T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇİNKO EKSİK KOŞULLARDA YETİŞTİRİLMİŞ *Hordeum spontaneum* C. Koch GÖVDESİNDEN KURULMUŞ BASKILAYICI ÇIKARIM HİBRİDİZASYON KÜTÜPHANESİNDEN SEÇİLEN CDNA'LARIN MOLEKÜLER VE BİYOİNFORMATİK ANALİZLERİ

BAHAR IŞIK

YÜKSEK LİSANS TEZİ MOLEKÜLER BİYOLOJİ VE GENETİK ANABİLİM DALI

> DANIŞMAN YRD. DOÇ. DR. ŞENAY VURAL KORKUT

> > **İSTANBUL, 2012**

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇİNKO EKSİK KOŞULLARDA YETİŞTİRİLMİŞ *Hordeum spontaneum* C. Koch GÖVDESİNDEN KURULMUŞ BASKILAYICI ÇIKARIM HİBRİDİZASYON KÜTÜPHANESİNDEN SEÇİLEN CDNA'LARIN MOLEKÜLER VE BİYOİNFORMATİK ANALİZLERİ

Bahar IŞIK tarafından hazırlanan tez çalışması 19.10.2012 tarihinde aşağıdaki jüri tarafından Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Moleküler Biyoloji ve Genetik Anabilim Dalı'nda **YÜKSEK LİSANS TEZİ** olarak kabul edilmiştir.

Tez Danışmanı

Yrd. Doç. Dr. Şenay VURAL KORKUT Yıldız Teknik Üniversitesi

Jüri Üyeleri

Yrd. Doç. Dr. Şenay VURAL KORKUT Yıldız Teknik Üniversitesi

Prof. Dr. Dilek TURGUT BALIK Yıldız Teknik Üniversitesi

Doç. Dr. Ayten YAZGAN KARATAŞ İstanbul Teknik Üniversitesi

Bu çalışma, Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü' nün 2012-01-07-YL01 numaralı projesi ile desteklenmiştir.

Tez çalışmam boyunca beni her konuda yönlendiren, benden yardımlarını, desteğini, sabrını ve bilgisini esirgemeyen başta değerli danışman hocam, Sayın Yrd. Doç. Dr. Şenay VURAL KORKUT' a,

Biyoinformatik konusunda bilgisini esirgemeyen Sabancı Üniversitesi Mühendislik ve Doğa bilimleri Fakültesi Biyomühendislik Bölümü öğretim üyesi Sayın **Doç. Dr. Uğur SEZERMAN'** a,

Biyoinformatik çalışmalar konusunda bilgisayar tedariği için Sayın **Prof. Dr. Nezhun GÖREN**'e,

Biyoinformatik analizler konusunda kullanılan programların kullanımı konusunda yardımcı olan Sabancı Üniversitesi Mühendislik ve Doğa bilimleri Fakültesi Biyomühendislik Bölümü Araştırma Görevlisi Sayın **Cem MEYDAN**' a,

Bana sağladığı çalışma olanağından ve yardımlarından dolayı, Moleküler Biyoloji ve Genetik Bölümü'nün tüm öğretim elemanlarına,

Tez çalışmam süresince ilgi ve desteğini yanımda hissettiğim Moleküler Biyoloji ve Genetik Bölümünde yüksek lisans yapan diğer arkadaşlarım **Dilek ÇAĞLAR, Gizem ÇAVUŞOĞLU DOLMA, Neslihan ŞİMŞEK** ve **Yahya Emin DEMİRCİ**' ye,

Beni her türlü içten alakalarıyla bugünlerime getiren ve destekleyen annem **Haskar IŞIK**, babam **Halisi IŞIK** ve kızkardeşlerim **Arzu IŞIK** ve **Işıl IŞIK**' a,

Tüm bu süreç boyunca her zaman bana inanan ve yanımda olan herkese,

Sonsuz saygı ve teşekkürlerimi sunarım.

Ağustos, 2012

Bahar IŞIK

İÇİNDEKİLER

	Sayfa
SİMGE LİSTESİ	viii
KISALTMA LİSTESİ	ix
ŞEKİL LİSTESİ	x
ÇİZELGE LİSTESİ	xi
ÖZET	xii
ABSTRACT	xiii
BÖLÜM 1	
GİRİŞ	1
1.1 Literatür Özeti	1
1.1.1 Arpanın Taksonomisi, Yaşam Koşulları ve Tarihi	1
1.1.2 Çinko ve önemi	3
1.1.2.1 Toprakta Çinko	4
1.1.2.2 Bitkide Çinko	6
1.1.2.3 Çinkonun Fizyolojik Fonksiyonları	8
1.1.2.4 Bitkiler Tarafından Çinko Alımı	11
1.1.2.5 Çinko Etkinliği	12
1.1.2.6 Çinko Alımının Moleküler Biyolojisi	13
1.1.2.7 Çinkonun Bitki Besin Elementleriyle Arasındaki İnteraksiyor	າlar15
1.1.3 Biyoinformatik Analizler	18
1.1.4 GenBank	19
1.2 Tezin Amacı	19
1.3 Hipotez	25

BÖLÜM 2

MATERYAL VE METOD
2.1 Besiyerleri
2.2 Tamponlar ve Solüsyonlar
2.3 Moleküler Markırlar27
2.4 Enzimler
2.5 Kitler
2.6 Kullanılan Oligonukleotid ve Vektör Dizinleri
2.7 Kullanılan Programlar28
2.7.1 Cygwin28
2.7.2 Phred ve Phrap28
2.7.3 CAP328
2.7.4 Cross-Match28
2.7.5 BEAP
2.7.6 VecScreen29
2.7.7 BLAST (Basic Local Alignment Search Tool)
2.8 SSH Kütüphanesinde Rekombinant Plazmid Kontrolü
2.8.1 Plazmid İzolasyonu İçin Örnek Kolonilerin Seçimi ve Büyütülmesi30
2.8.2 Plazmid İzolasyonu30
2.8.3 Plazmid Kesim31
2.8.4 Agaroz Jelde Analiz31
2.9 Rekombinant Kolonilerin 96'lık Kültür Kaplarına Aktarımı ve Gliserol
Stoklarının Hazırlanması31
2.10 Kolonilerin Dizin Analizine Gönderilmesi
2.11 Biyoinformatik Analizler32
BÖLÜM 3
SONUÇ VE ÖNERİLER
3.1 Plazmid İzolasyonu34
3.2 Biyoinformatik Analizler35
3.2.1 EST'lerin Hazırlanması ve Kontig – Singletlerin Oluşturulması35
3.2.2 BLAST Analizleri
3.2.2.1 Gövde Kontig BLAST Analizleri38
3.2.2.2 Gövde Singlet BLAST Analizleri41
3.2.3 Gövde Kontik ve Singlet BLAST Sonuçlarının Değerlendirilmesi41
3.3 Öneriler54
KAYNAKLAR

EK A ARPA BİTKİSİNİN GÖVDESİNDEN CAP3 PROGRAMIYLA ELDE EDİLEN KONTİGLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ70
EK B ARPA BİTKİSİNİN GÖVDESİNDEN CAP3 PROGRAMIYLA ELDE EDİLEN SİNGLETLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ
EK C ARPA BİTKİSİNİN GÖVDESİNDEN PHRAP PROGRAMIYLA ELDE EDİLEN KONTİGLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ85
EK D ARPA BİTKİSİNİN GÖVDESİNDEN PHRAP PROGRAMIYLA ELDE EDİLEN SİNGLETLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ93
EK E ARPA BİTKİSİNİN GÖVDESİNDEN CAP3 PROGRAMIYLA ELDE EDİLEN KONTİGLERİ OLUŞTURAN cDNA'LAR VE SAYILARI101
EK F ARPA BİTKİSİNİN GÖVDESİNDEN PHRAP PROGRAMIYLA ELDE EDİLEN KONTİGLERİ OLUŞTURAN cDNA'LAR VE SAYILARI120
ÖZGEÇMİŞ129

SIMGE LISTESI

ds	Çift zincirli
ha	Hektar alan
g	Gram
kb	Kilobaz
L	Litre
Mg	Miligram
MI	Mililitre
mМ	Milimolar
U	Unit
UV	Ultraviyole
v/v	Hacim/ hacim
Zn	Çinko
Zn(OH)2	Çinko Hidrooksit
ZnCO3	Çinko Karbonat
ZnSO4	Çinko Sülfat
μl	Mikrolitre
w/v	Ağırlık/ hacim

KISALTMA LİSTESİ

AAS	Atomik Absorbsivon Spektrofotometre
BLAST	Dizi homolojisi arama motoru
°C	Sentigrat derece
CAP3	EST birleştirme programı
cDNA	Komplementer DNA
DEPC	Di Etil Piro Karbonat
DNA	Deoksiribonükleik Asit
dNTP	Deoksiribonükleozit trifosfat
EDTA	Etilen Di Amin Tetra Asetik Asit
EST	Anlatımı yapılan dizi işaretleri (Expressed Sequences Tags)
FAO	Gıda ve Tarım Örgütü
IAA	İndol Asetik Asit
LB	Luria Broth
mRNA	Mesajcı RNA
NCBI	Ulusal Biyoteknoloji Merkezi
PCR	Polimeraz Zincir Reaksiyonu
рН	Ortam Reaksiyonu
RNA	Ribonükleik Asit
RPM	Devir/ dakika
RT	Revers Transkriptaz enzimi
SSH	Baskılayıcı Çıkarım Hibridizasyonu

ŞEKİL LİSTESİ

	Sayfa
Şekil 1. 1	Kontrol grubu ve deney grubundaa gözlemlenen farklılıklar
Şekil 1. 2	Baskılayıcı çıkarım hibridizasyonu22
Şekil 1. 3	Arpa bitkisinin gövde örneklerinden 1.PCR amplifikasyonun jel
	görünümü23
Şekil 1. 4	Arpa bitkisinin gövde örneklerinden 2.PCR amplifikasyonun jel
	görünümü 24
Şekil 1. 5	Arpa bitkisinin gövdesinden saflaştırılan PCR ürünlerinin jel görünümü 24
Şekil 1. 6	pGEM [®] -T Easy vektörünün şematik gösterimi
Şekil 3. 1	Kütüphaneden rastgele seçilen kolonilerden izole edilip, PCR kesimleri
	yapılmış plazmidler35
Şekil 3. 2	Cygwin-Phred programına komutların girilmesi
Şekil 3. 3	Cygwin-Cross Match programının dizinlerdeki vektör ve adaptör
	dizilerini işaretlemesi
Şekil 3. 4	VecScreen Programının web sitesi görünümü
Şekil 3. 5	BEAP programında 10. Kontigi oluşturan EST'ler ve bu dizilerin örtüşme
	biçimleri38
Şekil 3. 6	NCBI veritabanı BLASTN aracı web sitesi görüntüsü
Şekil 3. 7	Arpa bitkisinin gövdesine ait Kontig 2 dizisinin BLASTN sonuçlarının NCBI
	veritabanı web sitesi görüntüsü40
Şekil 3. 8	Phrap Programı Kontig 9 Clustalw görüntüsü42
Şekil 3. 9	Phrap programıyla oluşturulan Kontig 1'in clustalw analizi sonucu44

ÇİZELGE LİSTESİ

Sayfa

Çizelge 1. 1	Arpa bitkisine ait sınıflandırma	2
Çizelge 1. 2	Bitki kısımlarının yaş ağırlıkları ve çinko içerikleri	21
Çizelge 3. 1	Cap3 Kontig BLAST Sonuçları Fonksiyon Çizelgesi	45
Çizelge 3. 2	Cap3 Singlet BLAST Sonucları Fonksiyon Cizelgesi	49
Çizelge 3. 3	BLAST Analizi Sonuclarının Fonksiyon Gruplaması	56

ÇİNKO EKSİK KOŞULLARDA YETİŞTİRİLMİŞ *Hordeum spontaneum* C. Koch GÖVDESİNDEN KURULMUŞ BASKILAYICI ÇIKARIM HİBRİDİZASYON KÜTÜPHANESİNDEN SEÇİLEN cDNA'LARIN MOLEKÜLER VE BİYOİNFORMATİK ANALİZLERİ

Bahar IŞIK

Moleküler Biyoloji ve Genetik Anabilim Dalı Yüksek Lisans Tezi

Tez Danışmanı: Yrd. Doç. Dr. Senay V. KORKUT

Çinko bütün organizmalar için önemli bir mikrobesindir ve 1000'den fazla enzim ve proteinin temel bileşenidir. Canlı hücrelerde protein, karbohidrat ve lipid metabolizmasında, replikasyon ve transkripsiyonda, biyomembranların yapısal ve fonksiyonel bütünlüğü için kritik rolleri vardır.

Çinko eksikliği tüm canlılarda bir çok bozukluğa neden olur. Düşük çinko koşullarında yetişen bir bitkide cüce gövde, genç yapraklarda kıvrılma ve yuvarlanma, yaprak uçlarının ölümü ve klorozis görülür. Memelilerde ise, çinkonun yetersiz olduğu bir beslenme şekli anemi, savunma sistemi bozuklukları ve gelişimsel problemlere neden olur. Bu nedenle, organizmalarda çinko düzeylerini iyi bir şekilde kontrol eden ve beklenmeyen eksikliklere veya fazlalıklara anında tepki oluşturan hücresel mekanizmalar gelişmiştir.

Tüm dünyada yaygın bir sağlık problemi olan çinko eksikliğinin giderilmesi için çinkonun eksik olduğu bilinen tarım alanlarında bu strese dayanıklı ürünler yetiştirilmelidir. Bitki türleri arasında çinko alım etkinliği bakımından genotipik varyasyonlar görülmektedir. Bu varyasyonlar çinkonun alımı, taşınımı ve depolanmasında görev alan proteinleri kodlayan genlerin farklı anlatımından kaynaklanmaktadır. Araştırma grubumuzda çinko eksikliğinde anlatımı olan genlerin yüksek verimlilikle identifikasyonu için Türkiye topraklarına iyi adapte olmuş *Hordeum spontaneum* C. Koch kullanılmıştır. Önceki projelerimizde, çinko eksik koşullarda yetiştirilmiş *Hordeum spontaneum* C. Koch yaprak, kök ve gövdesinden elde edilmiş RNA'lar kullanılarak, toplam 5808 klon içeren, üç farklı baskılayıcı çıkarım hibridizasyon (Suppression Subtractive Hybridization=SSH) kütüphanesi kurulmuştur. Yaprağa ait 960 klon ve köke ait 384 klonun dizin ve biyoinformatik analizleri tamamlanmıştır.

Bu çalışmada ise gövde SSH kütüphanesinde bulunan cDNA'ların izolasyon ve identifikasyonlarının gerçekleştirilmesi amaçlandı. Bu amaçla, 672 klon rastgele olarak seçilip dizin analizleri gerçekleştirildi. Ham dizin verileri biyoinformatik araçlar kullanılarak işlendi. Öncelikle, düşük kaliteli dizinler, vektör dizinleri ve rekombinant olmayan klonlar, Cygwin yazılımı ile kullanılabilen Phred ve Cross-Match programlarıyla uzaklaştırıldı. Daha sonra, CAP3 ve Phrap programlarıyla kontig ve singletler oluşturulup, her iki program için sonuçlar karşılaştırıldı. Kontig ve singlet dizinlerinin nükleotid ve protein BLAST analizleri gerçekleştirildi. BLAST analizlerinde dizinlerin, metabolizma, savunma ve stres cevabı, yapı ve hücresel organizasyon, transkripsiyon, translasyon, sinyal iletimi ve apoptosisde görev aldığı düşünülen çeşitli genlere benzediği bulundu. Bu genlerden bazılarının yapısal ve fonksiyonel olarak iyi karakterize edilmiş genlerdir. Bunlar içinde Ribuloz-1,5-Bifosfat karboksilaz/oksigenaz (RuBisCO), Lipid Transfer Protein (LTP), BLT4 protein, kitinaz, aktin, patojen-ilişkili protein, UDP-glukoz pirofosforilaz, papain-benzeri sistein proteinaz ve CPN60 proteinlerini kodlayan genler yer almaktadır.

Anahtar Kelimeler: *Hordeum spontaneum* C. Koch, çinko eksikliği genleri, baskılayıcı çıkarım hibridizasyon kütüphanesi

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ABSTRACT

MOLECULAR AND BIOINFORMATICS ANALYSIS OF cDNA'S SELECTED FROM STEM SUPPRESSION SUBTRACTIVE HYBRIDIZATION LIBRARY OF *Hordeum spontaneum* C. Koch GROWN UNDER ZINC DEFICIENT CONDITIONS

Bahar IŞIK

Department of Molecular Biology and Genetics MSc. Thesis

Advisor: Assist. Prof. Dr. Şenay V. KORKUT

Zinc (Zn) is an important micronutrient for all organisms and an essential component of over 1000 enzymes and proteins. Zinc plays a fundamental roles in protein, carbohydrate and lipid metabolisms, replication, transcription and translation and for structural and functional integrity of biomembranes.

Zinc-deficiency causes many symptoms in all living things. In plants grown under low zinc conditions the general symptoms are stunting of shoot, curling and rolling of young leaves, death of leaf tips and chlorosis. In mammals low Zn in nutrition causes anemia, disorder of immunity and growth problems. Therefore, all organisms have evolved some mechanisms that tightly control zinc levels and respond to unexpected deficiency or excess of zinc in their cells.

The crop plants that are resistant to zinc-deficiency should be cultivated to eliminate Zn-deficiency as a worldwide health problem. There are genotypic variations in zinc-uptake efficiency between plants species. These variations cause differential expression of genes encoding proteins used in uptake, transport and storage of zinc. In our research group *Hordeum spontaneum* C. Koch which is well adapted to Turkey's

zinc-deficient soils was used for high throughput identification of genes that are expressed upon zinc-deficiency. In our previous projects three different SSH library, including about total 5808 clones, were constructed using RNAs extracted from leaf, stem and root of *Hordeum spontaneum* C. Koch which was grown on zinc deficient medium. Sequence and bioinformatics analysis of 960 leaf and 384 root clones were completed.

In this study we aimed isolation and identification of cDNAs that are found in stem SSH library. For this purpose 672 clones were selected randomly and sequenced. Raw sequence data was manipulated using some bioinformatics tools. Firstly low quality sequences, vector fragments and nonrecombinant clones were removed using Phred and Crossmatch programmes which are used with Cygwin software. Then contigs and singlets were generated using both CAP3 and Phrap programmes and results were compared.

Sequences of contigs and singlets were subjected to nucleotid and protein BLAST. The sequences showed significant similarity to a variety of genes that were implicated to have roles in metabolism, defence and stress responses, structure and cellular organisation, transcription, translation, signal transduction, and apoptosis. Some of these genes are well characterised in terms of structure and function. These include Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO), Lipid Transfer Protein, BLT4 protein, Chitinases, Actin, Pathogen-Related Protein, UDP-Glucose Pyrophosphorylase, Papain-like Sistein proteinase and CPN60 protein encoding genes.

Key words: *Hordeum spontaneum* C. Koch, zinc deficiency genes, suppression subtractive hybridization libraries

BÖLÜM 1

GİRİŞ

1.1 Literatür Özeti

1.1.1 Arpanın Taksonomisi, Yaşam Koşulları ve Tarihi

Arpa (*Hordeum vulgare* L.) Eski Dünya tarımının dayandığı bitkilerden biridir. Bereketli Hilal'in çeşitli bölgelerinde arpa tanelerinin arkeolojik kalıntılarının bulunması [1], [2] (Zohary and Hopf 1993; Diamond 1998), arpanın yaklaşık M.Ö 8000'lerde evcilleştirilmiş olduğunu göstermektedir [3] (Nesbitt and Samuel 1996). Bu bitkinin yabani akrabası *Hordeum spontaneum* C. Koch olarak bilinir.

Yabani progenitör olan *Hordeum spontaneum* C. Koch bu bitkinin ilk habitatı olan İsrail ve Ürdün'den Türkiye'nin güneyine, İran ve Suriye'nin batısı ve Irak'ı da içine alan Bereketli Hilal'de halen kolonize olarak yetişir [4], [5]. (Harlan and Zohary 1966; Nevo 1992).

Bitkiler alemine ait Poaceae (buğdaygiller) familyasına dahil olan *Hordeum L*. cinsinde yaklaşık 115 tür bulunan bir bitkidir. Arpa bitkisine ait sınıflandırma Çizelge 1.1' de verilmiştir.

Alem	Plantae (Bitkiler)	
Bölüm	Magnoliophyta (Kapalı tohumlular)	
Sınıf	Liliopsida (Tek çenekliler)	
Takım	Graminales	
Familya	Poaceae	
Cins	Hordeum <i>L</i> .	
Tür	Hordeum spontaneum C. Koch <u>K. Koch</u>	
Tür	Hordeum vulgare L.	

Çizelge 1.1 Arpa bitkisine ait sınıflandırma

Dünyada, tahıllar arasında üretimde mısır, buğday ve pirinçten sonra 4. sırada yer alan arpanın, Türkiye'deki üretimi ise buğdaydan sonra ikinci sıradadır. 2011'de dünya genelinde toplam üretimi 134.6 milyon ton olup, 2011 yılı itibarı ile yurdumuz 6.5 milyon ton üretim ile 6. sıradadır [6].

Üretimde başı çeken ülkeler sırasıyla, Rusya, Ukrayna, Fransa, Almanya, Kanada ve İspanya'dır. Arpanın ekimi dünyada 56.774.297 hektarlık alana yapılmaktadır.

Arpa neolitik dönemden itibaren insanlar tarafından önemli bir besin kaynağı olarak tüketilmiş olsa da, bugün daha çok hayvan yemi yapımında ve malt endüstrisinde kullanılmaktadır. 1980'lerde Avrupa ve Amerika'da besin değerinin anlaşılmasıyla gıda sektörüne yeniden girmiştir. Ancak, Asya ve kuzey Afrika'daki bazı kültürlerde arpanın gıda sektöründeki yeri eski çağlardan beri değişmemiştir. Bunun yanı sıra, arpa strese oldukça dayanıklı bir bitki olduğu için buğdayın ekilemediği kutup bölgelerinde ve yüksek dağlık bölgelerde ekilerek besin maddesi olarak kullanılmaktadır. Ülkemizde arpa tüketiminin %90'ı hayvan yemi, kalan kısmı malt ve gıda endüstrisini kapsamaktadır. Gıda endüstrisinde kullanılan oran çok düşük olup, malt sanayinde kullanılan oran her geçen yıl artmaktadır.

Arpa, tarih boyunca maruz kaldığı gerek ıslah çalışmaları gerekse doğal seleksiyonlar sonucunda, tarımsal üretimini kolaylaştıracak fenotipik özellikler kazanmıştır. Bu fenotipik özelliklerin yanında, arpanın erken olgunlaşması ve stres koşullarına yüksek

oranda uyum sağlayabilmesi gibi nitelikleri, kutuplardan ekvatoral bölgelere kadar tüm dünyada, ekime uygun bir ürün olmasını sağlamıştır [6]. Bugün arpa, kuzey kutbundan tropik bölgelere, her türlü iklim koşulları altında yaygın bir şekilde ekili olmakla birlikte, ılıman bölge tarım ekonomilerinde kilit rol oynamaktadır. Bunun yanı sıra, yabani arpanın ekstrem iklim koşullarına uyum sağlayabilme yeteneği ve dünyanın değişen iklim koşullarına adaptasyon potansiyeli göz önüne alındığında, gelecekte arpanın germplazm kaynaklarının yeni ürünler geliştirmede kullanılabileceği düşünülmektedir [7].

Kısa yaşam döngüsü, tek yıllık bir bitki olması ve genomunun yedi çift kromozomdan oluşması, arpayı moleküler çalışmalar için önemli bir model bitki yapmaktadır. Fizyolojik, morfolojik ve genetik açıdan büyük çeşitlilik göstermesi, geniş ölçüde genetik stokların ve haritaların bulunması ve kendi kendine döllenebilmesi sayesinde çok yönlü testlerin uygulanabilmesi, arpanın fizyolojik ve moleküler çalışmalar için önemini daha da arttırmaktadır [8].

1.1.2 Çinko ve önemi

Çinko (Zn), periyodik cetvelde 2b grubu 4. periyodunda yer alan ve atom numarası 30 olan bir geçiş elementidir. ₆₄ Zn (48.63%), ₆₆Zn (27.90%), ₆₇Zn (4.90%), ₆₈Zn (18.75%) ve ₇₀ Zn (0.62%) olmak üzere 5 tane izotopu bulunmaktadır. Formları çoğunlukla çözünebilir tuz ve çözülebilir- çözülemez organik kompleks moleküller şeklindedir [9].

Çinko bitkiler ve diğer organizmalar için temel bir elementtir ve enzim aktivasyonu, protein sentezi ve membran stabilitesi gibi birçok hücresel sürece katılır [10], [11]. Temel mikrobesin türü olarak belirlenmesinden bu zamana kadar yapılan çalışmalarla oldukça fazla sayı ve çeşitte biyokimyasal olayda görev aldığı belirlenmiştir [12]. Bitki ve hayvanlar için gerekli olan mineral besin olup anhidraz, RNA polimeraz, dehidrogenaz, oksidaz ve peroksidaz gibi 300'den fazla enzimin çalışmasında ve yapısını oluşturmada [13], [14], nükleik asit ve yağ metabolizmasında, protein metabolizması, apoptosiste [15], gen ekspresyonu, yapısal ve fonksiyonel biyomembran bütünlüğünde ve geçirgenliğinde, fotosentetik karbon metabolizmasında ve klorofil biyosentezinde [16] ve IAA metabolizmasında [17] görev alır. Ayrıca Dof protinleri, Zinc-finger- RING-tip proteinleri, GATA1-6 transkripsiyon faktörleri [18] gibi bir çok transkripsiyon faktörünün yapısında yer aldığı bulunmuştur.

