/24%	128%	101%	151%	152%	154%	152%	144%	152%	132%
KDZC270-1 KDZC270-2	0.011	91%	91%	85%	85%	105%	105%	101 /0	115%	115%	115%	123%	169%	143%	13270
KDZC270-3	0.020	87%	87%	100%	100%	131%	134%		111%	115%	153%	114%	166%	172%	
LOS000-1	0.014	94%	94%	103%	103%	114%	114%	119%	114%	114%	124%	124%	118%	118%	138%
LOS000-2	0.019	104%	104%	126%	127%	134%	134%		140%	142%	142%	142%	149%	138%	
LOS000-3	0.026	121%	125%	133%	134%	136%	136%	920/	147%	152%	145%	149%	160%	166%	970/
NIS090-1 NIS090-2	0.018	89%	89%	70% 85%	70% 85%	78%	77%	0370	96%	86%	82%	94%	83%	83%	0/70
NIS090-3	0.028	95%	95%	91%	91%	88%	89%		95%	94%	93%	79%	102%	93%	
RIO360-1	0.011	98%	98%	108%	108%	132%	133%	111%	102%	102%	137%	136%	166%	166%	125%
RIO360-2	0.016	110%	111%	119%	120%	107%	107%		126%	125%	136%	123%	120%	129%	
RIO360-3	0.023	114%	114%	109%	110%	104%	105%		124%	115%	99%	103%	118%	118%	
S1010-1	0.012	157%	157%	143%	143%	108%	108%	141%	144%	144%	110%	110%	159%	150%	151%
S1010-2 S1010-3	0.015	101%	101%	130%	149% 128%	149% 140%	149%		152% 154%	15/%	10/%	156%	195%	105%	
SHI090-1	0.018	80%	80%	64%	64%	62%	62%	74%	96%	96%	69%	69%	64%	64%	88%
SHI090-2	0.021	88%	87%	72%	72%	71%	70%		104%	103%	87%	87%	102%	98%	
SHI090-3	0.026	82%	82%	73%	74%	74%	75%		94%	92%	85%	88%	91%	93%	
SYL360-1	0.015	83%	83%	72%	72%	88%	88%	98%	89%	89%	80%	80%	110%	111%	113%
SYL360-2	0.022	79%	78%	88%	89%	107%	108%		87%	86%	110%	109%	132%	118%	
[1]: Kayd n n ism	inden sonr	a gelen nur	nara depre	em sevives	sini belirti	13/70 : (1: tasar	m deprem	ni, 2: maks	simum der	orem, 3: 1.	33xmaksi	mum depr	em)	10270	

[1] Kayu nin isiminden sona geren numara deprem sevryesim bentur. (1. tasar in deprem, 2. maksimum deprem, 5. 1.55xmaksimum deprem
[2]: Rijit çerçeve için tepe öteleme oran .
[3]: Yar rijit çerçeveler için verilen değerler, yar rijit çerçevede gerçekleşen deplasman n, ayn sat rdaki rijit çerçeve deplasman na oran d r.

[4]: Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

Cizelge Ek 8c.6 9.0m aç kl kl yar rijit çerçevelerin 1. kat ötelemelerinin rijit çerçeve 1. kat ötelemelerine oran

Yer Iareketi Kayd ^[1]	Rgd ^[2]	0_SMTR SH14 ^[3]	0_SMTR _SH11	0_SMTR _SH14	0_SMTR _SH11	0_SMTR _SH14	0_SMTR _SH11	talama ^[4]	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	talama ^[5]
	0.014	P7	P7	P6	P6	b2	P5	ō	L L	L L L	P6	P6	P5	P5	0
ARL360-1	0.014	970/	77% 86%	84%	84%	96%	96%	96%	84%	84%	89%	88%	122%	118%	106%
ARL360-3	0.021	92%	89%	103%	102%	111%	105%		98%	94%	124%	120%	125%	112%	
ATMZ270-1	0.014	87%	87%	86%	86%	86%	86%	82%	92%	92%	92%	92%	104%	110%	105%
ATMZ270-2	0.019	85%	83%	79%	79%	84%	82%		116%	147%	155%	139%	104%	94%	
ATMZ270-3	0.023	80%	76%	75%	75%	85%	79%		100%	93%	105%	84%	87%	90%	
BOL000-1	0.013	105%	105%	120%	120%	136%	135%	124%	139%	137%	162%	175%	165%	165%	163%
BOL000-2 POL000-2	0.017	97%	9/%	120%	125%	154%	115%		104%	164%	1/5%	160%	15/%	155%	
CAP000-1	0.018	69%	69%	62%	62%	72%	72%	68%	84%	80%	66%	66%	97%	148%	91%
CAP000-2	0.020	70%	70%	57%	57%	73%	73%		77%	74%	88%	90%	117%	91%	
CAP000-3	0.025	70%	69%	67%	67%	77%	74%		86%	87%	100%	97%	99%	101%	
CAP090-1	0.014	83%	83%	90%	90%	86%	86%	87%	84%	84%	78%	78%	73%	73%	93%
CAP090-2	0.017	85%	84%	92%	92%	91%	91%		95%	117%	100%	113%	97%	103%	
CAP090-3	0.020	84%	84%	93%	93%	83%	84%	000/	91%	95%	92%	88%	110%	102%	1069/
CL S000-1 CL S000-2	0.018	98%	96%	7370 89%	86%	95%	92%	0070	122%	119%	113%	93%	105%	96%	100%
CLS000-2 CLS000-3	0.021	105%	103%	89%	86%	104%	97%		133%	105%	129%	107%	92%	125%	
CPM000-1	0.016	121%	118%	124%	121%	125%	125%	139%	132%	128%	154%	149%	131%	133%	146%
CPM000-2	0.024	102%	97%	119%	119%	153%	151%		114%	107%	120%	119%	153%	151%	
CPM000-3	0.026	134%	134%	170%	169%	212%	209%		135%	135%	170%	169%	212%	210%	
DZC180-1	0.016	88%	88%	90%	90%	91%	91%	78%	138%	107%	120%	144%	109%	109%	105%
DZC180-2	0.021	79%	17%	81%	80%	82%	80%		98%	94%	98%	102%	106%	108%	
DZC180-3	0.030	94%	94%	99%	99%	99%	99%	86%	162%	112%	101%	105%	95%	109%	114%
DZC270-2	0.022	81%	80%	88%	87%	79%	78%	00/0	123%	117%	120%	115%	113%	109%	
DZC270-3	0.028	84%	82%	88%	85%	71%	67%		111%	114%	110%	101%	106%	113%	
EMY260-1	0.011	99%	99%	102%	102%	115%	115%	98%	100%	100%	114%	114%	134%	132%	129%
EMY260-2	0.017	91%	91%	89%	89%	99%	99%		127%	124%	165%	126%	157%	149%	
EMY260-3	0.026	92%	92%	89%	88%	107%	102%		103%	102%	127%	125%	165%	159%	
EMY350-1	0.012	90%	90%	89%	89%	101%	100%	92%	93%	93%	93%	93%	106%	106%	104%
EMY350-2	0.018	84%	82%	83%	83%	97%	97%		90%	93%	90%	90%	128%	120%	
ERZEW-1	0.014	88%	88%	97%	97%	115%	115%	124%	88%	88%	97%	97%	115%	116%	129%
ERZEW-2	0.016	119%	120%	134%	134%	160%	158%		120%	120%	135%	163%	165%	163%	
ERZEW-3	0.026	121%	121%	133%	132%	156%	153%		123%	122%	138%	145%	163%	159%	
GAZ090-1	0.014	104%	104%	81%	81%	105%	106%	84%	79%	79%	115%	114%	123%	173%	87%
GAZ090-2	0.023	84%	83%	77%	77%	94%	93%		72%	71%	86%	85%	79%	76%	
GAZ090-3	0.038	1129/	6/%	102%	101%	/2%	/1%	850/	147%	65%	102%	62%	69% 105%	85%	1029/
HBCR140-1	0.014	102%	100%	86%	84%	89% 79%	78%	0370	147%	99%	113%	92%	123%	122%	10270
HBCR140-3	0.029	74%	70%	63%	60%	63%	63%		67%	69%	80%	79%	91%	86%	
HBCR230-1	0.017	83%	83%	82%	82%	79%	79%	76%	85%	86%	85%	84%	78%	59%	74%
HBCR230-2	0.024	75%	75%	75%	73%	64%	63%		77%	75%	62%	58%	77%	80%	
HBCR230-3	0.028	86%	84%	76%	73%	69%	63%	0004	74%	65%	64%	59%	89%	79%	
HE11230-1	0.021	66% 70%	66%	57%	57%	51%	51%	80%	65%	65% 70%	51%	51%	50%	48%	80%
HE11230-2 HE11230-3	0.020	107%	107%	96%	96%	118%	119%		88%	80%	66%	80%	174%	144%	
IZT090-1	0.011	104%	104%	118%	118%	122%	122%	99%	152%	152%	156%	155%	145%	133%	118%
IZT090-2	0.018	92%	92%	101%	101%	96%	95%		132%	128%	107%	107%	109%	103%	
IZT090-3	0.028	80%	80%	76%	76%	97%	99%		88%	83%	85%	82%	109%	97%	
KDZC180-1	0.011	92%	92%	101%	101%	124%	124%	116%	100%	100%	122%	133%	157%	174%	140%
KDZC180-2	0.014	105%	104%	110%	110%	120%	121%		106%	115%	124%	122%	160%	152%	
KDZC180-3	0.017	108%	103%	110%	110%	1/7%	1//%	90%	125%	105%	140%	148%	209%	127%	126%
KDZC270-2	0.015	99%	99%	87%	86%	105%	104%		116%	115%	106%	102%	195%	138%	1-3/0
KDZC270-3	0.022	73%	71%	82%	81%	127%	128%		93%	102%	147%	107%	168%	180%	
LOS000-1	0.013	97%	97%	99%	99%	123%	123%	112%	102%	101%	118%	118%	133%	132%	129%
LOS000-2	0.018	102%	102%	111%	110%	142%	141%		123%	121%	150%	150%	154%	141%	
LOS000-3	0.027	102%	103%	112%	111%	122%	113%	740/	132%	136%	136%	135%	122%	120%	770/
NIS090-1 NIS090-2	0.016	78% 80%	/8% 80%	77%	76%	80%	/9% 67%	/4%	02%	79%	/9% 85%	79% 86%	70%	/4% 62%	//%
NIS090-3	0.020	77%	75%	73%	71%	57%	55%		88%	85%	80%	55%	71%	64%	
RIO360-1	0.010	95%	95%	91%	91%	131%	129%	121%	102%	102%	148%	149%	165%	156%	148%
RIO360-2	0.013	102%	102%	132%	132%	139%	136%		125%	123%	167%	148%	164%	163%	
RIO360-3	0.018	131%	129%	126%	129%	149%	139%		163%	144%	164%	166%	164%	147%	
S1010-1	0.012	149%	148%	118%	118%	113%	113%	136%	103%	103%	111%	111%	176%	157%	142%
S1010-2	0.016	151%	150%	139%	138%	137%	136%		139%	127%	123%	111%	192%	135%	
SHI090-1	0.021	13/%	77%	135%	155%	14/%	152%	70%	10/%	02%	138%	138%	1/2%	188%	97%
SHI090-2	0.020	73%	72%	63%	63%	67%	67%	/0/0	100%	98%	83%	83%	101%	95%	14 /0
SHI090-3	0.023	72%	71%	69%	68%	77%	77%		112%	107%	93%	94%	110%	108%	
SYL360-1	0.012	92%	92%	99%	99%	118%	118%	119%	99%	99%	111%	111%	147%	147%	143%
SYL360-2	0.017	103%	102%	115%	114%	137%	135%		120%	119%	152%	146%	176%	155%	
SYL360-3	0.020	118%	116%	136%	135%	159%	154%		155%	144%	158%	150%	200%	183%	
[1]: Kayd n n ism	inden sonr	a gelen nui	nara depre	em seviyes	sını belirti	r. (1: tasar	m deprem	11, 2: maks	sımum dep	prem, 3: 1.	ז≎smaksi	mum depr	em)		

Rijit çerçeveleri kal de felem eran .
 Rijit çerçeveleri kal de felem eran .
 Yar rijit çerçeveleri kal de felem eran .
 Yar rijit çerçeveleri kal kal de felem eran .
 Yar rijit çerçeveleri kal kal de felem eran .
 Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

Cizelge Ek 8c.7 9.0m aç kl kl yar rijit çerçevelerin 2. kat ötelemelerinin rijit çerçeve 2. kat ötelemelerine oran

Yer Hareketi Kayd ^[1]	$\operatorname{Rgd}^{[2]}$	P70_SMTR _SH14 ^[3]	P70_SMTR _SH11	P60_SMTR _SH14	P60_SMTR _SH11	P50_SMTR _SH14	P50_SMTR _SH11	Ortalama ^[4]	270_HFC_5 H14	P70_HFC_5 H11	260_HFC_5 H14	P60_HFC_5 H11	950_HFC_5 H14	250_HFC_5 H11	Ortalama ^[5]
ARL360-1	0.019	90%	90%	94%	94%	85%	85%	99%	105%	105%	109%	110%	102%	102%	111%
ARL360-2	0.023	98%	97%	101%	101%	106%	108%		117%	114%	112%	112%	114%	120%	
ATMZ270-1	0.028	78%	78%	78%	78%	76%	77%	100%	86%	86%	86%	86%	104%	114%	119%
ATMZ270-2	0.022	101%	101%	104%	104%	102%	103%		129%	161%	166%	152%	106%	107%	
ATMZ270-3	0.024	118%	119%	121%	123%	120%	121%		120%	122%	127%	133%	133%	135%	
BOL000-1	0.017	88%	88%	97%	97%	106%	106%	102%	114%	113%	118%	130%	128%	130%	124%
BOL000-2 BOL000-3	0.022	103%	103%	102%	101%	114%	116%		136%	140%	139%	126%	121%	124%	
CAP000-1	0.020	75%	75%	68%	68%	61%	61%	75%	90%	88%	74%	74%	94%	133%	96%
CAP000-2	0.026	76%	76%	71%	70%	74%	75%		86%	85%	83%	85%	122%	103%	
CAP000-3	0.031	84%	84%	74%	74%	89%	89%	000/	88%	97%	95%	97%	113%	118%	070/
CAP090-1 CAP090-2	0.019	84% 91%	84% 91%	/8% 84%	78% 84%	/1% 88%	/1% 89%	88%	85% 103%	124%	/1% 96%	109%	103%	116%	97%
CAP090-3	0.025	101%	100%	93%	94%	102%	101%		97%	106%	98%	101%	117%	122%	
CLS000-1	0.021	75%	75%	83%	83%	86%	87%	102%	76%	76%	83%	83%	105%	96%	106%
CLS000-2	0.025	99%	100%	108%	109%	109%	110%		99%	100%	118%	111%	116%	112%	
CLS000-3 CPM000-1	0.029	104%	104%	103%	121%	99%	123%	104%	116%	114%	12/%	123%	125%	127%	107%
CPM000-2	0.021	88%	87%	85%	88%	105%	110%	104/0	94%	93%	85%	88%	101%	111%	10770
CPM000-3	0.036	89%	92%	111%	117%	138%	148%		88%	91%	111%	118%	140%	149%	
DZC180-1	0.020	96%	96%	89%	89%	75%	75%	84%	141%	120%	116%	139%	95%	96%	112%
DZC180-2	0.025	93%	94%	81%	81%	85%	86%		113%	114%	99%	103%	109%	103%	
DZC180-3	0.033	100%	100%	99%	99%	89%	80%	103%	145%	110%	12/%	107%	103%	104%	122%
DZC270-2	0.025	106%	106%	103%	103%	95%	95%		133%	133%	124%	125%	116%	125%	
DZC270-3	0.028	114%	113%	113%	113%	105%	106%		125%	131%	122%	122%	122%	127%	
EMY260-1	0.013	103%	103%	101%	101%	119%	119%	110%	105%	105%	122%	122%	146%	146%	137%
EMY260-2	0.020	102%	102%	104%	105%	120%	120%		136%	136%	162%	139%	150%	154%	
EMY350-1	0.023	93%	93%	90%	90%	92%	92%	94%	97%	97%	96%	96%	103%	102%	106%
EMY350-2	0.024	94%	95%	92%	92%	84%	85%		101%	102%	114%	112%	111%	112%	
EMY350-3	0.028	103%	103%	94%	92%	101%	104%		111%	118%	100%	101%	115%	120%	
ERZEW-1	0.018	83%	83%	92%	92%	100%	100%	118%	89%	89%	92%	92%	109%	109%	123%
ERZEW-2 ERZEW-3	0.021	123%	114%	121%	122%	129%	152%		114%	114%	123%	147%	153%	150%	
GAZ090-1	0.019	109%	109%	85%	85%	94%	94%	95%	92%	92%	107%	106%	114%	141%	101%
GAZ090-2	0.027	102%	103%	96%	97%	97%	97%		96%	91%	91%	91%	114%	112%	
GAZ090-3	0.037	92%	94%	94%	96%	82%	84%		87%	81%	88%	89%	103%	117%	
HBCR140-1	0.019	122%	123%	98%	98%	77%	77%	99%	141%	140%	103%	102%	90%	90%	104%
HBCR140-2 HBCR140-3	0.023	123%	103%	94%	93%	80%	79%		94%	94%	91%	90%	91%	95%	
HBCR230-1	0.020	85%	85%	76%	76%	75%	75%	89%	82%	82%	98%	98%	69%	70%	94%
HBCR230-2	0.026	82%	82%	89%	90%	83%	86%		87%	93%	80%	80%	118%	115%	
HBCR230-3	0.032	91%	94%	94%	97%	115%	119%	020/	90%	91%	93%	93%	127%	117%	200/
HE11230-1 HE11230-2	0.022	104%	104%	87%	88%	91%	92%	9270	79%	81%	65%	39% 70%	105%	114%	0970
HE11230-3	0.031	114%	115%	101%	102%	110%	112%		100%	98%	100%	105%	166%	159%	
IZT090-1	0.014	102%	102%	109%	109%	121%	121%	107%	122%	122%	162%	162%	158%	142%	139%
IZT090-2	0.019	96%	96%	114%	115%	107%	107%		165%	169%	143%	139%	132%	130%	
KDZC180-1	0.027	92%	102%	122%	122%	136%	137%	127%	123%	124%	130%	146%	168%	132%	142%
KDZC180-2	0.021	119%	120%	134%	135%	136%	136%		130%	131%	152%	153%	145%	142%	/.
KDZC180-3	0.025	131%	132%	143%	144%	116%	121%		149%	150%	152%	151%	134%	141%	
KDZC270-1	0.013	101%	101%	102%	102%	107%	107%	102%	113%	113%	122%	122%	168%	145%	130%
KDZC2/0-2 KDZC270-3	0.019	93%	93%	86% 104%	86% 104%	10/%	10/%		114% 116%	114% 119%	114% 148%	118%	158%	124%	
LOS000-1	0.017	98%	98%	104%	104%	118%	119%	121%	116%	116%	129%	130%	122%	123%	139%
LOS000-2	0.023	107%	108%	125%	127%	130%	132%		138%	141%	141%	142%	149%	139%	
LOS000-3	0.030	123%	128%	133%	135%	137%	140%	0.001	145%	150%	148%	153%	161%	167%	
NIS090-1 NIS090-2	0.022	80%	80%	78%	78% 84%	68% 70%	68%	83%	78% 96%	78% 80%	·//%	73% 01%	85%	85% 86%	87%
NIS090-2 NIS090-3	0.023	94%	95%	89%	90%	88%	89%		94%	94%	90%	82%	103%	95%	
RIO360-1	0.013	96%	96%	103%	103%	128%	128%	113%	102%	102%	133%	139%	167%	160%	126%
RIO360-2	0.018	111%	113%	126%	127%	116%	117%		128%	127%	139%	126%	124%	131%	
RIO360-3	0.026	116%	118%	110%	111%	109%	112%	1/10/	125%	117%	98%	110%	118%	120%	1400/
S1010-1 S1010-2	0.014	158% 149%	159% 150%	145% 137%	143% 137%	120% 144%	121%	141%	145% 140%	145% 128%	115% 166%	115%	159% 176%	152%	149%
S1010-3	0.024	139%	140%	131%	131%	144%	144%		153%	156%	160%	153%	154%	156%	
SHI090-1	0.021	83%	83%	68%	68%	64%	64%	77%	101%	101%	72%	72%	64%	64%	91%
SHI090-2	0.024	90%	90%	77%	77%	71%	71%		107%	107%	91%	92%	102%	100%	
SHI090-3	0.030	86%	86%	77%	78%	75%	76%	060/	98%	96%	90%	93%	92%	95%	1000/
SYL360-2	0.018	79%	79%	87%	88%	105%	106%	7070	88%	87%	104%	104%	124%	113%	10070
SYL360-3	0.028	98%	101%	113%	116%	127%	135%		113%	114%	122%	124%	147%	152%	
[1]: Kayd n n i	sminden sonra	a gelen nur	nara depre	em sevives	sini belirti	r. (1: tasar	m deprem	i, 2: mak	simum der	orem, 3: 1.	33xmaksi	mum depr	em)		

deprem seviyesini belirtir. (1: tasar m depremi, 2: ma [1] Kayu nin isiminden sona geren numara deprem sevryesim bentur. (1. tasar in deprem, 2. maksimum deprem, 5. 1.55xmaksimum deprem
[2]: Rijit çerçeve için kat öteleme oran.
[3]: Yar rijit çerçeveler için verilen değerler, yar rijit çerçevede gerçekleşen deplasman n, ayn sat rdaki rijit çerçeve deplasman na oran d r.

[4]: Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

Cizelge Ek 8c.8 9.0m aç kl kl yar rijit çerçevelerin 3. kat ötelemelerinin rijit çerçeve 3. kat ötelemelerine oran

Yer Hareketi Kayd ^[1]	Rgd ^[2]	0_SMTR SH14 ^[3]	0_SMTR _SH11	0_SMTR _SH14	0_SMTR _SH11	0_SMTR _SH14	0_SMTR _SH11	rtalama ^[4]	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	rtalama ^[5]
	0.010	E .	E 8394	P6	P6	B	PS CON	ō 010/	Ld 0404	Ld 0.49/	P6	P6	b2	P5	0 1070/
ARL360-1 ARL360-2	0.019	85%	83%	83%	83%	69% 87%	69% 88%	91%	94%	94%	105%	106%	94%	104%	107%
ARL360-3	0.020	103%	105%	97%	95%	89%	91%		112%	109%	107%	103%	107%	106%	
ATMZ270-1	0.017	81%	81%	89%	89%	86%	86%	113%	86%	86%	90%	90%	92%	96%	126%
ATMZ270-2	0.020	104%	105%	112%	113%	116%	118%		116%	140%	144%	137%	126%	145%	
ATMZ270-3	0.023	127%	130%	142%	147%	149%	155%		130%	134%	147%	153%	170%	181%	
BOL000-1 POL000-2	0.015	87%	87%	94%	94%	110%	111%	102%	122%	122%	118%	120%	149%	151%	135%
BOL000-2 BOL000-3	0.019	98%	98%	103%	104%	91%	90%		127%	132%	138%	136%	149%	14/%	
CAP000-1	0.016	101%	101%	115%	115%	84%	84%	110%	132%	129%	104%	104%	150%	238%	152%
CAP000-2	0.021	122%	123%	112%	111%	88%	89%		164%	168%	155%	149%	165%	181%	
CAP000-3	0.025	138%	140%	117%	119%	107%	110%		159%	184%	127%	148%	131%	144%	
CAP090-1	0.015	81%	81%	86%	86%	69%	69%	98%	86%	86%	89%	89%	78%	78%	116%
CAP090-2	0.018	94%	94%	101%	101%	92%	91%		108%	129%	103%	106%	127%	134%	
CI \$000-1	0.020	83%	83%	96%	96%	129%	100%	114%	140%	100%	113%	115%	189%	10/%	126%
CLS000-2	0.024	102%	104%	118%	122%	124%	129%	114/0	121%	123%	132%	123%	128%	134%	12070
CLS000-3	0.029	118%	123%	133%	141%	140%	149%		119%	124%	136%	144%	145%	156%	
CPM000-1	0.025	104%	105%	99%	99%	74%	72%	83%	110%	111%	109%	110%	89%	85%	89%
CPM000-2	0.039	90%	91%	77%	74%	57%	62%		97%	99%	85%	82%	58%	63%	
CPM000-3	0.044	87%	85%	71%	69%	76%	94%	1000/	97%	91%	77%	70%	77%	96%	
DZC180-1	0.021	94%	94%	85%	85%	87%	87%	100%	147%	120%	113%	135%	103%	106%	131%
DZC180-2	0.021	94%	93%	102%	105%	110%	112%		123%	120%	118%	119% 199%	134%	138%	
DZC270-1	0.017	97%	97%	84%	84%	70%	70%	104%	137%	109%	101%	94%	88%	86%	131%
DZC270-2	0.019	116%	116%	102%	102%	94%	94%		146%	147%	132%	135%	127%	144%	
DZC270-3	0.021	125%	126%	120%	123%	122%	125%		139%	139%	143%	143%	173%	183%	
EMY260-1	0.010	100%	100%	97%	97%	113%	112%	113%	101%	101%	118%	118%	149%	148%	140%
EMY260-2	0.015	99%	99%	111%	110%	135%	136%		138%	138%	169%	148%	153%	159%	
EMY260-3	0.018	109%	109%	120%	122%	130%	137%	970/	119%	120%	144%	148%	162%	184%	1029/
EMY 350-1 EMY 350-2	0.014	91% 91%	91% 91%	81% 88%	81% 87%	74%	73%	8/%	96%	96%	92%	92%	92%	92%	103%
EMY350-3	0.021	109%	109%	94%	92%	80%	83%		118%	128%	102%	102%	102%	106%	
ERZEW-1	0.015	93%	93%	83%	82%	84%	83%	99%	105%	105%	101%	100%	111%	109%	118%
ERZEW-2	0.021	93%	90%	89%	89%	95%	97%		119%	115%	99%	121%	121%	130%	
ERZEW-3	0.022	109%	111%	115%	118%	129%	135%		114%	113%	121%	145%	144%	157%	
GAZ090-1	0.016	100%	100%	97%	97%	88%	88%	98%	101%	101%	112%	110%	141%	192%	122%
GAZ090-2	0.024	103%	104%	96%	97%	89%	89%		108%	109%	110%	116%	137%	139%	
GAZ090-5 HBCR140-1	0.031	121%	105%	98%	80%	85%	85%	103%	1/06%	1/17%	109%	10.5%	103%	103%	115%
HBCR140-2	0.015	116%	116%	95%	94%	92%	92%	105 /0	101%	96%	92%	95%	125%	157%	11570
HBCR140-3	0.024	118%	118%	111%	112%	103%	102%		99%	97%	121%	115%	125%	134%	
HBCR230-1	0.016	86%	86%	96%	96%	75%	75%	109%	108%	108%	98%	97%	106%	112%	134%
HBCR230-2	0.020	95%	95%	110%	111%	114%	119%		116%	103%	145%	128%	169%	171%	
HBCR230-3	0.025	121%	124%	116%	119%	158%	170%	1100/	125%	152%	161%	165%	161%	179%	
HE11230-1	0.019	117%	1/2%	92%	92%	102%	104%	110%	106%	120%	102%	102%	81%	81%	115%
HE11230-2	0.023	135%	138%	109%	11276	102%	104%		111%	12976	142%	155%	144%	169%	
IZT090-1	0.016	98%	98%	89%	89%	94%	94%	108%	115%	115%	149%	138%	146%	126%	148%
IZT090-2	0.021	91%	90%	101%	101%	118%	118%		149%	160%	150%	157%	101%	105%	
IZT090-3	0.021	106%	106%	132%	135%	143%	139%		178%	189%	179%	171%	174%	156%	
KDZC180-1	0.013	103%	103%	139%	140%	149%	150%	151%	112%	112%	157%	158%	190%	194%	168%
KDZC180-2	0.017	128%	129%	1/4%	1/8%	16/%	1/1%		150%	153%	192%	198%	182%	184%	
KDZC270-1	0.022	116%	116%	119%	116%	123%	123%	125%	137%	137%	143%	193%	194%	14870	155%
KDZC270-2	0.014	117%	117%	127%	127%	128%	125%		152%	152%	162%	163%	154%	167%	
KDZC270-3	0.019	128%	129%	135%	135%	130%	136%		146%	172%	144%	165%	148%	161%	
LOS000-1	0.015	82%	82%	101%	101%	107%	107%	121%	117%	117%	118%	118%	105%	115%	145%
LOS000-2	0.019	108%	109%	133%	137%	128%	131%		150%	156%	131%	134%	178%	168%	
LOS000-3	0.024	132%	136%	148%	155%	710/	147%	069/	153%	158%	138%	150%	193%	209%	1110/
NIS090-1 NIS090-2	0.020	105%	106%	105%	106%	93%	93%	9070	113%	101%	120%	139%	109%	121%	11170
NIS090-3	0.023	105%	107%	105%	107%	108%	114%		106%	107%	120%	158%	124%	118%	
RIO360-1	0.015	110%	110%	113%	113%	126%	128%	111%	113%	113%	138%	132%	177%	183%	126%
RIO360-2	0.024	114%	116%	119%	121%	100%	101%		114%	116%	141%	137%	116%	114%	
RIO360-3	0.034	114%	117%	108%	111%	90%	94%		117%	118%	115%	112%	103%	105%	
S1010-1	0.013	181%	182%	197%	199%	108%	108%	164%	180%	182%	144%	141%	187%	194%	178%
S1010-2 S1010-3	0.019	155%	158%	1/5%	1/8%	143%	148%		1590/	163%	162%	149%	190%	1/5%	
SHI090-1	0.023	81%	81%	64%	64%	58%	58%	76%	96%	138% 96%	205%	209%	69%	230% 69%	88%
SHI090-2	0.021	86%	85%	72%	72%	75%	75%	.0.70	96%	95%	83%	84%	98%	103%	00/0
SHI090-3	0.027	87%	87%	82%	84%	82%	84%		92%	86%	89%	92%	95%	97%	
SYL360-1	0.016	86%	86%	74%	74%	85%	85%	92%	94%	94%	87%	87%	112%	113%	108%
SYL360-2	0.024	81%	80%	80%	80%	99%	103%		93%	93%	98%	102%	121%	114%	
SYL360-3	0.029	92%	92%	103%	108%	120%	128%	ni 2. mal	108%	110%	116%	116%	140%	148%	
111. Nava n n Ism	muen sonr	a geien nui	nara debre	oni sevives	mi venirti	i. (i. tasar	in ueprem	n, ∠. maks	simum aer	леш, 5: 1.	J J XINAKSI	mum aebr	CIII)		

[1]: Kayd n n isminden sonra gelen numara deprem seviyesini belirtir. (1: tasar m depremi, 2: maksimum deprem, 3: 1.33xmal
 [2]: Rijit çerçeve için kat öteleme oran .