Çinkonun bitki ve hayvan metabolizmasında katıldığı önemli reaksiyonlar göz önüne alındığında eksikliğinin canlılar için neden büyük sorunlar oluşturacağını anlamak mümkündür. Çinko eksikliği insanlarda da birçok biyolojik, fiziksel, zihinsel bozuklukların ortaya çıkmasına neden olmaktadır. Örneğin kısa boyluluk, yetersiz zeka gelişimi, seksüel olgunlaşmanın geriliği, saç dökülmesi, deri hastalıkları, bağışıklık sisteminin zayıflaması gibi sorunlar çinko eksikliğinden kaynaklanmaktadır [19], [20], [21]. Bitkilerde ise çinko eksikliğinde yaşlı yaprakların uç ve kenarlarında kloroz hastalığı belirmektedir. Daha sonra yapraklarda yer yer beyaz nekrotik lekeler meydana geldiği gibi, çinko eksikliğinde yapraklar küçük çarpık şekilli kıvrılmış haldedir. Bunun için çinko eksikliğinde meydana gelen bu karakteristik hastalığa küçük yaprak hastalığı (rozet oluşumu) adı verilmiştir [22].

Bilindiği gibi çinko, protein sentezi ve biyolojik membranların bütünleşmesinde gerekli olan bir elementtir. Çinko eksikliğinde bitkilerde protein sentezinin gerilediği ve buna bağlı olarak aminoasit ve amin birikiminin arttığı bilinmektedir [23], [24]. Çinko eksikliğinde bitkide aminoasitlerin ve diğer çözünür azot bileşiklerinin birikmesinin köklerin topraktan yapacağı azot alımı üzerine olumsuz etki yaptığı düşünülmektedir. Bitkide bu şekilde çözünür azot bileşiklerinin birikmesi, bitkinin yeşil kısımlarında azotla beslenme düzeyinin yeterli olduğu bilgisini köke ileterek kökün beslenme ortamında azot alımını sınırlandırmasına ve sonuçta bitkide gizli azot eksikliğinin ortaya çıkmasına neden olmaktadır. Bitkide ortaya çıkan gizli azot eksikliği hem bitki büyümesinin gerilemesine hem de o bitkinin danesinde yeterince protein sentezlenememesine yol açmaktadır.

1.1.2.1 Toprakta Çinko

Topraktaki total çinko 5 fraksiyona ayrılır [25].

- i) suda çözünür fraksiyon: toprak çözeltisinde mevcut olan,
- ii) değişebilir fraksiyon: elektriksel yükleriyle toprak partiküllerine bağlı olan iyonlar

 iii) organik bağlı fraksiyon: organik bileşiklere adsorbe, şelat yada kompleks oluşturmuş iyonlar

iv) kil mineralleri ve çözünmez metalik oksit mineralleri üzerine değişmez şekilde bağlanan formlar

v) primer minerallerin ayrışmasıyla ortaya çıkan fraksiyonlar

Total çinko içeriğinin çok küçük bir miktarı toprak çözeltisinde yer alır. Kabata-Pendias ve Pendias (1992) [26], topraktaki çözünür çinko konsantrasyon aralığının 4-270µg L⁻¹ (ppb) arasında olduğunu bildirmişlerdir. Bu değerlerle, topraktaki ortalama total çinko konsantrasyonu (50-80 mg kg⁻¹) kıyaslandığında çözünür çinko konsantrasyonunun ne denli düşük olabildiği daha iyi anlaşılmaktadır Ancak çok yüksek asidik karakter gösteren topraklarda aynı değer 7137 µg L⁻¹ olduğu saptanmıştır. Bu da çinkonun çözünürlülüğünün pH'ya son derece bağlı olduğunu ve çözünürlülük ile pH değeri arasında negatif bir ilişkinin olduğunu göstermektedir. Cattlet ve ark., (2002) Kolorodo'da topraklarda çinkonun aktivitesinin pH'nın artmasıyla düştüğünü buna karşılık toprak organik karbon düzeyindeki artışla arttığını belirlemişlerdir [27].

Kiekens [28] kil ve organik maddeler tarafından çinkonun adsorpsiyonunu içeren iki farklı mekanizmanın ortaya çıktığını bildirmiştir. Bir mekanizma temel olarak asit koşullarda çalışır ve katyon değişimi ile yakından ilgilidir. Diğer mekanizma ise alkali/bazik koşullarda çalışır ve özellikle organik ligandların kemisorpsiyonu ve komplekleşmesini içerir.

Bitkiler için kullanılabilir çinko, toprak çözeltisinde mevcuttur ya da değişken bir form olarak adsorbe edilmiştir. Bitkilerce alınabilir-çinko konsantrasyonu topraktaki adsorpsiyon ve desorpsiyon süreçleriyle belirlenir. Toprakta bitkinin çinko kullanabilirliğini, pH'sı, organik maddesi, kireci, redoks potansiyeli, rizosferdeki mikrobiyal aktivitesi, nem içeriği ile diğer besin elementlerinin düzeyi gibi faktörler etkiler [25].

Küresel bir toprak çalışmasında, Sillanpàà (1990) 25 ülkeden topladığı toprak örneklerinin %50'sinin çinko-eksik olduğunu bulmuştur [29]. Türkiye'de çinko eksikliği, toprakta ve bitkide en yaygın görülen mikrobesin eksikliğidir. Eyupoglu ve ark. (1994)'nın Türkiye'nin bütün illerinden topladığı 1511 toprak örneklerinin analizini

yaptığı çalışma Türkiye topraklarının %50'sinin çinko eksik olduğunu göstermiştir ki, bu oran 14Mha ekim alanına denk gelir [30].

1.1.2.2 Bitkide Çinko

Brown ve ark., (1993) [31] bildirdiğine göre, çinkonun biyolojik rolü Raulin [32] tarafından 1869'da, ekmek küfü *(Aspergillus niger)*'nde çinko yokluğunda büyümenin gerçekleşmediğinin keşfedilmesiyle ortaya çıkmış ve daha sonra insan ve hayvan dokuları için zorunlu bir element olduğu saptanmıştır.

Çinko eksikliğinin tarla şartlarında ilk olarak belirlenmesi 1932 yılında gerçekleşmiştir. 1932'den bu yana geçen süre içinde, çinkonun ekin üretiminde yaşamsal önemi olan bir mikro besin olduğu ortaya çıkmıştır ve bu elementin eksikliğinin dünya çapında diğer mikro besinlerden daha yaygın olduğu gösterilmiştir [31]. Tarımsal üretimde çinkonun rolü 20. yüz yıl başlarında keşfedilmesine karşılık, bitkideki spesifik fonksiyonları 1960'lı yılların sonlarına doğru keşfedilmiştir. Bu tarihten sona çinko içeren birçok enzim tanımlanmış ve bununla birlikte çinko eksikliğinde bitkideki kimyasal ve fizyolojik olayların etkileri belirlenmiştir.

Marschner [33] 'a göre çinkonun metabolik fonksiyonları, çinkonun N-, O- ve özellikle S- ligandları ile tetrahedral kompleksler oluşturmak için güçlü eğilime sahip olmasına dayanmaktadır ve dolayısıyla enzim reaksiyonlarında yapısal ve fonksiyonel (katalitik) bir rol oynar. 70'den fazla çinko içeren metaloenzim tanımlanmasına rağmen, bunlar bir bitkide toplam çinkonun çok küçük bir oranını açıklar [31].

Bitkilerde, çinko elektriksel yük değişimlerine maruz kalmaz ve bitkilerde en fazla bulunan formu, düşük moleküler ağırlıklı kompleksler, depo metaloproteinleri, serbest iyonlar ve hücre duvarlarında çözünmez formlar şeklindedir. Çinko, organik ligandlı komplekslerin oluşumu ile ya da fosforlu kompleksleşme ile hücre içinde inaktive edilebilir. Bitki türlerine bağlı olarak, bir bitkide çinkonun %58 ile %91'i suda çözünür formda olabilir (düşük moleküler ağırlıklı kompleksler ve serbest iyonlar). Yaygın olarak bu suda çözünebilir fraksiyonların fizyolojik olarak en aktif oldukları kabul edilir ve toplam çinko içeriğinde bitki çinko durumunun enzimatik bir indikatörü olarak kabul edilir. Düşük moleküler ağırlıklı kompleksler normal olarak en fazla bulunan çözünebilir çinko formudur [31].

Lindsay [34], çinko kullanılabilirliğini etkileyen 8 ana faktörden bahsetmiştir ki bu faktörler çinko eksikliği stresiyle ilişkilidir.

1) Toprakların Düşük Çinko İçeriği: Total düşük çinko içerikli (10-30 mg Zn kg -1) kumlu topraklar, turba ve gübreli topraklar büyük olasılıkla ekinlerde çinko eksikliğine neden olur. Sillanpää [35], bu eksiklikleri 'primer eksiklikler' olarak adlandırır.

2) Toprakta Kısıtlanmıs Kök Bölgeleri: Traktör tekerlekleri, pulluk, tava ve yüksek su tablaları gibi nedenlerle kök penetrasyonunun kısıtlanması da çinko alımını azaltabilir.

3) Kireçli Topraklar: Genellikle >7.4 pH'ya sahip kireçli topraklar nispeten düşük kullanılabilir çinko konsantrasyonuna sahiptir çünkü çinkonun çözünbilirliği artan pH ile azalır. Çinkonun CaCO₃'e adsorpsiyonu da katkıda bulunan bir faktördür. Sillanpää [30] düşük çinko kullanılabilirliği ile sonuçlanan durumlar için 'sekonder eksiklik' terimini kullanır; 'induklenen eksiklikler' olarak da adlandırılır.

4) Organik Madde Bakımından Düşük Topraklar: Bu topraklar çinkoyu çok fazla muhafaza edemezler ve bu nedenle, eksikliklere daha meyillidirler. Bazı çalışmacılar ekstrakte edilebilir çinko ile organik madde içeriği arasında pozitif bir korelasyon olduğunu göstermiştir.

5) Düşük Toprak Sıcaklığı: Çinko eksiklikleri düşük sıcaklıklar nedeniyle erken gelişme sezonu süresince daha kötüdür. Kolorado' da çinko eksiklik problemleri sıklıkla serin nemli bahar ayları boyunca şiddetlidir ve Temmuz ortalarında bu durum kaybolur. Düşük sıcaklık etkilerinin bu açıklaması kök gelişiminin zayıf olmasından kaynaklanmaktadır.

6) Bitki Türleri ve Varyeteleri: Bitkiler çinko eksikliğine hassasiyet/toleransı bakımından belirgin bir şekilde fark gösterir. Tür içi varyasyonlar bazen türler arası varyasyonlar kadar büyüktür. Bazı araştırmacılar buğday varyetelerinin çinko kullanımında geniş bir etkinlik gösterebildiğini ortaya koymuştur. En 'çinko etkin' kultivarlar, düşük kullanılabilir çinko kaynağı şartları altında çinko-etkin olmayan varyetelerden daha fazla kuru madde ve tahıl üretebilmektedirler.

7) Kullanışlı Fosforun Yüksek Seviyeleri: Antagonismden sorumlu mekanizma tam olarak anlaşılamamıştır. Fosfor kökün çinko alımını da bitki içinde çinkonun translokasyonunu da etkileyebilir. Fosforun aşırı miktarlarının çinkonun metabolik fonksiyonları üzerinde etkileri vardır.

8) Nitrojenin Etkisi: Nitrojen çinkonun kullanılabilirliğini iki muhtemel yol ile etkileyebilir. İlk olarak, nitrojen gübrelerinin eklenmesini takiben artan protein oluşumu kökte çinkonun, çinko-protein kompleksi olarak tutulmasına ve bitki çevresinde transloke olmamasına yol açabilir. İkinci olarak, amonyum nitrat ve amonyum sülfat gibi asitleştirici nitrojen gübreleri toprak pH'sında düşüşe ve çinko kullanılabilirliğinde bir artışa neden olabilir.

Çinkonun bitkide, düşük moleküler ağırlıklı bileşiklerle veya proteinlerle kompleksleşmiş halde bulunur. Düşük molekül ağırlıklı çinko kompleksleri katalitik aktivitelerde (örneğin Cu ve Zn tarafından amidlerin hidrolizinde) görev alırlar. Düşük molekül ağırlıklı çinko kompleksleri fizyolojik olarak aktif makromoleküllere çinko sağlanmasında önemli bir rol oynarlar. Düşük molekül ağırlıklı bileşiklerle kompleksmiş çinko kaynağı kolaylıkla bozunur ve bu nedenle enzimlere bağlı çinkonun fizyolojik aktif olarak kabul edilmesinde olduğu gibi bu bileşiklerdeki çinko da fizyolojik aktif çinko olarak kabul edilirler [36].

Protein yapısına katılan çinko, oldukça fazla sayıda enzimde fonksiyonel, yapısal veya düzenleyici olarak rol oynar. Çinko atomu genelde kuvvetli şekilde apoenzime bağlanmıştır ve buradan yalnızca konsantre kimyasallar ile uzaklaştırılabilirler. Ayrıca çinko; oksijen, azot ve kükürt içeren polar grupların radikalleriyle kuvvetli kompleksler oluşturur [37].

1.1.2.3 Çinkonun Fizyolojik Fonksiyonları

Çinkonun karbonhidrat metabolizması üzerindeki etkisi fotosentez ve şekerlerin değişimi etkilemesiyle gerçekleşir. Çinko eksikliği bitki türlerine ve eksikliğinin şiddetine bağlı olarak net fotosentez düzeyinde % 50-70 arasında bir azalmaya neden olur. Bu azalmada birçok mekanizma rol oynar.

Çinko, karbonik anhidraz [38], [39], Ribuloz 1,5-bifosfat karboksilaz (RuBPC) [31] gibi enzimlerin yapısında yer alır. Bunun yanı sıra şeker pancarı [40] ve mısırda [41] sakkaroz oluşumunda görev alan sakkaroz sentaz enzimi ve fasulyede nişasta senteaz [42] enziminin yapısında da yer alır.

Çinko eksikliğindeki bitkilerde gözlemlenen fotosentez azalması klorofil içeriğindeki bir azalmadan ve kloroplastlardaki normal olmayan yapıdan da kaynaklanmaktadır [31].

Protein metabolizmasında ise; genelde çinko eksikliğinde bitkide protein miktarı azalmaktadır. Ancak proteinin kompozisyonu değişmeden kalmaktadır. Çinko eksikliğine sahip fasulye yapraklarında kontrol uygulamasına göre yapraklarda daha fazla amino asit biriktiği belirlenmiştir [23]. Çinko ilavesiyle amino asit konsantrasyonunda azalma görülmüş ve bu azalma aynı zamanda protein konsantrasyonundaki artışa bağlanmıştır. Bu sonuç da çinkonun protein sentezinde temel bir rolünün olduğunu ortaya koymaktadır. Çinko eksikliğinin protein sentezini olumsuz etkileme mekanizması RNA'daki azalmadan ve ribozomların deformasyon ve azalmasından kaynaklanmaktadır [43], [44]. Bu bulguyu destekler sonuçlar Kitagishi ve ark., [24] tarafından desteklenmiş ve söz konusu çalışmada çeltik bitkisinde meristem dokusunda RNA düzeyi ve serbest ribozomların sayısı Zn eksikliğinde dramatik olarak azalmıştır.

Çinko eksikliği altında RNA'nın azalması RNA polimeraz ve RNase aktivitesiyle bağlantılıdır. Çinko, RNA polimeraz enzim aktivitesi için gerekli bir elementtir [45], [46] ve ribonükleaz enzimi tarafından gerçekleştirilen ataklara karşı ribozomal RNA'yı korur. RNaz aktivitesinin çinko uygulamasıyla şiddetli derece gerilediği bilinmektedir ve yüksek düzeyde ribonükleaz enzim aktiviteleri bitkilerde tipik çinko eksiklik göstergesidir [47].

Çinko, membran bütünlüğü üzerinde de etkilidir. Çinkonun hayvanlarda biyomembranların yapısında ve fonksiyonunda kritik bir fizyolojik rol oynadığı gözlenmiştir [48], [49]. Bitkilerde bu dolaylı olarak gösterilmiştir. Welch ve ark. (1982) [10], kök plazma membran geçirgenliğinin göstergesi olarak kök salgılarını kullanmışlar ve çinko ile beslenme düzeyi iyi olan bitkilere göre çinko eksikliğindeki buğday köklerinden daha fazla miktarda P₃₂ sızdığını belirlemişlerdir. Başka bir çalışmada da

çinko eksikliğinde köklerden dışarıya 2.5 kat daha fazla K+, amino asit, şeker ve fenolik bileşiklerin salgılandığı bulunmuştur. Bu bitkilere tekrar çinko verilmesi durumunda kökten dışarıya salgılanan maddelerde azalma olduğu saptanmıştır [50]. Bu sonuçlar çinkonun hücresel membranların bütünlüğünün sağlanmasında bir rolünün olduğunu düşündürmektedir.

Skoog, domates bitkisi üzerinde yaptığı çalışmada, çinko-eksik bitkilerde IAA seviyesinin düştüğünü göstermiştir. Skoog, bu çalışmasıyla, çinkonun oksinin aktif bir şekilde devamlılığı için zorunlu olduğu sonucuna varmıştır [51]. Bu düzenleme mekanizması açıklanamamakla birlikte, birçok araştırmacı çalışmalarıyla bu bulguyu destekleyen sonuçlar elde etmişlerdir [52], [53], [54].

Shkolnik ve ark. [55], çinko eksikliğinde fasulye yapraklarında giberellin ve benzeri maddelerin azaldığını saptamışlardır. Suge ve ark. 'nın yaptığı çalışmalarla arpa, mısır ve yulaf gibi bitkilerde de bu azalma gösterilmiştir [56]. Çinko eksikliğindeki bu bitkilere çinko verilmesi yalnızca bitki büyümesinde değil aynı zamanda giberellin ve benzeri bileşiklerin düzeylerinde de artışa neden olmuştur. Giberellik asit, triptofan ve triptaminin indol asetikasit (IAA)'e dönüşümünü arttırdığı için [57], Suge ve ark. çinko noksanlığında IAA'den ziyade giberellik asitin ilk etkilenen madde olduğunu belirtmişlerdir [56]. Çakmak ve ark [23], fasulye bitkilerinde yaptıkları çalışma ile çinko eksikliğinin sitokinin üzerine etki yapmadığını göstermiştir.

Çinkonun generatif verime etkisi üzerine yapılan çalışmalarda, çinko eksikliğinde fasulye, bezelye ve diğer bitkilerde çiçeklenmede ve tane veriminde önemli azalmaların olduğu gösterilmiştir [58], [59]. Besin çözeltisinde Riceman ve Jones (1959) [60], beslenme ortamına çinko ilavesinin yeraltı üçgülünde bitkinin yeşil kısımlarında kuru madde verimi üzerinde hafif bir etkisinin olduğunu buna karşılık aynı koşulda dane veriminin belirgin şekilde arttığını saptamışlardır. Bu artışın, çiçeklenme ve dane sayısındaki artıştan kaynaklandığı bildirilmiştir. Çinko uygulamasıyla tek bir dane ağırlığının değişmemesi, çinkonun danenin büyümesinden çok danenin oluşumu üzerinde bir etkisinin olduğunu göstermektedir.

Çinko eksikliğinde bitkilerde dane verimindeki azalmanın nedenleri olarak yaprak ve tomurcukların kaybına neden olan absisik asit konsantrasyonunun artması ve anter ve

polenlerin gelişiminin ve fizyolojisinin engellenmesi gösterilmiştir. Çinko eksikliğindeki buğdayın küçük anterlere ve normal olmayan polenlere sahip olduğu bildirilmiştir [61].

1.1.2.4 Bitkiler Tarafından Çinko Alımı

Çinkonun toprak çözeltisinden öncelikle bitki köküyle Zn⁺² şeklinde absorbe edildiği kabul edilir ve alımında çinkoya afinitesi yüksek bir protein aracılık eder. Plazma membranından çinko taşınması büyük bir negatif elektriksel potansiyele doğrudur ve bu işlem termodinamiksel olarak pasif bir süreçtir [62]. Plasma membranındaki bu negatif elektriksel potansiyel, buğdaygillerden başka monokotiledonlar ve dikotiledonlardaki iki değerlikli iyon kanallarında çinko için yönlendirici bir kuvvettir. Kochian, protein olmayan aminoasit olarak tanımlanan fitosideroforlar veya fitometaloforların çinko ile kompleks oluştururduklarını ve kök dışına taşındıklarını bildirmiştir [62]. Bu fitosideroforlar bitki demir ve çinko eksikliğindeyken sentezlenirler. Bu demir veya çinko kompleksi daha sonra taşıyıcı bir protein aracılığıyla hücreye taşınır.

Nambiar, bitkilerin kuru bir topraktan (matriks potansiyel -1.5 Mpa) sızan musilaj aracılığıyla çinko alabileceğini göstermiş ve ancak bu alım düzeyi ıslak bir topraktan alınan çinkonun yalnızca % 40 kadarı olduğunu belirlemiştir [63].

Yüksek pH'larda çinko, Zn⁺² veya Zn(OH)₂ şeklinde alınır. Toprakta düşük çinko konsantrasyonunun bir sonucu olarak, çinko alımı doğrudan kök temasıyla gerçekleşir ve alım metabolik olarak kontrol edilmiştir.

Çinko ile diğer mikro besin elementleri arasında alım açısından bir rekabet sözkonusudur. Örneğin çinko ve bakır, her ikisi de birbirlerinin alımını geriletir ve her ikisinin absorpsiyonunda aynı taşıyıcı yerleri kullanılır. Çinko eskikliğinde çeltikte kadmiyum (Cd) absorpsiyonun da arttığı saptanmıştır. Ancak çinkonun havalı yerlere taşınma boyutu kadmiyumdan daha büyük olmuştur. Su altında kalmış topraklara çinko ilavesi DTPA'da ektrakte edilebilir mangan (Mn) konsantrasyonunu arttırmış buna karşılık bakır (Cu), demir (Fe) ve fosfor (P)'un alımını ve taşınımını geriletmiştir [64].

Çinko bitkide ya Zn⁺² iyonu ya da organik asitlere bağlı olarak taşınır. Kök dokularında çinko birikmesine karşın gereksinim duyulması durumunda yeşil aksama taşınır. Çinko

yaşlı yapraklardan büyüyen yerlere kısmen taşınır. Çeltikte Mn uygulaması köklerden çinkonun taşınımını arttırmıştır. Chaudry ve Loneragan (1972), toprak alkali elementlerin bitkilerce çinko alımını geriletmesi $Mg^{+2} > Ba^{+2} > Sr^{+2} = Ca^{+2}$ şeklinde olduğunu bildirmişlerdir [65].

1.1.2.5 Çinko Etkinliği

Çinko etkinliği, çinko-eksik topraklarda iyi gelişim ve verim sağlamak için bitkinin yeteneği olarak tanımlanır [66]. Genetik kontrol altında olduğu görülen çinko-etkinliği, türler arası varyasyon gösterir [67].

Çinko etkinliğinin mekanizması tam olarak aydınlatılmamış olmakla birlikte, bu mekanizmayı anlamak, çinko eksik topraklarda daha yüksek toleranslı genotiplerin yetiştirilmesi ve seçimi için büyük bir katkı sağlayacaktır [65]. Bu konu üzerine çalışmalar hububatlar özellikle buğday kullanılarak yapılmıştır [68], [69], [70].

Bir çeşidin yüksek çinko etkinliğine sahip olması o çeşidin yüksek bir biomas veya dane verimine de sahip olduğu anlamına gelmemelidir. Tarlada [67], [71] ve serada [72] yapılan denemelerde genetiksel olarak yavaş büyüyen veya fenotipik olarak küçük olan genotiplerin daha düşük bir büyüme oranına (daha düşük çinko gereksinimi) ve sonuçta da daha yüksek bir çinko etkinliğine sahip olabildiği bildirilmiştir. Buna karşılık daha büyük büyüme oranına sahip genotipler (daha fazla çinko gereksinimi) çinko eksikliğinden dolayı büyümede azalmalara ve sonuçta daha düşük bir çinko etkinliğine sahip olmaktadırlar. Bu nedenle, düşük büyüme performansı ve daha düşük verim kapasitesine sahip olmalarından dolayı yabani buğday türlerinin besin elementi eksikliğine karşı etkinlik değerleri kültürü yapılan buğday türlerinden daha büyük olduğu saptanmıştır [33], [72].

Tahıllarda çinko eksikliğine dayanıklılıkta belirleyici olan birçok fizyolojik ve morfolojik mekanizma çalışılmıştır. Bugüne kadar çinko eksikliği koşullarında çinko-etkin çeşitlerin daha iyi büyümesini ve verim vermesini doğrudan açıklayabilen tek bir mekanizma bulunabilmiş değildir. Rengel'e [73], [74] göre, bir genotipin çinko noksanlığına karşı dayanıklılığında birden fazla mekanizma rol oynamaktadır. Rengel [74] ve Çakmak [75], genotiplerin çinko eksikliğine karşı dayanıklılığında belirleyici olan önemli fizyolojik ve morfolojik mekanizmaları ortaya koymuşlar ve çeşitlerin çinko etkinliğinde özellikle köklerin çinko alım ve kökten yeşil kısımlara taşıma kapasitesi, kökten çinko mobilize edici organik bileşiklerin salgılanması (örneğin fitosidereforlar) ve çinkonun içsel kullanımı gibi parametrelerin dikkate alınmasını önermişlerdir.

Fe ve Zn eksikliğinde salgılanan fitosidereforlar, kireçli topraklarda çinkonun çözünürlülüğünü ve hareketliliğini arttırırlar. Fitosidereforlar ayrıca bitki içerisindeki çinkonun taşınmasını ve içsel kullanımını etkilerler [33], [76]. Çinko eksikliğine karşı görülen genotipsel farklılığın büyüme ortamından çinko alım kapasitesindeki farklılıkla ilişkili olabildiği bildirilmiştir. Rengel'e [73] göre, fizyolojik olarak kullanılabilir- çinko miktarını saptamada çinko içeren enzimleri ölçmek doğru bir yaklaşım olabilir. Buğday çeşitlerinde çinko-etkinliğini göstermede Cu/Zn-superoksit dismutaz (SOD) aktivitesi, yapraktaki total konsantrasyondan daha büyük bir ilişki göstermiştir [77]. Çinko noksanlığında oldukça yüksek bir çinko etkinliğine sahip olan çavdar ekmeklik ve makarnalık buğdaylarla kıyaslandığında en yüksek Cu/Zn-SOD aktivitesine sahip olduğu saptanmıştır.

1.1.2.6 Çinko Alımının Moleküler Biyolojisi

Toprak doğal nedenlerle veya kirlilik nedeniyle ağır mateller bakımından kontamine olabilirler. Ağır metallerin alım, taşınım ve birikim mekanizmaları tam olarak açıklanamamasına rağmen son zamanlarda çinko taşıyıcı proteinler tanımlanmıştır. Bu gelişmeler sorularımızın aydınlatılmasında ışık tutacak niteliktedirler.

ZRT1 ve ZRT2 (Zinc-Regulated Transporter) *Saccharomyces cerevisiae* 'de bulunan çinko taşıyıcı proteinlerdir. ZRT1 ve ZRT2 sırasıyla mayada bulunan yüksek ve düşük affiniteli çinko taşıyıcılarıdır [78], [79].

Çinkonun farklı miktarlarını içeren ortamda yetiştirilen maya hücreleri tarafından çinko alımının kinetik çalışmaları en az iki alım sisteminin varlığını gösterdi. Bir sistem tahmini olarak 10nM Zn(II) Km çinko için yüksek eğilime sahiptir ve sadece çinko-sınırlı hücrelerde aktiftir [78]. İkinci sistem ise çinko için 100nM Zn (II) Km ile düşük eğilime sahiptir ve Zn-dolu hücrelerde saptanabilirdir [79]. *S.cerevisae'* de çinko taşıyıcıları olan *ZRT1* ve *ZRT2* %44 özdeştir ve birbiriyle %67 benzerlik gösterirler; ayrıca bu proteinler *IRT1* ile %30-35 özdeş ve %54-65 benzerdirler [80].

Mayada ZRT1 ve ZRT2 çinko taşıyıcı genleri transkripsiyon seviyesinde ZAP1 transkripsiyon faktörü ile kontrol edilirler [78], [79], [81]. ZRT1 aktivitesi, çinko miktarının artması durumunda plazma membranından ZRT1'in kaldırılması şeklinde etki gösterir.

Arabidopsis thaliana 'da ZIP1, ZIP2 ve ZIP3 çinko taşıyıcı genlerinin izolasyon ve karakterizasyonu için yapılan bir komplementasyon çalışmasında *zrt1zrt2* mutantı *Saccharomyces cerevisae* kullanılmıştır. Normal olarak bitkide ZIP1 ve ZIP3, çinko eksikliği durumunda köklerde ekspres edilmektedir. Bu genlerin ekspresyonu, çinko-eksik koşulda gelişemeyen *Saccharomyces cerevisae* mutantlarında büyümeyi sağlamıştır. Bu gen ürünlerinin çinkonun topraktan alımında etkili olduğu öne sürülmüştür. *S.cerevisae*'de *ZRT1* ve *ZRT2* genleri ve *A. Thaliana*'da *IRT1* geni ile benzer ürünler kodladığından bu genler *ZIP1, ZIP2* ve *ZIP3* (ZRT-IRT benzeri Protein) olarak adlandırıldı [82]. IRT (Iron-Regulated Transporter) *Arabidopsis thaliana*'da demir eksikliğinde köklerde ekspres edilen bir katyon taşıyıcısıdır [83]. ZIP proteinleri, protozoa, fungi, omurgalı ve omurgasız hayvanlarda bulunan ve farklı organizmalarda metal-iyon birikimi ve homeostatisinin sorularını yanıtlayan, metal-iyon taşıyıcılarının bir ailesi olarak tanımlanır [82].

Çinko diğer metal iyonları gibi topraktan köklere taşınır ve sonra bitki boyunca dağıtımı için hücre ve organel membranlarından geçmek zorundadır. Spesifik çinko taşıyıcıları bu süreçte farklı roller oynayabilir. Northern blot analizleri ZIP1 ve ZIP3'ün çinkoduyarlı olduklarını göstermiştir. Bu genler, çinko-eksik bitkilerin köklerinde ekspres edilirler; çinko yeterli bitkilerin köklerinde ya da çinko-yeterli ve çinko-eksik bitkilerin gövdelerinde ya hiç mRNA belirlenmemiştir ya da az belirlenmiştir. Tekrarlanan denemelere rağmen ZIP2 mRNA'sı her iki koşul altında yetişen bitkilerde belirlenememiştir. ZIP4 ayrıca çinko-eksikliğine cevap verir fakat ZIP1 ve ZIP3'den farklı olarak, bu gen Zn-eksik bitkilerde kök ve gövdelerde indüklenir. Bu çalışmadaki bütün sonuçlar ZIP1, ZIP3 ve ZIP4'ün çinko-eksikliğine spesifik olduğunu göstermişlerdir. Bu sonuçlar ZIP taşıyıcı ailesinin ökaryotik organizmalarda metal iyon metabolizmasında

rol oynadıklarını göstermiştir [82]. Gaither ve Eide [84] ZIP ailesinin yalnızca ökaryotlarda sınırlı olmadığını ayrıca bakterilerde de var olduğu sonucuna varmışlardır.

Thlaspi caerulescens geni, *ZNT1*, *zrt1zrt2* mutant maya suşlarına klonlanarak tanımlandı [85]. Bu gen ZIP gen ailesinin bir üyesi olan olası bir çinko taşıyıcısını kodlar. Northern analizi, ZNT1 transkriptinin çinko durumu fark etmeksizin köklerde ve sürgünlerde çok fazla olduğunu gösterdi. ZIP4, Arabidopsis kök ve sürgünlerinde, her ikisinde, sadece bitki çinko-eksikken ekspres edilirken, ZNT çinko-taşıyıcı genlerin ekspresyonlarının çinko durumu fark etmeksizin her durumda gerçekleşmesi, *T.caerulescens*' in çinko-biriktirme yeteneğiyle ilişkilendirilmiştir [85].

Çinko homeostazı hücre ve vakuol membranlarındaki taşıyıcıların aktiviteleri ile gerçekleşir [86]. CDF (katyon difuzyon kolaylaştırıcı) proteinleri, metal iyonlarına homeostaz ve toleransında esansiyel bir rol oynayan ağır metal atılım-efflux ailesine aittir. CDF üyesi olan *Arabidopsis thaliana* AtMTP1 (metal tolerant protein) ve AtMTP3 proteinlerinin vakuolar membranda yer aldığı ve yüksek çinko miktarlarında çinkoyu sitoplazma vakuollerinde çinko homeostazının devamı için tuttuğu gösterilmiştir [87], [88]. Tonoplastta önemli bir kolaylaştırıcı protein olan AtZIF1, çinkoyu organik bir liganda bağlayarak vakuollere taşır [89]. Transkripsiyonel kontrol çinko homeostazına katkı sağlar. *A. thaliana*'da Zn ve Fe eksikliği ile ZIP taşıyıcıları upregüle edilirler [90]. Vakuolar taşıyıcı ZIF1 ise çinko artışı ile indüklenir [89].

1.1.2.7 Çinkonun Bitki Besin Elementleriyle Arasındaki İnteraksiyonlar

Çinkonun makro elementlerle etkileşimlerine çinko-fosfor ve çinko-azot etkileşimlerini örnek verebiliriz.

i) Çinko-Fosfor İnteraksiyonu

Yüksek fosfor uygulamaları bitkideki çinko noksanlığının en yaygın nedenlerinden biridir. Bu ilişki uzun yıllardır bilinmesine karşılık bu ilişki açıklayan mekanizma henüz tam anlaşılamamıştır. Marschner, belirli bir düzeyden sonra yapılan fosforlu gübrelemeyle veya toprakta fosfor içeriğindeki artışla bitki büyümesinde meydana gelecek artışların bitkideki çinko alımını ani bir şekilde azalttığını bildirmiştir [91].

Loneragan ve Webb, Zn-P interaksiyonunu iki farklı tipe ayırmışlardır [92].

1-) Yüksek fosfor uygulamasıyla yeşil aksamdaki Zn konsantrasyonun azalması

2-) Yüksek fosfor uygulamasıyla yeşil aksamdaki Zn konsantrasyonun azalmaması

En yaygın görülen Zn-P interaksiyon tipi madde 1'de belirtilen şekildedir. Bu daha çok toprakta fosfor ve çinkonun her ikisinin de sınırlı olduğu koşulda ortaya çıktığı bildirilmiştir. Bu topraklara yapılacak fosforlu gübrelemeler bitkide büyümeye neden olacak ancak büyümeyle birlikte dokudaki çinko seyrelmeye maruz kalarak bitkide çinko eksikliğinin görülmesine yol açacaktır. Buna karşılık yeşil aksamda seyrelme etkisi olmaksızın da fosfor uygulamasıyla çinko eksikliği ortaya çıkabilir. Bu durumda yüksek fosfor uygulaması ya bitki köklerince çinkonun absorpsiyonunu ya da köklerden yeşil aksama çinko taşınmasını engeller.

Loneragan ve Webb, fosfor toksisitesiyle ortaya çıkan çinko eksikliğiyle ilgili olarak öncelikli mekanizmayı bitkilerde yüksek fosforun çinkonun çökelmesine neden olması olarak göstermişlerdir [92].

ii) Çinko-Azot İnteraksiyonu

Azot bitki büyümesini arttırması ve kök bölgesindeki (rizosferde) pH değişimleriyle bitkinin çinko ile beslenme düzeyini etkilemektedir. Birçok toprakta azot büyümeyi ve verimi sınırlandıran temel faktördür. Bu nedenle N ve Zn uygulamalarının birlikte verimi iyileştirmeleri sürpriz değildir. Örneğin bitkiler çoğunlukla N ve Zn'ya birlikte tepki verirken çinko tek uygulandığında bu tepkiyi vermediği bildirilmiştir. Çinko verilmediğinde uygulanan azot, bitki büyümesini artırarak dokulardaki çinkonun eksikliğine neden olur [93].

Amonyum sülfat gibi azotlu gübreler, toprakta belirgin bir asidik etkiye sahiptirler ve yüksek pH'ya sahip topraklarda bu gübreler çinkonun toprakta alınabilirliğini arttırırlar. Buna karşılık kalsiyum nitratlı gübreler rizosfer toprak pH'sını arttırabilir ve çinkonun alınabilirliğini azaltabilirler.

iii) Çinkonun diğer makro elementlerle etkileşimleri

Kalsiyum, magnezyum, potasyum ve sodyum gibi elementlerin su kültürü denemelerinde bitkilerce çinko alımını engelledikleri bilinmektedir. Buna karşılık topraktaki etkileşimleri elementlerin toprak pH'sı üzerindeki etkilerine bağlı olarak değişmektedir. Örneğin jibs (CaSO₄) uygulamaları toprak pH'sını 5.8'den 4.6'ya düşürmüş ve bitkilerin Zn içeriğini arttırmıştır. Buna karşılık jibs uygulamasındaki Ca miktarı dikkate alınarak verilen CaCO₃ uygulamasında toprak pH'sı 5.7'den 6.6'ya çıkmış ve bitkinin Zn içeriği azalmıştır.

Düşük Ca'lu çözeltilerde K ve Mg uygulamaları bitkide Zn alımını engellemiş ancak Ca konsantrasyonunu arttırmıştır. Çeltikte, kuru dönemde K ve Zn uygulamalarına bitki büyümesi ve verimi açısından tepki verildiği buna karşılık sulu dönemde yalnızca K uygulamasına tepki verildiği bulunmuştur.

Fransa'da alüviyal kireçli topraklarda, tüm K uygulamalarında artan çinko uygulamalarına mısırda önemli düzeyde tepki verildiği bulunmuştur [94]. Potasyum ve çinko arasındaki olası interaksiyon potasyum eksikliğindeki bitki köklerindeki plazma membralarındaki sızıntıyla ilişkilidir.

Çinkonun mikro elementlerle etkileşimlerine ise, çinko-bakır ve çinko-demir etkileşimlerini örnek verebiliriz.

i) Zn-Cu İnteraksiyonu

i) Absorpsiyonun rekabetten dolayı engellenmesi (absorpsiyon sırasında Zn-Cu kökte aynı yeri paylaşırlar)

ii) Cu beslenmesi bitki içindeki Zn dağılımını ve taşınımını etkiler.

Her iki elementin toprakta düşük olduğu durumda yapılacak bir element uygulaması diğer elementin alımını sınırlayacaktır. Bakırca iyi beslenmiş bitkilere göre bakır-eksik beslenmiş bitkilerde en yaşlı yaprakların ölümü ve bu yapraklardan N, Cu ve Zn'nun taşınması durmuştur [92].

ii) Zn-Fe İnteraksiyonu

Çinko ve demir interaksiyonu tıpkı Zn-P interaksiyonu gibi kompleks göründüğü bildirilmiş ancak Zn-P interaksiyonu kadar çok fazla ilgi gösterilmemiştir. Besin çözeltisinde düşük düzeylerde (10 μM Fe) bulunan demirin buğdayda çinko absorpsiyonu üzerinde herhangi bir etkisinin olmadığı saptanmıştır. Buna karşılık besin çözeltisinde yüksek demir konsantrasyonlarının (100 μM Fe) kullanıldığı yerlerde demir, 0.05 μM ZnCl₂ ve Ca içermeyen bir ortamda çeltikte çinkonun absorpsiyonunu oldukça azaltmıştır.

Demir eksikliği altındaki bitkilerde çinko absorpsiyonu ve yeşil aksamdaki çinko konsantrasyonu önemli miktarda artmıştır. Bu artış çift çeneklilerde demir eksikliğinde Strateji I bitkilerinin rizosfer pH'sını asidik yapmalarıyla ilişkili olabilir. Tahıllarda ise Srateji II bitkilerin demir eksikliği altında salgıladıkları fitosideroforların kireçli bir topraktaki çinkoyu şelatlamasından kaynaklanabilir. Bununla birlikte fitosideroforların demir absorpsiyonundaki kadar kökte çinko absorpsiyonunu arttırmadığı belirlenmiştir. Bu bulgular demirin çinko absorpsiyonu üzerinde dolaylı bir etkisinin de olabileceğini ortaya koymaktadır. Çinko eksikliğinde hem Strateji I hem de Strateji II bitkilerinde yeşil aksamdaki demir konsantrasyonunu arttığı görülmüştür. Bu olasılıkla rizosfer pH'sındaki asitleşme ve köklerden salgılanan reduktantlar ve fitosideroforlarla ilişkilidir.

1.1.3 Biyoinformatik Analizler

Karşılaştırmalı genom çalışmalarında gen dizilerini çözmek, genlerin fonksiyonlarını bulmak için cDNA kütüphanelerinin kurulması önemlidir. Büyük bir genomda sadece genlerin kodlandığı bölgelere ulaşmak için cDNA sentezinin yapılması araştırıcıların hedefe ulaşmasını kolaylaştırıcı bir yöntemdir.

Farklı yöntemlerle oluşturulan bu cDNA' lardan kütüphaneler kurulur ve buradaki cDNA ların nükleotit dizi bilgisinin çözülmesi ile EST' ler (ekspres olmuş dizi işaretleri) oluşturulur. EST oluşturulmasının amacı tüm bir organizma ya da organizmaların istenilen hücre, doku veya organları için özgün olarak anlatımı yapılan genlerin belirlenmesidir [95].

EST, dizin analizi sonucu elde edilen genom parçalarıdır [96]. EST' ler bilinmeyen genlerin tanımlanması ve yerlerinin tespit edilmesinde, gen ekspresyonu ve regülasyonu hakkında veri toplanması ve genom haritalarının oluşturulması konusunda kısa süreli ve ekonomik bir yol sağlar.

Gen tespit edilmesi işleminde, EST koleksiyonları için başlangıç materyalinin cDNA olması, genomik dizilere üstünlük sağlar. Genomun büyük bir kısmı gen kodlamayan bölgelerden oluştuğu için genomik dizilerden genlerin tespit edilmesi zordur. İşlevsel

genomik çalışmalarda elde edilen cDNA dizinlerinin EST olarak değerlendirilebilmesi için ham dizinlerin işlenmesi ve birleştirilmesi gereklidir. İşlenme, ham EST dizilerinin içerdiği vektör, adaptör ve düşük değerli dizilerin uzaklaştırılması ve verilerin daha iyi incelenmesi için temizlenmesidir. Temizleme için Phill Green'den PHRED ve CROSS-MATCH, TIGR'den Lucy ve SeqClean ile NCBI tarafından sağlanan VecScreen gibi programlar bulunmaktadır. Bu programın dışında CHROMAS programı da dizilerden vektör dizilerinin temizlenmesi için kullanılır. Birleştirmede önemli sorun kontig olarak bilinen dizilerin kalitesinin yüksekliğidir. Fragment birleştirmede PHRAP ve CAP3 programları kullanılır. Bu programlar ile elde edilen sonuçların GenBank veritabanında BLASTN ve BLASTP analizleri yapılır [97].

1.1.4 GenBank

GenBank, Amerikan Ulusal Sağlık Enstitüleri (NIH National Institutes of Health) kampüsünde bulunan, Ulusal Tıp Kütüphanesi (NLM National Library of Medicine) bünyesinde çalışan, Ulusal Biyoteknoloji Merkezi (NCBI National Center for Biotechnology Information) tarafından oluşturulup dağıtımı yapılan, biyolojik ve bibliyografik veri desteği sağlayan, nükleotit ve protein dizilerinin toplandığı kamuya açık bir veri tabanıdır.

NCBI; GenBank araştırıcılarının doğrudan gönderdikleri dizi bilgileri ile oluşturulmaktadır. Diğer veri kaynakları ise, EST dizilerinin ve diğer dizileme merkezlerinin gönderdiği dizilerle oluşturulmaktadır.

NCBI, Ensembl (Europan Molecular Biology Laboratory), UCSC (University of California Santa Cruz), GO (Gen Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) veritabanları yaygın olarak kullanılmaktadır.

1.2 Tezin Amacı

Tezin amacı, çinko-eksik ve normal koşullarda yetiştirilmiş *Hordeum spontaneum* C. Koch gövdesinden çıkarılmış RNA'lar kullanılarak kurulmuş SSH cDNA kütüphanesinden seçilmiş klonların analizleridir.

Hordeum spontaneum C. Koch gövde SSH kütüphanesi, laboratuarımızda yürütülen bir araştırma projesi ve yüksek lisans çalışması kapsamında oluşturulmuştur [98]. Ege Tarımsal Araştırma Enstitüsü' nden temin edilen *Hordeum spontaneum C. Koch* (TR 62199) tohumları çimlendirildikten sonra, kaynakta belirtilen besin çözeltilerinde yetiştirilmiştir ve çinko kaynağı olarak 10 μM Zn₂SO₄ kullanılmıştır (Şekil 1.1).

Şekil 1. 1 Kontrol grubu ve deney grubunda gözlemlenen farklılıklar, kontrol grubu 10 µM çinko içeren Hoagland besiyerinde büyütülürken, deney grubu çinko içermeyen Hoagland besiyerinde büyütülmüştür [98].

42 gün boyunca yetiştirilen bitkilerin kök, gövde ve yaprak kısımları ayrılıp bir kısmı, kurutulduktan sonra Atomik Absorbsiyon Spektrofotometre (AAS) ölçümleriyle deney grubunun çinko oranı ile kontrol grubunun çinko konsantrasyon oranları arasında farklılıklar gözlenmiştir (Çizelge 1.2). Sonuçlar deney grubundaki bitki kısımlarının çinko metal konsantrasyonunun düşük olduğunu göstermiştir. Ayrıca çinkonun en fazla miktarda yapraklarda toplandığı belirlenmiştir.

Örnek tipi	Yaş ağırlık (mg)	Çinko içeriği (mg)
Yaprak çinkosuz	250	1,04
Gövde çinkosuz	250	0,42
Kök çinkosuz	250	0,13
Yaprak kontrol	250	41,4
Gövde kontrol	250	17,05
Kök kontrol	250	14,07

Çizelge 1.2 Bitki kısımlarının yaş ağırlıkları ve çinko içerikleri

Kaynakta belirtildiği şekilde, bitki kısımlarından elde edilen total RNA kullanılarak, mRNA izolasyonu yapılmıştır.

Normal ve Çinko eksik koşullarda yetiştirilen *Hordeum spontaneum* C. Koch kök, gövde ve yapraklarından elde edilen mRNA'dan PCR-select cDNA Substraction işleminde kullanılmıştır. Çinko eksik ortamda yetiştirilmiş yabani arpadan hazırlanan mRNAlardan (polyA⁺RNA) tester cDNA ve yine çinko normal ortamda yetiştirilmiş yabani arpadan hazırlanan mRNA' lardan da driver cDNA hazırlanmıştır.

Şekil 1. 2 Baskılayıcı çıkarım hibridizasyonu (Diatchenko vd., [99])

Elde edilen cDNA'ların uçlarına sentez primerleri ve adaptörlerin ligasyonu yapılıp birinci ve ikinci hibridizasyonlar gerçekleştirilmiştir. Birinci ve ikinci PCR ürünleri Şekil 1.3 ve 1.4 ve 1.5'de verilmiştir.

Şekil 1.3 Arpa bitkisinin gövde örneklerinden 1. PCR amplifikasyonun jel görünümü, 1. gövde çinkosuz çıkarım yapılmış, 2. gövde çinkosuz çıkarım yapılmamış, 3. gövde kontrol çıkarım yapılmış, 4. gövde kontrol çıkarım yapılmamış, M. marker Lambda

M 1 2 3 4 5 6 7 8 M

Şekil 1.4 Arpa bitkisinin gövde örneklerinden 2. PCR amplifikasyonun jel görünümü, M marker Lambda, 1. gövde çinkosuz çıkarım yapılmış seyreltilmiş, 2. gövde çinkosuz çıkarım yapılmamış seyreltilmiş, 3. gövde kontrol çıkarım yapılmış seyreltilmiş, 4. gövde kontrol çıkarım yapılmamış seyreltilmiş, 5. gövde çinkosuz çıkarım yapılmış, 6. gövde çinkosuz çıkarım yapılmamış, 7. gövde kontrol çıkarım yapılmış, 8. gövde kontrol çıkarım yapılmamış, 8. gövde kontrol

Şekil 1.5 Arpa bitkisinin gövdesinden saflaştırılan PCR ürünlerinin jel görünümü, Marker 100bd, 1. gövde çinkosuz 1. elüsyon, 2. gövde çinkosuz 2. elüsyon, 3. gövde kontrol 1. elüsyon, 4. gövde kontrol 2. elüsyon

PCR işleminin ürünlerinin ligasyonu için Promega pGEM[®]-T Easy vektörü kullanılmıştır. pGEM[®]-T Easy vektörünün şematik gösterimi Şekil 1. 6'de verildiği gibidir.

Şekil 1. 6 pGEM[®]-T Easy vektörünün şematik gösterimi

PCR ürünleri saflaştırılıp, klonlandıktan sonra pGEM[®]-T Easy Vector System kitinde bulunan hazır kompetan JM109 hücrelerine transforme edilmiştir.

1.3 Hipotez

Bu çalışmada Bölüm 1.2' de anlatıldığı gibi çinko eksik koşullarda yetiştirilmiş *Hordeum spontaneum* C. Koch gövdesinden elde edilen SSH kütüphanelerinden seçilen gövde klonlarının dizin analizinin yaptırılıp, çinko taşınımında rol alan önemli genlerin belirlenmesi hedeflenmiştir. Elimizde gliserol stokları bulunan ve PCR'a dayalı bir yöntemle kurulmuş 2784 klon içeren bir gövde cDNA kütüphanesi vardır. Bu kütüphaneden seçilmiş 672 klonun dizin analizi yaptırılarak bunların biyoinformatik analizlerle sistematik bir biçimde değerlendirilmesi yapılacaktır. Bu çalışma sonucunda *Hordeum spontaneum* C. Koch gövdesinde çinko eksik koşullarda fazla anlatım yapan genlere karşılık gelen cDNA'ların belirlenmesi öngörülmektedir.