[3]: Yar rijit çerçeveler için verilen değerler, yar rijit çerçevede gerçekleşen deplasman n, ayn sat rdaki rijit çerçeve deplasman na oran d r.

[4]: Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

381

Ek 8d Tüm gerçek yer hareketi kayıtları için kat öteleme oranları

Şekil Ek 8d.1 ARL360 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.2 ATMZ270 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.3 BOL000 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.4 CAP000 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.5 CAP090 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.6 CLS000 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.7 CPM000 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.8 DZC180 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.9 DZC270 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.10 EMY260 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.11 EMY350 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.12 ERZEW yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.13 GAZ090 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.14 HBCR140 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.15 HBCR230 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.16 HE11230 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.17 IZT090 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.18 KDZC180 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.19 KDZC270 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.20 LOS000 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.21 NIS090 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.22 RIO360 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.23 S1010 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.24 SHI090 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 8d.25 SYL360 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Ek 9a Maksimum kiriş gerilmeleri

Şekil Ek 9a.1 Maksimum 1. kat kiriş gerilmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 9a.2 Maksimum 2. kat kiriş gerilmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 9a.3 Maksimum 3. kat kiriş gerilmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 9a.4 Maksimum 1. kat kiriş gerilmeleri (9.0*m* aç kl kl çerçeveler)

Şekil Ek 9a.5 Maksimum 2. kat kiriş gerilmeleri (9.0*m* aç kl kl çerçeveler)

Şekil Ek 9a.6 Maksimum 3. kat kiriş gerilmeleri (9.0m aç kl kl çerçeveler)

			0		,				
C	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	398	416	430	416	433	449	424	446	471
P70_SMTR_SH14	238	283	317	289	317	379	314	346	394
P70_SMTR_SH11	238	279	294	286	293	311	292	302	332
P60_SMTR_SH14	228	253	293	259	282	356	284	314	392
P60_SMTR_SH11	228	247	260	251	257	276	256	265	293
P50_SMTR_SH14	193	215	265	210	245	324	229	271	390
P50_SMTR_SH11	193	203	219	201	212	236	208	223	310
P70_HFC_SH14	260	294	326	299	332	379	307	364	405
P70_HFC_SH11	254	284	296	286	298	310	290	312	394
P60_HFC_SH14	247	261	293	267	301	395	286	327	426
P60_HFC_SH11	243	251	260	253	266	391	257	279	401
P50_HFC_SH14	187	228	265	213	263	391	236	295	407
P50_HFC_SH11	187	213	364	203	228	393	208	228	389

Ek 9b Minimum, ortalama, maksimum kiriş gerilmeleri

Çizelge Ek 9b.1 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 1. kat kiriş gerilmeleri (*MPa*)

Çizelge Ek 9b.2 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 1. kat kiriş gerilmeleri (*MPa*)

Comment	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	394	408	422	405	421	431	415	431	449
P70_SMTR_SH14	235	264	294	272	293	317	285	320	356
P70_SMTR_SH11	235	262	279	271	278	286	275	287	299
P60_SMTR_SH14	200	230	256	225	255	288	252	281	348
P60_SMTR_SH11	200	227	238	226	239	249	237	247	268
P50_SMTR_SH14	197	207	228	209	228	268	224	249	317
P50_SMTR_SH11	193	197	204	197	204	217	203	211	231
P70_HFC_SH14	237	273	322	280	305	342	299	331	385
P70_HFC_SH11	237	266	284	271	282	296	282	290	301
P60_HFC_SH14	208	239	273	238	270	309	262	292	328
P60_HFC_SH11	208	232	246	233	243	252	238	249	262
P50_HFC_SH14	194	215	230	221	240	269	235	269	389
P50_HFC_SH11	186	200	213	200	207	216	207	226	392

	Tasa	r m Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	394	410	428	408	427	440	424	440	455
P70_SMTR_SH14	259	292	312	297	322	349	315	347	383
P70_SMTR_SH11	259	285	292	288	295	302	293	303	316
P60_SMTR_SH14	233	250	269	253	277	304	278	305	341
P60_SMTR_SH11	233	240	247	241	248	256	249	256	273
P50_SMTR_SH14	199	214	235	218	238	270	229	262	299
P50_SMTR_SH11	198	203	210	204	210	225	207	218	238
P70_HFC_SH14	265	302	330	304	335	363	327	363	398
P70_HFC_SH11	265	290	340	290	304	390	296	319	407
P60_HFC_SH14	238	260	290	274	295	394	286	325	400
P60_HFC_SH11	229	243	251	248	264	391	252	271	391
P50_HFC_SH14	188	231	327	209	263	389	234	287	402
P50_HFC_SH11	188	215	393	201	225	396	211	250	390

Çizelge Ek 9b.3 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 2. kat kiriş gerilmeleri (*MPa*)

Çizelge Ek 9b.4 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 2. kat kiriş gerilmeleri (*MPa*)

Comment	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	390	403	416	400	416	436	408	424	443
P70_SMTR_SH14	240	274	309	278	303	341	300	328	354
P70_SMTR_SH11	240	269	281	273	281	291	279	288	296
P60_SMTR_SH14	214	236	262	242	261	286	259	282	310
P60_SMTR_SH11	214	230	240	233	239	247	239	246	253
P50_SMTR_SH14	184	200	214	205	221	240	220	243	269
P50_SMTR_SH11	184	194	199	196	201	206	200	208	220
P70_HFC_SH14	242	283	318	295	315	352	313	338	372
P70_HFC_SH11	242	274	284	280	285	294	285	291	299
P60_HFC_SH14	227	242	271	250	277	393	264	293	321
P60_HFC_SH11	227	234	242	237	243	249	241	249	256
P50_HFC_SH14	194	212	230	220	236	257	231	267	399
P50_HFC_SH11	193	199	209	201	205	211	204	231	398

	Tasa	r m Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	385	399	420	392	411	441	394	422	449
P70_SMTR_SH14	234	275	316	271	309	344	289	335	387
P70_SMTR_SH11	234	270	291	271	288	302	282	298	317
P60_SMTR_SH14	214	246	270	239	273	317	261	300	361
P60_SMTR_SH11	214	241	251	239	252	264	249	260	279
P50_SMTR_SH14	190	218	247	217	241	286	225	266	324
P50_SMTR_SH11	190	209	217	210	216	229	212	224	239
P70_HFC_SH14	241	288	345	282	330	395	305	351	393
P70_HFC_SH11	240	289	315	290	315	379	302	328	394
P60_HFC_SH14	218	262	318	262	291	326	264	318	390
P60_HFC_SH11	218	250	324	248	257	270	252	279	390
P50_HFC_SH14	191	232	271	215	263	405	244	293	390
P50_HFC_SH11	191	214	232	210	222	242	218	261	392

Çizelge Ek 9b.5 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 3. kat kiriş gerilmeleri (*MPa*)

Çizelge Ek 9b.6 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 3. kat kiriş gerilmeleri (*MPa*)

C	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	375	396	415	392	407	436	398	416	442
P70_SMTR_SH14	216	263	318	247	299	355	282	328	376
P70_SMTR_SH11	216	260	290	247	283	303	276	294	310
P60_SMTR_SH14	199	236	279	235	264	307	255	287	327
P60_SMTR_SH11	199	232	250	235	246	259	243	253	265
P50_SMTR_SH14	188	207	222	209	229	255	219	251	287
P50_SMTR_SH11	188	202	207	204	210	217	207	216	227
P70_HFC_SH14	217	274	323	283	313	368	288	342	409
P70_HFC_SH11	217	267	292	277	289	307	281	298	309
P60_HFC_SH14	215	244	282	246	277	306	264	301	334
P60_HFC_SH11	215	238	255	241	250	258	246	259	328
P50_HFC_SH14	199	221	244	225	243	272	234	269	390
P50_HFC_SH11	199	208	221	208	219	335	211	232	343

Şekil Ek 9c.1 Maksimum 1. kat kiriş yay dönmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 9c.2 Maksimum 2. kat kiriş yay dönmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 9c.3 Maksimum 3. kat kiriş yay dönmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 9c.4 Maksimum 1. kat kiriş yay dönmeleri (9.0*m* aç kl kl çerçeveler)

Şekil Ek 9c.5 Maksimum 2. kat kiriş yay dönmeleri (9.0*m* aç kl kl çerçeveler)

Şekil Ek 9c.6 Maksimum 3. kat kiriş yay dönmeleri (9.0*m* aç kl kl çerçeveler)

C	Tasa	r m Dej	premi	Maksi	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	1.00	1.44	1.86	1.38	2.00	2.80	1.58	2.62	4.19
P70_SMTR_SH14	0.90	1.02	1.19	1.03	1.17	1.37	1.17	1.29	1.59
P70_SMTR_SH11	0.90	1.03	1.22	1.04	1.20	1.35	1.20	1.31	1.41
P60_SMTR_SH14	0.91	1.00	1.19	1.03	1.15	1.36	1.17	1.25	1.56
P60_SMTR_SH11	0.91	1.01	1.25	1.04	1.18	1.30	1.21	1.26	1.33
P50_SMTR_SH14	0.86	0.98	1.18	0.96	1.12	1.34	1.06	1.19	1.52
P50_SMTR_SH11	0.86	1.00	1.18	0.98	1.14	1.23	1.10	1.18	1.28
P70_HFC_SH14	0.92	1.07	1.23	1.05	1.23	1.37	1.13	1.42	3.22
P70_HFC_SH11	0.90	1.09	1.27	1.08	1.28	1.36	1.15	1.41	2.34
P60_HFC_SH14	0.96	1.04	1.19	1.10	1.25	2.43	1.18	1.53	6.49
P60_HFC_SH11	0.95	1.07	1.25	1.15	1.27	1.97	1.23	1.45	3.30
P50_HFC_SH14	0.80	1.05	1.17	0.98	1.21	2.14	1.10	1.51	3.88
P50_HFC_SH11	0.80	1.11	1.83	1.00	1.23	2.52	1.12	1.22	1.97

Ek 9d Minimum, ortalama, maksimum kiriş yay dönmeleri

Çizelge Ek 9d.1 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 1. kat kiriş yay dönmesi/akma yay dönmesi oranlar

Çizelge Ek 9d.2 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 1. kat kiriş yay dönmesi/akma yay dönmesi oranlar

	Tasa	r m Dej	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.97	1.33	1.75	1.30	1.76	2.17	1.49	2.20	3.15
P70_SMTR_SH14	0.82	0.88	0.99	0.89	0.98	1.08	0.95	1.08	1.19
P70_SMTR_SH11	0.82	0.89	1.02	0.89	1.01	1.13	0.95	1.12	1.20
P60_SMTR_SH14	0.76	0.83	0.94	0.80	0.93	1.05	0.92	1.02	1.21
P60_SMTR_SH11	0.76	0.83	0.97	0.80	0.96	1.10	0.94	1.06	1.15
P50_SMTR_SH14	0.79	0.86	0.99	0.87	0.97	1.08	0.97	1.04	1.19
P50_SMTR_SH11	0.79	0.87	1.02	0.87	0.99	1.05	1.00	1.04	1.11
P70_HFC_SH14	0.77	0.91	1.09	0.94	1.03	1.15	1.01	1.12	1.26
P70_HFC_SH11	0.77	0.91	1.09	0.90	1.07	1.19	1.07	1.16	1.23
P60_HFC_SH14	0.73	0.86	0.99	0.85	0.98	1.10	0.96	1.06	1.22
P60_HFC_SH11	0.73	0.88	1.07	0.88	1.02	1.10	0.90	1.08	1.16
P50_HFC_SH14	0.79	0.90	0.99	0.95	1.02	1.08	1.00	1.13	1.80
P50_HFC_SH11	0.73	0.92	1.02	0.93	1.02	1.05	1.03	1.11	2.09

	Tasa	r m Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.92	1.27	1.90	1.24	1.80	2.40	1.60	2.37	3.17
P70_SMTR_SH14	0.88	1.04	1.17	1.05	1.24	1.35	1.19	1.34	1.45
P70_SMTR_SH11	0.88	1.04	1.18	1.05	1.26	1.35	1.20	1.34	1.39
P60_SMTR_SH14	0.88	0.99	1.15	1.01	1.16	1.26	1.19	1.25	1.36
P60_SMTR_SH11	0.88	1.00	1.17	1.01	1.18	1.25	1.23	1.25	1.28
P50_SMTR_SH14	0.83	0.95	1.11	0.99	1.11	1.21	1.08	1.18	1.28
P50_SMTR_SH11	0.83	0.96	1.15	1.00	1.12	1.18	1.11	1.17	1.22
P70_HFC_SH14	0.85	1.10	1.31	1.10	1.29	1.38	1.28	1.47	2.66
P70_HFC_SH11	0.84	1.13	1.60	1.09	1.34	1.89	1.29	1.59	3.72
P60_HFC_SH14	0.88	1.05	1.22	1.17	1.27	2.32	1.21	1.42	2.93
P60_HFC_SH11	0.83	1.08	1.25	1.19	1.31	2.21	1.24	1.32	2.06
P50_HFC_SH14	0.72	1.08	1.65	0.91	1.20	1.90	1.11	1.47	3.46
P50_HFC_SH11	0.72	1.14	2.49	0.95	1.26	2.91	1.15	1.34	2.06

Çizelge Ek 9d.3 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 2. kat kiriş yay dönmesi/akma yay dönmesi oranlar

Çizelge Ek 9d.4 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 2. kat kiriş yay dönmesi/akma yay dönmesi oranlar

Comment	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.78	1.17	1.65	1.12	1.57	2.69	1.31	1.92	3.11
P70_SMTR_SH14	0.74	0.90	1.11	0.91	1.05	1.20	1.05	1.16	1.23
P70_SMTR_SH11	0.74	0.90	1.14	0.91	1.07	1.20	1.07	1.18	1.21
P60_SMTR_SH14	0.77	0.86	1.02	0.88	1.00	1.10	1.00	1.08	1.15
P60_SMTR_SH11	0.77	0.86	1.05	0.88	1.02	1.11	1.02	1.10	1.13
P50_SMTR_SH14	0.73	0.80	0.90	0.83	0.93	1.01	0.94	1.01	1.08
P50_SMTR_SH11	0.73	0.80	0.92	0.83	0.96	1.03	0.98	1.03	1.06
P70_HFC_SH14	0.72	0.94	1.14	1.02	1.12	1.23	1.12	1.19	1.27
P70_HFC_SH11	0.72	0.93	1.18	1.05	1.15	1.21	1.14	1.20	1.22
P60_HFC_SH14	0.79	0.89	1.07	0.94	1.09	2.01	1.03	1.11	1.19
P60_HFC_SH11	0.79	0.90	1.11	0.94	1.07	1.12	1.08	1.12	1.16
P50_HFC_SH14	0.74	0.88	0.99	0.94	1.01	1.20	0.99	1.15	2.65
P50_HFC_SH11	0.74	0.89	1.03	0.99	1.02	1.04	1.03	1.17	2.70

	Tasa	r m Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.71	1.14	1.86	0.91	1.49	2.69	1.00	1.82	2.99
P70_SMTR_SH14	0.85	1.11	1.34	1.09	1.31	1.53	1.17	1.45	1.69
P70_SMTR_SH11	0.85	1.11	1.37	1.09	1.33	1.61	1.17	1.49	1.68
P60_SMTR_SH14	0.81	1.08	1.23	1.06	1.24	1.45	1.18	1.37	1.59
P60_SMTR_SH11	0.81	1.09	1.26	1.06	1.28	1.53	1.21	1.43	1.57
P50_SMTR_SH14	0.86	1.06	1.26	1.06	1.21	1.42	1.11	1.33	1.52
P50_SMTR_SH11	0.86	1.07	1.30	1.07	1.26	1.47	1.13	1.38	1.49
P70_HFC_SH14	0.83	1.21	1.62	1.11	1.50	3.25	1.28	1.61	2.69
P70_HFC_SH11	0.82	1.23	1.79	1.08	1.55	2.05	1.30	1.76	3.20
P60_HFC_SH14	0.80	1.17	1.54	1.17	1.39	1.81	1.26	1.51	2.16
P60_HFC_SH11	0.78	1.26	1.87	1.24	1.43	1.66	1.28	1.63	2.39
P50_HFC_SH14	0.75	1.19	1.39	0.98	1.56	6.01	1.23	1.56	2.31
P50_HFC_SH11	0.75	1.27	1.59	1.16	1.42	1.68	1.34	1.72	3.59

Çizelge Ek 9d.5 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 3. kat kiriş yay dönmesi/akma yay dönmesi oranlar

Çizelge Ek 9d.6 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 3. kat kiriş yay dönmesi/akma yay dönmesi oranlar

Comment	Tasa	r m Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.62	0.97	1.56	0.84	1.28	2.43	1.03	1.53	2.77
P70_SMTR_SH14	0.59	0.95	1.22	0.92	1.12	1.39	1.03	1.26	1.44
P70_SMTR_SH11	0.59	0.95	1.25	0.92	1.14	1.46	1.03	1.30	1.48
P60_SMTR_SH14	0.69	0.91	1.11	0.92	1.04	1.24	1.01	1.15	1.29
P60_SMTR_SH11	0.69	0.92	1.16	0.92	1.07	1.33	1.03	1.21	1.37
P50_SMTR_SH14	0.78	0.88	0.97	0.89	1.01	1.16	0.96	1.13	1.26
P50_SMTR_SH11	0.78	0.89	1.00	0.89	1.05	1.24	0.99	1.19	1.30
P70_HFC_SH14	0.62	0.97	1.26	1.02	1.21	1.41	1.07	1.48	5.35
P70_HFC_SH11	0.62	0.97	1.30	1.00	1.28	1.63	1.06	1.39	1.53
P60_HFC_SH14	0.71	0.94	1.19	0.96	1.12	1.25	1.05	1.21	1.39
P60_HFC_SH11	0.71	0.95	1.24	0.93	1.18	1.54	1.09	1.31	1.70
P50_HFC_SH14	0.72	1.01	1.27	0.99	1.12	1.31	1.04	1.24	1.98
P50_HFC_SH11	0.72	1.03	1.31	1.04	1.21	1.96	1.09	1.34	1.89

Ek 10a Maksimum kolon gerilmeleri

Şekil Ek 10a.1 Maksimum 1. kat kolon gerilmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 10a.2 Maksimum 2. kat kolon gerilmeleri (7.0m aç kl kl çerçeveler)

Şekil Ek 10a.3 Maksimum 3. kat kolon gerilmeleri (7.0m aç kl kl çerçeveler)

Şekil Ek 10a.4 Maksimum 1. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler)

Şekil Ek 10a.5 Maksimum 2. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler)

Şekil Ek 10a.6 Maksimum 3. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler)
			U		<i>,</i>				
C	Tasa	rım Dej	premi	Maksi	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	361	390	398	391	399	416	395	410	437
P70_SMTR_SH14	324	381	401	390	397	419	393	410	447
P70_SMTR_SH11	324	381	400	390	397	417	393	408	443
P60_SMTR_SH14	349	387	402	392	400	431	395	415	458
P60_SMTR_SH11	349	387	401	391	399	429	394	413	454
P50_SMTR_SH14	336	388	409	390	402	439	393	417	464
P50_SMTR_SH11	335	388	407	390	400	435	392	414	458
P70_HFC_SH14	319	385	406	392	405	422	395	419	446
P70_HFC_SH11	320	386	404	391	404	417	397	415	443
P60_HFC_SH14	381	394	406	399	408	431	405	426	457
P60_HFC_SH11	361	393	403	397	406	428	399	421	453
P50_HFC_SH14	305	393	408	391	412	438	396	428	462
P50_HFC_SH11	305	393	410	391	408	434	393	423	459

Ek 10b Minimum, ortalama, maksimum kolon gerilmeleri

Çizelge Ek 10b.1 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 1. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 10b.2 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 1. kat kolon gerilmeleri (*MPa*)

G	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	369	393	410	393	404	419	399	416	438
P70_SMTR_SH14	333	382	402	391	398	414	395	409	432
P70_SMTR_SH11	333	382	400	391	397	411	394	407	430
P60_SMTR_SH14	353	384	404	390	398	418	394	410	444
P60_SMTR_SH11	353	383	402	390	398	417	393	408	441
P50_SMTR_SH14	381	392	404	391	402	431	397	417	459
P50_SMTR_SH11	381	392	402	391	401	428	396	415	454
P70_HFC_SH14	350	387	409	391	403	421	400	416	437
P70_HFC_SH11	350	386	404	392	403	419	398	413	434
P60_HFC_SH14	343	390	413	392	406	423	399	419	444
P60_HFC_SH11	343	390	411	391	404	420	398	415	440
P50_HFC_SH14	364	395	412	397	413	431	403	430	459
P50_HFC_SH11	351	394	412	392	409	428	402	427	454

~	Tasa	rım Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	274	330	390	356	386	391	390	392	400
P70_SMTR_SH14	255	317	385	321	373	394	373	391	410
P70_SMTR_SH11	255	317	386	320	372	393	369	390	408
P60_SMTR_SH14	274	326	390	334	380	400	389	394	420
P60_SMTR_SH11	274	326	390	330	378	399	387	393	415
P50_SMTR_SH14	263	335	391	328	384	406	366	394	427
P50_SMTR_SH11	263	334	391	324	382	403	365	393	420
P70_HFC_SH14	249	328	390	340	382	394	367	393	411
P70_HFC_SH11	249	329	390	319	382	394	357	392	409
P60_HFC_SH14	285	342	390	355	389	401	391	397	422
P60_HFC_SH11	270	342	390	357	388	400	390	397	416
P50_HFC_SH14	232	359	395	314	390	407	383	399	430
P50_HFC_SH11	232	358	394	322	389	403	367	396	420

Çizelge Ek 10b.3 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 2. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 10b.4 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 2. kat kolon gerilmeleri (*MPa*)

0	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	269	339	390	363	385	394	390	392	404
P70_SMTR_SH14	241	287	390	307	340	391	335	371	396
P70_SMTR_SH11	241	287	390	305	338	391	327	367	394
P60_SMTR_SH14	242	290	354	287	344	391	329	374	396
P60_SMTR_SH11	242	290	353	287	342	391	327	372	395
P50_SMTR_SH14	243	288	332	288	341	391	344	376	402
P50_SMTR_SH11	243	288	332	288	338	390	338	371	396
P70_HFC_SH14	243	295	362	317	358	393	344	384	403
P70_HFC_SH11	243	292	359	313	354	393	336	382	400
P60_HFC_SH14	242	299	358	318	365	391	336	384	399
P60_HFC_SH11	243	300	362	304	357	391	333	378	396
P50_HFC_SH14	225	308	364	325	368	392	338	389	404
P50_HFC_SH11	225	307	390	316	362	391	328	386	407

	Tasa	rım Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	235	348	395	301	385	418	327	399	427
P70_SMTR_SH14	206	297	383	284	361	391	325	384	401
P70_SMTR_SH11	206	296	378	284	358	390	324	381	396
P60_SMTR_SH14	189	279	350	258	341	391	312	376	402
P60_SMTR_SH11	189	276	349	257	332	391	305	371	402
P50_SMTR_SH14	173	250	367	246	310	392	264	356	398
P50_SMTR_SH11	173	246	358	241	301	391	254	346	400
P70_HFC_SH14	210	319	391	294	378	407	351	392	417
P70_HFC_SH11	209	319	393	286	374	416	337	390	416
P60_HFC_SH14	192	317	395	302	369	396	317	387	417
P60_HFC_SH11	186	314	393	297	364	402	324	384	417
P50_HFC_SH14	168	285	392	224	348	405	312	378	417
P50_HFC_SH11	168	288	399	226	345	399	287	371	418

Çizelge Ek 10b.5 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 3. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 10b.6 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 3. kat kolon gerilmeleri (*MPa*)

Comment	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	205	301	390	276	359	401	314	384	408
P70_SMTR_SH14	161	254	342	238	314	390	289	355	391
P70_SMTR_SH11	161	252	329	238	308	370	287	344	390
P60_SMTR_SH14	165	238	321	239	296	390	275	337	392
P60_SMTR_SH11	165	237	316	239	289	386	267	325	393
P50_SMTR_SH14	170	218	279	214	268	367	235	314	392
P50_SMTR_SH11	170	216	278	208	261	366	229	306	392
P70_HFC_SH14	169	266	352	283	336	390	291	369	399
P70_HFC_SH11	169	260	336	276	330	390	289	360	408
P60_HFC_SH14	183	248	343	244	323	397	289	358	395
P60_HFC_SH11	183	251	394	242	319	395	277	350	402
P50_HFC_SH14	172	242	322	247	313	392	264	351	399
P50_HFC_SH11	172	247	390	238	310	393	252	344	396

Ek 10c Maksimum kolon yay dönmeleri

Şekil Ek 10c.1 Maksimum 1. kat kolon yay dönmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 10c.2 Maksimum 2. kat kolon yay dönmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 10c.3 Maksimum 3. kat kolon yay dönmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek 10c.4 Maksimum 1. kat kolon yay dönmeleri (9.0*m* aç kl kl çerçeveler)

Şekil Ek 10c.5 Maksimum 2. kat kolon yay dönmeleri (9.0*m* aç kl kl çerçeveler)

Şekil Ek 10c.6 Maksimum 3. kat kolon yay dönmeleri (9.0*m* aç kl kl çerçeveler)

	· · · · ·								
C	Tasa	rım Dej	premi	Maksi	imum D	eprem	1.33xN	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	1.02	1.31	1.74	1.26	1.80	2.62	1.46	2.38	4.21
P70_SMTR_SH14	0.89	1.23	1.83	1.27	1.72	2.98	1.56	2.33	4.70
P70_SMTR_SH11	0.89	1.22	1.79	1.29	1.71	2.98	1.51	2.31	4.71
P60_SMTR_SH14	0.94	1.26	2.04	1.35	1.83	3.71	1.50	2.58	5.62
P60_SMTR_SH11	0.94	1.25	2.05	1.35	1.82	3.71	1.50	2.55	5.58
P50_SMTR_SH14	0.85	1.30	2.44	1.18	1.93	4.25	1.48	2.64	6.22
P50_SMTR_SH11	0.85	1.30	2.44	1.18	1.91	4.22	1.46	2.59	6.14
P70_HFC_SH14	0.90	1.38	2.04	1.45	2.07	2.98	1.53	2.73	4.71
P70_HFC_SH11	0.90	1.40	2.08	1.29	2.08	2.99	1.64	2.57	4.72
P60_HFC_SH14	1.09	1.45	2.04	1.70	2.21	3.71	1.90	2.92	5.63
P60_HFC_SH11	1.02	1.47	2.08	1.61	2.16	3.70	1.79	2.88	5.60
P50_HFC_SH14	0.79	1.58	2.43	1.26	2.31	4.23	1.65	2.98	6.20
P50_HFC_SH11	0.79	1.58	2.43	1.31	2.25	4.20	1.52	2.97	6.13

Ek 10d Minimum, ortalama, maksimum kolon yay dönmeleri

Çizelge Ek 10d.1 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 1. kat kolon yay dönmesi/akma yay dönmesi oranları

Çizelge Ek 10d.2 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 1. kat kolon yay dönmesi/akma yay dönmesi oranları

Concerco	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	1.13	1.54	2.31	1.47	2.09	2.84	1.94	2.73	4.18
P70_SMTR_SH14	1.05	1.38	2.07	1.47	1.88	2.59	1.75	2.48	3.82
P70_SMTR_SH11	1.05	1.37	2.02	1.47	1.86	2.52	1.70	2.44	3.82
P60_SMTR_SH14	1.01	1.36	2.11	1.20	1.90	3.02	1.68	2.52	4.79
P60_SMTR_SH11	1.01	1.35	2.05	1.20	1.89	3.01	1.66	2.49	4.76
P50_SMTR_SH14	1.13	1.43	2.10	1.44	2.01	3.81	1.79	2.80	5.88
P50_SMTR_SH11	1.13	1.43	2.10	1.44	1.99	3.76	1.75	2.74	5.80
P70_HFC_SH14	1.14	1.54	2.55	1.63	2.18	2.98	2.02	2.86	3.84
P70_HFC_SH11	1.14	1.48	2.24	1.56	2.17	3.01	1.96	2.77	3.93
P60_HFC_SH14	1.09	1.54	2.62	1.56	2.30	3.15	1.91	2.95	4.80
P60_HFC_SH11	1.10	1.56	2.53	1.49	2.22	3.01	1.76	2.81	4.76
P50_HFC_SH14	1.11	1.66	2.22	1.78	2.53	3.81	2.10	3.34	5.91
P50_HFC_SH11	1.03	1.69	2.51	1.48	2.34	3.76	2.03	3.32	5.82