BÖLÜM 2

MATERYAL VE METOD

2.1 Besiyerleri

Besi Yeri	Hazırlanma şekli
Luria Broth (LB)	10g tripton, 5g yeast extract, 10 g NaCl karıştırılıp distile su ile 1L'ye tamamlandıktan sonra balıkla karıştırıcıda iyice çözülür ve otoklavda steril ettikten sonra, +4°C'de saklanır.
Luria Broth (LB) Agar	LB agar için, 1L LB için 15g agar eklenip, otoklavlanır ve bir miktar soğuduktan sonra petrilere dökülerek +4°C'de saklanır.

Çizelgedeki miktarların üzerine saf su ilave edilerek 1L' ye tamamlandı. pH 7' ye ayarlandıktan sonra 121 °C' de 30 dakika otoklavlandı.

Katı LB için sıvı 1L LB ye 15 g Agar ilave edildikten sonra 121 $^{\circ}$ C' de 30 dakika otoklavlandı.

2.2 Tamponlar ve Solüsyonlar

Tampon veya Çözelti		Yapısı veya hazırlanma şekli
Ampisilin solüsyonu	stok	100 mg/ml ddSu ilave edildi. Filtreden geçirildi20°C'de bekletildi.
Etidyum bromid solüsyonu (EtBr)	stok	5 mg/ml EtBr'e steril deiyonize su ilave edildi.

TBE çözeltisi (5X)	54 g Tris, 27,5 g Borik asit, 20 ml 0,5 M EDTA, 1L saf suya tamamlandı.
DNA Loading çözeltisi	1mM EDTA, pH 8.0, % 0.4 bromfenol mavisi ve %50 gliserol karışımı, DEPC'li su ilave edildi.

2.3 Moleküler Markırlar

Pst1'le	kesilmiş	Lambda	%1'lik agarozda 21226 bp ile 564 bp arasında
DNA/EcoF	RI+HindIII		toplam 11 bant gözlenir.

2.4 Enzimler

EcoRI	Fermentas
-------	-----------

2.5 Kitler

Plasmid izolasyon Kiti	Roche High Pure Plasmid İsolation Kit
------------------------	---------------------------------------

2.6 Kullanılan Oligonukleotid ve Vektör Dizinleri

Larsson ve ark. [100]' deki makalesinden GADPH F1 ve GADPH R1 primerleri Alfa DNA firmasına sentezlettirildi. Adaptör 1 ve adaptör 2R primerleri SSH kitinde bulunmaktadır.

Primer adı	Primer dizini
cDNA sentez primeri, pr16	5'-TTTT GTACAAGCTT - 3'
Adaptör 1	5' GTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGG CAGGT -3', 3'-CCCGTCCA-5'
Adaptör 2R	5' TGTAGCGTGAAGACGACAGAAAGGGCGTGGTGCGGAGG GCGGT -3', 3'-GCCTCCCGCCA-5'

- · · ·	
PCR primerleri	P1 5'-GTAATACGACTCACTATAGGGC - 3'
	P2 5'-TGTAGCGTGAAGACGACAGAA - 3'
	PN1 5'-TCGAGCGGCCGGCCGGGCAGGT - 3'
	PN2 5'-AGGGCGTGGTGCGGAGGGCGGT - 3'

2.7 Kullanılan Programlar

2.7.1 Cygwin

Cygwin MS-Windows'un herhangi bir modern versiyonunu kullananlar için kurulmuş Unix-benzeri çalışma ortamı sağlayan ve ücretsiz indirilebilen bir yazılımdır [101]. Cygwin`in asıl amacı Unix türevi sistemlerde yer alan yazılımların Windows işletim sisteminde çalışmasını sağlamaktır. Phred, Phrap, CAP3 ve Chross-Match gibi Unix türevi biyoinformatik yazılımlar Cygwin üzerinden işletilebilir.

2.7.2 Phred ve Phrap

Washington Universitesi'nden Phil Green ve grubunun oluşturduğu unix paketler programıdır. Söz konusu programlar akademik kullanıcı olarak istenmiştir [102].

Bu programlar Cygwin programı kullanılarak çalıştırılmıştır. Phred analiz sonucu elde edilen dizilerden vektör ve kötü kaliteli dizilerinin uzaklaştırılması için ve Phrap de örtüşen dizilerin birleştirilmesi için kullanılır.

2.7.3 CAP3

CAP3, analiz sonucu elde edilen dizin verilerini kullanarak örtüşen dizinleri birleştirmek üzere kullanılan Phrap'e alternatif daha güvenilir sonuçlar veren bir programdır. Phred programının oluşturduğu baz quality değerlerini kullanır ve dizinlerdeki kalitesiz bölgeleri keserek consensus dizinleri oluşturur.

2.7.4 Cross-Match

Vektör dizinlerini uzaklaştırmak için kullanılan ve Cygwin üzerinden komutla çalıştırılabilen bir programdır. Vektör ve adaptör dizinlerini içeren Fasta formatlı oluşturulmuş bir text dosyasını referans alarak aynı anda çok sayıda dizinde bu dizinleri işaretleyebilmemize olanak sağlar.

İnternetten indirilebilen Chromas programına alternatiftir, Cross-Match programı aynı anda çok sayıda örnekle çalışmamıza olanak verdiği için bu çalışmada tercih edilmiştir.

2.7.5 BEAP

Koltes ve arkadaşları (2009) tarafından geliştirilen bu program Phrap ve CAP3 programları ile oluşturulan konsensus (kontig) dizilerinin kontrolünde kullanılır. Phrap ve CAP3 ile oluşturulan ".ace" uzantılı dosyayı input olarak kullanır ve oluşturulan herbir kontig için onları oluşturan EST'ler ile bunların örtüşme biçimlerini gösterir.

2.7.6 VecScreen

Kaynak [103]'de verilen adresten ulaşılabilen VecScreen programı, girilen EST dizinlerinde istenmeyen vektör dizinlerinin olup olmadığını gösteren bir çevrimiçi programdır. Vektör ve adaptör dizinleri uzaklaştırılmış dizinlerde herhangi bir kontaminasyon olup olmadığı, bu program ile kontrol edilir.

2.7.7 BLAST (Basic Local Alignment Search Tool)

Kaynak [104]'da verilen adresten Çevrimiçi erişebilen ve dizinler arasındaki benzerlikleri bulan BLAST programı girilen nükleotid yada protein dizinlerini veri tabanındaki dizinlerle karşılaştırır ve benzerliklerin istatistiksel anlamlarını hesaplar. BLAST gen ailelerinin üyelerinin belirlenmesinin yanısıra dizinler arasındaki fonksiyonel ve evrimsel ilişikileri anlamak için de kullanılabilir.

BLAST programı, "BLASTN", "BLASTP", "BLASTX", "TBLASTN" ve "TBLASTX" gibi programları içerir. "BLASTN" programı, girilen nükleotid dizilerini, nükleotid veri tabanında tarar. "BLASTP", nukleotid dizinlerinden elde edilen protein bilgisini veri olarak kullanarak; "BLASTX" ise girilen nükleotid dizinlerini protein dizinlerine çevirerek, protein veritabanı üzerinde benzerlik taramasını gerçekleştirir. "TBLASTN" girdi olarak protein bilgisini kullanarak ve "TBLASTX" ise girilen dizin verisini protein

bilgisine çevirerek, çevrilmiş nukleotid veri tabanında benzerlik taramasını gerçekleştirir.

Bunlar dışında, çalışmamızda kullandığımız VECSCREEN gibi özelleştirilmiş BLAST araçlarına yine site üzerinden erişebilir ve kullanılabilir.

Çalışmamızda *Hordeum spontaneum* C. Koch gövdesinden elde edilen EST'lerin BLASTP analizleri için dizinlerin protein bilgisi kullanıldı. Klonlama yönlü olmadığından doğru protein kodlayan dizinin vektöre yerleşme şansı 1 /6' dır. Ayrıca dizin okumalarındaki olası yanlışlıklar frame kaymalarına neden olabilir. Bu nedenlerle [105]' deki internet programında kontik ve singletlere ait proteinlerin 1., 2. ve 3. framelerde aminoasit dizin bilgisi oluşturuldu. Her üç frame için BLASTP analizleri yapıldı. Aynı işlem ters tamamlayıcı zincirin 1., 2. ve 3. frameleri için de yapıldı.

2.8 Gövde SSH Kütüphanesinde Rekombinant Plazmid Kontrolü

2.8.1 Plazmid İzolasyonu İçin Örnek Kolonilerin Seçimi ve Büyütülmesi

Gövde SSH kütüphanesinin rekombinant plazmid içermesi bakımından kalitesini değerlendirebilmek açısından, her bir 96'lık plateden 4'er örnek seçilerek cDNA'ları izole edilip agaroz jel elektroforezinde yürütüldü. Bu işlem için seçilen örnekler LB agar besiyerine öze yardımıyla çizgi ekim yapılarak bir gece büyütüldüler. Katı besiyerinde büyütülen örneklerden birkaç koloni seçildi. 4'er ml LB sıvı besiyeri içeren steril falcon tüplere 100 µl/ml olacak şekilde 40 µl ampisilin antibiyotiği eklendi. Seçilen koloniler ampisilinli LB besiyerine yine öze ile ekildi. İnkübatörde 37°C'de 220 rpm'de overnight büyütüldü.

2.8.2 Plazmid İzolasyonu

2 ml'lik eppendorflar etiketlenip, falconda over night büyütülen örneklerden 2'şer ml eppendorflara konularak 6000xg'de 1 dakika santrifujlenip süpernatantı atıldı. Falcondaki örnekler bitene kadar işlem tekrarlanarak pelletin birikmesi sağlandı. 250 μl suspansiyon buffer eklendi ve elde iyice çalkanalarak pelletin çözünmesi sağlandı. Suspansiyonun üzerine 250 μl lyzis buffer eklenip tüpler elde 3-6 kez ters çevrilerek karışması sağlandı. Bu şekilde 5 dakikayı beklendi. 350μl soğutulmuş binding buffer eklendi ve yine 3-6 kez ters-düz edilerek karışması sağlandı. Bu karışım 5 dakika buz üzerinde bekletildi. 10 dakikak 13000xg'de santrifüj yapılıp, supernatant pipet yardımıyla kit içindeki filtreli tüplere alındı ve 1 dakika santrifuj edilerek alttaki süzüntü döküldü. Filtre üzerine 500 µl wash buffer I eklenip, 1 dakika santrifuj edilip, süzüntü tekrar döküldü. 700µl wash buffer II eklenip, 1 dakika santrifuj edilerek süzüntü döküldü. Filtreli tüpler 1 dakika boş (bir şey eklemeden) santrifuj edildi. Bulaş olmaması için süzüntü dökülmeden filtreler önceden etiketlenmiş 1,5ml'lik eppendorflara aktarıldı. Filtrelere 100µl elüsyon buffer veya PCR suyu eklenip (biraz bekletilip) 1 dakika 13000xg'de santrifujlendi. Plazmidler elute edilmiş olup filtreden süzülerek -20°C'de saklandı.

2.8.3 Plazmid Kesim

İzole edilmiş plazmidlerden 6'şar µl pipetlenip 200µl'lik PCR tüplerine eklendi. 2µl EcoRI tamponu, 11 µl steril su (ddH₂O) ve 1µl EcoRI enzimi eklendi. Karışması için 10 saniye kadar santrifujlendi 37°C'de 2 saat kesim yapıldı ve 85°C'de 10 dakika ısıtılarak kesim reaksiyonu durduruldu.

2.8.4 Agaroz Jelde Analiz

0,75 g agaroz tartılıp, 75 ml 1X TAE eklendi. Mikrodalgada 360 °C'de 4 dakika ısıtılarak eritildi. Etüvde 60°C'ye soğutulduktan sonra 3 μl EtBr eklenip karıştırılarak jel tepsisine döküldü. Jel donduktan sonra tanka jeli kapatacak şekilde 1X TAE eklendi.

Kuyucuklara 6X yükleme tamponundan 1,6 μl ve 8,4μl örnek karıştırılarak toplam 10μl yükleme yapıldı. 75 Voltta yürütüldü.

2.9 Rekombinant Kolonilerin 96'lık Kültür Kaplarına Aktarımı ve Gliserol Stoklarının Hazırlanması

96' lık Greiner kaplarına çok kanallı pipetlerle 100'er μl LB besiyeri konuldu ve LB'da büyütülmüş stok replikalardan 10'ar μl çekilerek yine çok kanallı pipetlerle eklenerek, 37 °C' de bir gece büyütüldü. İnkübasyon sonrasında 40 μl % 70' lik gliserol ilave edilerek –80 °C' de saklandı. Replikalarda; örneklerden 10 μl, 100 μl LB ve 40 μl % 70' lik gliserol kullanıldı. Örnekler -80 °C' de saklandı.

2.10 Kolonilerin Dizin Analizine Gönderilmesi

Stok kültürlerden gövdeye ait 672 koloni içeren 7 kap dizin analizi için BIOGEN firması araclığıyla Almanya GATC Biotech firmasına gönderildi.

2.11 Biyoinformatik Analizler

Gövde SSH kütüphanesinden gönderilen 672 koloninin dizin sonuçları ".seq", ".ab1" ve ".fas" uzantılı dosyalar halinde elde edildi.

Gövde dizin analiz sonuçlarındaki ".seq" uzantılı dosyalar CYGWIN programıyla tek bir dosya halinde toplandı ve vektör ve adaptör dizileri "CROSS-MATCH" programıyla uzaklaştırıldıktan sonra CAP3 programıyla kontig ve singletler oluşturuldu. Vektör ve adaptör dizin kontaminasyonunu kontrol etmek için çevrimiçi erişilen ve GenBank'ın veritabanını kullanan VecScreen programı kullanıldı. Oluşturulan kontigler BEAP programıyla kontrol edilerek kontigleri oluşturan EST'ler ve örtüşme biçimleri gözlendi. Kontig ve singletlerin BLASTN ve BLASTP analizleri yine GenBank veritabanını kullanan web sitesi üzerinden benzerliklerine bakılarak karşılaştırıldı. BLASTP analizleri için Frame 1, 2 ve 3 protein bilgileri oluşturuldu.

Dizinlerin biyoinformatik analizleri için, CYGWIN programı kullandı. Dizin sonuçlarından tüm *.seq uzantılı dosyalar ayrı bir dosyaya kopyalandı. Bu dosya "seqgovde" olarak adlandırıldı. Tüm seq dosyalarını tek bir sayfada toplamak için PHRED programı kullanıldı. Bilgisayarda kurulu Cygwin programına ilk olarak Phred programının konumu girilerek program tanıtıldı. Bunun için şu komutlar kullanıldı.

set PHRED_PARAMETER_FILE=/home/senay/proje/phredpar.dat

export PHRED_PARAMETER_FILE=/home/senay/proje/phredpar.dat

Daha sonra "proje" adlı dosya ve altdosyası olan "seqgovde" dosyasına girmek için ve bu dosyadaki tüm "*.seq" uzantılı dosyaları hedefleyip tek bir dosyada toplayabilmek için şu komutlar kullandıldı.

cd proje

cd seqgovde

files=*.seq

cat \$files > fasta_seq

Artık tüm .seq uzantılı dosyalar "seqgovde" dosyası içinde fasta_seq adında toplanmıştır. Dizinlerden vektör ve adaptör dizinlerini uzaklaştırmak için CROSS-MATCH programı kullanıldı. "seqgovde" dosyası içine kopyalanan "vector.seq" dosyasında kütüphanelerin klonlandığı pGEM®-T Easy vektörüne ve Adaptör 1 ve 2R'ye ait uzaklaştırmak istenen dizinler bulunmaktadır.

./cross_match.exe fasta_seq vector.seq –minmatch 8 –minscore 15 –screen > screen.out

komutu girilerek dizinlerdeki vektör ve adaptör dizileri X ile işaretlenmiş oldu. Dosya fasta seq.screen isimiyle oluşturuldu. WordPad ile açılabilen bu dosyada X işaretli dizinleri uzaklaştırabilmek için Düzen (Edit) menüsünden Değiştir (Replace) seçeneği seçilerek X'ler aranarak boş bırakılan yeni değerle "Tümünü Değiştir" seçeneği seçilerek değiştirildi ve "fasta seq.screen.filter" adıyla kaydedildi. Vektör ve adaptör dizinlerinin tam olarak temizlenip temizlenmediğini kontrol etmek için http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html sitesinden VECSCREEN programı kullanıldı. Cross-Match komutundaki parametreler VecScreen ile kontrol edilerek farklı şekillerde denendi ve kontaminasyonun en iyi -minmatch 8 ve minscore 15 olduğu durumda temizlendiği görüldü.

Adaptör ve vektör dizinleri çıkarılmış dizinlerin konsensus (kontig) dizilerini oluşturmak için CAP3 programı kullanıldı. Bunun için yine Cygwin üzerinde şu komut girildi.

./cap3.exe fasta_seq.screen

Bu komutla CAP3 programı contig ve singletleri oluşturarak .contigs ve .singlets uzantılı olarak kaydetti.

Kontigler BEAP programı ile kontrol edildi. BEAP programı ".ace" uzantılı dosyaları açan ve kontigleri oluşturan EST'leri ve örtüşme biçimlerini gösteren bir programdır. Elde edilen tüm kontig ve singletlerin BLASTN ve BLASTP analizleri *http://blast.ncbi.nlm.nih.gov/* web sitesi üzerinden yapılarak GenBank veritabanı ile karşılaştırıldı.

BÖLÜM 3

SONUÇ VE ÖNERİLER

3.1 Plazmid İzolasyonu

SSH cDNA kütüphanesinden seçilen koloniler, LB besiyerinde büyütüldü ve rastgele seçilen 25 koloniden plazmid izolasyon kitindeki protokole uygun olarak izole edilen plazmidler *EcoRI* enzimiyle kesildikten sonra agaroz jelde yürütüldü. pGEM-T Easy vektörünün çoklu klonlama bölgesinin iki tarafında yer alan EcoRI kesim bölgelerinin arasında 20bp olduğundan rekombinant olmayan plazmidler kesildiğinde yaklaşık 20bp'lık bir fragman görülmelidir. 25 ayrı klondan elde edilmiş plazmidlerin 23 tanesinde 800bp ile 1900bp arasında cDNA'lar olduğu görüldü (Şekil 3.1). Buradan da SSH kütüphanesinin %90 rekombinant yüzdesine sahip olduğu anlaşılmaktadır.

Şekil 3.1 Kütüphaneden rastgele seçilen kolonilerden izole edilip, PCR kesimleri yapılmış plazmidler

3.2 Biyoinformatik Analizler

3.2.1 EST'lerin Hazırlanması ve Kontig – Singletlerin Oluşturulması

GATC Tech 'den gönderilen dosyalardaki dizin analiz sonuçlarından ".seq" uzantılı olanları Cygwin programı ile WordPad ile açılabilen "fasta_seq" adında tek bir dosya içinde topladık (Şekil 3.2). Arpanın gövde kısmına ait 657 dizinin vektör ve adaptör dizileri Cross-Match programıyla işaretlenip, silindi (Şekil 3.3).

Şekil 3.2 Cygwin Phred programına komutların girilmesi; Phred programının Cygwin'e tanıtılması ve tüm ".seq" uzantılı dosyaların tek dosyada toplandığı "fasta_seq" adlı dosyanın oluşturulması

Şekil 3.3 Cygwin Cross Match programının dizinlerdeki vektör ve adaptör dizilerini işaretlemesi

Ardından, VecScreen programı ile vektör ve adaptör dizilerinin kalıntıları kontrol edildi (Şekil 3.4). Yapılan analizin sonucunda dizinlerimizde vektör ve adaptör dizilerine ait kalıntıların kalmadığı görülmüştür.

А

В

5	HCBI Blast-Nucleotide Seq +	Ŀ
4	C blast.ncbi.nlm.nih.gov/Blast.cgi	_
5	BLAST [©] Basic Local Alignment Search Tool Home Recent Results Saved Strategies Help	Ay No Sign
۲	BI/ BLAST/ vector contamination/ Formatting Results - 152VDA2E01N	
	▶ Earmatting options_ ▶ Download	
	Vecscreen	
	Jucleotide Sequence (440 letters)	
	Query ID Icl/61505 Database Name screen/UniVec Description None Description UniVec (build 7.0) Molecule type nucleic acid Program BLASTN 2.2.26+ ▷ Citation Query Length 440 440	<u>een</u>
	() No significant similarity found. For reasons why, <u>click here</u>	
	Other reports: > Search Summary [Taxonomy reports]	
<u>Co</u>	BLAST is a registered trademark of the National Library of Medicine.	BIIN

Şekil 3.4 VecScreen programının web sitesi görünümü; A resminde tarama yapılacak dizin girildi, B resminde ise vektör dizisine ait kontaminasyonun kalmadığı gösterildi.

VecScreen programının, AGCAGGGTTATGCAGC dizinlerini vektör kontaminasyonu olarak göstermesine karşın bazı dizinlerin kendi içerisinde bulunduğunu belirleyerek vektör olmadığı sonucuna varıldı. Ayrıca BLAST sonuçlarında da çeşitli vektörlerle benzerliğinin yanı sıra *Hordeum vulgare* C. Koch 'ye ait protein için mRNA'ya denk geldiği görüldü. Vektör ve adaptör dizinlerinin uzaklaştırılmasının ardından, EST fragmentlerinin eşleştirme işlemi CAP3 ve Phrap programı ile ayrı ayrı yapıldı. Bu programlarla örtüşen dizinler (kontig oluşturan) ve örtüşmeyen dizinler (singlet oluşturan) belirlendi.

BEAP programıyla, CAP3 ve Phrap programlarıyla oluşturulan kontigleri oluşturan EST'ler ve örtüşme biçimleri kontrol edildi (Şekil 3.5).

View Help						
Choo	se an .ace file to upload	Upload .ace File	Clear the file before uploading a new one.	Clear	Choose the contig to view.	Contig10
Contig10 0 bps	100 bps 20	0 bps 300 bp	s			
9458178	L T		57			
9458485	9458960					
9458800						

Şekil 3.5 BEAP programında 10. Kontigi oluşturan EST'ler ve bu dizilerin örtüşme biçimleri

3.2.2 BLAST Analizleri

3.2.2.1 Gövde Kontig BLAST Analizleri

Gövdeye ait cDNA kütüphanesinden CAP3 ve PHRAP programları kullanılarak iki ayrı kontig seti oluşturuldu. Aynı cDNA'lar kullanılarak Phrap programıyla 19 ve CAP3 programıyla 17 adet kontig elde edildi.

← → C [blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM	1=blastn&BLAST_PROC	GRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAU
BLAST® Home Recen	Basic Local Alignment S nt Results Saved Strategies Help	Search Tool	
NCBI/ BLAST/ blastr	n suite		Standard Nucleotide BLAST
blastn <u>blastp</u> bl	lastx tblastn tblastx		
Enter Query S	Sequence	BLA	STN programs search nucleotide databases using a nucleotide query. more
Enter accession имимимимимими сититискарасситиа сититискарасситиа ассартирателя оразаностора состораностора оразаностора оразаностора сититиска сититиска оразаностора ораз	number(s), gi(s), or FASTA sequence(s)	Clear Query subrange @ From To	
Or, upload file Job Title	Choose File No file chosen		
Align two or n	Enter a descriptive title for your BLAST search @		
Choose Sear	rch Set		
Database	Human genomic + transcript Mouse genomic + tran Nucleotide collection (nr/nt)	iscript Others (nr etc.):	
Organism Optional	Enter organism name or id-completions will be sug	Exclude 🔳	
Exclude Optional	Models (XM/XP) 🖾 Uncultured/environmental sample	: sequences	
Entrez Query Optional	Enter an Entrez query to limit search 🥹		
Program Sele	ection		
Optimize for	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) Somewhat similar sequences (blastn) Choose a BLAST algorithm 👔 		
BLAST	Search database Nucleotide collection (nr/nt) using Meg	gablast (Optimize for highly sin	nilar sequences)
Algorithm param	Note: Parameter values that	differ from the default are high	lighted in vellow and marked with + sign

Şekil 3.6 NCBI veritabanı BLASTN aracı web sitesi görüntüsü

BLASTN analizlerinin sonuçları üç bölüm halindedir. Birinci bölüm, EST dizisinin özelliği hakkında bilgi verir. İkinci bölüm analizi yapılan dizin ile benzerlik gösteren dizinleri ve bu dizinlerin analiz sonuçlarını gösterir.

Analiz sonuçlarında; veritabanındaki dizilerin tanınmasını sağlayan numaralar (Accession number), benzerlik gösteren dizinin fonksiyonuna ve ait olduğu organizmaya ait bilgi (Description), karşılaştırılan dizilerin uzunluk anlamında ne derece birbirlerini kapsadıkları (Ouery Coverage), karşılaştırılan dizilerin bir pozisyonda aynı nükleotide sahip olmasının rastlantısal olabilme durumu (E-value terimi), birbirleri arasında benzerlik tespit edilen diziler arasındaki homolojinin derecesi (Maximum Identy) belirtilir.

Üçüncü bölüm ise benzerlikleri verilen dizilerin karşılaştırmalı olarak nükleotit düzeyinde benzerliklerini verir (Şekil 3.7).

Şekil 3.7 Arpa bitkisinin gövdesine ait Kontig 2 dizisinin BLASTN sonuçlarının NCBI veritabanı web sitesi görüntüsü. A: Birinci Bölüm, B: İkinci Bölüm, C: Üçüncü Bölüm

Tüm kontiglerin DNA ve protein düzeyinde BLAST analizleri gerçekleştirildi. CAP3 ve PHRAP programlarıyla benzerlikleri bulunan kontig dizinlerinin nükleotid düzeyinde analizleri için "BLASTN" ve protein düzeyinde analizleri için ise "BLASTP" araçları kullanıldı.

Cap3 ile oluşturulan kontiglerin BLAST analizi sonuçları Ek- A'da ve Phrap ile oluşturulan kontiglerin BLAST analiz sonuçları Ek-C'de verildi.

3.2.2.2 Gövde Singlet BLAST Analizleri

CAP3 ve Phrap programları kullanılarak oluşturulan singletlerin de nükleotid ve protein düzeyinde BLAST analizleri kontiglerde olduğu gibi her bir program için ayrı ayrı gerçekleştirildi. Cap3 ile elde edilen singletlerin BLAST analiz sonuçları Ek-B'de ve Phrap ile elde edilen singletlerin BLAST analiz sonuçları Ek-D'de verildi.

3.2.3 Gövde Kontig ve Singlet BLAST Sonuçlarının Değerlendirilmesi

BLASTN analizlerinde Cap3 programıyla elde edilen kontiglerden Kontig 1'in "Lipid Transfer Proteini (LTP)"ne benzerlik gösterdiği bulunmuştur. Phrap kontiglerinden ise Kontig 9 lipid transfer proteinlerine benzerlik göstermektedir. Cap3 programıyla oluşturulan Kontig 1, 6 cDNA (16R_A09-T7, 2R_D11-T7, 7R_B05-T7, 7R_G02-T7, 9R_D09-T7 ve 8R_D11)'dan meydana gelirken; Phrap programıyla oluşturulan Kontig 9, 3 farklı cDNA (9R_A05-T7, 2R_G04-T7 ve 2R_C03-T7)'dan meydana gelmektedir. Bu kontigler protein düzeyinde de aynı benzerliği vermektedirler.

Fakat, Phrap programıyla elde edilen Kontig 9'u oluşturan cDNA'ların her birinin nukleotid BLAST analiz gerçekleştirildiğinde dizinlerin LTP'ye benzerlik göstermediği görülmüştür. Bu nedenle kaynak [106]'de verilen web sitesi üzerinden kullanılabilen bir araç olan Clustalw ile Phrap programıyla elde edilen Kontig 9'un dizininin kontigin kendisini oluşturan cDNA'larla alignmenti yapılarak kontrolleri yapılmıştır (Şekil 3.8). cDNA dizinleri %100 benzer görünmektedir fakat oluşan kontigin birçok bölgesi farklı cDNA'lardan oluşmaktadır. Phrap programı ve CAP3 programı ile oluşturulan diğer kontigler karşılaştırıldığında Phrap kontiglerinde buna benzer anlamsız sonuçlar ve farklılıklar görülmüştür. CLUSTAL 2.1 multiple sequence alignment

9458016	GCCGAAAAAGGGCACCTCT-TCACTTGGTTTTGATCAAATCCTCAATTAT	49
9458795	GCCGAAAAAGGGCACCTCT-TCACTTGGTTTTGATCAAATCCTCAATTAT	49
9458004	GCCGAAAAAGGGCACCTCT-TCACTTGGTTTTGATCAAATCCTCAATTAT	49
fasta seg.screen.Contig9	GTCCTCCCCTCTCTCTCCCATGGAGATCATAACAGAGGATTT	42
	•••••••••••••••••••••••••••••••••••••••	
9458016	TTTCGAGCTATTTGTTTGAGTTTTGAGCTGCGCATCCAAATTTTGTTCTA	99
9458795	TTTCGAGCTATTTGTTTGAGTTTTGAGCTGCGCATCCAAATTTTGTTCTA	99
9458004	TITCGAGCTATITGTTTGAGTTTTGAGCTGCGCATCCAAATTTTGTTCTA	99
fasta_seq.screen.Contig9	ATTCATG-TATATGTATATATGCGTATGTGACCTC	76
1999 - 1997 -	,***,;* ***;***;* * ,**** ** **; **,	
9458016	CARAGGCATTTCTTTGTARTCAGARGCTGTGGCTGGAACAACACCCGAGAG	149
9458795	CARAGGCATTTCTTTGTRATCAGRAGCTGTGGCTGGRACRACACCGAGAG	149
9458004	CAAAGGCATTTCTTTGTAATCAGAAGCTGTGGCTGGAACAACACCGAGAG	149
fasta_seq.screen.Contig9	ARCCTGCCAAGCGTCGATCGCTGGAGGTATGAGCGGCTATGATGG	121
	هر هه روهررهره ال هغرة هغرهوه رووه ه ه رورهه راهر	
9458016	TAGATCAGTATGTAAGTTACCCCCCTTGTTAACCTGACAACGGGACCACC	199
9458795	TAGATCAGTATGTAAGTTACCCCCCTTGTTAACCTGACAACGGGACCACC	199
9458004	TAGATCAGTATGTAAGTTACCCCCCTTGTTAACCTGACAACGGGACCACC	199
fasta_seq.screen.Contig9	AAGCAGGAGTTCGATCAGTGGATCTTGGAGCAGTCGACACT	162

9458016	TGCACTTATATTATCATGCAAGGCTACAATTGCGATTTTAAAAAAAA	246
9458795	TGCACTTATATTATCATGCAAGGCTACAATTGCGATTTTAA-AAAAAAAA	248
9458004	TGCACTTATATTATCATGCAAGGCTACAATTGCGATTTTAAAAAAAA	249
fasta_seq.screen.Contig9	GGCGCTGATCGTGTAGGGGACG-CTGACGCCGCACCTGGAGGGGATG	208
	. **. *.* * *.* ** ** * **	
9458016	АААААААААААААААААССТТА 266	
9458795	AAAAAAAAAAAAAAAGCTT 267	
9458004	AAAAAAAAAAAAAAAGCTTGTACCTGCCCGG 280	
fasta_seq.screen.Contig9	CCTGCGGCCCTGCCGGCGTTC 229	
owned water and with a provident statement of the Addition of the	:	

Şekil 3.8 Phrap Programı Kontig 9 Clustalw görüntüsü

Cap3 programıyla elde edilen ve 114 adet cDNA'dan oluşan, Kontig 7 "ribuloz-1,5bisfosfat karboksilaz/oksigenaz" enzimine benzerlik göstermektedir. Bu benzerlik Phrap programıyla oluşturulan ve 37 adet cDNA'dan oluşan Kontig 18'de görülmektedir. Kontig 7'yi oluşturan 114 adet cDNA, Kontig 18'i oluşturan 37 adet cDNA'yı kapsamaktadır.

Cap3 ile oluşturulan kontiglerden Kontig 8 "UDP-Glukoz Pirofosforilaz" enzimine benzerlik göstermektedir. Aynı benzerlik Phrap programıyla elde edilen kontiglerden Kontig 17'de görülmektedir. Cap3 Kontig 8, 367 adet cDNA'dan oluşurken; Phrap Kontig 17, 17 adet cDNA'dan oluşmaktadır ve Phrap Kontig 17'yi oluşturan cDNA'ların hepsi, Cap3 Kontig 8'in içinde de bulunmaktadır.

Cap3 programıyla elde edilen kontiglerden Kontig 10'un benzerlik analizlerinde "SRP54" sinyal tanıma partikülüne benzediği gösterilmiştir. Aynı benzerlik Phrap kontiglerinden Kontig 8'de de görülmektedir. Cap3 Kontig 10, 4 adet cDNA'dan meydana gelirken; Phrap Kontig 8, Cap3 Kontig 10 oluşumuna da katılan, 3 adet cDNA'dan meydana gelmektedir.

Cap3 programıyla edilen Kontig 14'ün nükleotid ve protein BLAST analizlerinde "aktin" proteinine benzerliği bulunmuştur. Aynı benzerlik Phrap programıyla elde edilen Kontig 16'da da görülmüştür. Cap3 Kontig 14, 19 adet cDNA'dan meydana gelirken, Phrap Kontig 16 ise 12 adet cDNA'dan meydana gelmiştir. Phrap Kontig 16'yı oluşturan 12 cDNA'nın tamamı Cap3 Kontig 14'de bulunmaktadır. Cap3 Kontig 14 içinde bulunan fakat Phrap Kontig 16'da bulunmayan diğer 7 cDNA'nın nukleotid BLAST analizleri gerçekleştirildiğinde hepsinin aktine benzediği görülmüştür.

Cap3 programıyla elde edilen Kontig 16'nın nukleotid BLAST analizlerinde "kitinaz" proteinlerine benzerlik gösterdiği tespit edilmiştir. Aynı benzerlik Phrap programıyla oluşturulan kontiglerden Kontig 1'de görülmektedir. Cap3 programı ile oluşturulan Kontig 16, 3 adet cDNA'dan ve Phrap programı ile oluşturulan kontiglerden Kontig 1, 2 adet cDNA'dan meydana gelmiştir. Fakat Cap3 programıyla edilen Kontig 16 ve Phrap ile elde edilen Kontig 1'i oluşturan cDNA'lar aynı değildir. Tüm bu cDNA'ların tek tek nukleotid BLAST analizleri gerçekleştirildiğinde Cap3 programının oluşturduğu Kontig 16'yı oluşturan cDNA (8R_H11-T7, 4R_B02-T7 ve 4R_C02-T7) 'ların herbirinin kitinaz proteinlerine benzerlik gösterdiği belirlenmesine rağmen, Phrap programının oluşturduğu Kontig 1'i oluşturan cDNA (7R_B12-T7 ve 4R_B09-T7)'ların nukleotid BLAST sonuçları aynı benzerliği vermemektedir. Phrap programının oluşturduğu Kontig 1 için clustalw analizi yapıldığında, kontigin farklı dizinlerden oluştuğu görülmüştür (Şekil 3.6).

CLUSTAL 2.1 multiple sequence alignment

8500 TCACCCGCCAATTTTCTTGATGTTGGTGGGAGCG-CATCCGAGGGACAGG 49 8363 --ACCTGCCAATTTTCTTGATGTTGGTGGGAGCG-CATCCGAGGGACAGG 47 fasta seq.screen.Contig1 GCTCCGCATCGGCTACTACACG--CGCTACTGCGGCATGCTTGGCACGGC 48 8500 TCGTGGAAGCATTTAAGATATTGACTTCAGATGATAGAGTGAAGGCAATT 99 8363 TCGTGGAAGCATTTAAGATATTGACTTCAGATGATAGAGTGAAGGCAATT 97 fasta_seq.screen.Contig1 . ***.***: :.** : **: *... **:* : *.:.**:* : 8500 8363 fasta_seq.screen.Contig1 CACTATGGATAGTGTATGCACGTGTTACGAATAAAGGGCTACACTCATGA 148 *:. :* *:..* *:** * **.* * ***::.:*. *..:. **:*: 8500 GGAATAGTGAATGCAGCTAAACAGGTTGATCTTAAGGTCCCTGTTGTTGT 197 8363 GGAATAGTGAATGCAGCTAAACAGGTTGATCTTAAGGTCCCTGTTGTTGT 195 fasta_seq.screen.Contig1 ATAAGGGGCAACACATATCCCATCATGAAATAAATAATTCGATATGTGAT 198 . ** .* ** .** .*.... .* .*: ::*:..* : :*** .* 8500 TCGGCTAGAAGGCACCAATG-TAGACCAAGGGAAAAGGATTCTTAAGGAA 246 8363 TCGGCTAGAAGGCACCAATG-TAGACCAAGGGAAAAGGATTCTTAAGGAA 244 CCAGTTGATCGTGTCGTATGATAATACGAGTAAGTTGTTGTAACAAATTA 248 fasta_seq.screen.Contig1 *.* *..:.* :* :*** **.:.*.* .*.::* : *.: **. :* 8500 AGTGGAATG-ACATTG--ATCACTGCAGAGGATCTTGATGATGCTGCCGA 293 8363 AGTGGAATG-ACATTG--ATCACTGCAGAGGATCTTGATGATGCTGCCGA 291 fasta_seq.screen.Contig1 8500 GAAGGCTGTAAAAGCATCGGTCAAATGATTAATGATT-- 330 GAAGGCTGTAAAAGCATCGGTCAAATGATTAATGATT-- 328 8363 fasta_seq.screen.Contig1 AAAAAAAAAAAAAAAAAAAAAAAAAGCTTGACCTGCCCGGGC 337 .**...:.:****..*:...:...:*** :. .

Şekil 3.9 Phrap programıyla oluşturulan Kontig 1'in clustalw analizi sonucu Bunların dışındaki Phrap ve CAP3 programları ile oluşturulan kontigler farklı numaralandırılmış olsalar da aynı cDNA'lardan oluşmuşlardır. Örneğin, Cap3 programıyla elde edilen kontiglerden Kontig 13 "papain-benzeri sistein proteinaz" enzimine benzerlik göstermektedir. Bu benzerlik Phrap programıyla elde edilen kontiglerden Kontig 15'de de görülmektedir. Her iki kontig de aynı 10 cDNA'dan meydana gelmiştir.

Total kontig sayısına bakıldığında 17 adet kontig oluşturan CAP3 programı toplam 614 adet cDNA'yı kontig oluşumuna katarken; 19 adet kontig oluşturan Phrap programı toplamda 275 adet cDNA'yı kontig oluşumuna katmıştır. Söz konusu programların oluşturdukları kontigler ve kullandıkları cDNA'ların sayı ve numaraları Ek-E ve Ek-F'de verilmiştir. Tüm bu değerlendirmeler sonucunda CAP3 programının Phrap programına göre daha değerlendirilebilir kontig dizinleri oluşturduğu görülmüştür ve CAP3 programıyla oluşturulan kontiglerin BLAST analiz sonuçları değerlendirilmiştir.

BLAST analizlerinden sonra BLAST sayfasında verilmiş giriş numaraları ile dizinin benzerlik gösterdiği DNA yada proteinin referans bağlantısı kullanılarak ya da protein yada DNA adıyla tarama yapılarak ilgili yayın bulunmuştur. Bu yayınlar incelenerek her bir cDNA için genel fonksiyon sınıflaması yapılmıştır. Kontig BLAST sonuçları için bu sınıflamalar Çizelge 3.1'de; singlet BLAST sonuçları için sınıflamalar Çizelge 3.2'de verilmiştir.

Kontig Adı	cDNA Boyutu (bp)	DNA BLAST	Protein BLAST	Genel Fonksiyon
Kontig 1	249	H.vulgare (pKG2316 klonu) lipid transfer protein öncüsü mRNA <u>Z37114.1</u> (E-value 1e-107) H. vulgare BLT4 mRNA <u>X56547.1</u> (E-value 5e-72)	Oryza sativa Pirinç Non-spesifik Lipid Transfer Protein-1'de Lipid Bağlayıcı Kompleks (E-value 5e-05)	Metabolizma ve Savunma
Kontig 6	612	S.cereale cv. Petkus "Halo" encoding cpn60 <u>Z68903.1</u> (E-value 0.0) Zea mays RuBisCO subunit bağlayıcı protein beta subunit mRNA <u>AY675582.1</u> (E-value 0.0)		
Kontig 7	711	H.vulgare Ribuloz-	2-Karboksiarabinatol-	Enerji ve

Çizelge 3.1 Cap3 Kontig BLAST Sonuçları Fonksiyon Sınıflaması

		1,5-bisfosfat karboksilaz/oksigen az büyük altünite (rbcL) geni (E-value 2e-120)	1,5-bifosfat ile kompleks oluşturmuş aktive pirinç RuBisCO enziminin kristal yapısı (E-value 3e-04)	Metabolizma
Kontig 8	1008	H.vulgare mRNA UDP-glukoz pirofosforilaz mRNA (E-value 0.0)	Arabidopsis thaliana UTP'ye bağlı UDP- glukoz pirofosforilazın kristal yapısı (E-value 8e-52)	Enerji ve Metabolizma
Kontig 10	331	Hordeum vulgare Srp54-2 mRNA ve sinyal tanıma partikülü 54 kDa altünite (Srp 54-3) mRNA (E-value 1e-143)		Sinyal İletimi
Kontig 13	483	Hordeum vulgare subsp. vulgare papain-benzeri sistein proteinaz (pap-15 geni) mRNA (E-value 0.0)	Ricinus communis'in programlı hücre ölümünde fonksiyon alan Kdel-kuyruklu Sistein Endopeptidazın Kristal yapısı (E-value 5e-14)	Enerji ve Metabolizma, Savunma
Kontig 14	383	Hordeum vulgare aktin mRNA (E-value 7e-177)	Aktin:DNAz I kompleksinin atomik yapısı (E-value 2e-15)	Savunma
Kontig 16	345	Hordeum vulgare kitinaz II (patogenez-ilişkili protein 3) (cht2 geni) mRNA (E-value 1e-73)	Brassica Juncea kitinaz katalitik modülünün kristal yapısı (Bjchi3) (E-value 0.71)	Savunma

Kontig 1'de benzerliği bulunan lipid transfer proteinleri (LTP), yağ asitlerine bağlanarak bir alıcı membran ve bir verici membran arasında fosfolipidlerin transferini yapan proteinlerdir [107]. LTP'lerin ekspresyonu patojen istilası gibi biyotik veya soğuk, kuraklık, NaCl uygulaması gibi abiyotik streslerle induklenir [108], [109], [110], [111]. LTP'nin ekspresyonunun ağır metal uygulamasıyla da indüklendiği bulunmuştur [112].

Yine Kontig 1'de benzerliği bulunan BLT4, bitki LTP ailesine ait bir proteindir [113]. BLT4.2, BLT4.6 ve BLT4.9 proteinleri birbiriyleriyle yüksek sekans benzerliği (%88) ve homolojisine (%94) sahiptir ve diğer lipid transfer proteinleriyle homologturlar [114]. Düşük sıcaklığa maruz arpa bitkilerinden izole edilen BLT4 geninin kromozom 3'de yer aldığı gösterilmiştir. İzole edilen bu BLT4 klonu buğday ve yulaf bitkisinin genleriyle homologtur. Üç gün düşük sıcaklığa maruz kalmış çiftlenmiş haploid hat-arpa bitkilerinin sürgün meristematik dokularında BLT4 mRNA'sının arttığı gösterilmiştir. BLT4 mRNA'sında artış şeklinde görülen bu düşük sıcaklık stresi cevabının kuraklık stresiyle de indüklendiği görülmüştür. Bu gen soğuk ve kuraklık gibi dehidratif streslerde cevap oluşturan düşük moleküler ağırlıklı bir proteini kodlar [115].

Düzgün olarak okunup biyoinformatik analizlerde kullanılabilen 650 cDNA'nın 117 tanesi (%18) aynı kontig içerisinde (Kontig 7) yer almaktadır, bu da RuBisCO (Ribulozkarboksilaz/oksigenaz) enzimine önemli derecede 1,5-bifosfat benzerlik göstermektedir. Ribuloz-1,5-bisfosfat karboksilaz/oksigenaz enzimi fotosentezde karbon fiksasyonunda görev alan bir enzimdir ve "RuBisCO" olarak da bilinir RuBisCO mRNA'sı bitki hücrelerinde çok fazla bulunur. Bu nedenle metodun spesifitesini düşürdüğü ve RuBisCO elde edilmemiş çıkarım deneylerinin daha etkin olduğu öne sürülmektedir [116]. Yine de RuBisCO'nun fonksiyonuna bakıldığında fotosentezin Calvin döngüsünde karbondioksitin Ribuloz-1,5-bifosfata bağlanmasını katalize etmektedir. Çinko eksikliği durumunda bitki hücreleri tüm kapasitesini en hayati metabolik reaksiyonlarını sürdürmek yönünde kullanabilir. Ayrıca RiBusCO ekspresyonundaki artış başka stres çalışmalarında da rapor edilmiştir. Çinkoeksikliğinde yetiştirilen pirinç bitkisinin yapraklarında karbonik anhidraz enziminin aktivitesinin çalışıldığı bir çalışmada çinko-eksikliğinde RuBisCO enzimin arttığı görülmüştür [117].

Kontig 8'de benzerliği bulunan UDP-glukoz pirofosforilaz (UGPaz) enzimi, UDPglukozun sentezi ve pirofosforillenmesinden sorumludur. Sukroz oluşumu ve hücre duvar komponentleri için anahtar öncüdür. Çözünebilir sitosolik protein halinde veya membran-bağlı UGPaz şeklinde de bulunabilir. Metabolik ve gelişimsel şartlara bağlı olarak, UGPaz'lar *in vivo* olarak sukrozun sentez veya degredasyonunda yer alabilirler. UGPaz'lar Mg⁺²-UTP + glukoz-1-P \iff Ppi + UDP-glukoz reaksiyonunu katalizlerler [118]. UGPaz'ın enzim aktivitesi soya fasülyesi ve şeker pancarı yapraklarında uzun dönem inorganik fosfat (Pi) eksikliği şartlarında artar [119], [120]. İnorganik fosfat fotofosforilasyon substratı olarak ve fotosentez süresince kloroplasttan karbon çıkarımının anahtar bir bileşeni olarak bitki metabolizmasında merkezi bir rol oynar [121], [122], [123], [124]. Huang ve arkadaşları (2000) [125], arpa köklerinde çinko eksikliğinin P taşıyıcı genlerinin ekspresyonunda bir artışa neden olduğunu göstermişlerdir.

Kontig 10'da benzerliği görülen "SRP54" (signal recognition particule 54= sinyal tanıma partikülü 54), SRP kompleksinin bir domainidir. Prokaryotlarda sitozolik ve ökaryotlarda kloroplast ve sitozolik tipleri bulunmuştur. SRP prokaryotlarda plazma membranına ökaryotlarda ise tipine göre endoplazmik retikulum membranından veya kloroplastın tilakoid membranından içeri ve dışarı protein taşınmasından sorumludur [126], [127]. Bitkilerde SRP54 kodlayan cDNA ilk kez ısı şoku uygulanmış arpa alevron dokusundan izole edilmiştir [128].

Kontig 13'ün benzerliği gösterilen papain-benzeri sistein proteazlar, sistein proteazların C1A familyasına aittir. Sistein proteazlar, katalitik sisteinde peptid bağlarını hidroliz ederler. Senesens, programlı hücre ölümü, tohumda protein depolaması, patojen ataklarına savunma gibi fizyolojik süreçlere katılan bir enzimdir [129], [130], [131].

Kontig 14'ün BLAST analizlerinde benzerliği bulunan, aktin proteini tüm hücrelerde yaygın olarak ekspres edilen bir proteindir. Aktin proteinleri ATPaz süperfamilyasının üyeleridir [132]. Hücrede kromatin modellenmesi, RNA işlenmesi ve taşınımı, transkripsiyon, hücre bölünmesi gibi bir çok olayda görev alırlar [133].

Kontig 16'nın BLAST analizlerinde benzerliği gösterilen kitinaz I ve II proteinleri bir patojen-ilişkili protein ailesine ait (PR-4) proteinlerdir [134]. Patojen ataklarına ek

olarak kitinazların çeşitli biyotik ve abiyotik streslerle indüklendiği gösterilmiştir [135]. Bitkilerde kitinaz indüksiyonu genellikle non-spesifiktir ve biyotik ve abiyotik streslerle artarlar. Çeşitli patojen ve streslere karşı bitki cevabının yalnızca bir bileşenidir. Kitinazlar küçük bir gen ailesi tarafından kodlanırlar [136], [137], [138]. Bazı bitkilerde birkaç izoformları da indüklenebilir. Birçok kitinaz, diğer PR-proteinler gibi, düşük moleküler ağırlıklıdır, proteazlara dayanıklıdır ve hücre dışına salınırlar. Bitki kitinazları genellikle 25-36 kDa arasında moleküler ağırlığa sahiptirler ve asidik veya bazik karakterli olabilirler [136], [138].