	Tasa	rım Dej	premi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.67	0.86	1.12	0.92	1.13	1.52	1.02	1.35	2.10
P70_SMTR_SH14	0.61	0.84	1.11	0.83	1.06	1.51	1.02	1.32	2.56
P70_SMTR_SH11	0.61	0.84	1.10	0.83	1.06	1.52	1.03	1.32	2.53
P60_SMTR_SH14	0.64	0.86	1.19	0.86	1.13	1.91	1.02	1.45	3.09
P60_SMTR_SH11	0.64	0.86	1.20	0.87	1.13	1.89	1.02	1.46	2.97
P50_SMTR_SH14	0.65	0.90	1.30	0.81	1.20	2.28	0.97	1.56	3.62
P50_SMTR_SH11	0.65	0.91	1.32	0.81	1.21	2.17	0.97	1.54	3.34
P70_HFC_SH14	0.56	0.87	1.17	0.94	1.17	1.52	0.96	1.47	2.63
P70_HFC_SH11	0.56	0.88	1.19	0.80	1.22	1.67	1.02	1.48	2.60
P60_HFC_SH14	0.69	0.93	1.39	0.94	1.23	1.92	1.12	1.68	3.31
P60_HFC_SH11	0.63	0.95	1.36	0.98	1.29	1.89	1.04	1.71	3.04
P50_HFC_SH14	0.53	1.00	1.56	0.80	1.36	2.33	1.00	1.89	3.98
P50_HFC_SH11	0.53	1.03	1.58	0.83	1.33	2.17	0.94	1.76	3.33

Çizelge Ek 10d.3 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 2. kat kolon yay dönmesi/akma yay dönmesi oranları

Çizelge Ek 10d.4 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 2. kat kolon yay dönmesi/akma yay dönmesi oranları

C	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.65	0.86	1.12	0.86	1.09	1.74	0.93	1.33	2.44
P70_SMTR_SH14	0.59	0.78	1.22	0.71	0.99	1.61	0.81	1.20	2.14
P70_SMTR_SH11	0.59	0.78	1.22	0.71	0.99	1.61	0.81	1.20	2.05
P60_SMTR_SH14	0.60	0.81	1.09	0.76	1.04	1.49	0.90	1.23	1.84
P60_SMTR_SH11	0.60	0.81	1.09	0.75	1.05	1.46	0.89	1.23	1.79
P50_SMTR_SH14	0.65	0.83	1.09	0.78	1.03	1.35	0.96	1.26	2.13
P50_SMTR_SH11	0.65	0.83	1.08	0.79	1.03	1.35	0.95	1.26	1.86
P70_HFC_SH14	0.58	0.81	1.22	0.70	1.07	1.84	0.87	1.34	2.61
P70_HFC_SH11	0.58	0.80	1.23	0.84	1.08	1.85	0.88	1.35	2.53
P60_HFC_SH14	0.60	0.84	1.24	0.75	1.14	1.62	0.89	1.39	2.38
P60_HFC_SH11	0.60	0.87	1.46	0.75	1.13	1.66	0.82	1.40	2.33
P50_HFC_SH14	0.57	0.90	1.26	0.88	1.16	1.61	0.96	1.48	2.24
P50_HFC_SH11	0.57	0.93	1.62	0.88	1.16	1.67	0.94	1.49	2.29

	Tasa	rım Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.66	0.92	1.34	0.89	1.35	2.85	1.00	1.87	3.54
P70_SMTR_SH14	0.52	0.74	0.95	0.75	0.97	1.27	0.90	1.21	1.71
P70_SMTR_SH11	0.52	0.74	0.95	0.75	0.97	1.25	0.91	1.16	1.61
P60_SMTR_SH14	0.49	0.71	0.98	0.71	0.93	1.25	0.91	1.16	1.90
P60_SMTR_SH11	0.49	0.71	0.97	0.71	0.92	1.28	0.88	1.16	1.94
P50_SMTR_SH14	0.43	0.64	0.97	0.68	0.86	1.34	0.76	1.06	1.72
P50_SMTR_SH11	0.42	0.64	0.99	0.67	0.85	1.35	0.74	1.09	1.93
P70_HFC_SH14	0.52	0.81	1.15	0.74	1.17	2.34	0.94	1.47	2.86
P70_HFC_SH11	0.53	0.85	1.47	0.71	1.24	2.83	0.91	1.51	2.88
P60_HFC_SH14	0.50	0.85	1.42	0.85	1.08	1.55	0.97	1.45	2.77
P60_HFC_SH11	0.46	0.87	1.37	0.81	1.11	1.87	0.98	1.45	2.84
P50_HFC_SH14	0.39	0.76	1.33	0.57	1.08	2.21	0.86	1.52	3.07
P50_HFC_SH11	0.39	0.82	1.82	0.64	1.10	1.91	0.78	1.44	3.28

Çizelge Ek 10d.5 7.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 3. kat kolon yay dönmesi/akma yay dönmesi oranları

Çizelge Ek 10d.6 9.0*m* açıklıklı çerçevelerin minimum, ortalama ve maksimum 3. kat kolon yay dönmesi/akma yay dönmesi oranları

C	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.51	0.74	0.97	0.73	0.97	1.56	0.85	1.18	2.03
P70_SMTR_SH14	0.49	0.67	0.86	0.70	0.86	1.02	0.81	1.02	1.40
P70_SMTR_SH11	0.49	0.67	0.87	0.70	0.87	1.03	0.81	1.02	1.42
P60_SMTR_SH14	0.45	0.65	0.85	0.66	0.84	1.10	0.80	0.99	1.44
P60_SMTR_SH11	0.45	0.65	0.86	0.66	0.85	1.13	0.80	0.99	1.54
P50_SMTR_SH14	0.49	0.60	0.80	0.61	0.76	1.07	0.69	0.92	1.45
P50_SMTR_SH11	0.49	0.60	0.81	0.61	0.76	1.11	0.69	0.92	1.49
P70_HFC_SH14	0.50	0.70	1.08	0.79	0.98	1.38	0.83	1.16	1.90
P70_HFC_SH11	0.50	0.68	1.04	0.75	0.99	1.43	0.83	1.18	2.69
P60_HFC_SH14	0.50	0.67	1.05	0.69	1.00	1.76	0.77	1.12	1.63
P60_HFC_SH11	0.50	0.72	1.67	0.69	1.00	1.73	0.76	1.20	2.14
P50_HFC_SH14	0.45	0.65	0.87	0.69	0.92	1.43	0.78	1.14	2.02
P50_HFC_SH11	0.45	0.69	1.28	0.66	0.93	1.58	0.77	1.12	1.79

Ek 11 Kolonlarda oluşan plastik mafsal say lar

Şekil Ek 11.1 7.0*m* aç kl kl çerçevelerin 1.kat kolon uçlar nda oluşan plastik mafsal say s (Tasar m deprem seviyesi)

Şekil Ek 11.2 7.0*m* aç kl kl çerçevelerin 1.kat kolon uçlar nda oluşan plastik mafsal say s (Maksimum deprem seviyesi)

Şekil Ek 11.3 7.0*m* aç kl kl çerçevelerin 1.kat kolon uçlar nda oluşan plastik mafsal say s (1.33xMaksimum deprem seviyesi)

Şekil Ek 11.4 7.0m aç kl kl çerçevelerin 2.kat kolon uçlar nda oluşan plastik mafsal say s (Tasar m deprem seviyesi)

Şekil Ek 11.5 7.0m aç kl kl çerçevelerin 2.kat kolon uçlar nda oluşan plastik mafsal say s (Maksimum deprem seviyesi)

Şekil Ek 11.6 7.0*m* aç kl kl çerçevelerin 2.kat kolon uçlar nda oluşan plastik mafsal say s (1.33xMaksimum deprem seviyesi)

Şekil Ek 11.7 7.0*m* aç kl kl çerçevelerin 3.kat kolon uçlar nda oluşan plastik mafsal say s (Tasar m deprem seviyesi)

Şekil Ek 11.8 7.0*m* aç kl kl çerçevelerin 3.kat kolon uçlar nda oluşan plastik mafsal say s (Maksimum deprem seviyesi)

449

Şekil Ek 11.9 7.0*m* aç kl kl çerçevelerin 3.kat kolon uçlar nda oluşan plastik mafsal say s (1.33xMaksimum deprem seviyesi)

Şekil Ek 11.10 9.0*m* aç kl kl çerçevelerin 1.kat kolon uçlar nda oluşan plastik mafsal say s (Tasar m deprem seviyesi)

Şekil Ek 11.11 9.0*m* aç kl kl çerçevelerin 1.kat kolon uçlar nda oluşan plastik mafsal say s (Maksimum deprem seviyesi)

Şekil Ek 11.12 9.0*m* aç kl kl çerçevelerin 1.kat kolon uçlar nda oluşan plastik mafsal say s (1.33xMaksimum deprem seviyesi)

Şekil Ek 11.13 9.0*m* aç kl kl çerçevelerin 2.kat kolon uçlar nda oluşan plastik mafsal say s (Tasar m deprem seviyesi)

Şekil Ek 11.14 9.0*m* aç kl kl çerçevelerin 2.kat kolon uçlar nda oluşan plastik mafsal say s (Maksimum deprem seviyesi

Şekil Ek 11.15 9.0*m* aç kl kl çerçevelerin 2.kat kolon uçlar nda oluşan plastik mafsal say s (1.33xMaksimum deprem seviyesi)

Şekil Ek 11.16 9.0*m* aç kl kl çerçevelerin 3.kat kolon uçlar nda oluşan plastik mafsal say s (Tasar m deprem seviyesi)

Şekil Ek 11.17 9.0*m* aç kl kl çerçevelerin 3.kat kolon uçlar nda oluşan plastik mafsal say s (Maksimum deprem seviyesi)

Şekil Ek 11.18 9.0m aç kl kl çerçevelerin 3.kat kolon uçlar nda oluşan plastik mafsal say s (1.33xMaksimum deprem seviyesi)

Ek 12a Maksimum birleşim dönmesi

Şekil Ek12a.1 Maksimum 1. kat birleşim dönmesi (7.0*m* aç kl kl çerçeveler)

Şekil Ek12a.2 Maksimum 2. kat birleşim dönmeleri (7.0m aç kl kl çerçeveler)

a) Tasar m depremi

b) Maksimum deprem

c) 1.33xMaksimum Deprem

Şekil Ek12a.3 Maksimum 3. kat birleşim dönmeleri (7.0*m* aç kl kl çerçeveler)

Şekil Ek12a.4 Maksimum 1. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler)

Şekil Ek12a.5 Maksimum 2. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler)

Şekil Ek12a.6 Maksimum 3. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler)
			,						
0	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33 x	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.008	0.013	0.020	0.014	0.020	0.032	0.019	0.026	0.047
P70_SMTR_SH11	0.008	0.014	0.022	0.014	0.021	0.037	0.021	0.029	0.055
P60_SMTR_SH14	0.011	0.015	0.025	0.017	0.023	0.040	0.023	0.031	0.057
P60_SMTR_SH11	0.011	0.016	0.028	0.018	0.025	0.046	0.025	0.034	0.067
P50_SMTR_SH14	0.010	0.017	0.031	0.015	0.025	0.048	0.021	0.033	0.066
P50_SMTR_SH11	0.010	0.018	0.034	0.016	0.027	0.054	0.022	0.036	0.076
P70_HFC_SH14	0.010	0.016	0.022	0.017	0.023	0.032	0.018	0.030	0.052
P70_HFC_SH11	0.009	0.016	0.024	0.015	0.026	0.037	0.019	0.032	0.057
P60_HFC_SH14	0.013	0.017	0.025	0.019	0.026	0.042	0.024	0.035	0.064
P60_HFC_SH11	0.012	0.019	0.028	0.022	0.029	0.047	0.028	0.038	0.069
P50_HFC_SH14	0.010	0.021	0.031	0.017	0.029	0.051	0.023	0.037	0.084
P50_HFC_SH11	0.010	0.022	0.034	0.018	0.031	0.055	0.024	0.040	0.079

Ek 12b Minimum, ortalama, maksimum birleşim dönmeleri

Çizelge Ek 12b.1 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 1. kat birleşim dönmeleri (*rad*)

Çizelge Ek 12b.2 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 1. kat birleşim dönmeleri (*rad*)

	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.009	0.013	0.019	0.014	0.018	0.023	0.017	0.023	0.030
P70_SMTR_SH11	0.009	0.013	0.020	0.014	0.019	0.025	0.016	0.026	0.034
P60_SMTR_SH14	0.009	0.014	0.020	0.013	0.020	0.027	0.019	0.025	0.039
P60_SMTR_SH11	0.009	0.014	0.022	0.013	0.021	0.030	0.020	0.028	0.045
P50_SMTR_SH14	0.011	0.014	0.021	0.015	0.021	0.034	0.020	0.028	0.050
P50_SMTR_SH11	0.011	0.015	0.023	0.016	0.023	0.038	0.021	0.031	0.057
P70_HFC_SH14	0.009	0.015	0.024	0.016	0.021	0.027	0.020	0.026	0.035
P70_HFC_SH11	0.009	0.015	0.025	0.014	0.022	0.032	0.022	0.028	0.041
P60_HFC_SH14	0.010	0.016	0.024	0.015	0.023	0.031	0.022	0.028	0.041
P60_HFC_SH11	0.010	0.017	0.026	0.016	0.024	0.032	0.019	0.030	0.046
P50_HFC_SH14	0.010	0.017	0.023	0.019	0.025	0.034	0.023	0.033	0.054
P50_HFC_SH11	0.009	0.018	0.024	0.018	0.026	0.038	0.025	0.036	0.058

	Tasa	r m Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.007	0.011	0.015	0.011	0.018	0.024	0.016	0.024	0.033
P70_SMTR_SH11	0.007	0.011	0.016	0.012	0.019	0.027	0.017	0.027	0.038
P60_SMTR_SH14	0.008	0.013	0.018	0.013	0.020	0.028	0.020	0.028	0.038
P60_SMTR_SH11	0.008	0.013	0.020	0.014	0.022	0.032	0.022	0.031	0.046
P50_SMTR_SH14	0.008	0.014	0.021	0.015	0.022	0.032	0.019	0.030	0.041
P50_SMTR_SH11	0.008	0.015	0.023	0.016	0.024	0.038	0.020	0.034	0.052
P70_HFC_SH14	0.007	0.013	0.021	0.013	0.021	0.028	0.019	0.027	0.034
P70_HFC_SH11	0.007	0.015	0.028	0.013	0.024	0.034	0.020	0.031	0.040
P60_HFC_SH14	0.009	0.015	0.024	0.019	0.024	0.032	0.022	0.032	0.048
P60_HFC_SH11	0.008	0.017	0.030	0.021	0.028	0.037	0.025	0.037	0.059
P50_HFC_SH14	0.007	0.019	0.027	0.012	0.027	0.037	0.021	0.035	0.052
P50_HFC_SH11	0.007	0.021	0.036	0.013	0.030	0.043	0.024	0.040	0.064

Çizelge Ek 12b.3 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 2. kat birleşim dönmeleri (*rad*)

Çizelge Ek 12b.4 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 2. kat birleşim dönmeleri (*rad*)

Comment	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xN	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.007	0.011	0.018	0.011	0.017	0.026	0.016	0.023	0.029
P70_SMTR_SH11	0.007	0.011	0.020	0.011	0.018	0.029	0.018	0.025	0.033
P60_SMTR_SH14	0.008	0.012	0.019	0.013	0.018	0.025	0.018	0.024	0.032
P60_SMTR_SH11	0.008	0.012	0.020	0.013	0.020	0.027	0.019	0.027	0.036
P50_SMTR_SH14	0.008	0.012	0.017	0.014	0.019	0.026	0.019	0.026	0.035
P50_SMTR_SH11	0.008	0.012	0.018	0.014	0.021	0.028	0.021	0.030	0.043
P70_HFC_SH14	0.007	0.013	0.020	0.015	0.020	0.028	0.018	0.025	0.032
P70_HFC_SH11	0.007	0.013	0.022	0.017	0.022	0.032	0.021	0.028	0.038
P60_HFC_SH14	0.010	0.014	0.021	0.015	0.021	0.028	0.019	0.027	0.036
P60_HFC_SH11	0.010	0.015	0.026	0.016	0.023	0.031	0.022	0.031	0.044
P50_HFC_SH14	0.010	0.016	0.022	0.019	0.024	0.032	0.022	0.032	0.045
P50_HFC_SH11	0.010	0.018	0.030	0.021	0.026	0.032	0.025	0.036	0.051

	Tasa	r m Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.007	0.011	0.018	0.009	0.016	0.024	0.012	0.022	0.035
P70_SMTR_SH11	0.007	0.011	0.020	0.009	0.018	0.029	0.012	0.026	0.043
P60_SMTR_SH14	0.008	0.013	0.019	0.011	0.020	0.031	0.017	0.027	0.042
P60_SMTR_SH11	0.008	0.013	0.021	0.011	0.022	0.037	0.018	0.032	0.052
P50_SMTR_SH14	0.008	0.014	0.024	0.014	0.022	0.037	0.016	0.030	0.048
P50_SMTR_SH11	0.008	0.015	0.026	0.014	0.025	0.044	0.017	0.036	0.059
P70_HFC_SH14	0.007	0.018	0.040	0.014	0.025	0.041	0.015	0.027	0.043
P70_HFC_SH11	0.007	0.018	0.039	0.011	0.030	0.049	0.017	0.033	0.047
P60_HFC_SH14	0.008	0.021	0.033	0.017	0.027	0.037	0.021	0.033	0.046
P60_HFC_SH11	0.008	0.022	0.042	0.021	0.031	0.054	0.022	0.039	0.058
P50_HFC_SH14	0.008	0.023	0.033	0.012	0.032	0.083	0.023	0.037	0.057
P50_HFC_SH11	0.008	0.026	0.054	0.022	0.033	0.047	0.024	0.045	0.074

Çizelge Ek 12b.5 7.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 3. kat birleşim dönmeleri (*rad*)

Çizelge Ek 12b.6 9.0*m* aç kl kl çerçevelerin minimum, ortalama ve maksimum 3. kat birleşim dönmeleri (*rad*)

C	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xN	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.006	0.011	0.020	0.009	0.016	0.028	0.012	0.022	0.033
P70_SMTR_SH11	0.006	0.011	0.022	0.009	0.018	0.032	0.012	0.025	0.040
P60_SMTR_SH14	0.007	0.013	0.023	0.013	0.020	0.031	0.017	0.026	0.035
P60_SMTR_SH11	0.007	0.013	0.026	0.013	0.021	0.036	0.018	0.029	0.042
P50_SMTR_SH14	0.009	0.013	0.018	0.014	0.021	0.029	0.017	0.028	0.039
P50_SMTR_SH11	0.009	0.014	0.020	0.013	0.022	0.034	0.019	0.032	0.047
P70_HFC_SH14	0.006	0.016	0.033	0.013	0.024	0.045	0.016	0.029	0.066
P70_HFC_SH11	0.006	0.015	0.032	0.013	0.028	0.046	0.017	0.031	0.050
P60_HFC_SH14	0.009	0.020	0.032	0.017	0.026	0.034	0.020	0.031	0.046
P60_HFC_SH11	0.009	0.020	0.032	0.017	0.029	0.043	0.022	0.036	0.055
P50_HFC_SH14	0.011	0.023	0.034	0.020	0.027	0.037	0.022	0.034	0.047
P50_HFC_SH11	0.011	0.024	0.041	0.022	0.031	0.042	0.025	0.040	0.058

Ek 13 Kat öteleme oran - birleşim dönmesi ilişkileri

Şekil Ek 13.1 Kat öteleme oran – birleşim dönmesi ilişkisi (7.0m aç kl kl çerçeveler, 1. kat)

Şekil Ek 13.2 Kat öteleme oran – birleşim dönmesi ilişkisi (9.0m aç kl kl çerçeveler, 1. kat)

Şekil Ek 13.3 Kat öteleme oran – birleşim dönmesi ilişkisi (7.0m aç kl kl çerçeveler, 2. kat)

Şekil Ek 13.4 Kat öteleme oran – birleşim dönmesi ilişkisi (9.0m aç kl kl çerçeveler, 2. kat)

Şekil Ek 13.5 Kat öteleme oran – birleşim dönmesi ilişkisi (7.0m aç kl kl çerçeveler, 3. kat)

Şekil Ek 13.6 Kat öteleme oran – birleşim dönmesi ilişkisi (9.0m aç kl kl çerçeveler, 3. kat)

Ek 14 Maksimum kat kesme kuvveti – maksimum kat ötelemeleri

d) HFC birleşim modelli çerçeveler, faya yak n kay tlar

Şekil Ek 14.1 Maksimum 1. kat kesme kuvveti – maksimum kat ötelemesi oran ilişkisi (7.0m aç kl kl çerçeveler)

Şekil Ek 14.4 Maksimum 1. kat kesme kuvveti – maksimum kat ötelemesi oran ilişkisi (9.0m aç kl kl çerçeveler)

Şekil Ek 14.6 Maksimum 3. kat kesme kuvveti – maksimum kat ötelemesi oran ilişkisi (9.0m aç kl kl çerçeveler)

Ek 15a Maksimum tepe deplasman oranları ve maksimum kat öteleme oranları

Şekil Ek 15a.1 Maksimum tepe deplasman oranlar (7.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.2 Maksimum tepe deplasman oranlar (7.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 15a.3 Maksimum tepe deplasman oranlar (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.4 Maksimum tepe deplasman oranlar (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 15a.5 Maksimum 1.kat öteleme oranlar (7.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.6 Maksimum 1.kat öteleme oranlar (7.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 15a.7 Maksimum 2.kat öteleme oranlar (7.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.8 Maksimum 2.kat öteleme oranlar (7.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 15a.9 Maksimum 3.kat öteleme oranlar (7.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.10 Maksimum 3.kat öteleme oranlar (7.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 15a.11 Maksimum 1.kat öteleme oranlar (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.12 Maksimum 1.kat öteleme oranlar (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 15a.13 Maksimum 2.kat öteleme oranlar (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.14 Maksimum 2.kat öteleme oranlar (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 15a.15 Maksimum 3.kat öteleme oranlar (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 15a.16 Maksimum 3.kat öteleme oranlar (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Comosmo	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.015	0.017	0.019	0.017	0.021	0.023	0.022	0.026	0.031
P70_SMTR_SH14	0.013	0.015	0.016	0.018	0.020	0.022	0.022	0.025	0.029
P70_SMTR_SH11	0.013	0.015	0.016	0.018	0.020	0.022	0.022	0.026	0.029
P60_SMTR_SH14	0.014	0.016	0.018	0.018	0.022	0.025	0.022	0.027	0.034
P60_SMTR_SH11	0.014	0.016	0.018	0.018	0.022	0.025	0.022	0.028	0.034
P50_SMTR_SH14	0.014	0.015	0.018	0.021	0.023	0.027	0.025	0.031	0.036
P50_SMTR_SH11	0.014	0.015	0.018	0.021	0.023	0.027	0.025	0.032	0.038
P70_HFC_SH14	0.017	0.019	0.021	0.023	0.024	0.026	0.029	0.031	0.035
P70_HFC_SH11	0.017	0.019	0.020	0.022	0.024	0.027	0.030	0.032	0.036
P60_HFC_SH14	0.017	0.019	0.021	0.026	0.028	0.029	0.031	0.035	0.041
P60_HFC_SH11	0.017	0.019	0.025	0.025	0.029	0.031	0.029	0.035	0.041
P50_HFC_SH14	0.019	0.021	0.023	0.025	0.029	0.033	0.030	0.034	0.039
P50_HFC_SH11	0.019	0.021	0.023	0.024	0.028	0.031	0.030	0.036	0.040

Ek 15b Minimum, ortalama, maksimum tepe deplasman ve kat öteleme oranları

Çizelge Ek 15b.1 7.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum tepe deplasman oranları

Çizelge Ek 15b.2 7.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum tepe deplasman oranları

C	Tasa	Tasarım Depremi			imum D	eprem	1.33xMaks. Deprem			
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks	
Rgd	0.016	0.018	0.020	0.018	0.022	0.025	0.025	0.027	0.029	
P70_SMTR_SH14	0.014	0.015	0.016	0.017	0.019	0.021	0.023	0.025	0.027	
P70_SMTR_SH11	0.014	0.015	0.016	0.017	0.019	0.020	0.023	0.025	0.027	
P60_SMTR_SH14	0.013	0.015	0.018	0.018	0.021	0.023	0.022	0.027	0.030	
P60_SMTR_SH11	0.013	0.015	0.018	0.018	0.021	0.024	0.023	0.027	0.031	
P50_SMTR_SH14	0.014	0.015	0.016	0.019	0.022	0.023	0.023	0.028	0.034	
P50_SMTR_SH11	0.014	0.015	0.016	0.019	0.022	0.024	0.023	0.028	0.034	
P70_HFC_SH14	0.017	0.019	0.020	0.022	0.024	0.027	0.028	0.030	0.034	
P70_HFC_SH11	0.017	0.019	0.020	0.023	0.024	0.025	0.026	0.030	0.035	
P60_HFC_SH14	0.017	0.019	0.022	0.022	0.026	0.029	0.028	0.032	0.035	
P60_HFC_SH11	0.016	0.019	0.021	0.022	0.026	0.030	0.027	0.032	0.035	
P50_HFC_SH14	0.018	0.021	0.024	0.023	0.026	0.029	0.025	0.031	0.034	
P50_HFC_SH11	0.018	0.020	0.022	0.021	0.025	0.028	0.025	0.031	0.034	

	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.013	0.015	0.019	0.016	0.020	0.025	0.019	0.023	0.029
P70_SMTR_SH14	0.011	0.014	0.017	0.016	0.019	0.022	0.020	0.023	0.027
P70_SMTR_SH11	0.011	0.014	0.017	0.016	0.019	0.022	0.020	0.023	0.027
P60_SMTR_SH14	0.011	0.014	0.016	0.016	0.018	0.021	0.019	0.023	0.026
P60_SMTR_SH11	0.011	0.014	0.016	0.016	0.018	0.021	0.019	0.023	0.027
P50_SMTR_SH14	0.012	0.014	0.015	0.017	0.019	0.022	0.021	0.025	0.030
P50_SMTR_SH11	0.012	0.014	0.015	0.016	0.019	0.022	0.021	0.026	0.031
P70_HFC_SH14	0.012	0.016	0.021	0.020	0.023	0.025	0.025	0.027	0.028
P70_HFC_SH11	0.012	0.016	0.021	0.020	0.023	0.026	0.026	0.027	0.028
P60_HFC_SH14	0.014	0.018	0.021	0.021	0.023	0.026	0.025	0.027	0.029
P60_HFC_SH11	0.014	0.018	0.020	0.021	0.023	0.025	0.026	0.028	0.031
P50_HFC_SH14	0.016	0.018	0.020	0.020	0.023	0.027	0.027	0.031	0.036
P50_HFC_SH11	0.015	0.018	0.021	0.021	0.024	0.029	0.029	0.033	0.040

Çizelge Ek 15b.3 9.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum tepe deplasman oranları

Çizelge Ek 15b.4 9.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum tepe deplasman oranları

Comosto	Tasa	rım Dep	oremi	Maksi	i mum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.015	0.017	0.018	0.020	0.022	0.025	0.021	0.025	0.028
P70_SMTR_SH14	0.013	0.016	0.017	0.019	0.021	0.022	0.022	0.025	0.026
P70_SMTR_SH11	0.013	0.016	0.017	0.019	0.021	0.022	0.021	0.025	0.026
P60_SMTR_SH14	0.012	0.015	0.016	0.017	0.018	0.021	0.021	0.022	0.026
P60_SMTR_SH11	0.012	0.015	0.016	0.017	0.018	0.021	0.021	0.022	0.026
P50_SMTR_SH14	0.013	0.014	0.015	0.018	0.019	0.020	0.022	0.025	0.028
P50_SMTR_SH11	0.013	0.014	0.015	0.018	0.019	0.020	0.022	0.026	0.029
P70_HFC_SH14	0.015	0.018	0.021	0.021	0.023	0.024	0.023	0.026	0.027
P70_HFC_SH11	0.015	0.019	0.022	0.020	0.023	0.024	0.023	0.026	0.027
P60_HFC_SH14	0.016	0.018	0.020	0.020	0.022	0.025	0.023	0.026	0.028
P60_HFC_SH11	0.016	0.018	0.020	0.019	0.022	0.024	0.023	0.026	0.029
P50_HFC_SH14	0.015	0.017	0.021	0.021	0.023	0.026	0.026	0.030	0.034
P50_HFC_SH11	0.015	0.017	0.020	0.021	0.023	0.027	0.026	0.030	0.034

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.015	0.017	0.019	0.019	0.022	0.026	0.025	0.029	0.037
P70_SMTR_SH14	0.015	0.016	0.018	0.017	0.020	0.024	0.019	0.026	0.035
P70_SMTR_SH11	0.015	0.016	0.018	0.017	0.020	0.024	0.019	0.026	0.035
P60_SMTR_SH14	0.013	0.015	0.018	0.016	0.020	0.027	0.022	0.028	0.039
P60_SMTR_SH11	0.013	0.015	0.018	0.016	0.020	0.026	0.022	0.027	0.039
P50_SMTR_SH14	0.014	0.015	0.018	0.019	0.023	0.029	0.023	0.033	0.041
P50_SMTR_SH11	0.014	0.015	0.018	0.018	0.022	0.028	0.022	0.032	0.040
P70_HFC_SH14	0.015	0.018	0.023	0.019	0.022	0.025	0.027	0.032	0.040
P70_HFC_SH11	0.014	0.017	0.022	0.019	0.022	0.024	0.028	0.032	0.040
P60_HFC_SH14	0.016	0.018	0.021	0.024	0.029	0.034	0.031	0.040	0.048
P60_HFC_SH11	0.016	0.019	0.027	0.021	0.028	0.034	0.029	0.038	0.045
P50_HFC_SH14	0.018	0.022	0.025	0.025	0.032	0.035	0.034	0.042	0.047
P50_HFC_SH11	0.017	0.021	0.025	0.023	0.030	0.035	0.030	0.040	0.047

Çizelge Ek 15b.5 7.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 1. kat öteleme oranları

Çizelge Ek 15b.6 7.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 1. kat öteleme oranları