Singlet Adı	cDNA Boyutu (bp)	DNA BLAST	Protein BLAST	Genel Fonksiyon
Singlet 6	326	PREDICTED: Brachypodium distachyon ubiquitin-bağlayıcı enzim E2 32- benzeri (LOC100831984), mRNA XM_003558027.1 (E-value 6e-82)		Sinyal iletimi, Apoptosis
Singlet 8	182	Triticum aestivum putatif oksijen- evolving kompleks öncüsü (TAOECO1) mRNA, EF469610.1 (E-value 2e-79)	Chain A, Higher Plants Fotosistem II Psbq Polipeptidi Kristal Yapısı 1NZE_A (E-value 7e-25)	Enerji ve Metabolizma
Singlet 9	197	Hordeum vulgare Klorofil a/b-bağlayıcı protein kısmi mRNA AJ006296.1 (E-value 8e-94)		Enerji ve Metabolizma
Singlet 13	368	Zea mays Ribozom dönüşüm faktörü	Chain A, Thermus Thermophilus	Transkripsiyon ve Translasyon

Çizelge 3.2 Cap3 Singlet BLAST Sonuçları Fonksiyon Sınıflaması

		mRNA (LOC100284109), NM_001157006.1 (E- value 4e-119)	Ribozom dönüşüm faktörü 1EH1_A (E-value 3e-36)	
Singlet 14	362	Deschampsia antarctica clone Dacor 1.7 alanin aminotransferaz mRNA, 3' UTR AY090542.1 (E-value 2e-127)	Chain A, Hordeum vulgare Alanin Aminotransferaz kristal yapısı 3TCM_A (E-value 2e-40)	Metabolizma, Stres
Singlet 17	133	H.vulgare Patogenez-ilişkili protein geni (E-value 5e-59)	Chain A, Crystal Structure Of Sweet-Tasting Protein Thaumatin II 3AOK_A (E-value 0.43)	Savunma
Singlet 20	368	Triticum aestivum MIKC-tip MADS-box transkripsiyon faktör WM21B mRNA (WM21B gene) AM502888.1 (E-value 2e-121)		Transkripsiyon ve Translasyon
Singlet 23	544	Triticum aestivum fosforibulokinaz RNA X51608.1 (E-value 0.0)		Metabolizma
Singlet 24	248	Hordeum vulgare subsp. spontaneum hypothetical (varsayılan) protein mRNA (E-value 0.0)		Diğer

Singlet 28	371	PREDICTED: Brachypodium distachyon ribozom- dönüşüm faktör, kloroplast-benzeri (LOC100834081), mRNA XM_003562841.1 (E-value 1e-129)	Bacillus Anthracis Ribozom dönüşüm faktörü kristal yapısı 4GFQ_A (E-value 3e-29)	Transkripsiyon ve Translasyon
Singlet 30	730	H.vulgare Glikolitik gliseraldehit-3- fosfat dehidrogenaz için GAPDH mRNA'sı X60343.1 (E-value 0.0)	Oryza Sativa Gliseraldehit- 3- Fosfat Dehidrogenaz yapısal ve fonksiyonel analizi 3E6A_O (E-value 3e-130)	Enerji ve Metabolizma
Singlet 31	218	Triticum aestivum putative oksijen- yükseltgeyici kompleks öncü (TAOEC01) mRNA'sı, EF469610.1 (E-value 1e-42)		Enerji ve Metabolizma

Cap3 programıyla oluşturulan singletlerden Singlet 6'nın BLAST analizleri sonucunda "Ubikutin-bağlayıcı enzim E2" ye benzerlik gösterdiği bulunmuştur. Ubikutin seçici protein degredasyonunda görev alan küçük ve son derece korunmuş bir proteindir [139], [140]. Ubikutin konjugatlarının formasyonu ATP'ye ihtiyaç duyar ve 3 adımda gerçekleşir [141]. İlk olarak ubikutin, spesifik bir ubikutin-aktive edici enzim olan E1 tarafından aktive edilir. Ubikutin E2 adı verilen bir ubikutin-konjugasyon enzimi ile spesifik bir sistein rezidüsüne transfer edilir. Son adımda, E2 proteinleri, ubikutini alıcı proteinlere transfer eder. Çoğu protein substratını E2-ubikutinden hedef proteine yaklaştırmak için ubikutinin transferini katalizlemede E3 adı verilen bir ubikutin-protein ligaz gereklidir. Uygun yapıdaki proteinler ilk önce E3'ün spesifik protein bağlayıcı bölgesine bağlanırlar ve daha sonra ubikutin E2'den substrata transfer edilirler [134], [142]. Alternatif olarak, bazı E2'ler *in vitro* olarak ubikutini direkt olarak E3'den bağımsız bir süreçle alıcı proteine transfer edebilirler. Bu nedenle, E2'ler ubikutin konjugasyonunda merkezi bir rol alırlar. Ubikutin-aracılı proteolizde, ubikutinin çoklu molekülleri hedef proteine bağlanır ve bu konjugatlar hücre içinde spesifik bir protein tarafından tanınarak yıkıma uğratılırlar [139], [141]. Tüm bu ubikutinasyon basamakları, ökaryotlarda son derece korunmuştur. Ubikutinin diğer hücresel proteinlere kovalent olarak bağlanması seçici protein degredasyonu, DNA tamiri, hücre döngüsünün kontrolü ve organel biyosentezini içeren önemli fizyolojik süreçleri kapsamaktadır [142]. Bitkilerde bir UBC subfamilyasının mayada olduğu gibi stres sonucunda üretilen normal olmayan proteinlerin proteolitik degredasyonunu kapsadığı gösterilmiştir. Sıcaklık stresi ve kadmiyum ağır metaline maruz domates bitkilerinde UBC proteinlerinde artış görülmüştür [143].

Singlet BLAST sonuçlarından Singlet 14 "alanın aminotransferaz" enzimine benzerlik göstermektedir. Aminotransferazlar tüm organizmalarda bulunan fosfat-bağımlı enzimlerdir. Farklı aminoasit çiftleri arasındaki transaminasyon reaksiyonlarını katalizlerler. Bunlardan alanin aminotransferazlar hayvanlarda, mayada, bakteride ve bitkilerde bulunur. Alanin aminotransferazlar, alanin ve 2-okzoglutaratın piruvat ve glutamata tersinir olarak çevrimini sağlar. Bazı AlaAT homologlarının oksijen eksikliğine cevapta ve bakteri ve virüs enfeksiyonları yada çeşitli patojen atakları tarafından tetiklenen bitki savunma cevabına katıldıkları bilinmektedir [144], [145]. Peroksisomal mitokondriyal alanin aminotransferaz homologlarının fotorespirasyon ve (fotosolunum) metabolizmasının düzenlenmesinde işlevleri vardır [146], [147], [148], [149]. Olumsuz çevresel koşullara bitki yanıtının ilginç bir yönü alanın birikimidir. Bitkilerde optimal koşullar altında hücre içi alanın seviyesi düşüktür fakat alanın kökte aşırı su [150], oksijen yetmezliği ve azlığı [151], [152], [153], azot eksikliği [154] ve sürgünlerde su eksikliği [155], düşük sıcaklık [156] ve diğer koşullarda en fazla biriken amino asittir. Fakat stres koşullarında artan alanın üretiminin beraberindeki AlaAT indüksiyonunun fizyolojik önemi halen tartışma konusudur. Son bulgular alanın birikiminin primer fonksiyonunun piruvat seviyesini düzenleyerek solunum oranını kontrol etmek olduğunu göstermiştir [153]. Aynı zamanda yüksek konsantrasyonda

dahi alanın birikiminin bitki dokuları için zararlı etkilerinin olmaması önemlidir. Bu nedenle, gelişmiş bitkilerde alanın metabolizmasını kontrol eden AlaAT homologlarının anlaşılması birinci derece önem taşımaktadır.

BLAST analizleri sonucunda Singlet 8'in "oksijen yükseltgeyici kompleks"e ve Singlet 30'un "GAPDH"a benzerlik gösterdiği görüldü. Kuraklığa dayanıklı *Populus euphratica*'da kuraklık stresinde [157] RuBisCO aktivaz, oksijen yükseltgeyici kompleks ve GAPDH gibi glikolizise katılan bazı fotosentez- ve karbon- metabolizması-ilişkili proteinlerin ekspres edildiği görülmüştür. GAPDH enerji metabolizmasında rol oynayan glikolitik bir enzimdir. GAPDH, değişen hücresel koşullarda ekspresyonu her zaman sabit kalan "housekeeping" bir protein olarak tanımlanan ve northern blot analizlerinde normalizasyonda kullanılan bir proteindi. Fakat son yıllarda, glikoliz dışında farklı hücresel fonksiyonlara katıldığı ortaya çıkmıştır [158], [159]. GAPDH nukleusda bulunur ve normal fonksiyonları nuklear RNA çıkarımı, DNA replikasyonu ve DNA tamiridir [160], [161]. Patolojik olarak ise hayvansal dokularda nörodejeneratif hastalıklar, prostat kanseri ve viral patojeneze katılırlar [159]. GAPDH'lar maya metakaspazların spesifik substratlarıdır.

Singlet 17 "patojen-ilişkili proteinler"e benzerlik göstermektedir. Bitkilerde bazı hücre duvarı bileşenleri (seluloz, lignin) gibi fiziksel ve taninler ve fenolikler gibi kimyasal savunma mekanizmaları bulunmasına rağmen, diğer indüklenebilir savunma mekanizmalarına da sahiptir. Böylece bitkiler biyolojik streslere (fungi, bakteri, virus, böcek yada herbivorlar) [162], [163] maruz kaldığında çeşitli bileşenler sentezlerler. İnduklenebilir savunmalar; reaktif oksijen türleri, fitoaleksinler, hücre duvar komponentleri ve patogenez-ilişkili proteinler (PR, pathogenesis-related) olarak adlandırılan bir grubu içerirler. İndüklenen proteinlerin yüksek çözünürlüklü jeller, kolon kromatografisi ve immunulojik reaksiyonları ve son olarak PR-proteinlerin sekans verileri ve farklı birkaç bitkideki genleri PR-proteinlerini 14 farklı gruba ayırır [164]. PR-proteinlerinin spesifik çeşitleri host-spesifiktir ve çeşitli uyaranlara cevap oluştururlar.

Singlet BLAST sonuçlarından Singlet 20 "MIKC-tipi MADS-box"lara benzerlik göstermiştir. MADS-box ailesine ait genler tarafından kodlanan transkripsiyon faktörleri ökaryotlarda gelişme ve sinyal iletiminin kontrolünde anahtar rol oynarlar.

MIKC-tip, çiçek morfogenezi, ovul gelişimi, vejetatif büyüme gibi gelişim sürecinin önemli kısımlarından sorumludur [165], [166]. MADS-box genlerinin ekspresyonu ve aktivitesi, çeşitli iç faktörlerin yanısıra sıcaklık ve gün uzunluğu gibi çevresel faktörlerle de etkilenir. MADS-box genlerinin domateste düşük sıcaklık stresiyle [167] ve diğer bitkilerde de sitokinin, giberellin [168], etilen [169] ve oksin [170] gibi hormon uygulamalarıyla indüklendiği gösterilmiştir. Bu genler, pirinçte soğuk, tuz ve/veya kuraklığa cevapta farklı ekspresyon göstermiştir. Ayrıca çiçek gelişimi ile ilgili çok sayıdaki genin buğdayda abiyotik stresle ilişkili olduğunu gösterilmiştir [171].

Singlet 23'ün BLAST analiz sonucu "fosforibulokinaz" (PRK) enzimine benzerlik göstermektedir. Bu enzim RuBisCO için ribuloz-1,5-bisfosfat substratını oluşturur. Fotosentetik GAPDH ve PRK koordineli bir ekspresyon profili gösterirler [172]. Singlet 30'nun BLAST analizlerinde GAPDH'a benzerliği gösterilmiştir.

Bu çalışma arpa bitkisinde çinko eksikliğinde anlatım yapan genlerin belirlenmesinin ötesinde uzun süreli ve şiddetli çinko eksikliğinin gen anlatımı düzeyinde etkisini göstermesi bakımından önemlidir.

3.3 Öneriler

Çinko, bitkilerin normal gelişimi ve büyümesi için gerekli, temel bir mikroelementtir. Hücrede eksikliği kadar fazlalığı da zararlı etkiler oluşturur. Buna bağlı olarak bitkide çinkonun alımı, taşınması ve depolanması kontrollü bir şekilde düzenlenir. Çinko etkinliği çinkonun eksik olduğu koşullarda gelişebilme ve verimli olma yeteneği olarak tanımlanır. Türler ve aynı türün varyeteleri arasında çinko etkinliği bakımından farklılıklar vardır. Bu çalışmada Türkiye'nin çinko-eksik topraklarına iyi uyum sağlamış bir bitki olan *Hordeum spontaneum* C. Koch'da çinko eksik koşullarda hangi moleküler mekanizmaların harekete geçtiğinin belirlenmesi amaçlanmıştır. Özellikle uzun süreli ve şiddetli çinko eksikliği durumunda bu mekanizmalarda görev alan aday genlerin anlatımının artacağı hipotezinden yola çıkarak gen anlatım farklılığına dayalı bir yöntem uygulanmıştır.

Araştırma grubumuzda daha önce yapılan bir çalışmada *Hordeum spontaneum* C. Koch'un yaprak, kök ve gövde dokularında çinko eksikliği ile anlatımları artan aday

genlerin belirlenmesi için baskılayıcı çıkarım hibridizasyon yöntemi kullanılarak yaprak, kök ve gövde cDNA kütüphaneleri kurulmuştur. Bunlardan ilk ikisinden seçilen klonların dizin ve biyoinformatik analizleri yapılmıştır [98]. Bu çalışmada ise gövde kütüphanesinden seçilen 672 klon dizin analizine gönderilmiştir. Dizin analizi yapılan cDNA'ların sistematik bir biçimde değerlendirilebilmesi için kontig ve singletlerin oluşturulması hedeflenmiştir. Bu hedef doğrultusunda dizin analizinden gelen ve düzgün okuması gerçekleştirilmiş 657 klonun vektör ve adaptör dizileri Cygwin-Cross Match programıyla işaretlenip uzaklaştırılmıştır. Bu dizilerin de temizlenmesi safhasında insert içermeyen yedi klon daha elimine edildi ve biyoinformatik analizler için 650 cDNA değerlendirilmiştir. Bu 650 cDNA içinde örtüşen dizinler belirlenerek kontig ve singletlerin oluşturulması için, aynı fonksiyona sahip iki ayrı program, CAP3 ve Phrap kullanıldı ve programların sonuçları karşılaştırılmıştır. CAP3 programıyla 17 adet kontig ve 31 adet singlet; Phrap programıyla 19 adet kontig ve 25 adet singlet dizini elde edilerek bu dizinlerin nukleotid ve protein benzerlik analizleri gerçekleştirilmiştir. İki programla oluşturulan kontiglerin cDNA içeriklerinin karşılaştırılması ve analizi sonucu CAP3 programının daha anlamlı sonuçlar verdiği tespit edilmiştir. Bu nedenle daha ileri analizlerde CAP3 ile elde edilen kontig ve singletler kullanılmıştır.

Her kontigin aynı genin transkriptinden oluştuğu görülmüştür. Kontigin içerisindeki kısa uzun fragmanların SSH'de kullandığımız *Rsal* kesiminden kaynaklandığı düşünülmektedir. Tüm klonların dizin analizlerinin yapılmadığı da göz önünde bulundurularak içerisinde çok fazla cDNA bulunduran kontigleri oluşturan cDNA'lara karşılık gelen transkriptlerin en fazla ekspres edildiği sonucuna varılmıştır.

Kontig ve singlet dizinlerinin nükleotid ve protein düzeyinde BLAST analizleri yapılmıştır. Her bir dizin için nükleotid ve protein düzeyinde aynı sonucu veren benzerlikler değerlendirilmiştir. Her bir genin fonksiyonu ile ilgili ayrıntılı literatür taraması yapılmıştır. Çeşitli metabolik yolaklarda stres ve savunma tepkilerinde gen anlatımının işleyiş ve kontrol mekanizmalarında apoptozda görev yaptığı belirlenen genler tespit edilmiştir (Çizelge 3.3). Daha sonraki çalışmalarımız için çinko eksikliği durumunda geliştiği bilinen semptomlarla ilişkilendirilebilecek genlerin çalışılması hedeflenmektedir.

Genel fonksiyon	Kontig	Singlet
Metabolizma	4	5
Savunma	2	1
Stres	-	1
Transkripsiyon/Translasyon	-	2
Sinyal İletimi	1	1
Apoptosis	-	1

Çizelge 3.3 BLAST Analizi Sonuçlarının Fonksiyon Gruplaması

Bunun için çalışmada belirlenmiş olan genlerden özellikle stres ve savunma ile ilgili olan genlerin gerçekten çinko eksikliği ile artıp artmadığı konusunda ileri ekspresyon çalışmaları yapılmalıdır. Öncelikle bu genlerin tam uzunluktaki cDNA'ları elde edilmelidir ve çinko stresi uygulanmış bitkilerden çeşitli zaman aralıklarında örnek alınarak Real Time PCR analizleri yada Northern Blot analizleri ile doğrulama yapılmalıdır. Yine de abiyotik ve biyotik stres yolakları çeşitli noktalarda kesiştiğinden ve spesifik bir stres uygulamasıyla anlatımı uyarılan genler başka streslerle de indüklenebilmektedir. Ayrıca bu tür çalışmalarda, sekonder fenotipler ortaya çıkacağından ve bu fenotiplerle ilgili genlerin ekspresyonu görülebileceğinden hangi genin direkt olarak çinko-eksikliği stresi ile ilişkili olduğunu belirlemek önemlidir. Bu da genlerin direkt fonksiyon kaybına yönelik deneylerin tasarlanması ile mümkün olacaktır.

KAYNAKLAR

- [1] ZOHARY, D., and M. HOPF. 1993. Domestication of plants in the Old World. The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Clarendon Press, Oxford, England.
- [2] DIAMOND, J. 1998. Guns, germs and steel. Vintage, London.
- [3] NESBITT, M., and D. SAMUEL. 1996. From staple crop to extinction? The archaelogy and history of the hulled wheats. 41–100 in S. PADULOSI, K. HAMMER, and J. HELLER, eds. Hulled wheats (Proceedings of the First International Workshop on Hulled Wheats). International Plant Genetics Resources Institute, Rome, Italy.
- [4] HARLAN, J. R., and D. ZOHARY. 1966. "Distribution of wild wheats and barley". Science 153:1074–1080.
- [5] NEVO, E. 1992. Origin, evolution, population genetics and resources for breeding of wild barley, *Hordeum spontaneum*, in the Fertile Crescent. 19–43 *in* P. R. SHEWRY, ed. Barley: genetics, biochemistry, molecular biology and biotechnology.C.A.B. International, The Alden Press, Oxford.
- [6] Toprak Mahsülleri Ofisi,

http://www.tmo.gov.tr/Upload/Document/raporlar/HububatSektorRaporu.pdf , 01.05.2012

- [7] Pourkheirandish, M. ve Komatsuda, T., (2007). "The Importance of Barley Genetics and Domestication in a Global Perspective", Annals of Botany 100: 999-1008.
- [8] Forster, P. B., Ellis, P. R., Thomas, W. T. B., Newton, A. C., Tuberosa, R., This, D., El-Enein, R. A., Bahri, M. H. ve Salem, B. M., (2000). "The development and application of molecular markers for abiotic stres tolerance in barley", Journal of Experimental Botany, 51: 342.
- [9] Broadley MR, White PJ, Hammond JP, Zelko I ve Lux A. 2007. Zinc in plants. *New Phytologist* 173: 677–702.
- [10] Welch, R.M, Webb M.J. ve Loneragan, J.F. 1982. Zinc in membrane function and its role in phosphorus toxicity [Crops]. *In* Plant Nutrition 1982: Proceedings of
the Ninth International Plant Nutrition Colloquium, Warwick University, England, August 22-27, 1982. Ed. A Scaife. 710-715.

- [11] Marschner H., (1986). Mineral Nutrition of Higher Plants, Academic Press, London, 300–312.
- [12] Ackland,Leigh ve Michalczyk, Agnes (2006) Zinc deficiency and its inherited disorders A review,*Genes & nutrition*, 41-50, New Century Health Publishers, LLC, New Orleans, LA
- [13] Vallee, B. ve Auld, D. S., (1989). " Active- site zinc ligands and activated H₂O of zinc enzymes", Proc. Natl. Acad. Sci. USA, 87: 220-224.
- [14] Vallee BL, Auld DS. 1990. Zinc coordination, function, and structure of zinc enzymes and other proteins. *Biochemistry* 29:5647±5659.
- [15] Dreosti, I. E., (2001). "Zinc and the gene Review", Mutation Research, 475; 161–167.
- [16] Doncheva S, Vassileva V, Ignatov G, Pandev S, Dris R ve Niskanen R (2001). "Influence of nitrogen deficiency on photosynthesis and chloroplast ultrastructure in pepper plants", Agr Food Sci Finland 10: 59-64 IF- 0.925
- [17] Çakmak İ., (2000). "Possible roles of zinc in protecting plant cells from damage by reactive oxygen species", Transley review. New Phytol., 146, 185-205.
- [18] Ko LJ ve Engel JD (1993). "DNA-binding specificities of the GATA transcription factor family". Mol Cell Biol. Jul;13(7):4011–4022
- [19] Welch, R. M. ve Graham, R. D., (2004). "Breeding for micronutrients is staple food crops from a human nutrition perspective", Journal of Experimental Botany, 55: 353-364.
- [20] HOTZ, C., ve BROWN, K.H., (2004). Assessment of rhe risk of zinc deficiency in populations and options for its control. Food Nutrition Bull. 25, 94-204.
- [21] Black RE, 2003. "Zinc deficiency, infectious disease and mortality in the developing world". J Nutr 133: 1485S–1489S.
- [22] Alben, A.O. and Bogs, H.M. 1936. "Zinc content of soils in relation to pecan rosette". Soil Science 41: 329-332.
- [23] Cakmak I, Marschner H ve Bangerth F., (1989). "Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (*Phaseolus vulgaris* L.)". Journal of Experimental Botany 40:405±412.
- [24] Kitagishi K, Obata H ve Kondo T., (1987). "Effect of zinc deficiency on 80S ribosome content of meristematic tissues of rice plant". Soil Science and Plant Nutrition 33: 423±430.
- [25] Alloway, B.J., (2004). Zinc in soils and crop, Springer Science Business Media B.V. Nutrition, Book.
- [26] Kabata Pendias, A. ve H. Pendias (1992) Trace Elements in Soils and Plants (2nd edition) CRC Press, Boca Raton.

- [27] Cattlet, K.M, Heil, D. M., Linday, W. L. ve Ebinger, M. H. (2002). "Soil chemical properties controlling Zn⁺² activity in 18 Colorado soils". Soc. Soil Am. J. 66, 1182–1189.
- [28] Kiekens, L. (1980) Absorptieverschijnselen van zware metalen in gronden. Doctoral Thesis, University of Gent.
- [29] Sillanpää M. (1990). *Micronutrients assessment at the country level : an international study. FAO Soils Bulletin* 63. Rome, Italy :Food and Agriculture Organization of the United Nations.
- [30] Eyüpoğlu F., Kurucu N. ve Sanısağ U. (1994). Status of plant available micronutrients in Turkish soils. In: Soil and Fertilizer Research Institue Annual Report, No. R- 118, Ankara, Turkey (in Turkish), 25-32.
- [31] Brown, P.H., I. Cakmak ve Q. Zhang (1993) Form and function of zinc in plants. Chap 7 in Robson, A.D. (ed) *Zinc in Soils and Plants*, Kluwer Academic Publishers, Dordrecht, 90 - 106.
- [32] Raulin, J., (1869). "Etudes clinique sur la vegetation". Annales des Scienceas Naturelle: Botanique 11, 93-299.
- [33] Marschner, H., (1995). "*Mineral Nutrition of Higher Plants*" (2nd edition) Academic Press, London. 889.
- [34] Lindsay, W.L., (1972). "Zinc in Soils and Plant Nutrition", *Advances in Agronomy*, 24, 147 186.
- [35] Sillanpää, M. (1982) *Micronutrients and the Nutrient Status of Soils: A Global Study*, FAO, Rome, 444.
- [36] OLSEN, S. R., (1972). "Micronutrient interaction. In Micronutrients in Agriculture". Eds. J J Mortvcdt, P M Giordano, W L Lindsay, 199-227. American Society of Agronomy, Madison.
- [37] VALLEE, B.L., (1983). Zinc in biology and biochemistry. In Zinc Enzymes. Ed. T G Spiro. 1-24. John Wiley and Sons, New York.
- [38] TOBIN, A.J., (1970). "Carbonic anhydrase from parsley leaves". J. Biochem. 245, 2656-2666.
- [39] OHKI, K., (1976). "Effect of zinc nutrition on photosynthesis and CA activity in cotton". Physiol. Plant. 38, 300-304.
- [40] SINGH, R. R., ve GANGWAR, M. S., (1974). Indian J. Agr. Sci. 43, 567.
- [41] SHROTRI, C. K, TEWARI, M. N., ve RATHORE, V.S. (1980). Effects of zinc nutrition on sucrose biosynthesis in maize Pliytochcmistry 19,139-140
- [42] JYUNG, W. U, EHMANN, A, SCHLENDCR, K. K., ve SCALA, J. (1975). "Zinc nutrition and starch metabolism in *Phaseolus vulgaris* L". Plant Physiol. 55, 414-420.
- [43] PRASK, J. A. ve PLOCKE, D. J., (1971). "A role for zinc in the structural integrity of cytoplasmic ribosomes of *Euglencgracilis*". Plant Physiol. 48, 150-155.

- [44] KITAGISHI. K. ve OBATA, H. (1986). "Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis". Soil Sci. Plant Nutr. 32, 397-405.
- [45] FALCHUK, K.11., HARDY, C., ULPINO, L. ve VALLEE, B. L. (1978). "RNA metabolism, manganese, and RNA polymerases zinc-sufficient and zincdeficient *Euglena gracilis*". Proc. Nat. Acad. Sci. USA 75, 4175-4 179.
- [46] JENDRISAK, J. ve BURGESS, R. R. (1975). "A new method for the large scale purification of wheat germ DNA-dependent RNA polymerase II". Biochemistry 14, 4639.
- [47] DWIVEDI, R. S. ve TAKKAR, P. N., (1974). "Ribonuclease activity as index of hidden hunger of zinc in crops". Plant and Soil 40, 170-181.
- [48] BETTGER, W. J. ANIL O'DELL, B. L., (1981). "A critical physiological role of Zn in the structure and function of biomembran", Life Sci. 28, 1425-1438.
- [49] CHVAPIL, M., (1973). "New aspects in the biological role of zinc: A stabilizer of macromolecules a membranes". Life Sci. 13, 1041 1049.
- [50] ÇAKMAK, I ve MARSCHNER, H. (1988a). "Increase in membrane permeability and exudation in roots of Zn Deficient Plants". J. Plant Physiol. 132,356-361.
- [51] SKOOG, F., (1940). "Relationship between zinc and auxin in the growth of higher plants". Am. J. Bot. 27. 939 950.
- [52] TSUI, C., (1948). "The role of zinc in auxin synthesis in tomato plant". Am. J. Bot. 35, 172-179.
- [53] KLEIN, R. M., CAPTUTO, E. M. ve WITTERHOLE, B. A. (1962). "The role of zinc in the growth of plant tissue culture". Am. J. Bot. 49, 323-327.
- [54] SALAMI, A. U. ve KENEFICK, D. C., (1970). "Stimulation of growth in zinc deficient com seedlings by the addition of tryptophan". Crop Sci. 10, 291-294.
- [55] SHKOLNIK, M. Y, DAVYDAVA, V. N. ve MOCHENIAT, K. I. (1975). "Effect of zinc on the content of gibberellin-like substances in Phaseolus leaves". Fiziol. Rast. 22, 1021-1024.
- [56] SUGE, H., TAKAHASHI, H., ARITA, S. ve TAKAKI, H., (1986). "Gibberellin relationships in zinc- deficient plants". Plant Cell Physiol. 27, 1010-1012.
- [57] MUIR, R. M. ve LANTICAN, B. P. (1968). "In Physiology and Biochemistry of Plant Growth Substances". Eds. G Settefield and F Wightman, 259-272. Range Press, Ottawa.
- [58] REED, H. S., (1941). "The relation of zinc to seed production". J. Agr. Res. 4, 635-644.
- [59] HU, H. ve SPARKS, D. (1990). "Zinc deficiency inhibits reproductive development in 'Stuart' pecan". Hortscience 25, 1392-1396.
- [60] RICEMEAN, D.C. ve JONES, G.B. (1959). "Distribution of zinc and copper in subterranean clover (*Trifoliun subterraneum L.*) grown in culture solution supplied with graduated amount of zinc". Aust. J. Agr. Res. 973-122.

- [61] SHARMA, P.N, CHATTERJEE, C., SHARMA, C. P, NAUTIYA, N. ve AGARWALA, S.C., (1979). "Effect of zinc deficiency on the development and physiology of wheat pollen". J. India Bot. Soc 58,330-334.
- [62] KOCHIAN, L. V., (1993). "Zinc absorption from hydroponic solution by plant roots"; Derleyen: Robson A.D., Zinc in Soils and Plants Chap 4, Kluwer Academic Publishers, Dordrecht 45-58.
- [63] NAMBIAR, E.K.S., (1976). "The uptake of zinc 65 by oats in relation to soil water content and root growth". Australian Journal of Soil Research, 14, 67-74.
- [64] NEUE, H.U., C. QUİJANO, D. SENADHİRA ve T. SETTER, (1998). "Strategies for dealing with micronutrient disorders and salinity in lowland rice systems". *Field Crops Research*, 56, 139-155.
- [65] CHAUDRY, F.M. ve LONERAGAN, J.F., (1972). "Zinc absorption by wheat seedlings. 1. inhibition by macronutrient ions in short term experiments and its relevance to long term zinc nutrition". Soil Society of America Proceedings. 36, 323 - 327.
- [66] Graham, R. D. ve Rengel, Z., (1993). "Genotypic variation in Zn uptake and utilization by plants"; Derleyen: Robson A.D., Zinc in Soils and Plants, Kluwer, Dordrecht, The Netherlands, 107–114.
- [67] Graham, R.D., J.S. Ascher, ve J.S. Hynes, (1992). "Selecting zinc efficient cereal genotypes for soils low in zinc status". *Plant and Soil*, 146, 241 250.
- [68] Cakmak, I. *et al.*, (1998). "Morphological and physiological differences in the response of cereals to zinc deficiency". *Euphytica*, 100, 349–357.
- [69] Erenoglu, B., Cakmak, I., Romheld, V., Derici, R. ve Rengel, Z., (1999). "Uptake of zinc by rye, bread wheat and durum wheat cultivars differingin zinc efficiency". *Plant Soil*, 209, 245–252.
- [70] Hacisalihoglu, G., Hart, J.J. ve Kochian, L.V. (2001) "High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat." *Plant Physiol* 125: 456-463
- [71] KALAYCI, M., TORUN, B., EKER, S., AYDIN, M., OZTURK, L. ve CAKMAK, I., (1999). "Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse". Field Crops Research 63, 87-98.
- [72] ÇAKMAK, I., CAKMAK, O., EKER, S., OZDEMIR, A., WATANABE, N. ve BRAUN, H.J., (1999c). "Expression of high zinc efficiency of *Aegilops tauschii* and *Triticum monococcum* in synthetic hexaploid wheats". Plant and Soil, 215, 203-209.
- [73] RENGEL, Z. (1999). "Physiological mechanisms underlying differential nutrient efficiency of crop genotypes" 227-265; Derleyen: Z. Rengel Mineral Nutrition of Crops.
- [74] RENGEL, Z. (2001). "Genotypic differences in micronutrient use efficiency in crops". Communications in Soil and Plant Analysis, 32, 1163-1186.

- [75] ÇAKMAK, I., (2001). "Screening wheat genotypes for zinc efficiency". In: Perspectives on the Micronutrient Nutrition of Crops; Derleyenler: K. Singh, S. Mori, R.M. Welch, Scientific Publisher, Jodhpur.
- [76] TREEBY, M., MARSCHNER, H. ve RÖMHELD, V. (1988). "Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators". Plant and Soil, 114, 217-226.
- [77] Cakmak I, Ozturk L, Eker S, Torun B, Kalfa H ve Yilmaz A. (1997b). "Concentration of Zn and activity of Cu/Zn-SOD in leaves of rye and wheat cultivars differing in sensitivity to Zn deficiency". *Journal of Plant Physiology* 151: 91–95.
- [78] Zhao, H., ve Eide, D., (1996a). "The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation". Proc Natl Acad Sci USA 93: 2454–2458.
- [79] Zhao, H., ve Eide, D., (1996b). "The *ZRT2* gene encodes the low affinity zinc transporter in *Saccharomyces cerevisiae*". J Biol Chem 271: 23203–23210.
- [80] Guerinot, M.L., (2000). "The ZIP family of metal transporters", Biochimica et Biophysice Acta 1465, 190-198.
- [81] Zhao, H., E. Butler, J. Rodgers, T. Spizzo, S. Duesterhoeft ve D. Eide, (1998). "Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements". J. Biol. Chem. 273:28713– 28720.
- [82] Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L. ve Eide, D., (1998). "Identification of a family of zinc transporter genes from *Arabidopsis* that respond to zinc deficiency", Proc Natl Acad Sci U S A., 95(12): 7220–7224.
- [83] Eide, D., M. Broderius, J. Fett ve M.L. Guerinot, (1996). Proc. Natl. Acad. Sci. USA 93 5624^5628.
- [84] Gaither, L. A. ve D. J. Eide. (2001). "Eukaryotic zinc transporters and their regulation". Biometals 14:251–270.
- [85] N.S. Pence, P.B. Larsen, S.D. Ebbs, M.M. Lasat, D.L.D. Letham, D.F. Garvin, D. Eide ve L.V. Kochian, (2000) "Molecular physiology of zinc transport in the Zn hyper accumulator *Thlaspi caerulescens*". Proc. Natl. Acad. Sci. USA 97
- [86] Puig S, Lola Pen[~] arrubia: "Placing metal micronutrients in context: transport and distribution in plants". Curr Opin Plant Biol, this issue, doi:10.1016/j.pbi.2009.04.008.
- [87] Kobae, Y., Uemura, T., Sato, M.H., Ohnishi, M., Mimura, T., Nakagawa, T. ve Maeshima, M., (2004) "Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis". Plant Cell Physiol 45 1749–1758.
- [88] Arrivault, S., Senger, T. ve Kra^mer, U., (2006). "The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn

exclusion from the shoot under Fe deficiency and Zn oversupply". Plant J, 46:861-879.

- [89] Haydon, M.J. ve Cobbett, C.S., (2007). "A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis". Plant Physiol, 143: 1705-1719.
- [90] Talke, I.N., Hanikenne, M. ve Krämer, U., (2006) "Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator *Arabidopsis halleri*". Plant Physiol, 142:148-167.
- [91] Marschner, H., (1993). "Zinc Uptake from Soils"; Derleyen: Robson, A.D. Zinc in Soils and Plants, Chap 5, Kluwer Academic Publishers, Dordrecht 59-78.
- [92] Loneragan, J.F. ve M.J. Webb, (1993). "Interactions between Zinc and Other Nutrients Affecting the Growth of Plants"; Derleyen: Robson, A.D., Zinc in Soils and Plants, Chap 9, Kluwer Academic Publishers, Dordrecht 119 - 134.
- [93] KİRK, G.J.D. ve J.B. BAJİTA. (1995). "Root induced iron oxidation, pH changes and zinc solubilisation in the rhizosphere of lowland rice". *New Phytologist*, 131, 129 - 137.
- [94] Ramon, J. ve P. Villemin, (1989). "Effet d'un apport de zinc sur les rendements du mais (sols dalluvions argilo-calcares de l'Isere)", *Perspectives Agricoles* 135, Avril 1989, 67-77.
- [95] Primrose, S.B. ve Twyman, R.M., (2006). "Principles of Gene Manipulation and genomics", Blackwell Publishing, Oxford.
- [96] Adams, M.D., Kelley, J.M. ve Gocayne, J.D., (1991). "Complementary DNA sequencing: expressed sequence taqs and human genome Project", Science, 252: 1651- 1656.
- [97] Chen, Y., Lin, C.C., Wang, C.D., Wu, H.B. ve Hwang, P., (2007). "An optimized procedure greatly improves EST vector contamination removal", BMC Genomics, 8:416.
- [98] Altınışık, Ç., B., (2011). Çinko Eksikliği Durumunda Farklı Anlatım Yapan Arpa Genlerinin İzolasyonu İçin Baskılayıcı Çıkarım Hibridizasyon Kütüphanelerinin Kurulması Ve Biyoinformatik Analizleri, Yüksek Lisans Tezi, Y.T.U Fen Bilimleri Enstitüsü, İstanbul.
- [99] Diatchenko, L., Lau, Y-F.C., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E.D. ve Siebert, P., (1996).
 "Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries", Proc. Natl. Acad. Sci. USA, 93. 6025-6030.
- [100] Larsson, K. A. E., Zetterlund, I., Delp, G. ve Jonsson, L. M. V., (2006). "Nmethytransferas involved in gramine biosynthesis in barley: Cloning and characterization", Phytochemistry 67:2002-2008.

- [101] An Introduction to Cygwin, <u>http://www.physionet.org/physiotools/cygwin/</u>, 18.08.2012.
- [102] Laboratory of Phill Green, <u>http://www.phrap.org/</u>, 18.08.2012
- [103] VecScreen, <u>http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html</u>, 18.08.2012.
- [104] Basic Local Alignment Search Tool, <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>, 18.08.2012.
- [105] Expasy Translate Tool, <u>http://web.expasy.org/translate/</u>, 18.08.2012
- [106] Align Sequences using ClustalW2, <u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>, 25.08.2012
- [107] Kader, J-C., Juilenne, M. ve Vergnolle, C., (1984), "Purification and characterization of a spinach leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts", *European Journal of Biochemistry*, 139: 411-416.
- [108] Torres-Schumann, S., Godoy, J.A. and Pintor-Toro, J.A., (1992). "A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants". *Plant Mol. Biol.* 18,749-757.
- [109] Molina, A., Diaz, I., Vasil, I. K, Carbonero, P., ve Garcia-Olmedo F., (1996). "Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential response to bacterial pathogens". Molecular Genetics Genomics, 252, 162-168.
- [110] Colmenero-Flores, J., M., Campos, F., Garciarrubio, A., ve Covarrubias, A. A., (1997). "Characterization of *Phaseolus vulgaris* cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein". Plant Mol Biol 35:393–405.
- [111] Pearce, R.S., Houlston, C.E., Atherton, K.M., Rixon, J.E., Harrison, P., Hughes, M.A. ve Dunn, M.A., (1998). "Localization of expression of three cold-induced genes, *blt101*, *blt4.9*, and *blt14*, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley". Plant Physiol 117:787– 795.
- [112] Hollenbach, B., Schreiber, L., Hartung, W. ve Dietz, K.J., (1997). "Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly". Planta 203:9–19.
- [113] UniProt, <u>http://www.uniprot.org/uniprot/P25307</u>, 29.08.2012.
- [114] Keresztessy, Z. ve Hughes, M.A., (1998). "Homology modelling and molecular dynamics aided analysis of ligand complexes demonstrates functional properties of lipid-transfer proteins encoded by the barley low-temperatureinducible gene family, blt4". The Plant journal : for cell and molecular biology. 07/1998; 14(5):523-33.

- [115] Dunn, M.A., Hughes, M.A., Zhang, L., Pearce, R.S., Quigley, A.S. ve Jack, P.L., (1991) "Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4". Mol. Gen. Genet. 229, 389-394.
- [116] Andersson, I. ve Backlund, A., (2008). "Structure and function of RuBisCO". Plant Physiology and Biochemistry 46 – 275-291.
- [117] Sasaki, H., Hirose, T., Watanabe, Y. ve Ohsugi R., (1998). "Carbonic Anhydrase Activity and CO₂-Transfer Resistance in Zn-Deficient Rice Leaves". Plant Physiol. 118: 929–934.
- [118] McCoy, J.G., Bitto, E., Bingman, C.A., Wesenberg, G.E., Bannen, R.M., Kondrashov, D.A. ve Phillips, G.N. Jr, "Structure and dynamics of UDP-Glucose pyrophosphorylase from *Arabidopsis thaliana* with bound UDP-glucose and UTP". J Mol Biol. 2007;366:830–841.
- [119] Freeden, A.L., Rao, I.M. ve Terry, N., (1989). "Influence of phosphorus nutrition on growth and carbon partitioning in *Glycine max*". Plant Physiol 89: 225-230.
- [120] Rao, I.M., Fredeen, A.L. ve Terry, N., (1990). "Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet". III. Diurnal changes in carbon partitioning and carbon export. Plant Physiol 9 2 29-36.
- [121] Edwards, G.E. ve Walker, D.A., (1983). "C₃, C₄: mechanisms, and cellular and environmental regulation, of photosynthesis". Oxford: Blackwell Scientific publications.
- [122] Theodorou, M.E. ve Plaxton, W.C., (1993). "Metabolic adaptations of plant respiration to nutritional phosphate deprivation". Plant Physiology 101, 339±344.
- [123] Kleczkowski, L. A., (1994b). "Inhibitors of photosynthetic enzymes/carriers and metabolism". *Annu Rev Plant Physiol Plant Mol Biol* 45: 339–367.
- [124] Rao, I.M., (1997). "The role of phosphorous in photosynthesis"; Derleyen: Mohammad Pessarakli, Handbook of photosynthesis. New York, Basel, Hong Kong: Marcel Dekker Inc., 173±194.
- [125] Huang, C.Y., Barker, S.J., Langridge, P., Smith, F.W. ve Graham, R.D., (2000). "Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and –deficient barley (*Hordeum vulgare* L. cv Weeah) roots". *Plant Physiology* 124: 415±422.
- [126] Eichacker, L.A. ve Henry, R. (2001). "Function of a chloroplast SRP in thylakoid protein export". *Biochim. Biophys. Acta* 1541, 120–134.
- [127] Richter C.V., Träger C. ve Schünemann D., (2008). "Evolutionary substitution of two amino acids in chloroplast SRP54 of higher plants cause its inability to bind SRP RNA". 22;582(21-22):3223-9.
- [128] Chu, S., Zengel, J.M. ve Lindahl L., (1997). "A novel protein shared by RNase MRP and RNase P". RNA 3:382–391.
- [129] Beers, E.P., Woffenden, B.J. ve Zhao, C., (2000). "Plant proteolytic enzymes: possible roles during programmed cell death". Plant Mol Biol 44: 399–415.

- [130] Solomon, M., Belenghi, B., Delledonne, M., Menachem, E. ve Levine, A., (1999). "The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants". Plant Cell 11: 431–443.
- [131] Van der Hoorn, R.A.L. ve Jones, J.D.G., (2004). "The plant proteolytic machinery and its role in defence". Curr Opin Plant Biol.
- [132] Bork, P., Sander, C. ve Valencia, A., (1992). "An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin and hsp70 heat shock proteins". Proc. Natl. Acad. Sci. U. S. A. 89, 7290–7294.
- [133] Grummt I., (2006). "Actin and myosin as transcription factors". Current Opinion in Genetics & Development 2006, 16:191–196.
- [134] Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U. ve Vad, K., (1993). "Plant chitinases". Plant J. 3: 31–40.
- [135] Graham, L.S. ve Sticklen, M.B., (1994). "Plant Chitinases". Can J Bot. 72: 1057– 1083.
- [136] Bol, J. F., H.J.M. Linthorst, ve B.J.C. Cornelissen. (1990). "Plant pathogenesisrelated proteins induced by virus infection". Annual Review of Phytopathology 28:114-138.
- [137] Bowles, D.J., (1990). "Defense-related proteins in higher plants". Annual Review of Biochemistry 59: 873-907.
- [138] Linthorst, H.J.M., (1991). "Pathogenesis-related proteins of plants". CRC Critical Reviews in Plant Sciences 10:123-150.
- [139] Finley, D. ve Chau, V. (1991). "Ubiquitination". Annu. Reu. Cell Biol. 7, 25-69.
- [140] Rechsteiner, M. (ed) (1988) Regulation of enzyme levels by proteolysis: the role of pest regions. Plenum Press, New York.
- [141] Hershko, A. (1988). "Ubiquitin mediated protein degradation". J. Biol. Chem. 263, 15237-15240.
- [142] S. Jentsch, (1992). "The ubiquitin-conjugation system". Ann. Rev. Genet. 26 179-207.
- [143] Feussner, K., Feussner, I., Leopold, I. ve Wasternack C., (1997). "Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBCl of tomato — the first stress-induced UBC of higher plants". *Institute of Plant Biochemistry, Weinberg* 3, 06120 Halle/Saale, German.
- [144] Kim, K.J., Park, C.J., An, J.M., Ham, B.K., Lee, B.J. ve Paek, K.H., (2005). "CaAlaAT1 catalyzes the alanine:2-oxoglutarate aminotransferase reaction during the resistance response against Tobacco mosaic virus in hot pepper". Planta 221, 857–867.
- [145] Taler, D., Galperin, M., Benjamin, I., Cohen, Y. ve Kenigsbuch, D., (2004). "Plant eR genes that encode photorespiratory enzymes confer resistance against disease". Plant Cell 16, 172–184.

- [146] Liepman, A.H. ve Olsen, L.J., (2003). "Alanine aminotransferase homologs catalyse the glutamate: glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis". Plant Physiol. 131, 215–227.
- [147] Fukao, Y., Hayashi, M. ve Nishimura, M., (2002). "Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana". Plant Cell Physiol. 43, 689–696.
- [148] Igarashi, D., Miwa, T., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. ve Ohsumi, C., (2003). "Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis". Plant J. 33, 975–987.
- [149] Niessen, M., Krause, K., Horst, I., Staebler, N., Klaus, S., Gaertner, S., Kebeish, R., Araujo, W.L., Fernie, A.R. ve Peterhansel, C., (2012). "Two alanine aminotransferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice". J. Exp. Bot. 63, 2705–2716.
- [150] Limami, A.M., Glevarec, G., Ricoult, C., Cliquet, J.B. ve Planchet, E., (2008). "Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress". J. Exp. Bot. 59 (9), 2325– 2335.
- [151] de Sousa, C.A.F. ve Sodek, L., (2003). "Alanine metabolism and alanine aminotransferase activity in soybean (*Glycine max*) during hypoxia of the root system and subsequent return to normoxia". Environ. Exp. Bot. 50, 1–8.
- [152] Miyashita, Y., Dolferus, R., Ismind, K.P. ve Good, A.G., (2007). "Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in *Arabidopsis thaliana*". Plant J. 49, 1108–1121.
- [153] Rocha, M., Sodek, L., Licausi, F., Hameed, M.W., Dornelas, M.C. ve van Dongen, J.T., (2010). "Analysis of alanine aminotransferase in various organs of soybean (*Glycine max*) and independence of different nitrogen fertilisers during hypoxic stress". Amino Acids 39, 1043–1053.
- [154] Puiatti, M. ve Sodek, L., (1999). "Waterlogging affects nitrogen transport in the xylem of soybean". Plant Physiol. Biochem. 37, 767–773.
- [155] Drossopoulos, J.B., Karamanos, A.J. ve Niavis, A., (1985). "Changes in amino acid compounds during the development of two wheat cultivars subjected to different degrees of water stress". Ann. Bot. 56, 291–305.
- [156] Mazzucotelli, E., Tartari, A., Cattivelli, L. ve Forlani, G., (2006). "Metabolism of caminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat". J. Exp. Bot. 57, 3755–3766.
- [157] Bogeat-Triboulot, M.B., Brosché, M., Renaut, J., Jouve, L., Le Thiec, D., ve Fayyaz P., (2007). "Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions". Plant Physiol; 143:876–92.
- [158] Sirover, M.A., (1999). "New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase". Biochim. Biophys. Acta 1432, 159–184.

- [159] Chuang, D.M., Hough, C., ve Senatorov, V.V., (2005). "Glyceraldehyde-3phosphate dehydrogenase, apoptosis, and neurodegenerative diseases". Annu. Rev. Pharmacol. Toxicol. 45, 269–290.
- [160] Morgenegg, G., Winkler, G.C., Hubscher, U., Heizmann, C.W., Mous, J. ve Kuenzle, C.C., (1986). "Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons". J. Neurochem. 47 54–62.
- [161] Singh, R. ve Green, M.R., (1993). "Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase", Science 259 365–368.
- [162] Collinge, D.B. ve Slusarenko, A.J., (1987). "Plant gene expression in response to pathogens". Plant Molec. Biol. 9: 389–401.
- [163] Linthorst, H.J.M., (1991). "Pathogenesis-related proteins of plants". Crit. Rev. Plant Sci. 10: 123–150.
- [164] Van Loon, L.C. ve Van Strien, E.A., (1999). "The families of pathogenesis related proteins, their activities, and comparative analysis of PR- 1 type proteins". Physiol. & Molec. Plant Pathol. 55: 85–97.
- [165] Becker, A. ve Theissen, G., (2003). "The major clades of MADS-box genes and their role in the development and evolution of Xowering plants". Molec Physiol Evol 29:464–489.
- [166] Garcia-Maroto, F., Carmona, M.J., Garrido, J.A., Vilches-Ferròn, M., Rodriguez-Ruiz, J., Lopez, Alonso, D., (2003). "New roles for MADS-box genes in higher plants". Biol Plantarum 46:321–330.
- [167] Lozano, R., Angosto, T., Gomez, P., Payan, C., Capel, J., Huijser, P., Salinas, J. ve Martinez-Zapater J. M., (1998). "Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-Box genes". *Plant Physiol*, 117(1):91-100.
- [168] Bonhomme, F., Kurz, B., Melzer, S., Bernier, G. ve Jacqmard, A., (2000). "Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba". *Plant J*, 24(1):103-111.
- [169] Ando, S., Sato, Y., Kamachi, S. ve Sakai S., (2001). "Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (*Cucumis sativus* L.)". *Planta*, 213(6):943-952.
- [170] Zhu, C., Perry, S. E., (2005). "Control of expression and autoregulation of AGL15, a member of the MADS-box family". *Plant J*, 41(4):583-594.
- [171] Tardif, G., Kane, N.A., Adam, H., Labrie, L., Major, G., Gulick, P., Sarhan, F. ve Laliberte, J.F., (2007). "Interaction network of proteins associated with abiotic stress response and development in wheat". *Plant Mol Biol*, 63(5):703-718.
- [172] Marri, L., Sparla, F., Pupillo P., ve Trost, P., (2005). "Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase,

phosphoribulokinase, and CP12 in Arabidopsis thaliana". Journal of Experimental Botany, 409: 73–80.