	Tasa	Tasarım Depremi			imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.017	0.018	0.018	0.019	0.022	0.025	0.023	0.028	0.034
P70_SMTR_SH14	0.015	0.016	0.017	0.018	0.020	0.022	0.021	0.025	0.029
P70_SMTR_SH11	0.015	0.016	0.017	0.017	0.020	0.022	0.020	0.025	0.029
P60_SMTR_SH14	0.012	0.014	0.017	0.017	0.018	0.023	0.021	0.024	0.031
P60_SMTR_SH11	0.012	0.014	0.017	0.016	0.018	0.023	0.021	0.024	0.031
P50_SMTR_SH14	0.014	0.015	0.017	0.018	0.021	0.025	0.020	0.028	0.034
P50_SMTR_SH11	0.014	0.015	0.017	0.018	0.021	0.025	0.019	0.027	0.034
P70_HFC_SH14	0.015	0.018	0.022	0.018	0.022	0.025	0.025	0.029	0.034
P70_HFC_SH11	0.015	0.017	0.019	0.018	0.022	0.024	0.025	0.028	0.033
P60_HFC_SH14	0.016	0.019	0.021	0.020	0.026	0.031	0.029	0.034	0.038
P60_HFC_SH11	0.015	0.018	0.021	0.019	0.025	0.030	0.024	0.032	0.039
P50_HFC_SH14	0.017	0.021	0.025	0.022	0.027	0.031	0.027	0.035	0.041
P50_HFC_SH11	0.015	0.020	0.024	0.020	0.026	0.030	0.026	0.034	0.039

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33x	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.018	0.020	0.023	0.020	0.026	0.029	0.027	0.031	0.036
P70_SMTR_SH14	0.015	0.018	0.019	0.022	0.024	0.028	0.026	0.030	0.033
P70_SMTR_SH11	0.015	0.018	0.020	0.022	0.025	0.028	0.026	0.030	0.034
P60_SMTR_SH14	0.017	0.019	0.021	0.023	0.026	0.030	0.028	0.033	0.038
P60_SMTR_SH11	0.017	0.019	0.022	0.023	0.026	0.030	0.029	0.034	0.040
P50_SMTR_SH14	0.017	0.019	0.022	0.027	0.028	0.031	0.030	0.037	0.042
P50_SMTR_SH11	0.017	0.019	0.022	0.027	0.028	0.032	0.031	0.038	0.044
P70_HFC_SH14	0.020	0.023	0.026	0.027	0.029	0.031	0.034	0.036	0.039
P70_HFC_SH11	0.021	0.023	0.025	0.027	0.029	0.032	0.035	0.037	0.040
P60_HFC_SH14	0.020	0.023	0.025	0.031	0.033	0.034	0.036	0.041	0.047
P60_HFC_SH11	0.021	0.024	0.030	0.029	0.033	0.036	0.036	0.041	0.048
P50_HFC_SH14	0.024	0.025	0.026	0.030	0.034	0.040	0.037	0.040	0.047
P50_HFC_SH11	0.023	0.025	0.027	0.030	0.034	0.037	0.037	0.042	0.047

Çizelge Ek 15b.7 7.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 2. kat öteleme oranları

Çizelge Ek 15b.8 7.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 2. kat öteleme oranları

	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.019	0.021	0.023	0.022	0.027	0.030	0.030	0.032	0.035
P70_SMTR_SH14	0.017	0.019	0.019	0.020	0.024	0.027	0.027	0.030	0.033
P70_SMTR_SH11	0.018	0.019	0.019	0.020	0.024	0.027	0.028	0.031	0.034
P60_SMTR_SH14	0.017	0.018	0.020	0.023	0.026	0.028	0.028	0.033	0.037
P60_SMTR_SH11	0.017	0.019	0.020	0.023	0.026	0.028	0.028	0.033	0.038
P50_SMTR_SH14	0.017	0.019	0.020	0.023	0.027	0.030	0.030	0.034	0.038
P50_SMTR_SH11	0.017	0.019	0.021	0.024	0.028	0.030	0.030	0.034	0.040
P70_HFC_SH14	0.021	0.023	0.026	0.026	0.029	0.032	0.031	0.036	0.039
P70_HFC_SH11	0.022	0.024	0.027	0.027	0.029	0.031	0.031	0.036	0.041
P60_HFC_SH14	0.020	0.023	0.027	0.028	0.031	0.035	0.032	0.038	0.041
P60_HFC_SH11	0.019	0.023	0.027	0.025	0.031	0.035	0.030	0.038	0.042
P50_HFC_SH14	0.022	0.025	0.028	0.026	0.031	0.035	0.032	0.037	0.040
P50_HFC_SH11	0.023	0.024	0.026	0.025	0.031	0.033	0.032	0.038	0.041

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33x	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.013	0.016	0.020	0.017	0.021	0.024	0.021	0.024	0.028
P70_SMTR_SH14	0.012	0.015	0.019	0.017	0.019	0.023	0.019	0.024	0.031
P70_SMTR_SH11	0.012	0.015	0.019	0.017	0.019	0.024	0.020	0.025	0.032
P60_SMTR_SH14	0.012	0.015	0.021	0.019	0.022	0.029	0.023	0.027	0.034
P60_SMTR_SH11	0.012	0.015	0.021	0.019	0.022	0.029	0.023	0.028	0.034
P50_SMTR_SH14	0.014	0.015	0.016	0.020	0.022	0.025	0.027	0.029	0.032
P50_SMTR_SH11	0.014	0.015	0.016	0.020	0.022	0.025	0.028	0.030	0.032
P70_HFC_SH14	0.017	0.020	0.023	0.023	0.026	0.030	0.029	0.033	0.039
P70_HFC_SH11	0.016	0.020	0.023	0.023	0.025	0.030	0.029	0.032	0.038
P60_HFC_SH14	0.017	0.020	0.025	0.024	0.027	0.031	0.025	0.032	0.038
P60_HFC_SH11	0.018	0.020	0.024	0.023	0.028	0.032	0.029	0.034	0.037
P50_HFC_SH14	0.019	0.021	0.023	0.023	0.027	0.032	0.028	0.034	0.040
P50_HFC_SH11	0.018	0.020	0.025	0.024	0.028	0.030	0.027	0.035	0.043

Çizelge Ek 15b.9 7.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 3. kat öteleme oranları

Çizelge Ek 15b.10 7.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 3. kat öteleme oranları

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.015	0.019	0.024	0.020	0.024	0.028	0.024	0.028	0.033
P70_SMTR_SH14	0.014	0.017	0.021	0.019	0.022	0.027	0.022	0.027	0.031
P70_SMTR_SH11	0.014	0.017	0.021	0.019	0.022	0.028	0.022	0.027	0.032
P60_SMTR_SH14	0.013	0.017	0.022	0.021	0.024	0.029	0.027	0.030	0.036
P60_SMTR_SH11	0.013	0.017	0.022	0.021	0.024	0.030	0.026	0.030	0.037
P50_SMTR_SH14	0.014	0.015	0.017	0.020	0.022	0.025	0.026	0.029	0.031
P50_SMTR_SH11	0.014	0.015	0.017	0.020	0.022	0.024	0.026	0.029	0.033
P70_HFC_SH14	0.018	0.022	0.026	0.025	0.027	0.031	0.032	0.036	0.039
P70_HFC_SH11	0.018	0.021	0.024	0.024	0.027	0.033	0.032	0.036	0.039
P60_HFC_SH14	0.020	0.023	0.027	0.025	0.029	0.033	0.028	0.035	0.040
P60_HFC_SH11	0.020	0.023	0.026	0.024	0.029	0.033	0.030	0.035	0.041
P50_HFC_SH14	0.018	0.021	0.025	0.024	0.028	0.033	0.032	0.035	0.040
P50_HFC_SH11	0.017	0.021	0.027	0.022	0.028	0.031	0.031	0.036	0.041

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.011	0.014	0.017	0.016	0.019	0.025	0.021	0.025	0.031
P70_SMTR_SH14	0.011	0.013	0.016	0.016	0.018	0.019	0.019	0.022	0.024
P70_SMTR_SH11	0.011	0.013	0.016	0.016	0.017	0.019	0.019	0.022	0.023
P60_SMTR_SH14	0.012	0.014	0.015	0.016	0.018	0.019	0.020	0.023	0.029
P60_SMTR_SH11	0.012	0.014	0.015	0.016	0.018	0.019	0.020	0.023	0.029
P50_SMTR_SH14	0.013	0.014	0.016	0.014	0.018	0.023	0.018	0.025	0.036
P50_SMTR_SH11	0.013	0.014	0.016	0.014	0.018	0.023	0.018	0.024	0.036
P70_HFC_SH14	0.012	0.015	0.020	0.021	0.023	0.024	0.024	0.027	0.030
P70_HFC_SH11	0.012	0.015	0.020	0.019	0.022	0.024	0.024	0.026	0.030
P60_HFC_SH14	0.015	0.017	0.020	0.018	0.023	0.026	0.023	0.029	0.036
P60_HFC_SH11	0.015	0.017	0.020	0.017	0.021	0.026	0.021	0.028	0.037
P50_HFC_SH14	0.016	0.018	0.021	0.021	0.024	0.031	0.027	0.035	0.046
P50_HFC_SH11	0.015	0.018	0.021	0.020	0.024	0.032	0.028	0.035	0.044

Çizelge Ek 15b.11 9.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 1. kat öteleme oranları

Çizelge Ek 15b.12 9.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 1. kat öteleme oranları

~	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.014	0.016	0.017	0.020	0.022	0.027	0.022	0.026	0.030
P70_SMTR_SH14	0.013	0.014	0.016	0.018	0.019	0.020	0.020	0.022	0.024
P70_SMTR_SH11	0.013	0.014	0.016	0.018	0.019	0.020	0.019	0.022	0.024
P60_SMTR_SH14	0.013	0.014	0.015	0.017	0.018	0.019	0.020	0.021	0.025
P60_SMTR_SH11	0.013	0.014	0.015	0.017	0.018	0.019	0.019	0.021	0.025
P50_SMTR_SH14	0.014	0.014	0.015	0.015	0.017	0.020	0.021	0.024	0.031
P50_SMTR_SH11	0.014	0.014	0.015	0.015	0.017	0.020	0.020	0.024	0.030
P70_HFC_SH14	0.014	0.017	0.020	0.021	0.022	0.023	0.024	0.026	0.030
P70_HFC_SH11	0.014	0.017	0.021	0.021	0.022	0.024	0.022	0.025	0.028
P60_HFC_SH14	0.015	0.018	0.021	0.019	0.021	0.023	0.022	0.027	0.032
P60_HFC_SH11	0.015	0.017	0.019	0.019	0.020	0.023	0.022	0.026	0.031
P50_HFC_SH14	0.017	0.018	0.020	0.019	0.023	0.029	0.024	0.031	0.039
P50_HFC_SH11	0.015	0.017	0.020	0.018	0.022	0.029	0.025	0.030	0.033

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.015	0.018	0.022	0.018	0.023	0.029	0.022	0.027	0.033
P70_SMTR_SH14	0.013	0.017	0.021	0.019	0.023	0.026	0.024	0.027	0.030
P70_SMTR_SH11	0.013	0.017	0.021	0.019	0.023	0.026	0.024	0.027	0.030
P60_SMTR_SH14	0.014	0.017	0.019	0.019	0.022	0.025	0.024	0.027	0.032
P60_SMTR_SH11	0.014	0.017	0.019	0.019	0.023	0.026	0.024	0.028	0.032
P50_SMTR_SH14	0.014	0.017	0.019	0.021	0.023	0.026	0.025	0.029	0.034
P50_SMTR_SH11	0.014	0.017	0.019	0.021	0.023	0.026	0.025	0.030	0.035
P70_HFC_SH14	0.015	0.020	0.025	0.024	0.027	0.030	0.029	0.031	0.033
P70_HFC_SH11	0.015	0.020	0.025	0.024	0.027	0.031	0.029	0.031	0.032
P60_HFC_SH14	0.018	0.022	0.025	0.024	0.028	0.031	0.030	0.032	0.034
P60_HFC_SH11	0.018	0.022	0.025	0.024	0.027	0.030	0.031	0.032	0.035
P50_HFC_SH14	0.018	0.022	0.024	0.025	0.027	0.030	0.031	0.034	0.039
P50_HFC_SH11	0.018	0.022	0.024	0.024	0.028	0.032	0.033	0.037	0.044

Çizelge Ek 15b.13 9.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 2. kat öteleme oranları

Çizelge Ek 15b.14 9.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 2. kat öteleme oranları

Comosmo	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33 xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.018	0.020	0.022	0.023	0.026	0.030	0.025	0.029	0.033
P70_SMTR_SH14	0.016	0.019	0.021	0.024	0.025	0.026	0.027	0.028	0.030
P70_SMTR_SH11	0.016	0.019	0.021	0.024	0.025	0.026	0.027	0.029	0.030
P60_SMTR_SH14	0.015	0.018	0.020	0.021	0.023	0.025	0.025	0.027	0.032
P60_SMTR_SH11	0.015	0.018	0.020	0.021	0.023	0.025	0.026	0.028	0.032
P50_SMTR_SH14	0.016	0.017	0.018	0.022	0.023	0.024	0.026	0.029	0.033
P50_SMTR_SH11	0.016	0.017	0.018	0.022	0.023	0.024	0.027	0.030	0.034
P70_HFC_SH14	0.019	0.022	0.025	0.025	0.027	0.028	0.028	0.031	0.033
P70_HFC_SH11	0.019	0.023	0.026	0.025	0.027	0.029	0.027	0.031	0.033
P60_HFC_SH14	0.020	0.022	0.024	0.023	0.027	0.031	0.027	0.030	0.032
P60_HFC_SH11	0.019	0.022	0.024	0.023	0.027	0.030	0.027	0.031	0.033
P50_HFC_SH14	0.018	0.020	0.025	0.025	0.027	0.029	0.032	0.034	0.037
P50_HFC_SH11	0.017	0.020	0.023	0.025	0.027	0.031	0.031	0.035	0.039

	Tasa	rım Dep	oremi	Maks	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.012	0.015	0.018	0.015	0.019	0.025	0.020	0.023	0.028
P70_SMTR_SH14	0.011	0.013	0.015	0.015	0.019	0.022	0.020	0.023	0.028
P70_SMTR_SH11	0.011	0.013	0.015	0.015	0.019	0.022	0.021	0.023	0.028
P60_SMTR_SH14	0.012	0.013	0.015	0.017	0.019	0.022	0.021	0.023	0.025
P60_SMTR_SH11	0.012	0.013	0.015	0.017	0.019	0.022	0.022	0.024	0.026
P50_SMTR_SH14	0.012	0.013	0.015	0.017	0.019	0.023	0.020	0.024	0.030
P50_SMTR_SH11	0.012	0.013	0.015	0.017	0.019	0.022	0.021	0.025	0.031
P70_HFC_SH14	0.013	0.017	0.023	0.023	0.024	0.028	0.025	0.030	0.036
P70_HFC_SH11	0.013	0.016	0.020	0.023	0.025	0.028	0.023	0.029	0.035
P60_HFC_SH14	0.014	0.019	0.023	0.022	0.025	0.029	0.024	0.028	0.033
P60_HFC_SH11	0.014	0.019	0.022	0.021	0.024	0.028	0.025	0.028	0.032
P50_HFC_SH14	0.016	0.017	0.020	0.021	0.024	0.029	0.027	0.030	0.033
P50_HFC_SH11	0.016	0.018	0.020	0.021	0.024	0.028	0.029	0.032	0.036

Çizelge Ek 15b.15 9.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 3. kat öteleme oranları

Çizelge Ek 15b.16 9.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 3. kat öteleme oranları

C	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33 xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.015	0.017	0.019	0.019	0.023	0.028	0.021	0.026	0.029
P70_SMTR_SH14	0.013	0.015	0.015	0.017	0.020	0.022	0.023	0.026	0.029
P70_SMTR_SH11	0.013	0.015	0.015	0.017	0.020	0.022	0.023	0.026	0.030
P60_SMTR_SH14	0.013	0.015	0.015	0.019	0.021	0.025	0.024	0.026	0.030
P60_SMTR_SH11	0.013	0.015	0.016	0.019	0.021	0.026	0.024	0.026	0.031
P50_SMTR_SH14	0.013	0.015	0.015	0.018	0.020	0.023	0.022	0.026	0.030
P50_SMTR_SH11	0.013	0.015	0.015	0.017	0.020	0.023	0.022	0.026	0.031
P70_HFC_SH14	0.017	0.019	0.022	0.022	0.026	0.030	0.029	0.033	0.039
P70_HFC_SH11	0.017	0.019	0.023	0.023	0.026	0.030	0.027	0.033	0.039
P60_HFC_SH14	0.017	0.021	0.022	0.025	0.028	0.031	0.027	0.031	0.036
P60_HFC_SH11	0.017	0.021	0.022	0.024	0.028	0.031	0.026	0.031	0.033
P50_HFC_SH14	0.018	0.021	0.025	0.022	0.025	0.027	0.028	0.031	0.033
P50_HFC_SH11	0.019	0.022	0.028	0.022	0.025	0.027	0.031	0.033	0.036
Ek 15c Yapay yer hareketi kay tlar için tepe deplasman ve kat ötelemeleri karş laşt rmas

ÇIZCIZC LK	150.17	.0111 aç	KI KI	yai iij	n çerçe		i tepe e	replasi	namai	n n nj	n çeiçe	ve iep	e ucpia	sinan n	a oran
Yer Hareketi Kayd ^[1]	Rgd ^[2]	70_SMTR _SH14 ^[3]	70_SMTR _SH11	60_SMTR _SH14	60_SMTR _SH11	50_SMTR _SH14	50_SMTR _SH11	Drtalama ^[4]	70_HFC_S H14	70_HFC_S H11	60_HFC_S H14	60_HFC_S H11	50_HFC_S H14	50_HFC_S H11	Drtalama ^[5]
A03E1_1	0.008	106%	106%	108%	108%	106%	106%	110%	106%	106%	113%	113%	118%	118%	136%
A03F1-2	0.015	106%	106%	112%	112%	118%	119%	11770	119%	134%	120%	125%	152%	154%	150 /0
A03F1-3	0.020	112%	114%	127%	129%	136%	138%		128%	124%	148%	150%	167%	159%	
A03F1-4	0.025	113%	116%	133%	135%	143%	150%		138%	143%	163%	163%	155%	154%	
A03F2-1	0.008	112%	112%	113%	113%	102%	102%	101%	117%	117%	108%	108%	133%	132%	131%
A03F2-2	0.016	96%	96%	91%	90%	88%	88%	101/0	117%	115%	123%	115%	143%	146%	10170
A03F2-3	0.021	90%	90%	88%	88%	102%	103%		109%	108%	138%	138%	145%	144%	
A03F2-4	0.023	93%	92%	93%	94%	141%	146%		128%	135%	147%	154%	153%	171%	
A03F3-1	0.008	102%	102%	112%	112%	104%	104%	107%	107%	107%	119%	119%	109%	109%	134%
A03F3-2	0.015	83%	83%	96%	96%	93%	93%		117%	111%	119%	125%	135%	130%	
A03F3-3	0.017	106%	106%	118%	119%	127%	126%		139%	134%	159%	160%	164%	173%	
A03F3-4	0.022	101%	102%	115%	116%	130%	132%		131%	131%	145%	150%	160%	160%	
A96F1-1	0.012	97%	97%	87%	87%	83%	83%	91%	96%	96%	92%	92%	99%	98%	109%
A96F1-2	0.019	83%	83%	82%	82%	86%	86%		103%	99%	106%	93%	111%	111%	
A96F1-3	0.023	87%	86%	98%	97%	94%	95%		113%	116%	119%	125%	120%	109%	
A96F1-4	0.027	94%	94%	100%	100%	107%	108%		111%	116%	125%	120%	120%	117%	
A96F2-1	0.011	95%	95%	95%	95%	81%	81%	92%	110%	110%	91%	91%	100%	98%	113%
A96F2-2	0.019	86%	86%	79%	79%	79%	79%		108%	102%	104%	103%	112%	101%	
A96F2-3	0.022	85%	85%	92%	90%	101%	101%		113%	114%	134%	136%	120%	122%	
A96F2-4	0.027	98%	100%	95%	97%	121%	122%	070/	121%	128%	130%	131%	020/	122%	1070/
A90F3-1	0.016	89%	89%	95%	95%	9/%	97%	9/%	102%	101%	108%	115%	93%	88%	10/%
A90F3-2	0.010	0.5%	020/	110%	1050/	00%	070/		1070/	120%	131%	122%	122%	11/%	
A90F3-3	0.025	9370	93%	05%	07%	9970 81%	9770		08%	00%	100%	0/1%	05%	06%	
B97F1-1	0.031	102%	102%	93%	97%	94%	94%	107%	98%	99%	100%	103%	102%	102%	123%
B97F1-2	0.017	98%	97%	99%	99%	106%	106%	107 /0	125%	112%	108%	149%	134%	133%	125 /0
B97F1-3	0.023	95%	96%	107%	108%	113%	115%		108%	112%	125%	127%	135%	129%	
B97F1-4	0.026	110%	112%	126%	128%	136%	142%		131%	137%	145%	154%	134%	143%	
B97F2-1	0.010	102%	102%	107%	107%	91%	91%	96%	114%	114%	95%	95%	127%	115%	124%
B97F2-2	0.018	89%	89%	83%	83%	79%	79%		113%	110%	108%	108%	129%	124%	
B97F2-3	0.022	89%	89%	85%	84%	99%	100%		112%	106%	134%	141%	132%	132%	
B97F2-4	0.024	96%	94%	93%	96%	134%	137%		128%	133%	151%	154%	152%	155%	
B97F3-1	0.009	98%	98%	99%	99%	95%	95%	102%	99%	99%	113%	113%	98%	98%	124%
B97F3-2	0.016	88%	88%	98%	99%	91%	91%		122%	122%	121%	112%	131%	124%	
B97F3-3	0.018	111%	110%	121%	122%	119%	118%		130%	125%	156%	156%	165%	165%	
B97F3-4	0.027	91%	92%	101%	104%	105%	107%		112%	112%	126%	125%	122%	139%	
A03N1-1	0.011	97%	97%	86%	86%	82%	82%	92%	94%	94%	91%	91%	104%	103%	110%
A03N1-2	0.019	80%	79%	81%	81%	86%	86%		102%	98%	105%	101%	113%	112%	
A03N1-3	0.024	86%	86%	96%	96%	94%	95%		112%	107%	115%	117%	122%	114%	
A03N1-4	0.026	100%	100%	104%	104%	111%	113%	0.40/	1070/	107%	130%	135%	131%	124%	1100/
A03N2-1	0.011	94%	94%	97%	9/%	83%	83%	94%	107%	107%	88%	88%	108%	121%	119%
A03N2-2	0.018	8070 970/	8070 860/	010/	020/	1110/	1120/		105%	104%	120%	11/70	120%	12370	
A03N2-4	0.021	03%	0/1%	100%	9270	130%	132%		120%	120%	120%	14270	118%	125%	
A03N3-1	0.020	91%	91%	95%	95%	92%	92%	97%	100%	100%	107%	107%	95%	92%	113%
A03N3-2	0.016	97%	97%	108%	108%	102%	102%	11/0	129%	130%	129%	122%	136%	130%	110 /0
A03N3-3	0.021	97%	96%	109%	110%	106%	106%		113%	107%	126%	124%	119%	115%	
A03N3-4	0.029	89%	91%	100%	102%	81%	81%		106%	105%	107%	106%	103%	101%	
A96N1-1	0.012	99%	99%	83%	83%	79%	79%	82%	94%	94%	86%	86%	82%	82%	97%
A96N1-2	0.020	78%	77%	67%	67%	69%	69%		90%	91%	85%	81%	98%	92%	
A96N1-3	0.025	78%	78%	80%	80%	77%	78%		100%	99%	105%	99%	98%	99%	
A96N1-4	0.026	93%	93%	91%	90%	94%	95%		106%	101%	116%	110%	112%	115%	
A96N2-1	0.011	92%	92%	95%	95%	78%	78%	88%	106%	116%	83%	83%	110%	140%	111%
A96N2-2	0.018	85%	85%	78%	78%	80%	80%		98%	98%	102%	103%	100%	113%	
A96N2-3	0.020	82%	82%	89%	88%	99%	99%		113%	119%	123%	119%	121%	119%	
A96N2-4	0.027	90%	90%	89%	90%	103%	102%		109%	112%	123%	120%	116%	115%	
A96N3-1	0.011	86%	86%	91%	91%	93%	93%	99%	97%	97%	101%	101%	83%	83%	105%
A96N3-2	0.016	96%	96%	110%	110%	99%	99%		117%	122%	124%	121%	117%	117%	
A96N3-3	0.021	91%	92%	109%	110%	108%	109%		104%	105%	104%	101%	106%	98%	
A90N3-4	0.020	101%	103%	0.49/	0.49/	90%	010/	079/	0.80%	0.8%	108%	103%	9470	94%	11/19/
B97N1-1 B97N1-2	0.017	86%	86%	9476 88%	9470 870/	91%	9170	9/70	1120/	10.4%	100%	100%	137%	121%	11470
B97N1-3	0.024	85%	86%	97%	97%	97%	99%		107%	105%	116%	122%	122%	116%	
B97N1-4	0.024	100%	102%	112%	113%	121%	125%		123%	125%	136%	138%	1227%	132%	
B97N2-1	0.010	98%	98%	104%	104%	87%	87%	92%	110%	110%	93%	93%	111%	109%	116%
B97N2-2	0.018	87%	87%	79%	79%	80%	80%		105%	105%	101%	100%	115%	110%	
B97N2-3	0.021	84%	83%	87%	87%	96%	97%		108%	109%	134%	137%	126%	127%	
B97N2-4	0.025	89%	89%	89%	90%	120%	121%		118%	125%	138%	140%	122%	135%	
B97N3-1	0.010	95%	95%	98%	98%	94%	94%	100%	98%	98%	111%	111%	94%	94%	119%
B97N3-2	0.016	89%	89%	100%	100%	92%	91%		119%	124%	128%	111%	127%	124%	
B97N3-3	0.018	107%	106%	122%	122%	123%	123%		127%	124%	140%	144%	147%	138%	
B97N3-4	0.027	90%	92%	103%	106%	90%	90%		113%	113%	117%	115%	116%	116%	

Cizelge Ek 15c 1.7.0m ac kl kl. var. rijit cercevelerin tene denlasmanlar n n rijit cerceve tene denlasman na oran

 [1]: Kayd n i sminden sonra gelen numara deprem seviyesini belirtir. (1: 0.5x TD, 2: tasar m depremi, 3: maksimum deprem, 4: 1.33xMD)

 [2]: Rijit çerçeve için tepe öteleme oran .

 [3]: Yar rijit çerçeveler için verilen değerler, yar rijit çerçevede gerçekleşen deplasman n, ayn sat rdaki rijit çerçeve deplasman na oran d r.

 [4]: Ortalama, SMTR modelli tüm yar rijit birleşimli çerçevelerin, ilgili yer hareketi kayd n n tüm deprem seviyeleri kullan larak hesaplanm şt r.

çizeige zir	100.2 /	.om uş	KI KI	yui iij	n çorçe	, elein	II I. Rut		nererm	ini inju	çerçe i	C 1. Ru			e orun
Yer Hareketi Kayd ^[1]	Rgd ^[2]	70_SMTR _SH14 ^[3]	0_SMTR _SH11	50_SMTR _SH14	50_SMTR _SH11	50_SMTR _SH14	50_SMTR _SH11	rtalama ^[4]	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	rtalama ^[5]
		L L	Ч	Pe	Pe	P.	P.	0	ЪТ	Ъ7	P6	P6	P5	P5	0
A03F1-1	0.008	112%	112%	121%	121%	98%	98%	128%	110%	110%	113%	113%	137%	137%	148%
A03F1-2	0.015	114%	114%	118%	118%	117%	117%		127%	145%	124%	128%	164%	162%	
A03F1-3	0.019	125%	124%	138%	137%	148%	147%		125%	114%	178%	178%	181%	155%	
A03F1-4	0.025	13/%	138%	154%	152%	160%	158%		158%	158%	18/%	1/1%	185%	185%	
A03F2-1	0.009	118%	118%	102%	102%	106%	106%	92%	99%	99%	101%	101%	142%	142%	123%
A03F2-2	0.015	100%	100%	8/%	8/%	91%	91%		105%	104%	135%	120%	149%	160%	
A03F2-3	0.024	/9%	/8%	68%	68%	85%	85%		88%	85%	125%	116%	145%	144%	
A03F2-4	0.030	//%	/8%	1100/	81%	1070/	1070/	070/	100%	1108%	13/%	138%	15/%	148%	1200/
A03F3-1	0.008	0.49/	020/	£20/	820/	970/	970/	9/70	02%	01%	1010/	10.00/	10470	104%	120%
A03F3-2	0.010	9470	95%	8270 940/	8270 840/	8770 1109/	0/70 1099/		92%	9170	10170	108%	1720/	1710/	
A03F3-3	0.020	710/	710/	04/0	04/0	1210/0	1170/		1120/	2070 1079/	140%	124/0	17370	160%	
A0515-4	0.027	01%	01%	05%	95%	78%	78%	100%	05%	05%	81%	81%	106%	106%	116%
A96F1-2	0.017	102%	102%	100%	99%	99%	97%	100 /0	116%	115%	125%	137%	131%	128%	110 /0
A96F1-3	0.020	110%	109%	109%	107%	113%	112%		119%	121%	144%	139%	131%	114%	
A96F1-4	0.027	101%	100%	101%	99%	112%	111%		116%	113%	125%	113%	134%	108%	
A96F2-1	0.011	103%	103%	90%	90%	89%	89%	89%	93%	93%	92%	92%	114%	112%	109%
A96F2-2	0.019	84%	84%	68%	67%	82%	82%		91%	90%	94%	95%	117%	116%	
A96F2-3	0.025	85%	85%	76%	76%	85%	86%		88%	81%	122%	120%	120%	112%	
A96F2-4	0.027	99%	100%	94%	95%	113%	112%		104%	110%	138%	137%	143%	141%	
A96F3-1	0.011	102%	102%	100%	100%	92%	92%	79%	98%	98%	104%	104%	89%	85%	91%
A96F3-2	0.017	94%	93%	85%	82%	90%	90%		99%	96%	93%	92%	112%	97%	
A96F3-3	0.026	71%	69%	67%	67%	72%	70%		80%	77%	90%	79%	95%	91%	
A96F3-4	0.037	62%	60%	62%	61%	63%	59%		73%	75%	85%	78%	93%	90%	
B97F1-1	0.010	108%	108%	109%	109%	89%	89%	118%	102%	102%	100%	100%	121%	121%	135%
B97F1-2	0.017	104%	103%	102%	102%	102%	101%		133%	117%	112%	155%	139%	137%	
B97F1-3	0.022	110%	109%	122%	120%	129%	129%		113%	112%	156%	156%	149%	140%	
B97F1-4	0.025	134%	133%	147%	145%	159%	159%		155%	155%	182%	178%	157%	160%	
B97F2-1	0.010	112%	112%	104%	104%	93%	93%	89%	100%	99%	96%	96%	129%	130%	119%
B97F2-2	0.017	89%	89%	83%	83%	86%	85%		101%	97%	109%	110%	141%	144%	
B97F2-3	0.025	75%	75%	71%	70%	83%	83%		93%	91%	124%	124%	137%	135%	
B97F2-4	0.029	79%	79%	78%	78%	112%	112%		108%	110%	148%	146%	155%	145%	
B97F3-1	0.009	106%	106%	108%	108%	98%	98%	90%	104%	104%	108%	108%	95%	95%	115%
B97F3-2	0.017	91%	90%	84%	82%	86%	86%		94%	91%	101%	97%	124%	107%	
B97F3-3	0.020	89%	88%	84%	83%	99%	97%		102%	106%	130%	124%	170%	163%	
B97F3-4	0.031	69%	67%	78%	77%	99%	96%	1040/	103%	99%	132%	118%	148%	144%	1020/
A03N1-1	0.011	95%	95%	94%	94%	//%	11%	104%	90%	90%	80%	80%	111%	111%	123%
A03N1-2	0.017	99%	98%	9/%	96%	9/%	95%		123%	111%	124%	121%	135%	128%	
A03N1-3	0.019	115%	114%	115%	113%	119%	118%		133%	125%	152%	144%	140%	129%	
A03N1-4	0.023	107%	107%	010/	010/	000/	0.00%	0.09/	0.0%	0.00%	0.49/	0.4%	14270	13270	1129/
A03N2-1	0.011	88%	88%	70%	70%	8/1%	8/1%	90 /6	90%	9076 80%	113%	107%	12/1%	120%	112/0
A03N2-2	0.025	85%	85%	71%	72%	93%	93%		93%	86%	119%	118%	123%	120%	
A03N2-4	0.028	93%	93%	89%	90%	121%	121%		117%	117%	133%	131%	138%	138%	
A03N3-1	0.011	102%	102%	97%	97%	87%	87%	81%	96%	96%	99%	99%	88%	85%	97%
A03N3-2	0.017	92%	91%	83%	82%	87%	87%		92%	91%	92%	86%	117%	113%	
A03N3-3	0.024	75%	73%	71%	71%	76%	74%		92%	89%	105%	101%	112%	106%	
A03N3-4	0.034	67%	65%	65%	65%	75%	72%		86%	84%	102%	95%	107%	101%	
A96N1-1	0.012	92%	92%	87%	87%	72%	72%	95%	86%	86%	72%	72%	98%	98%	107%
A96N1-2	0.017	94%	94%	88%	87%	87%	86%		113%	98%	111%	110%	97%	91%	
A96N1-3	0.019	115%	114%	100%	98%	106%	105%		125%	121%	134%	122%	120%	123%	
A96N1-4	0.024	109%	107%	96%	94%	104%	102%		107%	105%	121%	113%	120%	119%	
A96N2-1	0.011	104%	104%	86%	86%	85%	85%	86%	88%	106%	92%	92%	139%	172%	106%
A96N2-2	0.018	85%	85%	66%	66%	80%	81%		89%	101%	93%	89%	109%	110%	
A96N2-3	0.025	81%	81%	70%	71%	84%	84%		88%	88%	94%	90%	106%	104%	
A96N2-4	0.026	94%	96%	89%	89%	105%	101%		95%	96%	125%	122%	134%	129%	
A96N3-1	0.011	99%	99%	94%	94%	79%	79%	78%	87%	88%	94%	94%	87%	81%	87%
A96N3-2	0.017	90%	90%	77%	75%	83%	83%		86%	86%	97%	99%	103%	106%	
A96N3-3	0.025	75%	74%	67%	67%	75%	75%		75%	71%	82%	79%	90%	81%	
A96N3-4	0.031	100%	70%	70%	69%	66%	62%	1100/	80%	80%	92%	78%	87%	83%	1200/
B9/NI-I	0.010	102%	102%	101%	101%	80%	80%	112%	93%	93%	8/%	8/%	115%	115%	130%
D9/INI-2	0.017	101%	1110/	99%	98%	98%	97%		12/%	112%	123%	123%0	14/%	128%	
B9/NI-3	0.020	115%	111%	118%	11/%	12/%	120%		120%	125%	159%	154%	150%	135%	
D9/INI-4	0.023	12/%	120%	135%	134%	14/%	14/%	870/	145%	144%	104%	130%	131%	140%	1110/
B07N2-1	0.010	0.00/	11070 800/	720/	720/	9270	9270	0/70	93%	95%	1010/	90%	12970	12070	11170
B97N2-2	0.018	80%	70%	67%	680/	820/	830/		9270 850/	80%	100%	110%	1250/0	116%	
B97N2-4	0.023	85%	85%	80%	81%	108%	106%		96%	102%	138%	139%	146%	140%	
B97N3-1	0.010	104%	104%	103%	103%	93%	93%	84%	97%	98%	105%	105%	91%	91%	104%
B97N3-2	0.017	87%	87%	81%	80%	83%	83%	2.75	92%	91%	103%	93%	118%	110%	
B97N3-3	0.021	81%	80%	78%	75%	86%	84%		96%	96%	111%	110%	136%	128%	
B97N3-4	0.032	65%	63%	68%	66%	82%	78%		91%	88%	110%	99%	119%	113%	

Cizelge Ek 15c.2 7.0m ac kl kl var rijit cercevelerin 1, kat ötelemelerinin rijit cerceve 1, kat ötelemelerine oran

[1]: Kayd n i sminden sonra gelen numara deprem seviyesini belirtir. (1: 0.5xTD, 2: tasar m depremi, 3: maksimum deprem, 4: 1.33xMD)
 [2]: Rijit çerçeve için kat öteleme oran .

ÇIZCIZC LK	150.57	.om aç	KI KI	yai iij	n çerçe		II 2. Kat	otelei	nererm	un rijn	çeiçev	C 2. Ka		neierin	c oran
Yer Hareketi Kayd ^[1]	Rgd ^[2]	P70_SMTR _SH14 ^[3]	P70_SMTR _SH11	P60_SMTR _SH14	P60_SMTR _SH11	P50_SMTR _SH14	P50_SMTR _SH11	Ortalama ^[4]	P70_HFC_S H14	P70_HFC_S H11	P60_HFC_S H14	P60_HFC_S H11	P50_HFC_S H14	P50_HFC_S H11	Ortalama ^[5]
A03F1-1	0.010	103%	103%	105%	105%	104%	104%	118%	103%	103%	111%	111%	117%	117%	134%
A03F1-2	0.018	103%	104%	114%	115%	122%	123%		116%	131%	116%	123%	146%	150%	
A03F1-3	0.023	116%	119%	129%	132%	136%	141%		132%	131%	146%	149%	173%	162%	
A03F1-4	0.030	107%	112%	126%	131%	137%	144%		127%	131%	156%	160%	154%	153%	
A03F2-1	0.010	119%	119%	116%	116%	107%	107%	102%	121%	121%	115%	115%	135%	134%	127%
A03F2-2	0.019	96%	96%	89%	89%	95%	95%		106%	106%	120%	1220/	13/%	140%	
A03F2-4	0.020	89%	91%	97%	99%	127%	136%		119%	125%	135%	142%	141%	160%	
A03F3-1	0.009	102%	102%	115%	115%	112%	112%	110%	110%	110%	123%	123%	116%	116%	136%
A03F3-2	0.018	81%	81%	98%	98%	96%	96%		123%	117%	123%	129%	137%	137%	
A03F3-3	0.020	110%	110%	113%	114%	131%	132%		144%	141%	155%	157%	165%	177%	
A03F3-4	0.027	105%	104%	114%	118%	135%	137%		127%	130%	142%	148%	155%	153%	
A96F1-1	0.014	96%	96%	86%	86%	83%	83%	92%	97%	97%	91%	91%	97%	96%	107%
A96F1-2	0.022	85%	85%	86%	86%	89%	89%		106%	102%	106%	93%	111%	113%	
A96F1-3	0.029	0470 95%	83% 96%	94%	103%	92%	94%		107%	113%	125%	121%	125%	120%	
A96F2-1	0.014	94%	94%	95%	95%	83%	83%	92%	107%	107%	92%	92%	102%	101%	110%
A96F2-2	0.023	85%	85%	80%	81%	83%	83%		107%	100%	106%	105%	107%	100%	
A96F2-3	0.027	79%	80%	91%	90%	102%	103%		105%	108%	123%	124%	113%	117%	
A96F2-4	0.032	96%	99%	98%	101%	116%	117%		116%	121%	123%	125%	115%	123%	
A96F3-1	0.013	91%	91%	98%	98%	102%	102%	99%	102%	102%	113%	116%	97%	93%	110%
A96F3-2	0.019	103%	103%	101%	102%	102%	102%		13/%	133%	130%	123%	128%	124%	
A96F3-4	0.028	88%	91%	98%	10270	84%	84%		107%	102%	100%	98%	100%	103%	
B97F1-1	0.011	99%	99%	96%	96%	95%	95%	107%	97%	97%	100%	104%	103%	103%	121%
B97F1-2	0.020	97%	97%	102%	103%	109%	109%		121%	112%	106%	150%	131%	132%	
B97F1-3	0.028	96%	98%	106%	109%	111%	115%		109%	111%	119%	122%	133%	134%	
B97F1-4	0.031	105%	109%	120%	124%	132%	138%		121%	129%	139%	151%	132%	140%	
B97F2-1	0.011	105%	105%	108%	108%	93%	93%	95%	114%	115%	97%	97%	128%	116%	119%
B97F2-2	0.022	88%	88%	82%	82%	82%	82%		111%	108%	112%	111%	121%	117%	
B97F2-3	0.027	00% 01%	80% 90%	00%	97%	101%	102%		118%	122%	120%	132%	124%	120%	
B97F3-1	0.011	99%	99%	104%	104%	102%	102%	104%	102%	102%	116%	116%	103%	103%	126%
B97F3-2	0.019	88%	88%	98%	98%	94%	95%		128%	130%	123%	116%	136%	129%	
B97F3-3	0.022	115%	115%	115%	116%	124%	124%		134%	130%	153%	152%	164%	166%	
B97F3-4	0.032	91%	91%	102%	106%	109%	111%		109%	112%	124%	124%	119%	135%	
A03N1-1	0.014	94%	94%	85%	85%	82%	82%	93%	95%	95%	91%	91%	102%	101%	109%
A03N1-2	0.022	82%	83%	88%	88%	91%	91%		105%	104%	108%	104%	115%	115%	
A03N1-3	0.029	100%	102%	103%	93%	95%	93%		10%	103%	109%	133%	120%	122%	
A03N2-1	0.013	96%	96%	97%	97%	85%	85%	94%	105%	105%	91%	91%	111%	122%	116%
A03N2-2	0.023	85%	86%	77%	77%	81%	81%		100%	104%	120%	118%	114%	117%	
A03N2-3	0.026	80%	80%	92%	93%	112%	113%		111%	117%	128%	131%	122%	124%	
A03N2-4	0.031	93%	95%	107%	109%	123%	128%		125%	130%	125%	127%	115%	128%	
A03N3-1	0.012	93%	93%	100%	100%	97%	97%	100%	102%	102%	113%	113%	100%	98%	117%
A03N3-2	0.019	100%	101%	105%	106%	107%	108%		141%	144%	129%	124%	145%	137%	
A03N3-3	0.026	00%	03%	104%	106%	87%	86%		114%	107%	121%	100%	121%	118%	
A96N1-1	0.033	96%	96%	82%	82%	80%	80%	85%	95%	95%	85%	85%	82%	82%	98%
A96N1-2	0.023	82%	82%	75%	75%	75%	75%		96%	98%	87%	82%	105%	101%	
A96N1-3	0.030	77%	78%	79%	79%	77%	78%		94%	94%	97%	98%	97%	96%	
A96N1-4	0.030	98%	99%	93%	94%	98%	100%		103%	104%	117%	115%	115%	122%	
A96N2-1	0.013	94%	94%	95%	95%	83%	83%	91%	102%	110%	85%	85%	112%	149%	110%
A96N2-2	0.022	84%	84%	80%	80%	82%	82%		94%	101%	102%	105%	98%	106%	
A96N2-3	0.023	80% 90%	01%	92%	92%	103%	103%		103%	11170	123%	119%	113%	114%	
A96N3-1	0.012	87%	87%	96%	96%	100%	100%	103%	98%	98%	106%	106%	89%	89%	107%
A96N3-2	0.019	101%	102%	104%	105%	107%	108%		127%	133%	120%	121%	121%	119%	
A96N3-3	0.027	97%	96%	105%	106%	110%	111%		108%	109%	105%	95%	96%	95%	
A96N3-4	0.032	103%	106%	116%	119%	101%	99%		120%	105%	101%	96%	101%	102%	
B97N1-1	0.012	97%	97%	92%	92%	92%	92%	98%	98%	98%	99%	99%	96%	96%	114%
B97N1-2 B07N1-2	0.020	88%	88%	96%	95%	100%	100%		11/%	112%	110%	110%	139%	126%	
B97N1-3	0.028	97%	101%	108%	111%	118%	122%		114%	117%	130%	135%	121%	128%	
B97N2-1	0.012	101%	101%	103%	103%	91%	91%	93%	109%	109%	96%	96%	112%	109%	114%
B97N2-2	0.022	86%	86%	81%	81%	85%	85%		102%	102%	106%	105%	111%	106%	
B97N2-3	0.027	79%	78%	87%	88%	100%	101%		101%	102%	130%	131%	119%	121%	
B97N2-4	0.031	89%	90%	97%	98%	119%	120%	1020/	116%	122%	134%	133%	120%	135%	1010/
B9/N3-1 B07N2-2	0.011	95%	95%	104%	104%	101%	07%	103%	101%	100%	115%	115%	101%	101%	121%
B97N3-3	0.019	113%	113%	114%	115%	126%	127%		12.9%	127%	130%	134%	147%	143%	
B97N3-4	0.033	92%	92%	104%	107%	95%	96%		110%	109%	119%	117%	120%	122%	

Cizelge Ek 15c 3.7.0m ac kl kl. var. rijit cercevelerin 2. kat ötelemelerinin rijit cerceve 2. kat ötelemelerine oran

 10
 10
 10
 10
 10
 10
 10
 10
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 11
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <th

ÇIZCIĞC EK	130.47	.0111 aç		yai iij	n çeiçe	veren	II J. Kat	otelei	nererm	minjit	çciçev	С Э. Ка		neterm	c oran
Yer Hareketi Kayd ^[1]	Rgd ^[2]	P70_SMTR _SH14 ^[3]	P70_SMTR _SH11	P60_SMTR _SH14	P60_SMTR _SH11	P50_SMTR _SH14	P50_SMTR _SH11	Ortalama ^[4]	P70_HFC_S H14	P70_HFC_S H11	P60_HFC_S H14	P60_HFC_S H11	P50_HFC_S H14	P50_HFC_S H11	Ortalama ^[5]
A03F1-1	0.008	110%	110%	103%	103%	100%	100%	94%	105%	105%	105%	105%	105%	105%	112%
A03F1-2	0.016	79%	78%	73%	73%	94%	95%		102%	95%	102%	108%	139%	113%	
A03F1-3	0.023	76%	76%	86%	86%	99%	105%		104%	108%	110%	103%	113%	126%	
A03F1-4	0.023	79%	82%	106%	108%	114%	129%		125%	126%	123%	135%	114%	110%	
A03F2-1	0.007	123%	123%	136%	136%	1120%	1129/	113%	142%	1/20/0	130%	130%	1/1/%	1/1/0/	1/6%
A03F2-1	0.007	123/0	123/0	1020/	1020/	1020/	1020/	113 /0	142/0	142/0	1260/	1220/	144/0	144/0	140 /0
A03F2-2	0.015	11370	11370	10270	10270	105%	10570		140%	14470	130%	155%	140%	1500/	
A03F2-3	0.017	113%	114%	112%	112%	115%	118%		146%	138%	145%	15/%	156%	150%	
A03F2-4	0.022	98%	94%	103%	102%	128%	136%	1050/	139%	140%	134%	158%	165%	192%	1210/
A03F3-1	0.009	93%	93%	91%	91%	84%	84%	10/%	85%	85%	114%	114%	101%	101%	131%
A03F3-2	0.016	78%	78%	105%	105%	90%	89%		132%	125%	112%	149%	139%	127%	
A03F3-3	0.020	86%	86%	122%	122%	128%	126%		134%	121%	148%	158%	150%	154%	
A03F3-4	0.021	118%	120%	139%	142%	149%	146%		137%	133%	148%	159%	168%	151%	
A96F1-1	0.011	98%	98%	86%	86%	85%	85%	88%	106%	105%	99%	99%	107%	105%	107%
A96F1-2	0.020	81%	81%	69%	69%	79%	79%		96%	93%	106%	102%	102%	101%	
A96F1-3	0.024	88%	88%	95%	96%	88%	91%		109%	112%	103%	111%	105%	113%	
A96F1-4	0.027	88%	87%	100%	100%	101%	103%		124%	119%	104%	124%	116%	119%	
A96F2-1	0.010	112%	112%	109%	109%	89%	89%	103%	153%	152%	109%	109%	115%	115%	129%
A96F2-2	0.016	120%	121%	105%	105%	97%	97%		140%	140%	143%	140%	120%	157%	
A96F2-3	0.023	103%	104%	100%	100%	86%	87%		132%	133%	121%	130%	100%	127%	
A96F2-4	0.028	103%	103%	99%	98%	105%	109%		139%	131%	122%	125%	121%	125%	
A96F3-1	0.011	85%	85%	89%	89%	82%	82%	111%	92%	92%	111%	120%	106%	104%	135%
A96F3_2	0.017	88%	88%	124%	125%	93%	93%		140%	140%	148%	137%	136%	135%	
A96F3_3	0.019	109%	109%	153%	155%	126%	122%		130%	137%	166%	161%	162%	156%	
A96F3-A	0.015	10970	127%	13.10/	1320/	1100/	115%		1300/	1520/	15/10/	1/100%	1320/	136%	
D07E1 1	0.023	124/0	127/0	050/	050/	010/	010/	010/	1000/	1000/	000/	0.00/	0.000/	0.00/	1000/
D9/F1-1	0.009	7(0/	770/	9370	93%	9170	9170	9170	0.50/	100%	9970	99%	9870	9870	10870
B9/F1-2	0.018	/0%	77%	08%	0/%	88%	89%		95%	92%	92%	118%	125%	102%	
B9/F1-3	0.024	/6%	/5%	81%	82%	94%	100%		96%	104%	105%	111%	105%	102%	
B9/F1-4	0.024	85%	88%	104%	110%	116%	130%		128%	125%	106%	123%	138%	133%	
B97F2-1	0.008	109%	109%	113%	113%	92%	92%	104%	135%	134%	111%	111%	122%	115%	136%
B97F2-2	0.015	102%	102%	95%	95%	91%	91%		135%	131%	124%	119%	126%	127%	
B97F2-3	0.018	103%	103%	104%	103%	109%	111%		132%	133%	140%	153%	134%	139%	
B97F2-4	0.023	102%	102%	100%	98%	126%	133%		153%	148%	146%	152%	172%	179%	
B97F3-1	0.009	93%	93%	92%	92%	82%	82%	112%	89%	88%	117%	117%	102%	102%	139%
B97F3-2	0.016	80%	80%	109%	109%	91%	90%		133%	130%	149%	125%	134%	133%	
B97F3-3	0.018	98%	96%	143%	144%	140%	138%		148%	138%	171%	181%	179%	167%	
B97F3-4	0.021	123%	125%	141%	147%	150%	147%		139%	137%	160%	159%	152%	175%	
A03N1-1	0.011	98%	98%	84%	84%	81%	81%	82%	92%	92%	92%	92%	106%	104%	100%
A03N1-2	0.022	73%	74%	58%	58%	72%	72%		84%	92%	111%	98%	82%	83%	
403N1-3	0.022	81%	81%	83%	84%	83%	86%		99%	97%	99%	95%	96%	98%	
A03N1-4	0.028	79%	80%	96%	96%	93%	100%		115%	123%	102%	110%	116%	112%	
A03N2-1	0.020	111%	111%	113%	113%	02%	02%	105%	1/18%	147%	115%	115%	120%	12/0	131%
A02N2 2	0.007	1220/	1220/	1060/	1060/	1019/	1019/	105 /0	1250/	14770	1/20/	1//0/	120%	1220/0	131 /0
A03N2-2	0.013	122/0	122/0	1010/0	1010/0	000/	1000/		1200/	145/0	140/0	199/	12070	1220/	
A03N2-5	0.025	10870	109%	10170	070/	9870	100%		1270/	1210/	12/70	12370	12670	13270	
A03N2-4	0.028	99%	100%	98%	97%	111%	110%	1020/	13/%	131%	128%	133%	125%	130%	1200/
A03N3-1	0.011	80%	80%	85%	83%	/3%	/ 3%	102%	88%	88%	108%	108%	100%	102%	130%
A03N3-2	0.018	83%	85%	112%	112%	85%	84%		134%	128%	138%	132%	131%	13/%	
A03N3-3	0.020	100%	100%	137%	138%	122%	118%		129%	131%	162%	163%	158%	149%	
A03N3-4	0.027	108%	110%	126%	129%	115%	109%		138%	147%	145%	146%	127%	121%	
A96N1-1	0.012	96%	96%	80%	80%	81%	81%	79%	94%	93%	94%	94%	81%	81%	94%
A96N1-2	0.024	72%	72%	63%	63%	67%	67%		84%	84%	86%	87%	77%	73%	
A96N1-3	0.028	80%	79%	85%	86%	73%	73%		101%	99%	105%	88%	97%	92%	
A96N1-4	0.032	78%	79%	88%	88%	84%	84%		106%	109%	102%	98%	107%	113%	
A96N2-1	0.009	122%	122%	128%	128%	104%	104%	106%	163%	182%	126%	126%	140%	145%	134%
A96N2-2	0.015	138%	139%	110%	110%	110%	110%		145%	147%	159%	163%	167%	179%	
A96N2-3	0.026	108%	109%	95%	95%	87%	87%		122%	129%	120%	120%	99%	103%	
A96N2-4	0.033	93%	92%	91%	91%	86%	87%		117%	113%	108%	108%	119%	121%	
A96N3-1	0.012	84%	84%	89%	89%	76%	76%	100%	89%	89%	101%	101%	106%	98%	124%
A96N3-2	0.019	78%	78%	114%	115%	73%	73%		134%	125%	142%	137%	119%	119%	
A96N3-3	0.022	95%	96%	130%	132%	105%	107%		117%	118%	132%	127%	144%	140%	
A96N3-4	0.027	114%	117%	133%	137%	106%	102%		137%	144%	147%	153%	135%	131%	
B97N1-1	0.010	105%	105%	91%	91%	89%	89%	85%	97%	97%	98%	98%	94%	94%	101%
B97N1-2	0.022	72%	73%	62%	62%	72%	72%		85%	84%	96%	105%	96%	78%	
B97N1_3	0.022	770/	77%	770/	77%	70%	82%		07%	06%	020/	105%	00%	82%	
D07N1 4	0.027	000/	950/	1040/	1060/	1010/	1000/		1200/	12.40/	1120/	1120/	1270/	1270/	
D9/INI-4	0.020	00%	0.5%	100%	100%	101%	109%	1070/	150%	124%	112%	1220/	12/%	12/%	1259/
D9/INZ-1	0.009	1250/	110%	123%	123%	102%	102%	10/%	1.30%	149%	122%	122%	1220/	154%	133%
D9/IN2-2	0.015	123%	123%	10/%	10/%	105%	105%		148%	142%	13/%	13/%	132%	133%	
B9/N2-3	0.021	110%	111%	103%	103%	95%	96%		129%	154%	142%	136%	116%	146%	
B9/N2-4	0.028	93%	93%	96%	95%	101%	104%	10	135%	132%	124%	130%	120%	147%	
B9/N3-1	0.010	91%	91%	90%	90%	78%	/8%	104%	89%	88%	111%	111%	98%	98%	129%
B97N3-2	0.018	78%	78%	108%	108%	83%	82%		129%	127%	137%	133%	125%	116%	
B97N3-3	0.021	92%	93%	129%	130%	118%	116%		121%	116%	153%	159%	158%	145%	
B97N3-4	0.024	118%	121%	136%	141%	128%	125%		139%	151%	154%	159%	149%	143%	

Cizelge Ek 15c 4.7.0m ac kl kl. var. rijit cercevelerin 3. kat ötelemelerinin rijit cerceve 3. kat ötelemelerine oran

B97N3-4 0.024 [1]: Kayd n n isminden sonra gelen numara deprem seviyesini belirtir. (1: 0.5xTD, 2: tasar m depremi, 3: maksimum deprem, 4: 1.33xMD)

[2]: Rijit çerçeve için kat öteleme oran .

ÇIZCIŞC LK	150.5)	.om aç	KI KI	yai iij	n çerçe	velen	n tepe e	replusi	namai	n n nj	n çerçe	we tept	ucpia	Sman n	a oran
		Ϋ́	R	R	R	R	R	4	s'	s	S I	s'	s	s	[2]
r H ¹	[2]	Σ 4	ΞΞ	Ξ <u></u>	ΞΞ	Ε <u></u>	ΞΞ	ma	5 4 2	E –	5 4 2	- E	5 4	- EC	ma
Yeare	bg≯	SIE	SIE	SHS	SHS	SHS	SIS	ala	ΞıΞ	ΞıΞ	ΞıΞ	ΞIΞ	ΞıΞ	ΞıΞ	ala
НХ	щ	-S	- 70	- D90	- D90			Otto	20	20	90	90	20	220	ð
A03E1-1	0.007	82%	82%	96%	06%	117%	117%	102%	82%	82%	101%	101%	105%	105%	117%
A03E1 2	0.007	800/	800/	070/0	070/	1020/	1020/	102 /0	010/	010/	1070/	1070/	1260/	1270/	117 /0
A03F1-2	0.015	0070	0070	9770	9770	10570	10570		91/0	91/0	10770	10770	1 4 0 0 / 0	15770	
A03F1-3	0.017	92%	92%	111%	110%	12/%	128%		124%	123%	123%	121%	149%	101%	
A03F1-4	0.024	87%	87%	103%	106%	124%	129%		106%	109%	121%	132%	134%	168%	
A03F2-1	0.007	109%	109%	112%	112%	124%	124%	112%	109%	109%	112%	112%	140%	140%	134%
A03F2-2	0.013	105%	105%	106%	106%	108%	108%		110%	110%	146%	138%	140%	141%	
A03F2-3	0.016	118%	119%	113%	113%	113%	113%		145%	140%	143%	141%	132%	134%	
A03F2-4	0.019	117%	117%	111%	113%	106%	107%		141%	141%	132%	135%	156%	168%	
A03F3-1	0.007	103%	103%	101%	101%	108%	108%	93%	106%	106%	102%	102%	125%	125%	115%
A03F3-2	0.013	100%	100%	85%	85%	89%	89%		91%	91%	125%	132%	134%	134%	
A03F3-3	0.019	89%	89%	80%	80%	85%	84%		105%	104%	116%	114%	118%	117%	
A03F3-4	0.023	80%	80%	85%	85%	06%	08%		11/1%	115%	11/0%	11/0/	120%	128%	
A0013-4	0.025	770/	770/	0370	0.070	0.40/	0.40/	000/	750/	750/	000/	0.00/	1110/	12070	1000/
A96F1-1	0.011	//%	//%	83%	83%	94%	94%	88%	/5%	/5%	99%	99%	111%	104%	100%
A96F1-2	0.017	83%	83%	90%	90%	89%	89%		124%	122%	115%	110%	91%	88%	
A96F1-3	0.025	86%	86%	85%	85%	79%	78%		93%	93%	93%	86%	94%	97%	
A96F1-4	0.027	98%	99%	98%	98%	93%	93%		94%	96%	100%	103%	122%	120%	
A96F2-1	0.010	98%	98%	99%	99%	97%	97%	98%	101%	101%	100%	100%	112%	112%	113%
A96F2-2	0.016	105%	105%	98%	97%	95%	95%		126%	127%	130%	128%	111%	111%	
A96F2-3	0.021	102%	102%	87%	88%	93%	94%		115%	117%	110%	106%	104%	98%	
A96F2-4	0.024	108%	107%	94%	98%	102%	104%		112%	109%	110%	108%	126%	135%	
A96F3-1	0.011	96%	96%	87%	87%	82%	82%	95%	100%	100%	93%	93%	100%	128%	114%
A96F3-2	0.019	88%	88%	74%	74%	79%	79%		101%	99%	107%	105%	100%	98%	
A96F3-3	0.020	98%	97%	91%	91%	102%	98%		124%	126%	130%	123%	121%	115%	
A06E2 /	0.020	1000/	1090/	1020/	1000/	102/0	1320/		1247/0	120/0	120/0	1250/	121/0	1360/	
A90F3-4	0.022	10870	108%	10270	100%	12870	13270	0(0)	12470	124%	15270	1000/	131%	130%	1110/
B9/F1-1	0.009	/8%	/8%	89%	89%	106%	106%	90%	/9%	/9%	100%	100%	96%	96%	111%
B9/F1-2	0.015	86%	86%	10/%	10/%	99%	99%		111%	111%	116%	116%	13/%	138%	
B97F1-3	0.020	98%	99%	100%	99%	110%	111%		108%	106%	111%	117%	132%	143%	
B97F1-4	0.029	79%	79%	89%	91%	104%	106%		93%	96%	102%	109%	127%	137%	
B97F2-1	0.009	101%	101%	101%	101%	103%	103%	104%	102%	102%	101%	101%	121%	121%	123%
B97F2-2	0.015	103%	103%	101%	101%	100%	100%		115%	115%	136%	135%	129%	128%	
B97F2-3	0.018	115%	115%	105%	105%	103%	103%		137%	137%	131%	128%	116%	119%	
B97F2-4	0.022	116%	116%	101%	101%	98%	99%		130%	127%	123%	123%	141%	143%	
B97F3-1	0.009	96%	96%	88%	88%	92%	92%	93%	103%	103%	81%	81%	102%	102%	111%
B97F3-2	0.017	91%	91%	72%	72%	78%	78%		88%	88%	101%	98%	107%	111%	
B07F3_3	0.020	03%	02%	82%	82%	02%	00%		103%	104%	123%	118%	100%	127%	
D97F3-3	0.020	75/0	92/0	02/0	02/0	9270	1020/		10570	104/0	123/0	1200/	109/0	1420/	
B9/F3-4	0.020	105%	104%	108%	108%	120%	123%	050/	135%	133%	138%	138%	136%	145%	0/0/
A03N1-1	0.011	/3%	/3%	84%	84%	92%	92%	87%	/5%	/5%	9/%	9/%	88%	88%	96%
A03N1-2	0.017	89%	89%	97%	96%	87%	87%		121%	119%	110%	108%	101%	97%	
A03N1-3	0.025	85%	85%	81%	82%	77%	76%		83%	82%	78%	80%	98%	89%	
A03N1-4	0.028	92%	92%	94%	94%	91%	94%		95%	95%	95%	98%	116%	116%	
A03N2-1	0.010	97%	97%	95%	95%	92%	92%	97%	100%	100%	96%	96%	109%	105%	111%
A03N2-2	0.016	103%	103%	95%	95%	92%	92%		124%	124%	124%	123%	106%	108%	
A03N2-3	0.022	100%	99%	84%	83%	90%	91%		112%	112%	105%	104%	104%	108%	
A03N2-4	0.024	110%	109%	94%	97%	104%	106%		114%	109%	104%	105%	135%	135%	
A03N3-1	0.011	91%	91%	84%	84%	77%	77%	91%	96%	96%	83%	83%	92%	108%	108%
403N3-2	0.018	88%	88%	68%	68%	75%	76%		93%	94%	100%	105%	91%	96%	
A 02NI2 2	0.010	0.00/	0070	0.00/	0.00/	060/	0.49/		1170/	1100/	1260/	1100/	1160/	1140/	
AUSING-5	0.020	1020/	70/0	9070	9070	9070	7470 12(0/		11//0	110/0	120/0	1070	1240/	1 1 4 /0	
AUSIN3-4	0.023	105%	104%	95%	94%	123%	120%	070/	119%	118%	124%	12/%	124%	122%	020/
A96N1-1	0.012	/2%	/2%	/8%	/8%	90%	90%	85%	/1%	/1%	94%	94%	84%	84%	93%
A96N1-2	0.017	89%	89%	97%	96%	85%	85%		122%	131%	107%	101%	96%	90%	
A96N1-3	0.025	88%	88%	77%	77%	70%	70%		86%	80%	79%	76%	87%	91%	
A96N1-4	0.027	99%	100%	90%	90%	83%	84%		88%	85%	98%	104%	111%	96%	
A96N2-1	0.011	90%	90%	88%	88%	84%	84%	87%	93%	93%	88%	88%	93%	104%	98%
A96N2-2	0.018	94%	94%	84%	84%	82%	82%		112%	112%	111%	110%	86%	92%	
A96N2-3	0.023	92%	92%	76%	76%	79%	80%		101%	100%	89%	88%	90%	94%	
A96N2-4	0.026	99%	98%	81%	81%	88%	90%		98%	96%	89%	87%	112%	116%	
A96N3-1	0.012	88%	88%	79%	79%	71%	71%	89%	89%	89%	80%	80%	86%	86%	103%
A96N3-2	0.012	88%	88%	71%	71%	74%	74%	0,70	96%	99%	100%	97%	89%	89%	10070
A96NI3-3	0.020	08%	07%	01%	01%	102%	103%		11/10/	115%	125%	1220/	115%	120%	
A 06N2 4	0.020	1000/	9770	9170	9170	10270	10370		11470	11270	12370	12270	11.370	12070	
A90N3-4	0.023	100%	99%	09%	89%	122%	125%	070/	111%	110%	1000/	118%	115%	111%	1010/
B9/NI-I	0.010	/3%	/3%	84%	84%	96%	96%	8/%	/6%	/6%	100%	100%	90%	90%	101%
B97N1-2	0.016	82%	82%	100%	100%	84%	84%		112%	110%	105%	105%	131%	123%	
B97N1-3	0.022	90%	91%	84%	84%	87%	87%		92%	99%	93%	93%	114%	122%	
B97N1-4	0.028	84%	85%	85%	86%	95%	99%		88%	85%	93%	96%	121%	122%	
B97N2-1	0.009	100%	100%	99%	99%	99%	99%	97%	102%	102%	99%	99%	114%	114%	112%
B97N2-2	0.015	104%	104%	99%	99%	96%	96%		117%	117%	127%	126%	116%	116%	
B97N2-3	0.020	101%	101%	88%	88%	90%	91%		120%	120%	113%	110%	104%	103%	
B97N2-4	0 024	105%	105%	88%	88%	92%	94%		113%	108%	103%	101%	124%	128%	
B97N3-1	0.010	92%	92%	84%	84%	82%	82%	90%	98%	98%	76%	76%	95%	95%	105%
B97N3_2	0.017	80%	80%	60%	60%	77%	77%	2070	880%	80%	030/	030/	92%	9/1%	100/0
D97N3-2	0.017	050/	0.40/	820/	Q 40/	010/	800/		1000/	1000/	1020/	7370	7270	7470	
D9/N3-3	0.020	95%	94%	0.5%	84%	91%	09%		108%	108%	123%	118%	112%	111%	
B9/N3-4	0.021	103%	101%	100%	99%	122%	125%		126%	125%	124%	128%	128%	129%	

Cizelge Ek 15c.5 9.0m ac kl kl var rijit cercevelerin tepe deplasmanlar n n rijit cerceve tepe deplasman na oran

[1]: Kayd n n isminden sonra gelen numara deprem seviyesini belirtir. (1: 0.5xTD, 2: tasar m depremi, 3: maksimum deprem, 4: 1.33xMD) [2]: Rijit çerçeve için tepe öteleme oran .

ÇIZCIĞC LK	150.09	.0m aç	KI KI	yai iij	n çeiçe	veicin	і і. каt	otelei	neierm	minju	ÇCIÇCV	С 1. Ка		neierm	c oran
Yer Hareketi Kayd ^[1]	Rgd ^[2]	70_SMTR 	70_SMTR _SH11	50_SMTR _SH14	50_SMTR _SH11	50_SMTR _SH14	50_SMTR _SH11	rtalama ^[4]	0_HFC_S H14	⁰ _HFC_S H11	60_HFC_S H14	0_HFC_S H11	60_HFC_S H14	60_HFC_S H11	rtalama ^[5]
		L'	P.	P(Pe	P.	P.	0	Ъ7	Ъ7	P6	P6	P5	P5	0
A03F1-1	0.007	87%	87%	103%	103%	119%	119%	114%	87%	87%	106%	106%	125%	125%	137%
A03F1-2	0.012	90%	90%	107%	107%	128%	128%		104%	104%	125%	125%	148%	148%	
A03F1-3	0.016	106%	106%	119%	118%	148%	145%		155%	150%	154%	151%	189%	198%	
A03F1-4	0.024	95%	94%	119%	118%	149%	149%		126%	125%	143%	153%	181%	184%	
A03F2-1	0.007	100%	100%	105%	105%	142%	142%	104%	102%	102%	109%	109%	132%	132%	127%
A03F2-2	0.013	95%	95%	101%	101%	110%	110%		103%	103%	130%	121%	150%	147%	
A03E2-3	0.016	00%	00%	104%	104%	00%	100%		125%	118%	138%	132%	133%	120%	
A03E2 4	0.021	0.00%	0.00%	070/	070/	0.00%	100%		12570	12404	1200/	1260/	1620/	1710/	
A0312-4	0.021	1000/	2070	9770	9770	70/0	1(20/	1000/	12070	124/0	1200/	12070	1500/	1/1/0	1250/
A03F3-1	0.000	12270	12270	12/70	12/70	10370	105%	10870	12/70	12/70	120%	120%	130%	1.50%	12/70
A03F3-2	0.011	120%	120%	108%	108%	120%	120%		106%	106%	143%	156%	166%	162%	
A03F3-3	0.017	97%	97%	96%	96%	83%	82%		124%	118%	107%	102%	127%	117%	
A03F3-4	0.022	87%	86%	93%	93%	82%	81%		110%	106%	102%	96%	148%	153%	
A96F1-1	0.010	73%	73%	90%	90%	96%	96%	85%	74%	74%	93%	93%	121%	106%	105%
A96F1-2	0.015	91%	91%	97%	96%	105%	105%		136%	134%	138%	136%	107%	102%	
A96F1-3	0.025	73%	72%	73%	73%	74%	73%		93%	90%	94%	89%	105%	104%	
A96F1-4	0.029	81%	80%	84%	82%	89%	84%		98%	97%	110%	108%	123%	99%	
A96F2-1	0.010	93%	93%	96%	96%	109%	109%	90%	95%	95%	96%	96%	112%	112%	105%
A96F2-2	0.016	93%	93%	93%	93%	90%	90%		111%	111%	127%	123%	113%	117%	
A96F2-3	0.022	85%	85%	80%	79%	83%	84%		104%	101%	98%	95%	95%	100%	
A96F2-4	0.026	89%	89%	78%	81%	91%	92%		100%	94%	94%	92%	120%	126%	
A96F3_1	0.000	107%	107%	07%	07%	115%	115%	03%	100%	100%	11/0/	11.4%	11/1%	133%	108%
A06E2 2	0.007	0.20/	0.20/	820/	820/	£10/0	820/	10/0	1060/	1010/	0.50/	0.20/	1010/	1000/	100/0
A70F3-2	0.017	9270	9270	0270	010/	3470	740/		11/070	10170	9370	9270	10170	1010/	
A90F3-3	0.021	88%	86%	92%	91%	/6%	/4%		110%	111%	105%	95%	109%	101%	
A96F3-4	0.023	94%	94%	89%	89%	103%	100%		109%	103%	119%	111%	116%	120%	
B97F1-1	0.008	79%	79%	94%	94%	112%	112%	100%	80%	80%	99%	99%	112%	112%	123%
B97F1-2	0.014	90%	90%	105%	105%	118%	118%		121%	121%	135%	135%	152%	151%	
B97F1-3	0.019	96%	96%	102%	100%	121%	119%		127%	124%	137%	137%	165%	169%	
B97F1-4	0.031	77%	77%	96%	95%	113%	109%		97%	97%	116%	118%	149%	130%	
B97F2-1	0.008	95%	95%	96%	96%	118%	118%	96%	96%	96%	97%	97%	119%	119%	118%
B97F2-2	0.014	96%	96%	99%	99%	97%	97%		109%	107%	128%	126%	140%	138%	
B97F2-3	0.019	95%	95%	93%	93%	89%	89%		119%	117%	126%	121%	118%	114%	
B97F2-4	0.024	95%	94%	88%	87%	87%	89%		114%	111%	120%	115%	143%	143%	
B97F3-1	0.008	105%	105%	103%	103%	128%	128%	95%	114%	114%	107%	107%	118%	118%	113%
B97F3-2	0.015	99%	99%	86%	86%	90%	89%	,,,,,	91%	91%	109%	109%	118%	122%	110 / 0
B07F3_3	0.020	86%	85%	88%	88%	78%	76%		104%	102%	104%	05%	106%	124%	
D07E2 4	0.020	Q00/	800/	070/	060/0	000/	970/		1109/	1110/	1170/	110%	1560/	1529/	
D9/F3-4	0.022	8970 720/	720/	9770	90%	040/	0.40/	950/	750/	750/	020/	0.20/	070/	070/	1010/
A03N1-1	0.010	/ 5%	/3%	91%	91%	94%	94%	85%	/5%	/5%	93%	93%	97%	97%	101%
A03N1-2	0.015	93%	93%	99%	99%	101%	100%		133%	131%	129%	123%	113%	101%	
A03N1-3	0.026	76%	76%	71%	70%	73%	72%		88%	86%	86%	83%	108%	93%	
A03N1-4	0.030	77%	77%	79%	76%	93%	90%		98%	92%	104%	102%	120%	101%	
A03N2-1	0.010	91%	91%	91%	91%	106%	106%	90%	92%	92%	91%	91%	107%	103%	105%
A03N2-2	0.016	92%	92%	92%	92%	92%	92%		110%	110%	118%	117%	117%	118%	
A03N2-3	0.022	83%	83%	78%	78%	86%	87%		100%	98%	100%	95%	102%	102%	
A03N2-4	0.026	91%	91%	80%	82%	97%	99%		102%	97%	95%	95%	133%	127%	
A03N3-1	0.010	103%	103%	97%	97%	113%	113%	93%	108%	108%	110%	110%	107%	120%	108%
A03N3-2	0.017	94%	93%	82%	82%	85%	84%		97%	96%	102%	95%	109%	106%	
A03N3-3	0.020	89%	88%	92%	91%	74%	73%		113%	109%	100%	92%	104%	96%	
A03N3-4	0.022	97%	97%	91%	90%	107%	105%		111%	101%	122%	117%	128%	134%	
A96N1-1	0.011	69%	69%	88%	88%	92%	92%	82%	73%	73%	87%	87%	89%	89%	96%
A96N1-2	0.016	88%	88%	94%	94%	95%	95%		126%	138%	132%	115%	109%	111%	
A96N1-3	0.027	76%	76%	69%	69%	65%	64%		79%	83%	76%	71%	86%	84%	
A96N1-4	0.029	86%	850/	820%	70%	70%	77%		07%	00%	07%	02%	1030/	105%	
A 06N/2 1	0.020	970/	870/	8270	970/	0.00/	000/	840/	9770	9070	9770	9270	050/	1110/	0/10/
A 06NI2 -1	0.017	0770	0770	0/70	0/70	9870	9870	0470	10.40/	10.40/	1070/	1069/	93%	070/	9470
A90N2-2	0.017	87%	87%	80%	80%	83%	0.5%		104%	104%	10/%	100%	100%	97%	
A96N2-3	0.023	81%	81%	74%	74%	75%	/6%		91%	91%	86%	84%	89%	90%	
A96N2-4	0.027	87%	86%	75%	74%	87%	87%		93%	87%	85%	82%	97%	101%	
A96N3-1	0.010	103%	103%	93%	93%	106%	106%	92%	102%	102%	106%	106%	100%	100%	103%
A96N3-2	0.017	92%	92%	81%	81%	81%	81%		102%	103%	90%	88%	115%	106%	
A96N3-3	0.020	91%	90%	93%	92%	85%	84%		112%	107%	96%	95%	101%	100%	
A96N3-4	0.023	89%	88%	87%	85%	104%	100%		104%	102%	115%	109%	107%	111%	
B97N1-1	0.009	74%	74%	91%	91%	100%	100%	89%	76%	76%	96%	96%	101%	101%	106%
B97N1-2	0.014	88%	88%	100%	101%	105%	104%		115%	115%	123%	123%	124%	107%	
B97N1-3	0.022	81%	80%	85%	84%	89%	88%		102%	106%	101%	103%	131%	131%	
B97N1-4	0.030	76%	76%	810/	820/	102%	101%		01%	870/	105%	103%	120%	104%	
B07NO 1	0.000	020/	020/	0.40/	0.40/	1120/	1120/	010/	0.40/	0.40/	050/	0.50/	1100/	1100/	1079/
D97/N2-1	0.009	95%	95%	94%	9470	020/	020/	9170	1000/	94%	93%	9370	1220/	1210/	10/70
D7/IN2-2	0.015	9376	9376	9/70	9170	9270	9270		10070	10070	11370	1070/	13270	0.000	
B9/IN2-3	0.021	8/%	8/%	84%	83%	85%	83%		108%	100%	111%	10/%	99%	90%	
B9/N2-4	0.026	90%	89%	/8%	/8%	85%	87%	0.101	104%	101%	101%	97%	118%	119%	10001
B9/N3-1	0.008	105%	105%	100%	100%	124%	124%	94%	113%	113%	108%	108%	113%	113%	108%
B97N3-2	0.015	99%	99%	86%	86%	90%	89%		96%	94%	107%	105%	119%	105%	
B97N3-3	0.020	89%	88%	91%	91%	74%	72%		104%	103%	103%	94%	94%	91%	
B97N3-4	0.022	90%	88%	89%	88%	94%	92%		111%	102%	111%	104%	139%	133%	

Cizelge Ek 15c 6 9 0m ac kl kl. var. rijit cercevelerin 1. kat ötelemelerinin rijit cerceve 1. kat ötelemelerine oran

[1]: Kayd n n isminden sonra gelen numara deprem seviyesini belirtir. (1: 0.5xTD, 2: tasar m depremi, 3: maksimum deprem, 4: 1.33xMD)
 [2]: Rijit çerçeve için kat öteleme oran .

ÇIZCIĞC EK	150.79	.0111 aç		yai iij	n çeiçi		11 2. Kai		neierm	minju	çciçev	С 2. Ка		mererin	c oran
Yer Hareketi Kayd ^[1]	Rgd ^[2]	0_SMTR SH14 ^[3]	0_SMTR _SH11	0_SMTR _SH14	0_SMTR _SH11	0_SMTR _SH14	0_SMTR _SH11	rtalama ^[4]	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	0_HFC_S H14	0_HFC_S H11	rtalama ^[5]
		L P T	P7	P6	P6	PS	P5	ō	P7	P7	P6	P6	P5	P5	ō
A03F1-1	0.009	83%	83%	97%	97%	116%	116%	103%	83%	83%	103%	103%	108%	108%	117%
A03F1-2	0.016	82%	82%	101%	101%	105%	104%		93%	93%	111%	112%	138%	139%	
A03F1-3	0.020	97%	97%	118%	117%	128%	131%		128%	128%	123%	123%	141%	156%	
A03F1-4	0.027	89%	90%	103%	107%	117%	123%		109%	108%	116%	128%	124%	163%	
A03F2-1	0.008	109%	109%	117%	117%	127%	127%	117%	109%	109%	117%	117%	143%	143%	137%
A03F2-2	0.015	108%	108%	112%	112%	112%	113%		114%	114%	149%	143%	139%	141%	
A03E2-3	0.018	126%	127%	119%	119%	116%	116%		149%	147%	151%	149%	137%	135%	
A03F2-4	0.022	123%	12/1%	110%	121%	1120%	113%		1/0%	1/10/2	140%	1/1/%	153%	170%	
A02E2 1	0.022	107%	1070/	105%	105%	1000/	100%	080/	1120/	1120/	1020/	1020/	1280/	1200/	1109/
A031'3-1	0.008	10770	107/0	010/	010/	020/	020/	70 /0	0.50/	050/	1200/	10370	1410/	1410/	119/0
A03F3-2	0.015	105%	105%	91%	91%	93%	93%		95%	95%	130%	13/%	141%	141%	
A03F3-3	0.023	96%	97%	86%	86%	92%	92%		105%	105%	123%	123%	121%	120%	
A03F3-4	0.026	97%	97%	92%	93%	102%	104%		119%	122%	118%	118%	121%	129%	
A96F1-1	0.013	78%	78%	86%	86%	96%	96%	90%	76%	76%	100%	100%	112%	106%	100%
A96F1-2	0.020	85%	85%	92%	92%	92%	93%		123%	123%	115%	111%	90%	87%	
A96F1-3	0.029	86%	87%	89%	89%	82%	82%		95%	96%	94%	88%	90%	94%	
A96F1-4	0.031	97%	98%	102%	102%	92%	93%		97%	97%	98%	101%	117%	120%	
A96F2-1	0.012	99%	99%	101%	101%	99%	99%	102%	103%	103%	102%	102%	114%	114%	116%
A96F2-2	0.019	110%	110%	100%	100%	99%	99%		130%	132%	134%	133%	116%	114%	
A96F2-3	0.025	104%	105%	93%	94%	95%	96%		117%	118%	115%	110%	107%	101%	
A96F2-4	0.027	109%	109%	102%	106%	106%	109%		118%	116%	116%	114%	126%	139%	
A96F3-1	0.013	100%	100%	89%	89%	83%	83%	99%	102%	102%	97%	97%	103%	133%	117%
A96E3-2	0.022	0/10/	0/10/	78%	780/	820/	82%		101%	102%	100%	1110/	101%	100%	/ 0
A06E2 2	0.022	1050/	10.40/	0.00/	0.60/	1000/	1060/		101/0	1210/	1210/	1250/	101/0	1100/	
A70F3-3	0.024	10070	10470	9870	9870	1210/	1260/		12/70	13170	1210/	12370	12070	11970	
A90F3-4	0.026	108%	110%	110%	109%	131%	150%	0.404	128%	126%	151%	154%	155%	136%	1100/
B9/F1-1	0.011	80%	80%	90%	90%	10/%	10/%	96%	81%	81%	101%	101%	98%	98%	110%
B97F1-2	0.018	88%	88%	109%	109%	100%	101%		115%	114%	117%	117%	134%	136%	
B97F1-3	0.024	98%	100%	101%	100%	109%	111%		110%	109%	112%	114%	121%	134%	
B97F1-4	0.033	81%	80%	88%	91%	100%	103%		94%	98%	98%	106%	119%	134%	
B97F2-1	0.010	102%	102%	105%	105%	105%	105%	108%	103%	103%	105%	105%	124%	124%	126%
B97F2-2	0.018	108%	108%	106%	106%	103%	104%		120%	120%	139%	139%	127%	128%	
B97F2-3	0.020	121%	122%	110%	110%	108%	108%		138%	139%	138%	135%	121%	122%	
B97F2-4	0.025	117%	118%	106%	109%	102%	103%		130%	130%	128%	129%	139%	145%	
B97F3-1	0.011	99%	99%	91%	91%	93%	93%	98%	107%	107%	83%	83%	104%	104%	114%
B97F3-2	0.020	96%	96%	77%	77%	80%	80%		92%	92%	101%	100%	109%	113%	
B97F3-3	0.024	100%	100%	88%	88%	98%	97%		109%	110%	128%	123%	111%	129%	
B97F3-4	0.023	112%	111%	114%	115%	124%	128%		138%	138%	139%	140%	135%	143%	
A03N1-1	0.013	7/1%	7/1%	85%	85%	02%	02%	880/	77%	77%	00%	00%	90%	00%	96%
A02N1 2	0.015	0.00/	0.00/	0.00/	0.00/	9270	9270	00 /0	1100/	1100/	1100/	1000/	070/	060/	JU /0
A03N1-2	0.020	90%	90%	98%	98%	89%	89%		119%	119%	110%	109%	97%	96%	
A03N1-3	0.030	84%	85%	85%	85%	81%	81%		86%	84%	/9%	80%	93%	8/%	
A03N1-4	0.032	89%	90%	9/%	98%	90%	92%	1000/	96%	98%	98%	9/%	109%	116%	
A03N2-1	0.012	97%	97%	99%	99%	93%	93%	100%	102%	102%	99%	99%	109%	107%	115%
A03N2-2	0.019	110%	110%	99%	99%	96%	96%		129%	130%	129%	129%	108%	110%	
A03N2-3	0.025	105%	105%	89%	89%	94%	95%		114%	115%	113%	112%	109%	109%	
A03N2-4	0.027	111%	111%	102%	104%	106%	109%		118%	116%	111%	112%	134%	141%	
A03N3-1	0.013	93%	93%	87%	87%	79%	79%	96%	97%	97%	88%	88%	94%	109%	112%
A03N3-2	0.022	95%	95%	74%	74%	78%	78%		99%	99%	102%	109%	91%	101%	
A03N3-3	0.023	107%	107%	98%	99%	104%	101%		122%	126%	133%	127%	126%	121%	
A03N3-4	0.026	105%	105%	103%	103%	126%	129%		125%	124%	122%	126%	130%	128%	
A96N1-1	0.014	73%	73%	79%	79%	91%	91%	86%	72%	72%	95%	95%	88%	88%	93%
A96N1-2	0.020	89%	89%	97%	97%	88%	88%		122%	130%	106%	100%	91%	82%	
A96N1-3	0.030	85%	86%	82%	82%	74%	74%		89%	85%	77%	77%	83%	88%	
A96N1-4	0.031	94%	96%	92%	93%	84%	85%		91%	87%	101%	106%	106%	99%	
A96N2-1	0.013	90%	90%	91%	910/	8/10/	84%	90%	9/1%	94%	90%	90%	94%	102%	101%
A 06N2 2	0.013	1010/	1010/	9170	91/0	970/	870/	2070	1170/	1160/	1160/	1150/	020/	050/	101 /0
A 06010.2	0.020	10170	10170	0070	0070	0/70	0/70		10.40/	1070	11070	0.40/	9376	9376	
A96N2-3	0.027	96%	96%	82%	82%	83%	84%		104%	104%	94%	94%	94%	97%	
A96N2-4	0.029	100%	100%	86%	88%	92%	94%		103%	101%	93%	92%	111%	118%	10.55
A96N3-1	0.014	91%	91%	81%	81%	73%	73%	94%	90%	90%	82%	82%	88%	88%	106%
A96N3-2	0.022	95%	95%	75%	75%	78%	78%		97%	98%	105%	104%	92%	93%	
A96N3-3	0.023	105%	105%	98%	99%	105%	106%		119%	123%	132%	125%	119%	122%	
A96N3-4	0.027	102%	101%	97%	97%	123%	126%		115%	119%	117%	119%	119%	114%	
B97N1-1	0.012	74%	74%	85%	85%	97%	97%	88%	77%	77%	100%	100%	94%	94%	101%
B97N1-2	0.019	85%	85%	102%	102%	85%	84%		118%	116%	108%	106%	131%	121%	
B97N1-3	0.027	88%	89%	86%	86%	88%	89%		94%	99%	94%	91%	108%	117%	
B97N1-4	0.033	82%	83%	88%	89%	92%	96%		91%	88%	88%	92%	112%	119%	
B97N2-1	0.011	101%	101%	103%	103%	101%	101%	101%	104%	104%	103%	103%	116%	116%	116%
B97N2-2	0.018	110%	110%	105%	105%	100%	100%		123%	123%	130%	129%	115%	116%	
B97N2-3	0.023	109%	109%	95%	94%	95%	96%		121%	121%	121%	119%	110%	109%	
B97N2-4	0.027	107%	109%	030/	05%	05%	07%		1160/	1170/	1080/	107%	1210/0	130%	
B07N2-4	0.027	060/	060/	960/	9570	9570	9/0/	069/	1020/	1020/	200/	200/	070/	070/	1000/
D7/IN3-1	0.012	90%	90%	750/	30%	0470 700/	790/	9070	020/	020/	070/	020/	9776	9770	10970
D97N3-2	0.020	95%	95%	/5%	15%	18%	/8%		92%	92%	9/%	93%	9/%	95%	
B9/N3-3	0.023	103%	103%	91%	92%	99%	97%		114%	11/%	151%	128%	110%	114%	
B97N3-4	0.025	110%	109%	108%	108%	126%	129%		131%	130%	124%	129%	131%	133%	

Cizeloe Ek 15c 7.9.0m ac kl kl. var. rijit cercevelerin 2. kat ötelemelerinin rijit cerceve 2. kat ötelemelerine oran

B97N3-4 0.025 [1]: Kayd n n isminden sonra gelen numara deprem seviyesini belirtir. (1: 0.5xTD, 2: tasar m depremi, 3: maksimum deprem, 4: 1.33xMD) [2]: Rijit çerçeve için kat öteleme oran .

Çizeige Ek	130.09	.0111 aç	KIKI	yai iij	n çeiçe	eveletin	11 5 . Kat	otelei	neierm	ini nju	çeiçev	е э. ка	t otelel	neierm	e oran
	_	TR 31	IR	T.R.	IR	TR +	TR	[4]	S	S I	S	S	S	S	[2]
d ^[]	d ^[2]	14 ¹	MS EE	SM HI	MS	MS HI	MS	ama	14 C	ΞΞ	IFC 14	Ξ	H T	Ĕ Ξ	ma
A Y (a)	R_{g_i}	S SH	SIS	S S	S S	S S	S S	tal	μĦ	ΞE	슬프	ΞE	Ц. н	는 프	tals
ц×		- D	LT.	9d	9d	. D5	P5	ō	P7(P7(P6(P6(P5(P5(ō
A03F1-1	0.007	88%	88%	96%	96%	109%	109%	94%	88%	88%	99%	99%	113%	113%	112%
A03F1-2	0.014	84%	84%	90%	90%	97%	97%		104%	104%	104%	103%	116%	120%	
A03F1-3	0.017	94%	94%	104%	104%	103%	103%		132%	133%	130%	128%	134%	145%	
A03F1-4	0.025	85%	85%	91%	92%	88%	90%		100%	90%	94%	105%	105%	130%	
A03F2-1	0.006	126%	126%	109%	109%	112%	112%	111%	129%	129%	110%	110%	158%	158%	141%
A03F2-2	0.012	112%	112%	103%	103%	110%	110%		119%	119%	162%	155%	135%	138%	
A03F2-3	0.015	112%	112%	121%	121%	113%	114%		151%	158%	160%	158%	142%	155%	
A03F2-4	0.020	105%	105%	105%	108%	99%	102%		133%	130%	143%	143%	137%	149%	
A03F3-1	0.008	89%	89%	96%	96%	102%	102%	94%	86%	86%	104%	104%	123%	123%	123%
A03F3-2	0.014	78%	78%	90%	90%	87%	87%		91%	91%	142%	156%	115%	119%	
A03F3-3	0.019	79%	79%	89%	89%	89%	90%		130%	130%	138%	138%	123%	119%	
A03F3-4	0.021	98%	99%	105%	105%	118%	121%		141%	145%	132%	130%	139%	150%	
A96F1-1	0.011	80%	80%	89%	89%	89%	89%	87%	80%	80%	103%	103%	118%	117%	106%
A96F1-2	0.017	84%	84%	85%	84%	86%	86%	07.70	114%	111%	128%	119%	118%	116%	10070
A96F1-3	0.025	880%	87%	82%	82%	74%	75%		07%	08%	107%	03%	830/2	8/1%	
A96F1-4	0.025	108%	100%	02/0	02/0	85%	85%		118%	111%	105%	107%	113%	125%	
A96F2-1	0.020	10370	101%	96%	96%	85%	85%	96%	103%	103%	105%	106%	117%	116%	121%
A96F2-1	0.009	07%	07%	9076	9076	010/	0.0%	90 /6	10370	10570	1240/	1220/	12/04	1210/0	121 /0
A90F2-2	0.010	9770	9770	9076	9076	020/	9076		124/0	120%	1 2 00%	1210/	124/0	121/0	
A90F2-3	0.022	9770	9770	9870	99%	9370	93%		12370	120%	120%	12170	120%	11370	
A96F2-4	0.026	100%	99%	98%	100%	99%	104%	1000/	140%	130%	115%	111%	129%	129%	1210/
A90F3-1	0.011	81%	61%	/0%	/0%	61%	81%	100%	93%	95%	98%	98%	102%	129%	131%
A90F3-2	0.018	83%	83%	84%	84%	85%	84%		128%	114%	129%	128%	104%	104%	
A96F3-3	0.019	98%	9/%	111%	111%	11/%	116%		139%	144%	149%	146%	152%	145%	
A96F3-4	0.021	114%	115%	123%	124%	145%	151%	000/	160%	156%	161%	154%	161%	160%	1020/
B9/F1-I	0.009	81%	81%	86%	86%	95%	95%	88%	83%	83%	103%	103%	104%	104%	103%
B97F1-2	0.015	85%	85%	96%	96%	85%	85%		112%	112%	107%	105%	115%	115%	
B97F1-3	0.021	95%	95%	85%	85%	84%	87%		107%	108%	105%	99%	105%	107%	
B97F1-4	0.028	89%	90%	86%	86%	80%	85%		90%	94%	91%	92%	105%	130%	
B97F2-1	0.008	105%	105%	102%	102%	95%	95%	101%	105%	105%	103%	103%	123%	123%	125%
B97F2-2	0.013	104%	104%	101%	101%	97%	96%		123%	123%	149%	146%	118%	128%	
B97F2-3	0.018	112%	111%	105%	105%	96%	96%		134%	135%	142%	135%	124%	126%	
B97F2-4	0.023	107%	107%	98%	99%	88%	92%		128%	123%	126%	122%	130%	134%	
B97F3-1	0.009	87%	87%	82%	82%	82%	82%	94%	90%	90%	86%	86%	103%	103%	121%
B97F3-2	0.016	81%	81%	78%	78%	73%	73%		94%	95%	126%	118%	110%	106%	
B97F3-3	0.018	95%	94%	95%	94%	103%	103%		130%	137%	139%	137%	139%	138%	
B97F3-4	0.020	104%	104%	110%	108%	132%	137%		152%	148%	141%	147%	157%	146%	
A03N1-1	0.011	76%	76%	86%	86%	88%	88%	86%	82%	82%	100%	100%	107%	107%	104%
A03N1-2	0.017	88%	88%	86%	85%	86%	86%		113%	113%	124%	120%	141%	116%	
A03N1-3	0.026	83%	83%	78%	78%	67%	66%		84%	89%	96%	91%	95%	82%	
A03N1-4	0.028	106%	107%	99%	98%	84%	85%		107%	113%	107%	107%	105%	116%	
A03N2-1	0.010	101%	101%	94%	94%	85%	85%	95%	103%	103%	102%	102%	118%	113%	118%
A03N2-2	0.017	93%	93%	85%	85%	89%	88%		120%	119%	127%	126%	124%	129%	
A03N2-3	0.023	95%	95%	101%	102%	91%	93%		118%	117%	120%	121%	115%	111%	
A03N2-4	0.026	100%	99%	102%	104%	101%	106%		139%	138%	117%	109%	124%	129%	
A03N3-1	0.012	75%	75%	73%	73%	80%	80%	94%	87%	87%	93%	93%	99%	110%	124%
A03N3-2	0.018	83%	83%	85%	85%	84%	83%		105%	105%	121%	123%	106%	106%	
A03N3-3	0.020	93%	93%	104%	104%	102%	101%		137%	139%	147%	148%	130%	131%	
A03N3-4	0.022	105%	106%	113%	114%	131%	135%		149%	149%	156%	149%	150%	156%	
A96N1-1	0.012	75%	75%	86%	86%	86%	86%	81%	82%	82%	97%	97%	104%	104%	102%
A96N1-2	0.019	82%	82%	82%	82%	81%	81%		104%	105%	112%	119%	115%	149%	
A96N1-3	0.028	78%	77%	72%	72%	69%	69%		86%	83%	101%	95%	80%	78%	
A96N1-4	0.029	96%	96%	86%	86%	79%	80%		105%	106%	101%	105%	109%	125%	
A96N2-1	0.010	94%	94%	86%	86%	78%	78%	91%	96%	96%	96%	96%	103%	108%	114%
A96N2-2	0.019	81%	81%	83%	83%	79%	79%	21/0	103%	104%	119%	119%	135%	125%	
A96N/2-2	0.024	870/	870/	10.4%	106%	030/	0/10/		125%	120%	116%	120%	107%	106%	
A06NI2 4	0.024	07%	0.00%	109/	1110/	100%	0.00%		1420/0	120%	110/0	1160/	11/0/	11/10/	
A 06NI2 1	0.020	710/	710/	600/	600/	790/	790/	860%	1+2/0 910/	910/	0.20/	0.20/	0.40/	0.40/	1150/
A96N3-1	0.015	/170	/170	0970	09%	/870	/870	0070	0170	1200/	9270	9270	94%	9470	115%
A90N3-2	0.018	81%	050/	60% 1019/	60% 1019/	65%	65%		122%	130%	11/%	120%	101%	100%	
A96N3-3	0.022	94%	95%	101%	101%	102%	103%		134%	138%	144%	144%	124%	124%	
A90N3-4	0.028	80%	80% 70%	90%	91%	100%	02%	040/	11/%	120%	123%	118%	114%	118%	10.49/
D9/N1-1	0.010	19%	/9%	8/%	8/%	92%	92%	84%	85%	85%	104%	104%	109%	109%	104%
B9/NI-2	0.016	85%	85%	88%	88%	8/%	8/%		119%	116%	104%	10/%	154%	138%	
B9/N1-3	0.025	81%	81%	76%	76%	72%	71%		91%	93%	105%	104%	98%	104%	
B97N1-4	0.029	93%	94%	89%	90%	75%	76%		100%	95%	93%	91%	99%	115%	
B9/N2-1	0.008	106%	106%	99%	99%	94%	94%	96%	106%	106%	103%	103%	120%	121%	121%
B97N2-2	0.015	96%	96%	89%	89%	94%	94%		116%	115%	138%	135%	148%	138%	
B97N2-3	0.021	93%	93%	105%	106%	92%	93%		114%	120%	124%	127%	119%	114%	
B97N2-4	0.026	95%	95%	99%	101%	91%	95%		136%	134%	115%	112%	124%	121%	
B97N3-1	0.011	82%	82%	79%	79%	85%	85%	96%	86%	86%	87%	87%	102%	102%	125%
B97N3-2	0.017	79%	79%	82%	82%	80%	79%		98%	98%	121%	124%	105%	128%	
B97N3-3	0.019	91%	91%	103%	103%	101%	102%		140%	141%	145%	142%	140%	131%	
B97N3-4	0.021	112%	112%	117%	118%	137%	141%		153%	155%	158%	159%	153%	159%	

Cizelge Ek 15c 8 9 0m ac kl kl. var. rijit cercevelerin 3. kat ötelemelerinin rijit cerceve 3. kat ötelemelerine oran

[1]: Kayd n n isminden sonra gelen numara deprem seviyesini belirtir. (1: 0.5xTD, 2: tasar m depremi, 3: maksimum deprem, 4: 1.33xMD) [2]: Rijit çerçeve için kat öteleme oran .

Ek 15d Tüm yapay yer hareketi kayıtları için kat öteleme oranları

Şekil Ek 15d.1 A03F1 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.2 A03F2 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.3 A03F3 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.4 A96F1 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.5 A96F2 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.6 A96F3 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.7 B97F1 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.8 B97F2 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.9 B97F3 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.10 A03N1 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.11 A03N2 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.12 A03N3 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.13 A96N1 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.14 A96N2 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.15 A96N3 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.16 B97N1 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.17 B97N2 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Şekil Ek 15d.18 B97N3 yer hareketi kayd alt nda maksimum kat öteleme oranlar

Ek 16a Maksimum kolon gerilmeleri

Şekil Ek 16a.1 Maksimum 1. kat kolon gerilmeleri (7.0*m* aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 16a.2 Maksimum 1. kat kolon gerilmeleri (7.0*m* aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 16a.3 Maksimum 2. kat kolon gerilmeleri (7.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 16a.4 Maksimum 2. kat kolon gerilmeleri (7.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 16a.5 Maksimum 3. kat kolon gerilmeleri (7.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 16a.6 Maksimum 3. kat kolon gerilmeleri (7.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 16a.7 Maksimum 1. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 16a.8 Maksimum 1. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 16a.9 Maksimum 2. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 16a.10 Maksimum 2. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 16a.11 Maksimum 3. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 16a.12 Maksimum 3. kat kolon gerilmeleri (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

				U		· /			
C	Tasa	rım Dej	premi	Maksi	imum D	eprem	1.33xI	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	391	393	396	398	404	411	412	417	427
P70_SMTR_SH14	391	392	395	393	399	409	397	411	428
P70_SMTR_SH11	391	392	394	393	399	408	396	409	426
P60_SMTR_SH14	389	391	394	393	398	408	405	415	433
P60_SMTR_SH11	389	391	394	392	397	407	403	413	430
P50_SMTR_SH14	390	392	395	395	404	415	407	427	438
P50_SMTR_SH11	390	392	394	394	402	412	403	423	433
P70_HFC_SH14	391	394	403	397	403	406	416	426	437
P70_HFC_SH11	391	394	400	396	401	406	414	423	434
P60_HFC_SH14	392	396	404	409	418	428	425	438	446
P60_HFC_SH11	392	397	409	404	414	426	417	431	440
P50_HFC_SH14	394	402	407	410	421	430	431	446	456
P50_HFC_SH11	393	400	406	400	415	424	423	437	451

Ek 16b Minimum, ortalama, maksimum kolon gerilmeleri

Çizelge Ek 16b.1 7.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 1. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 16b.2 7.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 1. kat kolon gerilmeleri (*MPa*)

Comenza	Tasa	rım Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	394	395	397	399	405	410	407	416	423
P70_SMTR_SH14	391	392	394	393	399	406	400	409	421
P70_SMTR_SH11	391	392	394	393	398	405	398	407	418
P60_SMTR_SH14	382	390	393	392	395	403	400	410	423
P60_SMTR_SH11	382	390	393	391	395	401	399	408	421
P50_SMTR_SH14	390	392	394	394	401	409	401	417	428
P50_SMTR_SH11	390	391	393	393	399	407	398	413	425
P70_HFC_SH14	391	394	401	396	403	408	411	420	431
P70_HFC_SH11	391	393	397	396	401	406	410	417	425
P60_HFC_SH14	392	397	405	401	412	422	419	429	439
P60_HFC_SH11	391	396	403	397	409	416	411	423	434
P50_HFC_SH14	393	401	406	403	413	421	419	433	443
P50_HFC_SH11	391	399	404	399	408	415	413	427	434

	Tasa	rım Dei	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	325	366	390	370	388	392	391	391	393
P70_SMTR_SH14	303	341	358	383	389	390	390	391	393
P70_SMTR_SH11	302	341	357	382	389	390	390	391	392
P60_SMTR_SH14	318	338	362	376	387	390	390	392	395
P60_SMTR_SH11	318	337	362	375	386	390	390	392	393
P50_SMTR_SH14	326	342	358	376	388	391	391	393	396
P50_SMTR_SH11	325	340	356	367	385	391	390	392	394
P70_HFC_SH14	345	363	384	390	390	391	391	393	396
P70_HFC_SH11	339	361	381	390	390	390	390	392	396
P60_HFC_SH14	351	373	390	390	392	393	391	394	401
P60_HFC_SH11	353	374	390	387	390	392	390	392	397
P50_HFC_SH14	372	387	390	391	392	396	391	397	418
P50_HFC_SH11	362	380	390	388	390	392	390	393	414

Çizelge Ek 16b.3 7.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 2. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 16b.4 7.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 2. kat kolon gerilmeleri (*MPa*)

Cerceve	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	340	374	391	390	391	392	391	392	393
P70_SMTR_SH14	332	350	365	390	390	391	391	392	393
P70_SMTR_SH11	332	349	364	390	390	391	391	391	393
P60_SMTR_SH14	319	338	357	389	390	391	390	393	396
P60_SMTR_SH11	319	338	357	389	390	391	391	393	395
P50_SMTR_SH14	325	345	361	390	391	392	391	393	396
P50_SMTR_SH11	325	344	360	390	390	391	391	393	395
P70_HFC_SH14	338	374	390	387	390	391	391	394	399
P70_HFC_SH11	343	372	390	383	389	391	391	393	396
P60_HFC_SH14	325	368	390	390	391	393	391	394	396
P60_HFC_SH11	316	361	390	387	390	392	390	391	392
P50_HFC_SH14	353	379	390	390	391	392	392	392	393
P50_HFC_SH11	350	379	390	379	389	401	390	391	392

	Tasa	rım Dei	premi	Maks	imum D	enrem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	274	333	390	365	385	392	391	395	403
P70_SMTR_SH14	252	285	337	320	339	373	339	372	390
P70_SMTR_SH11	252	285	334	320	337	368	339	367	390
P60_SMTR_SH14	233	270	315	298	325	370	329	363	390
P60_SMTR_SH11	233	268	305	292	314	349	314	349	385
P50_SMTR_SH14	233	243	249	271	289	313	316	336	355
P50_SMTR_SH11	231	238	243	261	276	290	311	317	327
P70_HFC_SH14	289	324	365	356	382	392	390	392	397
P70_HFC_SH11	275	318	352	356	370	389	377	388	395
P60_HFC_SH14	265	298	341	319	357	390	366	387	392
P60_HFC_SH11	288	314	349	327	350	380	371	383	392
P50_HFC_SH14	263	291	314	305	346	392	369	385	396
P50_HFC_SH11	238	279	361	298	329	393	336	365	395

Çizelge Ek 16b.5 7.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 3. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 16b.6 7.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 3. kat kolon gerilmeleri (*MPa*)

C	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xN	Aaks. D	eprem
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	306	360	392	390	395	403	399	402	411
P70_SMTR_SH14	299	322	367	352	379	391	390	391	394
P70_SMTR_SH11	299	322	366	352	378	391	390	391	393
P60_SMTR_SH14	263	291	328	323	354	390	356	383	391
P60_SMTR_SH11	263	288	327	311	344	390	335	375	391
P50_SMTR_SH14	245	251	264	279	310	337	332	357	389
P50_SMTR_SH11	240	246	262	274	302	332	319	343	384
P70_HFC_SH14	307	348	386	390	391	393	393	397	404
P70_HFC_SH11	305	346	384	384	391	395	391	395	403
P60_HFC_SH14	316	351	389	373	389	398	390	394	403
P60_HFC_SH11	302	348	391	353	381	392	390	392	406
P50_HFC_SH14	248	291	338	304	351	390	390	394	403
P50_HFC_SH11	247	293	323	304	351	389	373	389	392

Tasa	rım Dej	premi	Maks	imum D	eprem	1.33xI	Maks. D	eprem
Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
390	394	399	397	405	414	409	415	425
382	390	394	394	398	401	402	408	413
382	390	394	393	397	400	401	406	412
390	391	392	396	398	402	404	410	423
390	391	392	395	398	401	404	409	422
391	393	396	392	400	411	399	416	436
391	393	395	392	399	409	399	414	433
390	395	404	404	410	413	412	421	429
390	394	403	400	407	412	409	417	427
393	398	405	399	409	419	409	423	435
393	397	404	397	407	417	405	419	432
396	400	403	409	417	428	428	443	456
394	399	403	405	415	425	424	436	446
	Tasa Min 390 382 382 390 391 391 390 391 393 393 393 394	Tasarm DegMinOrt.390394382390382390382390390391390391391393391393391393390395390394393398393397396400394399	Tasarr DepremiMinOrt.Maks390394399382390394382390394382390394390391392390391392391393396391393395390395404390394403393397404396400403394399403	Tasarm Depremi Maks Min Ort. Maks Min 390 394 399 397 382 390 394 394 382 390 394 394 382 390 394 393 382 390 394 393 382 390 394 393 390 391 392 396 390 391 392 395 391 393 396 392 391 393 395 392 391 393 395 392 391 393 395 392 391 393 395 392 390 394 403 404 390 394 403 397 393 397 404 397 396 400 403 409 394 399 403 405	Tasarr Depremi Maks Min Ort. Min Ort. Maks Min Ort. 390 394 399 397 405 382 390 394 394 398 382 390 394 393 397 382 390 394 393 397 390 391 392 396 398 390 391 392 396 398 390 391 392 395 398 391 393 396 392 400 391 393 395 392 399 391 393 395 392 399 390 393 395 392 399 390 394 403 400 407 393 397 404 397 407 393 397 404 397 407 393 397 <td>Tasarr MinOrt.MaksMinOrt.Maks390$394$$399$$397$$405$$414$$382$$390$$394$$394$$398$$401$$382$$390$$394$$393$$397$$400$$382$$390$$394$$393$$397$$400$$390$$391$$392$$396$$398$$402$$390$$391$$392$$396$$398$$402$$391$$392$$396$$398$$401$$391$$393$$396$$392$$400$$411$$391$$393$$395$$392$$399$$409$$390$$394$$403$$400$$407$$412$$393$$397$$404$$397$$407$$417$$396$$400$$403$$409$$417$$428$$394$$399$$403$$405$$415$$425$</td> <td>TasarrDeprecipientMaksMinOrt.MaksMinMinOrt.MaksMinOrt.MaksMin$390$$394$$399$$397$$405$$414$$409$$382$$390$$394$$394$$398$$401$$402$$382$$390$$394$$393$$397$$400$$401$$390$$391$$392$$396$$398$$402$$404$$390$$391$$392$$396$$398$$402$$404$$391$$393$$396$$392$$400$$411$$399$$391$$393$$396$$392$$400$$411$$399$$391$$393$$396$$392$$409$$412$$409$$391$$393$$405$$399$$409$$419$$409$$391$$393$$405$$399$$409$$419$$409$$391$$393$$405$$399$$409$$419$$409$$391$$393$$405$$399$$407$$417$$405$$393$$394$$403$$409$$407$$417$$405$$393$$397$$404$$397$$407$$417$$428$$394$$399$$403$$405$$415$$425$$424$</td> <td>TasaUMaksMinOrt.MaksMinOrt.MaksMinOrt.$390$$394$$399$$397$$405$$414$$409$$415$$382$$390$$394$$394$$398$$401$$402$$408$$382$$390$$394$$393$$397$$400$$401$$406$$390$$391$$392$$396$$398$$401$$402$$406$$390$$391$$392$$396$$398$$402$$404$$410$$390$$391$$392$$396$$398$$401$$404$$409$$391$$392$$396$$398$$401$$404$$409$$391$$393$$396$$392$$400$$411$$399$$416$$391$$393$$396$$392$$398$$401$$404$$409$$391$$393$$396$$392$$399$$409$$412$$409$$391$$393$$395$$392$$399$$409$$412$$402$$421$$390$$393$$404$$400$$407$$412$$409$$417$$393$$398$$405$$399$$407$$417$$405$$419$$393$$397$$404$$397$$407$$417$$405$$413$$393$$397$$403$$409$$417$$428$$428$$443$$394$$399$$403$$405$$415$<t< td=""></t<></td>	Tasarr MinOrt.MaksMinOrt.Maks390 394 399 397 405 414 382 390 394 394 398 401 382 390 394 393 397 400 382 390 394 393 397 400 390 391 392 396 398 402 390 391 392 396 398 402 391 392 396 398 401 391 393 396 392 400 411 391 393 395 392 399 409 390 394 403 400 407 412 393 397 404 397 407 417 396 400 403 409 417 428 394 399 403 405 415 425	TasarrDeprecipientMaksMinOrt.MaksMin Min Ort.MaksMinOrt.MaksMin 390 394 399 397 405 414 409 382 390 394 394 398 401 402 382 390 394 393 397 400 401 390 391 392 396 398 402 404 390 391 392 396 398 402 404 391 393 396 392 400 411 399 391 393 396 392 400 411 399 391 393 396 392 409 412 409 391 393 405 399 409 419 409 391 393 405 399 409 419 409 391 393 405 399 409 419 409 391 393 405 399 407 417 405 393 394 403 409 407 417 405 393 397 404 397 407 417 428 394 399 403 405 415 425 424	TasaUMaksMinOrt.MaksMinOrt.MaksMinOrt. 390 394 399 397 405 414 409 415 382 390 394 394 398 401 402 408 382 390 394 393 397 400 401 406 390 391 392 396 398 401 402 406 390 391 392 396 398 402 404 410 390 391 392 396 398 401 404 409 391 392 396 398 401 404 409 391 393 396 392 400 411 399 416 391 393 396 392 398 401 404 409 391 393 396 392 399 409 412 409 391 393 395 392 399 409 412 402 421 390 393 404 400 407 412 409 417 393 398 405 399 407 417 405 419 393 397 404 397 407 417 405 413 393 397 403 409 417 428 428 443 394 399 403 405 415 <t< td=""></t<>

Çizelge Ek 16b.7 9.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 1. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 16b.8 9.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 1. kat kolon gerilmeleri (*MPa*)

	Tasa	rım Dej	premi	Maksi	imum D	eprem	1.33xN	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	394	397	400	406	411	418	411	418	425
P70_SMTR_SH14	391	392	394	397	400	403	406	409	413
P70_SMTR_SH11	391	392	394	397	399	402	404	408	411
P60_SMTR_SH14	391	392	392	397	399	402	401	407	416
P60_SMTR_SH11	391	392	392	396	398	401	401	405	415
P50_SMTR_SH14	392	393	394	393	398	405	403	415	428
P50_SMTR_SH11	392	393	394	393	397	403	401	412	425
P70_HFC_SH14	392	397	403	406	409	412	414	418	423
P70_HFC_SH11	392	398	407	403	407	412	408	414	418
P60_HFC_SH14	393	399	406	400	406	412	413	420	431
P60_HFC_SH11	392	397	401	397	403	410	408	416	427
P50_HFC_SH14	397	401	406	403	416	427	418	434	447
P50_HFC_SH11	395	399	404	401	411	422	416	427	437

	Tasa	rım Dej	premi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	300	345	382	377	387	390	390	390	391
P70_SMTR_SH14	240	293	332	315	344	361	359	372	390
P70_SMTR_SH11	240	293	332	315	343	359	355	368	386
P60_SMTR_SH14	282	302	319	334	350	373	376	384	390
P60_SMTR_SH11	282	301	319	333	349	375	367	380	390
P50_SMTR_SH14	276	295	317	308	332	362	334	363	390
P50_SMTR_SH11	276	294	318	305	327	355	332	355	390
P70_HFC_SH14	250	306	352	354	362	372	374	384	390
P70_HFC_SH11	250	305	351	347	356	362	362	374	390
P60_HFC_SH14	312	334	361	352	360	372	363	378	390
P60_HFC_SH11	304	331	358	333	348	375	334	364	390
P50_HFC_SH14	301	323	344	338	361	390	387	390	392
P50_HFC_SH11	294	321	339	313	341	381	347	371	391

Çizelge Ek 16b.9 9.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 2. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 16b.10 9.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 2. kat kolon gerilmeleri (*MPa*)

Cerceve	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	361	375	385	390	390	390	390	391	392
P70_SMTR_SH14	268	315	340	351	363	372	384	388	390
P70_SMTR_SH11	268	315	341	350	361	372	376	385	390
P60_SMTR_SH14	306	320	329	350	365	385	365	382	390
P60_SMTR_SH11	306	319	329	347	363	386	357	377	390
P50_SMTR_SH14	278	293	303	324	335	351	351	372	390
P50_SMTR_SH11	277	293	304	319	331	347	353	364	386
P70_HFC_SH14	306	337	357	358	372	390	375	384	391
P70_HFC_SH11	303	338	375	349	368	384	367	378	390
P60_HFC_SH14	308	332	364	333	360	380	364	383	390
P60_HFC_SH11	308	326	343	318	351	365	362	376	385
P50_HFC_SH14	287	319	329	328	367	390	372	388	391
P50_HFC_SH11	296	315	340	325	351	376	360	380	390

	Tasa	rım Dej	premi	Maks	imum D	eprem	1.33x	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	241	292	328	299	348	390	352	379	391
P70_SMTR_SH14	200	229	248	253	283	307	303	319	350
P70_SMTR_SH11	200	229	247	253	282	302	301	312	335
P60_SMTR_SH14	188	218	242	254	265	285	282	290	305
P60_SMTR_SH11	188	218	242	251	259	274	272	279	302
P50_SMTR_SH14	197	205	215	222	232	258	239	258	294
P50_SMTR_SH11	197	203	211	217	226	247	232	248	278
P70_HFC_SH14	207	249	313	311	324	340	322	361	390
P70_HFC_SH11	207	246	286	305	318	339	314	343	373
P60_HFC_SH14	215	260	281	284	311	382	313	334	360
P60_HFC_SH11	214	256	289	269	289	327	295	320	390
P50_HFC_SH14	197	226	270	256	285	313	286	332	390
P50_HFC_SH11	195	219	261	241	277	324	265	320	390

Çizelge Ek 16b.11 9.0*m* açıklıklı çerçevelerin, faya uzak kayıtlar altında; minimum, ortalama ve maksimum 3. kat kolon gerilmeleri (*MPa*)

Çizelge Ek 16b.12 9.0*m* açıklıklı çerçevelerin, faya yakın kayıtlar altında; minimum, ortalama ve maksimum 3. kat kolon gerilmeleri (*MPa*)

Company	Tasa	rım Dep	oremi	Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve -	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	290	328	354	356	380	392	390	393	398
P70_SMTR_SH14	230	248	259	282	299	311	319	342	377
P70_SMTR_SH11	229	248	258	282	297	306	312	334	374
P60_SMTR_SH14	229	239	253	268	288	317	302	334	390
P60_SMTR_SH11	229	239	252	263	282	314	286	327	390
P50_SMTR_SH14	207	214	231	226	250	285	258	302	363
P50_SMTR_SH11	205	212	230	223	246	280	260	296	351
P70_HFC_SH14	253	279	317	313	342	368	356	382	399
P70_HFC_SH11	250	279	320	319	333	348	345	373	390
P60_HFC_SH14	241	281	305	303	327	359	310	358	390
P60_HFC_SH11	243	281	307	299	318	357	297	349	389
P50_HFC_SH14	248	287	339	321	344	372	314	353	392
P50_HFC_SH11	249	303	361	262	327	386	284	343	392

Şekil Ek 17a.1 Maksimum 1. kat birleşim dönmeleri (7.0*m* aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 17a.2 Maksimum 1. kat birleşim dönmeleri (7.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 17a.3 Maksimum 2. kat birleşim dönmeleri (7.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 17a.4 Maksimum 2. kat birleşim dönmeleri (7.0*m* aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 17a.5 Maksimum 3. kat birleşim dönmeleri (7.0*m* aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 17a.6 Maksimum 3. kat birleşim dönmeleri (7.0*m* aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 17a.7 Maksimum 1. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 17a.8 Maksimum 1. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 17a.9 Maksimum 2. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 17a.10 Maksimum 2. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler, faya yak n yer hareketleri)

Şekil Ek 17a.11 Maksimum 3. kat birleşim dönmeleri (9.0m aç kl kl çerçeveler, faya uzak yer hareketleri)

Şekil Ek 17a.12 Maksimum 3. kat birleşim dönmeleri (9.0*m* aç kl kl çerçeveler, faya yak n yer hareketleri)

	Tasa	Tasar m Depremi			imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.014	0.016	0.018	0.019	0.022	0.024	0.022	0.027	0.032
P70_SMTR_SH11	0.014	0.017	0.019	0.020	0.024	0.027	0.023	0.030	0.037
P60_SMTR_SH14	0.014	0.016	0.020	0.019	0.023	0.029	0.026	0.030	0.038
P60_SMTR_SH11	0.014	0.017	0.021	0.020	0.025	0.032	0.029	0.033	0.043
P50_SMTR_SH14	0.016	0.018	0.020	0.023	0.026	0.031	0.026	0.035	0.042
P50_SMTR_SH11	0.017	0.019	0.022	0.025	0.029	0.035	0.028	0.038	0.046
P70_HFC_SH14	0.016	0.019	0.023	0.021	0.024	0.026	0.028	0.032	0.038
P70_HFC_SH11	0.016	0.020	0.024	0.023	0.026	0.029	0.031	0.036	0.043
P60_HFC_SH14	0.019	0.021	0.023	0.026	0.030	0.033	0.031	0.039	0.049
P60_HFC_SH11	0.020	0.023	0.030	0.025	0.033	0.038	0.033	0.043	0.051
P50_HFC_SH14	0.022	0.025	0.027	0.028	0.033	0.038	0.033	0.042	0.050
P50_HFC_SH11	0.021	0.026	0.029	0.030	0.036	0.040	0.037	0.045	0.053

Ek 17b Minimum, ortalama, maksimum birleşim dönmeleri

Çizelge Ek 17b.1 7.0*m* aç kl kl çerçevelerin, faya uzak kay tlar alt nda; minimum, ortalama ve maksimum 1. kat birleşim dönmeleri (*rad*)

Çizelge Ek 17b.2 7.0*m* aç kl kl çerçevelerin, faya yak n kay tlar alt nda; minimum, ortalama ve maksimum 1. kat birleşim dönmeleri (*rad*)

Comment	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem			
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks	
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
P70_SMTR_SH14	0.015	0.016	0.017	0.021	0.022	0.023	0.024	0.026	0.029	
P70_SMTR_SH11	0.016	0.017	0.018	0.022	0.023	0.025	0.027	0.029	0.033	
P60_SMTR_SH14	0.013	0.015	0.018	0.020	0.022	0.026	0.026	0.028	0.032	
P60_SMTR_SH11	0.013	0.016	0.019	0.021	0.024	0.029	0.028	0.032	0.036	
P50_SMTR_SH14	0.016	0.018	0.019	0.022	0.025	0.028	0.024	0.031	0.036	
P50_SMTR_SH11	0.016	0.019	0.020	0.024	0.027	0.031	0.026	0.034	0.041	
P70_HFC_SH14	0.016	0.019	0.022	0.021	0.024	0.027	0.026	0.029	0.033	
P70_HFC_SH11	0.017	0.020	0.022	0.022	0.026	0.028	0.026	0.032	0.037	
P60_HFC_SH14	0.018	0.020	0.024	0.021	0.028	0.031	0.028	0.035	0.039	
P60_HFC_SH11	0.018	0.021	0.026	0.022	0.030	0.035	0.028	0.037	0.043	
P50_HFC_SH14	0.020	0.024	0.027	0.024	0.030	0.032	0.029	0.035	0.039	
P50_HFC_SH11	0.022	0.025	0.028	0.024	0.031	0.036	0.031	0.038	0.043	

Comment	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33 x	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.008	0.011	0.013	0.013	0.016	0.019	0.018	0.020	0.025
P70_SMTR_SH11	0.008	0.011	0.013	0.014	0.017	0.021	0.019	0.023	0.028
P60_SMTR_SH14	0.011	0.013	0.017	0.017	0.020	0.024	0.020	0.025	0.030
P60_SMTR_SH11	0.012	0.014	0.019	0.019	0.022	0.027	0.021	0.028	0.034
P50_SMTR_SH14	0.013	0.015	0.016	0.019	0.022	0.024	0.025	0.029	0.030
P50_SMTR_SH11	0.014	0.015	0.017	0.021	0.024	0.027	0.028	0.033	0.036
P70_HFC_SH14	0.012	0.016	0.018	0.019	0.022	0.024	0.023	0.026	0.031
P70_HFC_SH11	0.014	0.017	0.020	0.020	0.024	0.027	0.028	0.031	0.034
P60_HFC_SH14	0.015	0.017	0.022	0.023	0.025	0.028	0.028	0.031	0.034
P60_HFC_SH11	0.017	0.020	0.024	0.025	0.028	0.031	0.033	0.035	0.039
P50_HFC_SH14	0.018	0.020	0.022	0.024	0.029	0.044	0.030	0.034	0.038
P50_HFC_SH11	0.019	0.021	0.022	0.028	0.030	0.033	0.034	0.039	0.051

Çizelge Ek 17b.3 7.0*m* aç kl kl çerçevelerin, faya uzak kay tlar alt nda; minimum, ortalama ve maksimum 2. kat birleşim dönmeleri (*rad*)

Çizelge Ek 17b.4 7.0*m* aç kl kl çerçevelerin, faya yak n kay tlar alt nda; minimum, ortalama ve maksimum 2. kat birleşim dönmeleri (*rad*)

C	Tasa	r m Dep	remi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.010	0.011	0.013	0.015	0.016	0.017	0.017	0.021	0.024
P70_SMTR_SH11	0.010	0.012	0.014	0.015	0.017	0.019	0.019	0.023	0.028
P60_SMTR_SH14	0.011	0.013	0.017	0.017	0.020	0.023	0.021	0.025	0.031
P60_SMTR_SH11	0.011	0.014	0.018	0.018	0.022	0.026	0.023	0.028	0.035
P50_SMTR_SH14	0.013	0.014	0.015	0.019	0.021	0.024	0.024	0.027	0.031
P50_SMTR_SH11	0.014	0.015	0.016	0.020	0.023	0.027	0.027	0.030	0.034
P70_HFC_SH14	0.014	0.016	0.019	0.021	0.022	0.023	0.022	0.027	0.031
P70_HFC_SH11	0.016	0.018	0.021	0.022	0.024	0.028	0.028	0.032	0.035
P60_HFC_SH14	0.017	0.019	0.021	0.023	0.025	0.028	0.028	0.031	0.034
P60_HFC_SH11	0.017	0.021	0.028	0.025	0.028	0.031	0.030	0.034	0.037
P50_HFC_SH14	0.019	0.020	0.022	0.025	0.027	0.029	0.029	0.034	0.043
P50_HFC_SH11	0.018	0.021	0.025	0.027	0.029	0.036	0.030	0.036	0.039

Comment	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33 x	Maks. D	eprem
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.008	0.010	0.013	0.011	0.013	0.018	0.013	0.018	0.023
P70_SMTR_SH11	0.008	0.010	0.014	0.012	0.014	0.020	0.014	0.020	0.027
P60_SMTR_SH14	0.010	0.013	0.017	0.015	0.019	0.025	0.019	0.024	0.029
P60_SMTR_SH11	0.010	0.013	0.018	0.016	0.020	0.028	0.020	0.026	0.033
P50_SMTR_SH14	0.012	0.013	0.014	0.017	0.020	0.024	0.023	0.027	0.030
P50_SMTR_SH11	0.012	0.013	0.015	0.019	0.022	0.025	0.029	0.030	0.032
P70_HFC_SH14	0.011	0.015	0.024	0.017	0.021	0.027	0.022	0.027	0.032
P70_HFC_SH11	0.010	0.017	0.029	0.016	0.022	0.030	0.021	0.030	0.041
P60_HFC_SH14	0.014	0.023	0.033	0.021	0.026	0.029	0.023	0.028	0.033
P60_HFC_SH11	0.014	0.023	0.029	0.024	0.031	0.039	0.026	0.032	0.037
P50_HFC_SH14	0.020	0.028	0.036	0.020	0.025	0.030	0.027	0.032	0.036
P50_HFC_SH11	0.016	0.026	0.033	0.022	0.028	0.031	0.029	0.037	0.045

Çizelge Ek 17b.5 7.0*m* aç kl kl çerçevelerin, faya uzak kay tlar alt nda; minimum, ortalama ve maksimum 3. kat birleşim dönmeleri (*rad*)

Çizelge Ek 17b.6 7.0*m* aç kl kl çerçevelerin, faya yak n kay tlar alt nda; minimum, ortalama ve maksimum 3. kat birleşim dönmeleri (*rad*)

C	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.009	0.011	0.016	0.015	0.017	0.022	0.017	0.021	0.026
P70_SMTR_SH11	0.009	0.012	0.017	0.016	0.019	0.026	0.019	0.024	0.029
P60_SMTR_SH14	0.011	0.014	0.019	0.019	0.021	0.025	0.023	0.027	0.032
P60_SMTR_SH11	0.011	0.015	0.020	0.020	0.023	0.029	0.025	0.030	0.037
P50_SMTR_SH14	0.014	0.014	0.016	0.019	0.021	0.024	0.025	0.027	0.030
P50_SMTR_SH11	0.014	0.015	0.016	0.020	0.023	0.026	0.028	0.030	0.033
P70_HFC_SH14	0.012	0.019	0.031	0.019	0.022	0.025	0.026	0.030	0.035
P70_HFC_SH11	0.012	0.018	0.024	0.021	0.026	0.032	0.031	0.034	0.038
P60_HFC_SH14	0.017	0.025	0.034	0.025	0.028	0.030	0.027	0.031	0.035
P60_HFC_SH11	0.017	0.026	0.032	0.026	0.030	0.034	0.029	0.035	0.043
P50_HFC_SH14	0.018	0.025	0.033	0.021	0.027	0.033	0.032	0.035	0.038
P50_HFC_SH11	0.021	0.027	0.035	0.023	0.030	0.035	0.035	0.040	0.044

	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem			
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks	
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
P70_SMTR_SH14	0.011	0.014	0.017	0.017	0.019	0.021	0.021	0.023	0.025	
P70_SMTR_SH11	0.011	0.014	0.017	0.017	0.020	0.022	0.022	0.024	0.027	
P60_SMTR_SH14	0.012	0.015	0.017	0.017	0.020	0.022	0.022	0.025	0.028	
P60_SMTR_SH11	0.012	0.015	0.017	0.018	0.021	0.023	0.024	0.027	0.032	
P50_SMTR_SH14	0.013	0.016	0.018	0.017	0.021	0.025	0.021	0.026	0.033	
P50_SMTR_SH11	0.013	0.017	0.019	0.018	0.022	0.027	0.023	0.029	0.037	
P70_HFC_SH14	0.011	0.016	0.021	0.020	0.022	0.025	0.025	0.026	0.027	
P70_HFC_SH11	0.011	0.016	0.022	0.021	0.024	0.027	0.028	0.029	0.030	
P60_HFC_SH14	0.017	0.019	0.022	0.023	0.024	0.026	0.026	0.028	0.032	
P60_HFC_SH11	0.017	0.020	0.023	0.024	0.026	0.029	0.028	0.032	0.038	
P50_HFC_SH14	0.016	0.020	0.022	0.023	0.025	0.030	0.030	0.034	0.043	
P50_HFC_SH11	0.017	0.022	0.024	0.024	0.028	0.034	0.032	0.038	0.048	

Çizelge Ek 17b.7 9.0*m* aç kl kl çerçevelerin, faya uzak kay tlar alt nda; minimum, ortalama ve maksimum 1. kat birleşim dönmeleri (*rad*)

Çizelge Ek 17b.8 9.0*m* aç kl kl çerçevelerin, faya yak n kay tlar alt nda; minimum, ortalama ve maksimum 1. kat birleşim dönmeleri (*rad*)

	Tasa	Tasar m Depremi			imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.013	0.015	0.017	0.019	0.020	0.021	0.022	0.023	0.024
P70_SMTR_SH11	0.013	0.016	0.017	0.020	0.022	0.023	0.024	0.026	0.027
P60_SMTR_SH14	0.014	0.016	0.017	0.019	0.020	0.021	0.022	0.024	0.026
P60_SMTR_SH11	0.014	0.016	0.017	0.020	0.022	0.023	0.023	0.025	0.029
P50_SMTR_SH14	0.014	0.015	0.016	0.019	0.020	0.022	0.023	0.026	0.030
P50_SMTR_SH11	0.015	0.016	0.017	0.020	0.022	0.024	0.026	0.029	0.033
P70_HFC_SH14	0.015	0.018	0.021	0.021	0.022	0.024	0.024	0.025	0.027
P70_HFC_SH11	0.015	0.019	0.024	0.023	0.025	0.026	0.025	0.027	0.029
P60_HFC_SH14	0.017	0.019	0.021	0.021	0.023	0.025	0.024	0.027	0.029
P60_HFC_SH11	0.017	0.020	0.023	0.022	0.024	0.026	0.026	0.029	0.033
P50_HFC_SH14	0.016	0.019	0.021	0.022	0.024	0.028	0.027	0.031	0.038
P50_HFC_SH11	0.015	0.019	0.022	0.024	0.026	0.032	0.027	0.033	0.038

0	Tasa	r m Dep	oremi	Maks	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.008	0.010	0.012	0.012	0.015	0.017	0.015	0.019	0.022
P70_SMTR_SH11	0.008	0.010	0.013	0.012	0.016	0.019	0.016	0.020	0.025
P60_SMTR_SH14	0.010	0.011	0.012	0.013	0.015	0.018	0.017	0.020	0.023
P60_SMTR_SH11	0.010	0.011	0.013	0.014	0.016	0.020	0.018	0.022	0.026
P50_SMTR_SH14	0.010	0.012	0.014	0.016	0.018	0.021	0.019	0.023	0.028
P50_SMTR_SH11	0.010	0.012	0.014	0.016	0.019	0.022	0.021	0.025	0.032
P70_HFC_SH14	0.009	0.013	0.017	0.017	0.019	0.022	0.021	0.023	0.026
P70_HFC_SH11	0.009	0.013	0.017	0.018	0.021	0.025	0.021	0.026	0.029
P60_HFC_SH14	0.011	0.016	0.019	0.017	0.021	0.024	0.021	0.024	0.026
P60_HFC_SH11	0.011	0.017	0.020	0.019	0.022	0.026	0.026	0.027	0.031
P50_HFC_SH14	0.015	0.016	0.017	0.018	0.021	0.027	0.026	0.028	0.030
P50_HFC_SH11	0.015	0.017	0.018	0.020	0.024	0.027	0.030	0.033	0.038

Çizelge Ek 17b.9 9.0*m* aç kl kl çerçevelerin, faya uzak kay tlar alt nda; minimum, ortalama ve maksimum 2. kat birleşim dönmeleri (*rad*)

Çizelge Ek 17b.10 9.0*m* aç kl kl çerçevelerin, faya yak n kay tlar alt nda; minimum, ortalama ve maksimum 2. kat birleşim dönmeleri (*rad*)

C	Tasar m Depremi			Maksi	mum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.010	0.011	0.012	0.014	0.016	0.017	0.017	0.020	0.022
P70_SMTR_SH11	0.010	0.011	0.013	0.015	0.017	0.019	0.019	0.022	0.024
P60_SMTR_SH14	0.010	0.012	0.013	0.015	0.016	0.018	0.019	0.021	0.024
P60_SMTR_SH11	0.010	0.012	0.013	0.016	0.018	0.020	0.020	0.023	0.027
P50_SMTR_SH14	0.011	0.013	0.014	0.016	0.018	0.020	0.020	0.024	0.028
P50_SMTR_SH11	0.012	0.013	0.014	0.017	0.019	0.022	0.021	0.027	0.032
P70_HFC_SH14	0.012	0.014	0.016	0.016	0.019	0.021	0.022	0.024	0.027
P70_HFC_SH11	0.012	0.015	0.018	0.018	0.021	0.024	0.023	0.027	0.029
P60_HFC_SH14	0.013	0.016	0.018	0.019	0.022	0.025	0.023	0.025	0.027
P60_HFC_SH11	0.014	0.018	0.020	0.019	0.023	0.026	0.025	0.027	0.030
P50_HFC_SH14	0.014	0.017	0.020	0.018	0.022	0.025	0.027	0.028	0.030
P50_HFC_SH11	0.016	0.018	0.022	0.020	0.023	0.027	0.031	0.033	0.040

	Tasa	r m Dep	oremi	Maksi	imum D	eprem	1.33xMaks. Deprem		
Çerçeve	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.008	0.009	0.010	0.010	0.012	0.015	0.014	0.016	0.021
P70_SMTR_SH11	0.008	0.009	0.010	0.010	0.012	0.015	0.015	0.018	0.023
P60_SMTR_SH14	0.009	0.011	0.013	0.015	0.016	0.019	0.019	0.020	0.022
P60_SMTR_SH11	0.009	0.011	0.013	0.014	0.017	0.021	0.020	0.021	0.025
P50_SMTR_SH14	0.011	0.012	0.014	0.015	0.017	0.021	0.018	0.022	0.027
P50_SMTR_SH11	0.011	0.012	0.014	0.016	0.018	0.022	0.020	0.024	0.031
P70_HFC_SH14	0.009	0.012	0.026	0.015	0.020	0.033	0.017	0.023	0.030
P70_HFC_SH11	0.009	0.011	0.014	0.020	0.026	0.033	0.017	0.026	0.033
P60_HFC_SH14	0.012	0.018	0.022	0.021	0.023	0.025	0.022	0.025	0.029
P60_HFC_SH11	0.012	0.019	0.030	0.021	0.025	0.033	0.025	0.027	0.034
P50_HFC_SH14	0.014	0.019	0.033	0.022	0.025	0.028	0.026	0.029	0.032
P50_HFC_SH11	0.015	0.021	0.028	0.022	0.027	0.036	0.029	0.033	0.036

Çizelge Ek 17b.11 9.0*m* aç kl kl çerçevelerin, faya uzak kay tlar alt nda; minimum, ortalama ve maksimum 3. kat birleşim dönmeleri (*rad*)

Çizelge Ek 17b.12 9.0*m* aç kl kl çerçevelerin, faya yak n kay tlar alt nda; minimum, ortalama ve maksimum 3. kat birleşim dönmeleri (*rad*)

C "	Tasa	Tasar m Depremi			mum D	eprem	1.33xMaks. Deprem		
Çerçeve og	Min	Ort.	Maks	Min	Ort.	Maks	Min	Ort.	Maks
Rgd	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P70_SMTR_SH14	0.009	0.010	0.010	0.012	0.014	0.015	0.016	0.019	0.023
P70_SMTR_SH11	0.009	0.010	0.010	0.012	0.015	0.016	0.018	0.022	0.026
P60_SMTR_SH14	0.012	0.013	0.014	0.015	0.019	0.023	0.021	0.023	0.028
P60_SMTR_SH11	0.012	0.013	0.014	0.015	0.020	0.026	0.023	0.025	0.032
P50_SMTR_SH14	0.013	0.014	0.015	0.016	0.019	0.022	0.020	0.024	0.028
P50_SMTR_SH11	0.013	0.014	0.015	0.017	0.020	0.024	0.020	0.027	0.031
P70_HFC_SH14	0.011	0.016	0.021	0.016	0.021	0.024	0.022	0.027	0.033
P70_HFC_SH11	0.011	0.014	0.019	0.018	0.024	0.027	0.023	0.031	0.038
P60_HFC_SH14	0.014	0.022	0.029	0.022	0.024	0.028	0.024	0.029	0.036
P60_HFC_SH11	0.022	0.027	0.031	0.024	0.028	0.034	0.024	0.030	0.035
P50_HFC_SH14	0.016	0.023	0.033	0.023	0.026	0.029	0.029	0.034	0.058
P50_HFC_SH11	0.018	0.024	0.031	0.024	0.027	0.031	0.033	0.036	0.041

Ek 18 Çerçevelerin tepe ivmelerinin Fourier güç spektrumları ve elastik ötesi periyotları

7.0m aç kl kl çerçeveler, Ambraseys (2003) faya uzak yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit		HFC		SMTR				
	(rad)	P70	P60	P50	P70	P60	P50 122% P50 1.029		
A03F	0.019	122%	149%	159%	103%	112%	122%		
Elastik ve elastik ötesi (FFT) periyotlar									
Periyot	Rijit	P70	P60	P50	P70	P60	P50		
Elastik	0.903	0.926	0.975	1.029	0.926	0.975	1.029		

Şekil Ek 18.1 Ambraseys (2003) faya uzak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (7.0m aç kl kl çerçeveler)

7.0m aç kl kl çerçeveler, Ambraseys (2003) faya yak n yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit		HFC		SMTR			
	(rad)	P70	P60	P50	P70	P60	P50	
A03N	0.022	111%	128%	120%	89%	99%	104%	
Elastik vo	e elasti	k ötesi	(FFT) p	periyotl	ar			
Periyot	Rijit	P70	P60	P50	P70	P60	P50	
Elastik	0.903	0.926	0.975	1.029	0.926	0.975	1.029	
Elastik	0.97	1.16	1.16	1.37	1.00	1.12	1.20	

Şekil Ek 18.2 Ambraseys (2003) faya yak n yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (7.0m aç kl kl çerçeveler)

A03N1₃ yer hareketinde x 10¹² SMTR-SH11 Çerçeveleri

7.0m aç kl kl çerçeveler, Ambraseys (1996) faya uzak yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit	HFC					
	(rad)	P70	P60	P50	P70	P60	P50
A96F	0.023	111%	123%	112%	88%	98%	98%
Elastik vo	e elasti	k ötesi	(FFT) p	periyotl	ar		
Periyot	Rijit	P70	P60	P50	P70	P60	P50
Elastik	0.903	0.926	0.975	1.029	0.926	0.975	1.029
Elastik	1.00	1.16	1.16	1.37	1.04	1.12	1.16

A96F1₃ yer hareketinde x 10¹² SMTR-SH11 Çerçeveleri 1.5 0.5 1 2 Periyot A96F23 yer hareketinde x 10¹² SMTR-SH11 Çerçeveleri 1.5 0.5 1 2 Periyot A96F33 yer hareketinde x 10¹² SMTR-SH11 Çerçeveleri

Şekil Ek 18.3 Ambraseys (1996) faya uzak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (7.0m aç kl kl çerçeveler)

7.0m aç kl kl çerçeveler, Ambraseys (1996) faya yak n yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit		HFC		SMTR			
	(rad)	P70	P60	P50	P70	P60	P50	
A96N	0.022	108%	106%	105%	84%	93%	95%	
Elastik vo	e elastil	k ötesi	(FFT) p	periyotl	ar			
Periyot	Rijit	P70	P60	P50	P70	P60	P50	
Elastik	0.903	0.926	0.975	1.029	0.926	0.975	1.029	
Elastik	0.97	1.12	1.16	1.37	1.00	1.12	1.16	

A96N1, yer hareketinde

Periyot

Şekil Ek 18.4 Ambraseys (1996) faya yak n yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (7.0m aç kl kl çerçeveler)

7.0m aç kl kl çerçeveler, Boore (1997) faya uzak yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit		HFC		SMTR			
	(rad)	P70	P60	P50	P70	P60	P50	
B97F	0.021	114%	141%	142%	98%	105%	111%	
Elastik v	e elasti	k ötesi	(FFT) p	periyotl	ar			
Periyot	Rijit	P70	P60	P50	P70	P60	P50	
Elastik	0.903	0.926	0.975	1.029	0.926	0.975	1.029	

1.12

1.20

2

2

2

Periyot

Şekil Ek 18.5 Boore (1997) faya uzak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (7.0m aç kl kl çerçeveler)

Periyot

7.0m aç kl kl çerçeveler, Boore (1997) faya yak n yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit		HFC	SMTR					
	(rad)	P70	P60	P50	P70	P60	P50 106% P50 1.029		
B97N	0.021	113%	134%	127%	91%	102%	106%		
Elastik ve elastik ötesi (FFT) periyotlar									
Periyot	Rijit	P70	P60	P50	P70	P60	P50		
Elastik	0.903	0.926	0.975	1.029	0.926	0.975	1.029		
T1									

1.16

0.5

0.5

0.5

1.37

B97N13 yer hareketinde

1

Periyot

B97N23 yer hareketinde

1

Periyot

B97N33 yer hareketinde

1

Periyot

1.00

1.5

1.5

1.5

2

2

2

1.12

1.20

Şekil Ek 18.6 Boore (1997) faya yak n yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (7.0m aç kl kl çerçeveler)

Periyot

9.0m aç kl kl çerçeveler, Ambraseys (2003) faya uzak yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit		HFC		SMTR				
	(rad)	P70	P60	P50	P70	P60	P50		
A03F	0.017	123%	125%	137%	100%	101%	108%		
Elastik ve elastik ötesi (FFT) periyotlar									
Periyot	Rijit	P70	P60	P50	P70	P60	P50		
Elastik	0.767	0.835	0.874	0.929	0.835	0.874	0.929		

1.04

0.88

1.5

1.5

1.5

2

2

2

1.20

A03F1₃ yer hareketinde

1

Periyot A03F23 yer hareketinde

1

Periyot

A03F33 yer hareketinde

1

Periyot

1.01

1.00

1.04

0.5

0.5

0.5

Şekil Ek 18.7 Ambraseys (2003) faya uzak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (9.0m aç kl kl çerçeveler)

9.0m aç kl kl çerçeveler, Ambraseys (2003) faya yak n yer hareketleri maksimum deprem seviyesi

Kayıt	Rijit	HFC			SMTR			
	(rad)	P70	P60	P50	P70	P60	P50	
A03N	0.022	104%	101%	104%	94%	85%	87%	
Elastik v	e elasti	k ötesi	(FFT) p	periyotl	ar			
Periyot	Rijit	P70	P60	P50	P70	P60	P50	
Elastik	0.767	0.835	0.874	0.929	0.835	0.874	0.929	
Elastik	0 77	1 00	1 04	1 16	0.91	0 97	1 04	

Şekil Ek 18.8 Ambraseys (2003) faya yak n yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (9.0m aç kl kl çerçeveler)

9.0m aç kl kl çerçeveler, Ambraseys (1996) faya uzak yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit (rad)	HFC			SMTR		
		P70	P60	P50	P70	P60	P50
A96F	0.022	112%	105%	104%	95%	88%	90%
Elastik vo	e elasti	k ötesi	(FFT) p	periyotl	ar		
Periyot	Rijit	P70	P60	P50	P70	P60	P50
Elastik	0.767	0.835	0.874	0.929	0.835	0.874	0.929
Elastik	0.77	1.00	1.04	1.20	0.94	0.97	1.04

Periyot

Şekil Ek 18.9 Ambraseys (1996) faya uzak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (9.0m aç kl kl çerçeveler)

9.0m aç kl kl çerçeveler, Ambraseys (1996) faya yak n yer hareketleri maksimum deprem seviyesi

	D4	HFC			SMTR		
Kayıt	(rad)	P70	P60	P50	P70	P60	P50
A96N	0.023	98%	95%	101%	92%	81%	84%
Elastik vo	e elastil	k ötesi	(FFT) p	periyotl	ar		
Periyot	Rijit	P70	P60	P50	P70	P60	P50
Elastik	0.767	0.835	0.874	0.929	0.835	0.874	0.929
Elastik	0.77	1.00	1.04	1.16	0.91	0.94	1.00

A96N1₃ yer hareketinde x 10^{13} SMTR-SH11 Çerçeveleri

Şekil Ek 18.10 Ambraseys (1996) faya yak n yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (9.0m aç kl kl çerçeveler)

9.0m aç kl kl çerçeveler, Boore (1997) faya uzak yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit (rad)	HFC			SMTR		
		P70	P60	P50	P70	P60	P50
B97F	0.019	116%	121%	130%	102%	95%	101%
Elastik v	e elastil	k ötesi	(FFT) p	periyotl	ar		
Periyot	Rijit	P70	P60	P50	P70	P60	P50
Elastik	0.767	0.835	0.874	0.929	0.835	0.874	0.929

Şekil Ek 18.11 Boore (1997) faya uzak yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (9.0m aç kl kl çerçeveler)

9.0m aç kl kl çerçeveler, Boore (1997) faya yak n yer hareketleri maksimum deprem seviyesi

Tepe deplasman oranlar

Kayıt	Rijit (rad)	HFC			SMTR		
		P70	P60	P50	P70	P60	P50
B97N	0.021	109%	107%	112%	95%	85%	89%
Elastik vo	e elasti	k ötesi	(FFT) p	periyotl	ar		
Periyot	Rijit	P70	P60	P50	P70	P60	P50
Elastik	0.767	0.835	0.874	0.929	0.835	0.874	0.929
Elastik	0.77	1.00	1.04	1.20	0.91	0.97	1.00

B97N1₃ yer hareketinde x 10¹³ SMTR-SH11 Çerçeveleri 0.5 1.5 2 1 Periyot B97N23 yer hareketinde x 10¹³ SMTR-SH11 Çerçeveleri 1.5 0.5 2 1 Periyot B97N33 yer hareketinde SMTR-SH11 Çerçeveleri

1

Periyot

1.5

2

Şekil Ek 18.12 Boore (1997) faya yak n yer hareketleri etkisinde oluşan tepe ivmesinin Fourier güç spektrumu (9.0m aç kl kl çerçeveler)

ÖZGEÇMİŞ

Doğum tarihi	10.07.1977	
Doğum yeri	Kayseri	
Lise	1992-1995	Nuh Mehmet Küçükçal k Anadolu Lisesi
Lisans	1995-1999	Erciyes Üniversitesi Mühendislik Fak. İnşaat Mühendisliği Bölümü
Yüksek Lisans	2000-2003	Y ld z Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Müh. Anabilim Dal , Yap Program
Doktora	2003-2009	Y ld z Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Müh. Anabilim Dal , Yap Program

Çal şt ğ kurumlar

1999-2000	Birlik İnşaat Mühendislik Ltd.Şti.
1999-2000	Bırlık İnşaat Mühendislik Ltd.Şti.

2000-Devam ediyor YTÜ Fen Bilimleri Enstitüsü Araşt rma Görevlisi

ÖZGEÇMİŞ

Doğum tarihi	10.07.1977	
Doğum yeri	Kayseri	
Lise	1992-1995	Nuh Mehmet Küçükçal k Anadolu Lisesi
Lisans	1995-1999	Erciyes Üniversitesi Mühendislik Fak. İnşaat Mühendisliği Bölümü
Yüksek Lisans	2000-2003	Y ld z Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Müh. Anabilim Dal , Yap Program
Doktora	2003-2009	Y ld z Teknik Üniversitesi Fen Bilimleri Enstitüsü İnşaat Müh. Anabilim Dal , Yap Program

Çal şt ğ kurumlar

1999-2000	Birlik İnşaat Mühendislik Ltd.Şti.
1999-2000	Bırlık İnşaat Mühendislik Ltd.Şti.

2000-Devam ediyor YTÜ Fen Bilimleri Enstitüsü Araşt rma Görevlisi