ARPA BİTKİSİNİN GÖVDESİNDEN CAP3 PROGRAMIYLA ELDE EDİLEN KONTİGLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ

KLON ADI	cDNA BOYUTU	DNA BENZERI	LİĞİ (BLAS	TN)		PROTEİN BENZERLİĞİ (BLASTp)				
	(bp)	Benzerlik sonucu	Skor	E değeri	Benzerlik oranı (%)	Benzerlik sonucu	Skor	E değeri	Benzerlik oranı (%)	
Contig 1	249	H.vulgare (clone pKG2316) mRNA for lipid transfer protein precursor Z37114.1	398	1e-107	98	3'5' Frame 3 Chain A, Lipid Binding In Rice Nonspecific Lipid Transfer Protein-1 Complexes From Oryza Sativa <u>IUVA A</u>	38.1	5e-05	74	
		H.vulgare Cw- 18 mRNA <u>X68655.1</u>	381	1e-102	97					
		Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK360670.1</u>	348	1e-92	94					
		H. vulgare BLT4 mRNA <u>X56547.1</u>	279	5e-72	90					
Contig 2	361	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357755.1</u>	579	6e-162	98	-	-	-	-	
Contig 3	756	Hordeum vulgare subsp. vulgare cDNA clone <u>AK253070.1</u> <u>AK251217.1</u>	682	0,0	98	-	-	-	-	
		Hordeum vulgare subsp. Vulgare mRNA for	682	0,0	98					

		predicted protein <u>AK357990.1</u> <u>AK353670.1</u>							
Contig 4	420	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK374021.1</u> <u>AK363776.1</u>	652	0,0	98	3'5' Frame 1 Chain M, Crystal Structure Of The Membrane Domain Of Respiratory Complex I From E. Coli At 3.0 Angstrom Resolutionn <u>3RKO_M</u>	26.2	9.3	46
Contig 5	292	Hordeum vulgare subsp. vulgare cDNA clone <u>AK251654.1</u>	412	5e-112	95	-	-	-	-
		Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK372371.1</u>	405	9e-110	97				
Contig 6	612	Hordeum vulgare subsp. vulgare cDNA clone <u>AK248868.1</u>	1020	0.0	98	3'5' Frame 1 Chain A, Three- Dimensional Structure Of Human Electron Transfer Flavoprotein To 2.1 A Resolution	29.6	1.3	38
Contig 7	711	Hordeum vulgare subsp. vulgare cDNA clone <u>AK248914.1</u>	723	0.0	98	5'3' Frame 2 Chain A, Crystal Structure Of Activated Rice	41.2	3e-04	100
		Hordeum vulgare subsp. vulgare cultivar Morex chloroplast, complete Genome <u>EF115541.1</u>	442	2e-120	98	RuBisCO Complexed With 2- Carboxyarabinitol- 1,5-Bisphosphate <u>1WDD_A</u>			
		Hordeum vulgare subsp. vulgare cultivar Angora ribulose-1,5- bisphosphate carboxylase/ox ygenase large	442	2e-120	98	Chain A, A Crystal Form Of Ribulose- 1,5-Bisphosphate Carboxylase(Slash) oxygenase From Nicotiana Tabacum In The Activated <u>4RUB_A</u>	41.2	3e-04	100
		subunit (rbcL) gene, complete cds; chloroplast <u>AY 137456.1</u>				Chain L, Crystal Structure Of Unactivated Tobacco RuBisCO With Bound Phosphate Jons	41.2	3e-04	100
		Hordeum vulgare subsp. spontaneum voucher H3139 ribulose-1,5- bisphosphate	442	2e-120	98	<u>IEJ7_L</u>			

		carboxylase/ox ygenase large subunit (rbcL) gene, <u>AY137453.1</u> Barley chloroplast genes rbcL and atpB <u>X00630.1</u> Hordeum vulgare subsp. spontaneum ribulose-1,5- bisphosphate	442	2e-120 2e-120	98				
		carboxylase/ox ygenase large subunit (rbcL) gene, <u>AY836173.1</u>							
Contig 8	1008	Hordeum vulgare subsp. vulgare cDNA clone <u>AK251968.1</u> H.vulgare	959	0.0	99	3'5' Frame 2 Chain A, X-Ray Structure Of Gene Product From Arabidopsis Thaliana At3g03250, A Putative Udp-	179	8e-52	85
		mRNA for UDP-glucose pyrophosphory lase X91347.1	953	0.0	99	Glucose Pyrophosphorylase <u>1Z90_A</u>	179	8e-52	85
		Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK357990.1</u> <u>AK353670.1</u>	767	0.0	98	Chain A, Crystal Structure Of A Putative Udp- Glucose Pyrophosphorylase From Arabidopsis Thaliana With Bound Utp <u>2ICX_A</u>	127	1e-32	54
						Chain A, Crystal Strucutre Of Udp- Glucose Pyrophosphorylase Of Homo Sapiens <u>3R2W_A</u>			
Contig 9	489	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK369974.1</u> <u>AK376775.1</u>	713 692	0.0 1e-91	96 97	3'5' Frame 2 Chain A, Crystal Structure Of The Acyl-Coa Carboxylase, Accd5, From Mycobacterium Tuberculosis 2A7S A	27.3	5.9	56
						3'5' Frame 3 Chain A, Protein Tyrosine Phosphatase Ptpn- 22 (Lyp) Bound To The Mono- Phosphorylated Lck Active Site Peptide <u>3BRH_A</u>	26.6	9.1	33
Contig 10	331	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK368965.1</u>	540	3e-150	98	5'3' Frame 3 Chain A, Crystal Structure Of Xylulokinase From Chromobacterium Violaceum	28.5	0.85	52

		Hordeum vulgare Srp54- 2 mRNA, complete sequence; and signal recognition particle 54 kDa subunit (Srp 54-3) mRNA <u>L48286.1</u>	518	1e-143	97	<u>3HZ6_A</u> Tblastx Chain A, Crystal Structure Of The Hybrid State Of Ribosome In Complex With The Guanosine Triphosphatase Release Factor 3 <u>3ZVP_A</u>	27.6	0.051	, 14
Contig 11	370	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK354765.1</u> <u>AK366006.1</u>	531 505	2e-147 1e-139	97 97	3'5' Frame 1 Chain A, Structural Consequences Of Redesigning A Protein-Zinc Binding Site <u>1CVH_A</u>	26.2	7.0	22
Contig 12	272	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK369652.1</u> <u>AK360618.1</u> <u>AK354843.1</u> <u>AK358450.1</u>	420	3e-114	98	3'5' Frame 2 Chain S, Structure Of Rice RuBisCO In Complex With Nadp(H) <u>3AXK S</u> 3'5' Frame 2	37.4	2e-04	88
		Hordeum vulgare subsp. vulgare cDNA clone <u>AK249588.1</u> <u>AK249082.1</u> <u>AK250591.1</u>	420	3e-114	98	Chain S, Crystal Structure Of Activated Rice RuBisCO Complexed With 2- Carboxyarabinitol- 1,5-Bisphosphate <u>1WDD_S</u>	34.7	0.002	81
		Hordeum vulgare ribulose-1,5- bisphosphate carboxylase small subunit mRNA <u>U43493.1</u>	327	2e-86	92	3'5' Frame 2 Chain S, Crystal Structure Of The Unactivated Form Of Ribulose-1,5- Bisphosphate Carboxylase(Slash) oxygenase From Tobacco Refined	32	0.020	80
		Hordeum vulgare rbcS gene for ribulose-1,5- bisphosphate carboxylase/ox ygenase small subunit <u>AB020943.1</u>	110	7e-21	88	At 2.0-Angstroms Resolution <u>3RUB_S</u>			
Contig 13	483	Hordeum vulgare subsp. vulgare cDNA clone <u>AK251574.1</u> Hordeum vulgare subsp. vulgare mRNA for papain-like cysteine proteinase (pap-15 gene) <u>AM941125.1</u>	752	0,0	98 97	5'3' Frame 2 Chain A, Proposed Amino Acid Sequence And The 1.63 Angstrom X- Ray Crystal Structure Of A Plant Cysteine Protease Ervatamin B: Insight Into The Structural Basis Of Its Stability And Substrate Specificity. <u>1IWD_A</u>	68.6	2e-14	48

						5'3' Frame 2 Chain A, The 2.0 A Crystal Structure Of The Kdel- Tailed Cysteine Endopeptidase Functioning In Programmed Cell Death Of Ricinus Communis Endosperm <u>1S4V_A</u>	67.0	5e-14	49
Contig 14	383	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK356840.1</u>	628	7e-177	99	5'3' Frame 1 Chain A, Atomic Structure Of The Actin:dnase I Complex <u>IATN_A</u>	72	2e-15	86
		Hordeum vulgare subsp. vulgare cDNA clone <u>AK252278.1</u>	628	7e-177	99				
		Hordeum vulgare actin mRNA, complete cds <u>AY145451.1</u>	628	7e-177	99				
Contig 15	705	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK3559627.1</u> <u>AK374372.1</u> <u>AK353942.1</u>	1186	0.0	98	Chain D, Homology Model For The Spinach Chloroplast 50s Subunit Fitted To 9.4a Cryo-Em Map Of The 70s Chlororibosome <u>3BBO D</u>	104	4e-26	41
Contig 16	345	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK354017.1</u>	486	4e-134	98	5'3' Frame 3 Chain A, Crystal Structure Of Brassica Juncea Chitinase Catalytic Module (Bjchi3) <u>2Z37_A</u>	28.9	0.71	77
		H.vulgare mRNA for chitinase 2b <u>X78672.1</u>	479	6e-132	98	5'3' Frame 1 Chain A, Crystal Structure Of Class I Chitinase From	25.4	9.5	77
		Hordeum vulgare mRNA for chitinase II (pathogenesis- related protein 3) (cht2 gene) <u>AJ276226.1</u>	285	1e-73	98	oryza Sativa L. Japonica 2DKV _A			
		Hordeum vulgare subsp. vulgare clone BL Chit2 chitinase mRNA <u>EU887263.1</u>	169	2e-38	99				

		H.vulgare mRNA for chitinase 2a <u>X78671.1</u>	163	7e-37	78				
Contig 17	228	Hordeum vulgare subsp. vulgare cDNA clone <u>AK248244.1</u>	357	2e-95	98	-	-	-	-

ARPA BİTKİSİNİN GÖVDE DOKUSU CAP3 PROGRAMI İLE OLUŞTURULAN SİNGLETLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ

KLON ADI	cDNA BOYUTU	DNA BENZERLİĞ	İ (BLASTN)	PROTEİN BENZERLİĞİ (BLASTX- tBLASTX)			
	(bp)	Benzerlik sonucu	Skor	E değeri	Benzerlik oranı (%)	Benzerlik sonucu	Skor	E değeri
Singlet 1 16R_A01-T7	70	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357990.1</u> <u>AK353670.1</u> Hordeum vulgare	82.4	3e-13	92	-	-	-
		subsp. vulgare cDNA clone <u>AK253070.1</u> <u>AK251217.1</u>	02.1	50 15	72			
Singlet 2 16R_A08-T7	145	Hordeum vulgare subsp. vulgare cDNA clone <u>AK252445.1</u>	257	1e-65	99			
Singlet 3 16R_C08-T7	27	-	-	-	-	-	-	-
Singlet 4 16R_D12-T7	463	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK369974.1</u> <u>AK376775.1</u>	778	0.0	99	-	-	-
Singlet 5 16R_H10-T7	370	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK372960.1</u> <u>AK365515.1</u>	669	0	99	3'5' Frame 1 Chain B, Crystal Structure Of L- Proline Dehydrogenase From P.Horikoshii <u>1Y56_B</u>	26.9	4.6
		Triticum aestivum cDNA, clone: SET5_P09, cultivar: Chinese Spring <u>AK331055.1</u>	549	5e-153	94	5'3' Frame 3 Chain A, Crystal Structure Of Cathepsin B From Trypanosoma Brucei <u>3MOR A</u>	26.9	3.4

						5'3' Frame 2 Chain A, Glycerate Kinase From Neisseria Meningitidis (Serogroup A) <u>1TO6 A</u>	26.9	4.1
Singlet 6 16R_H11-T7	326	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK355686.1</u>	505	le-139	100	3'5' Frame 2 Chain A, The Structure Of Cbb3 Cytochrome Oxidase <u>3MK7 A</u>	28.5	0.83
		Triticum aestivum cDNA, clone: WT012_B05, cultivar: Chinese Spring <u>AK335101.1</u>	411	2e-111	91	5'3' Frame 3 Chain A, Crystal Structure Of The Kifla Motor Domain	27.7	1.3
		PREDICTED: Brachypodium distachyon ubiquitin- conjugating enzyme E2 32- like (LOC100831984), mRNA XM_003558027.1	313	6e-82	86	Complexed With Mg-Adp <u>1155 A</u>		
Singlet 7 2R_A02-T7	182	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357796.1</u> <u>AK356829.1</u> <u>AK356794.1</u> <u>AK359673.1</u>	331	9e-88	100	3'5' Frame 2 Chain A, The Structure Of Cbb3 Cytochrome Oxidase <u>3MK7_A</u> 5'3' Frame 3 Chain A, Crystal Structure Of The Kif1a Motor Domain Complexed With	28.5 27.7	0.83
						Mg-Adp <u>115S_A</u>		
Singlet 8 2R_A02-T7	182	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357796.1</u> <u>AK356829.1</u> <u>AK356794.1</u> <u>AK359673.1</u>	331	9e-88	100	3'5' Frame 1 Chain A, Crystal Structure Of Psbq Polypeptide Of Photosystem II From Higher Plants INZE A	92	7e-25
		Triticum aestivum putative oxygen- evolving complex precursor (TAOEC01) mRNA, complete cds EF469610.1	303	2e-79	97			
		Zea mays gene for Ferredoxin-NADP reductase binding protein <u>Z26824.1</u>	167	3e-38	91			

Singlet 9 2R_B02-T7	197	Hordeum vulgare subsp. vulgare cDNA clone <u>AK251768.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK253063.1</u> Hordeum vulgare partial mRNA for chlorophyll a/b- binding protein <u>AJ006296.1</u>	363 350 351	4e-97 3e-93 8e-94	100 100 99	3'5' Frame 1 Chain A, 2.76 Angstrom Crystal Structure Of A Putative Glucose- 1- Phosphate Thymidylyltransfe rase From Bacillus Anthracis In Complex With A Sucrose. <u>3HL3_A</u>	25	4.0
Singlet 10 2R_D03-T7	27	-	-	-	-	-	-	-
Singlet 11 2R_G12-T7	255	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK370222.1</u>	472	8e-130	100	-	-	-
Singlet 12 3R_A07-T7	186	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK369022.1</u> <u>AK367942.1</u>	241	2e-60	97	3'5' Frame 3 Chain B, Crystal Structure Of An Intact Type Ii Dna Topoisomerase: Insights Into Dna Transfer Mechanisms 2ZBK_B Chain A, Structure Of Topoisomerase Subunit IMU5_A	25.8	1.8
Singlet 13 3R_D01-T7	368	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK372161.1</u> <u>AK358929.1</u> Hordeum vulgare subsp. vulgare cDNA clone FLbaf53k03 <u>AK249952.1</u> Triticum aestivum cDNA, clone: WT004_L08, cultivar: Chinese Spring <u>AK332722.1</u>	675 669 625	0 0 8e-176	100 99 98	3'5' Frame 1 Chain A, Ribosome Recycling Factor From Thermus Thermophilus <u>1EH1_A</u> Chain A, 2.65 Angstrom Resolution Crystal Structure Of Ribosome Recycling Factor (Frr) From Bacillus Anthracis <u>4GFQ_A</u> 3'5' Frame 3 (Tetraspannin)	125 120 26.9	3e-36 2e-34 3.4
		Zea mays ribosome recycling factor (LOC100284109), mRNA <u>NM_001157006.1</u>	436	4e-119	89	(Tetraspannin) Chain A, Crystal Structure Of Putative Arginyl T-Rna Synthetase From Campylobacter Jejuni		

						<u>3FNR_A</u>		
Singlet 14 3R_F05-T7	362	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK359363.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK250046.1</u>	664	0	99 99	5'3' Frame 1 (AAT_I superfamily) Chain A, Crystal Structure Of Alanine Aminotransferase From Hordeum vulgare <u>3TCM_A</u>	142	2e-40
		Deschampsia antarctica clone Dacor 1.7 alanine aminotransferase mRNA, 3' UTR and partial cds <u>AY090542.1</u>	464	2e-127	90	Chain A, Human Alanine Aminotransferase 2 In Complex With Plp <u>3IHJ_A</u>	122	2e-33
Singlet 15 3R_F06-T7	62	-	-	-	-	-	-	-
Singlet 16 3R_F07-T7	141	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK356301.1</u>	261	9e-67	100	3'5' Frame 1 Chain A, Crystal Structure Of A Galactose Specific Lectin From Artocarpus	24.3	3.4
		Hordeum vulgare subsp. vulgare cDNA clone <u>AK252840.1</u> <u>AK249713.1</u>	261	9e-67	100	Hirsuta In Complex With Methyl-A-D- Galactose <u>ITOQ_A</u>		
						Chain A, Crystal Structure Of Potassium- Independent Plant Asparaginase 2GEZ_A	24.6	3.4
Singlet 17 4R_E11-T7	133	Hordeum vulgare thaumatin-like protein TLP2 mRNA	241	1e-60	100	3'5' Frame 2 (GH64-TLP-SF superfam)	31.6	0,015
		AY839293.1 H.vulgare mRNA for a pathogenesis- related protein	241	1e-60	100	Chain A, High Resolution Structure Of A Cherry Allergen Pru Av 2 <u>2AHN_A</u>		
		(Hv-1c) X58565.1 H.vulgare mRNA for a pathogenesis- related protein (Hv-1b)	241	1e-60	100	Chain A, The Crystal Structure Of Zeamatin. 1DU5_A	29.3	0.082
		Hordeum vulgare mRNA for pathogenesis protein 5 (pr-5 gene) <u>AJ276225.1</u>	241	1e-60	100	Chain A, Crystal Structure Of Sweet-Tasting Protein Thaumatin II <u>3AOK_A</u>	26.9	0.43
		Hordeum vulgare						

		subsp. vulgare mRNA for predicted protein <u>AK355769.1</u>	235	5e-59	99			
		Hordeum vulgare subsp. vulgare cDNA clone: FLbaf65g08 <u>AK250244.1</u>	235	5e-59	99			
		Hordeum vulgare mRNA for putative acidic pr5 (pr5a gene), isolated from a cDNA library after inoculation with Blumeria graminis, cultivar pallas P-01. <u>AM403331.1</u>	235	5e-59	99			
		Hordeum vulgare thaumatin-like protein TLP1 mRNA <u>AY839292.1</u>	235	5e-59	99			
		H.vulgare mRNA for a pathogenesis- related protein (Hv-1a) X58564.1	235	5e-59	99			
Singlet 18 4R_F12-T7	228	Hordeum vulgare subsp. vulgare cDNA clone: FLbaf89d22 <u>AK250561.1</u>	409	5e-111	99	5'3' Frame 1 Chain A, Class Iv Chitinase Structure From Picea Abies At	59.3	2e-12
		Phyllostachys edulis cDNA clone: bphylf060p09, full insert sequence <u>FP093947.1</u>	211	2e-51	86	3HBD_A Chain A, Crystal Structure And Enzymatic Properties Of A Bacterial Family	53.9	3e-10
		Triticum aestivum cDNA, clone: SET1_D20, cultivar: Chinese Spring <u>AK336175.1</u>	211	2e-51	84	Reveal Differences With Plant Enzymes <u>2CJL_A</u>		
		Sorghum bicolor hypothetical protein, mRNA <u>XM_002448060.1</u>	207	2e-50	86			
		Triticum aestivum chitinase II precursor (Cht2) mRNA, complete cds <u>AF112963.1</u>	206	7e-50	83			
Singlet 19	17	-	-	-	-	-	-	-

4R_G01-T7								
Singlet 20 7R_C05-T7	368	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK368348.1</u> <u>AK366552.1</u> Triticum aestivum mRNA for MIKC- type MADS-box transcription factor WM21B (WM21B gene) <u>AM502888.1</u>	669 674 444	0 3e-46 2e-121	99 100 92	5'3' Frame 3 Chain A, The Crystal Structure Of A Hydrolase From Pseudomonas Aeruginosa Pa01 <u>3OM8 A</u> 5'3' Frame 2 Chain B, Structure Of Cryptochrome 3 - Dna Complex <u>2VTB B</u>	33.5	0.020
Singlet 21 7R_C09-T7	91	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK354893.1</u> <u>AK371162.1</u> <u>AK353755.1</u>	145	5e-32	99	3'5' Frame 1 Chain M, Cyanide-Bound Structure Of Bifunctional Carbon Monoxide Dehydrogenase AC ETYL-Coa Synthase From Moorella Thermoacetica, Cyanide-Bound C- Cluster <u>3104_M</u> 5'3' Frame 3 Chain A, Crystal Structure Of Human Pank 1 Alpha: The Catalytic Core Domain In Complex With Accoa 217N A	25.7	1.9
Singlet 22 7R_D02-T7	379	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK374669.1</u> <u>AK363402.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK249148.1</u>	693 688 693	000	100 99 100	3'5' Frame 1 Chain P, Localization Of The Small Subunit Ribosomal Proteins Into A 5.5 A Cryo-Em Map Of Triticum Aestivum Translating 80s Ribosome <u>3IZ6 P</u>	192	1e-62
Singlet 23 7R_D04-T7	544	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK361836.1</u> <u>AK367369.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK252870.1</u> Triticum aestivum PNA for	1000 1000 917	0	99 99 99	3'5' Frame 1 Chain A, X-Ray Structure Of Adenosine 5'- Monophosphate Deaminase From Arabidopsis Thaliana In Complex With Coformycin 5'- Phosphate <u>2A3L_A</u> 3'5' Frame 2	29.6	4.8
		RNA for phosphoribulokina	71/	0	71	Chain A, Structure	21.3	4.0

		se X51608.1 T.aestivum PRK gene for ribulose- 5-phosphate kinase X57952.1	927	0	97	Of The Catalytic Domain Of Human Soluble Guanylate Cyclase 1 Beta 3. <u>2WZ1_A</u>		
Singlet 24 7R_H10-T7	248	Hordeum vulgare subsp. vulgare cDNA clone: FLbaf150e10 <u>AK252232.1</u>	440	2e-120	99	3'5' Frame 2 Chain A, Crystal Structure Of Jmjd5 Domain Of Human Lysine- Specifice	26.2	2.3
		Zea mays clone hypothetical protein mRNA EU965089.1 EU959044.1 EU954738.1 EU954738.1 EU954706.1	95.3	2e-16	90	Demethylase 8 (Kdm8) In Complex With N- Oxalylglycine <u>4AAP_A</u>		
		<u>EU934333.1</u>				Chain A, Prolyl Oligopeptidase From Porcine Muscle <u>1QFM_A</u>	25.8	3.2
Singlet 25 8R_A10-T7	184	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK356049.1</u>	337	2e-89	100	3'5' Frame 2 Chain A, Crystal Structure Of Mouse Mitochondrial	27.3	0.63
		Hordeum vulgare subsp. vulgare cDNA clone <u>AK249305.1</u>	337	2e-89	100	Aspartate Aminotransferase KYNURENINE AMINOTRANSF ERASE IV <u>3HLM_A</u>		
Singlet 26 8R_B05-T7	38	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357990.1</u> <u>AK353670.1</u>	60	7e-07	97	5'3' Frame 1 Chain A, Structure Determination And Refinement Of Ribulose 1,5 Bisphosphate Carboxylase(Slash	22.3	4.7
		Hordeum vulgare subsp. vulgare cDNA clone <u>AK253070.1</u> <u>AK251217.1</u>	60	7e-07	97)oxygenase From Synechococcus <u>1RBL_A</u>		
Singlet 27 8R_C06-T7	613	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK365017.1</u> <u>AK357370.1</u>	1127 1130	0	99 100	3'5' Frame 3 Chain A, Crystal Structure Of S. Aureus Farnesyl Pyrophosphate Synthase <u>IRTR_A</u>	31.2	0.35
		Hordeum vulgare subsp. spontaneum isolate D05c hypothetical protein mRNA, partial cds <u>HM539666.1</u>	821	0	99	5'3' Frame 2 Chain A, Human Rpc62 Subunit Structure <u>2XUB_A</u>	47	3e-06
		Hordeum vulgare subsp. spontaneum isolate D04c	821	0	99			

Singlet 28 371 Hordeum vulgare 604 1e-169 95 5'3' Frame 1	
8R_E08-T7 subsp. vulgare mRNA for predicted protein <u>AK372161.1</u> <u>AK358929.1</u> (RFF superfamily) Chain A, 2.65 Angstrom Resolution Crystal Structure Of 107	3e-29
Hordeum vulgare subsp. vulgare cDNA clone <u>AK249952.1</u> 599 5e-168 595 76-168 95 80 95 80 95 80 80 (Frr) From Bacillus Anthracis 4 <u>GFQ_A</u>	
PREDICTED: Brachypodium distachyon ribosome- recycling factor, chloroplastic-like (LOC100834081), mRNA XM_003562841.14721e-12988	
Zea mays ribosome recycling factor (LOC100284109), mRNA <u>NM_001157006.1</u> 381 2e-102 84	
Singlet 29613Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357370.1</u> 113301005'3' Frame 188_E10-T76131136010010010010010010088_E10-T71136011360100100100100100901001001001001001001001001009010	0.34
Hordeum vulgare 826 0 100 subsp.	
spontaneum isolate D05c hypothetical protein mRNA, partial cds <u>HM539666.1</u>	3e-06
Hordeum vulgare subsp. spontaneum isolate D04c hypothetical protein mRNA, partial cds HM539665.1	
Singlet 30730Hordeum vulgare subsp. vulgare mRNA for predicted protein AK355370.1 AK355251.1134901005'3' Frame 13759R_A08-T7730Hordeum vulgare mRNA for predicted protein AK355370.1 AK355251.1134901005'3' Frame 1375	3e-130
Hordeum vulgare subsp. vulgare cDNA clone <u>AK253106.1</u> <u>AK250578.1</u> 1349 0 100 Hordeum Oryza Sativa <u>3E6A_O</u> 2357 Framo 2	

		H.vulgare GADPH mRNA for glycolytic glyceraldehyde-3- phosphate dehydrogenase <u>X60343.1</u>	1349	0	100	Chain A, Structure Of Human Casein Kinase 1 Gamma- 1 In Complex With 2-(2- Hydroxyethylamin o)-6-(3- Chloroanilino)-9- Isopropylpurine (Casp Target) 2CMW A	30.8	0.76
		Hordeum vulgare subsp. vulgare cultivar TR306 glyceraldehyde-3- phosphate dehydrogenase gene, partial cds. <u>EF409633.1</u>	639	2e-50	100	Chain A, Structure Of Casein Kinase 1 Gamma 3 <u>2CHL A</u>	28.9	3.3
		Hordeum vulgare subsp. vulgare cultivar Steptoe glyceraldehyde-3- phosphate dehydrogenase gene, partial cds. <u>EF409632.1</u>	639	2e-50	100			
		Hordeum vulgare subsp. vulgare cultivar Oregon Wolfe Barley Recessive glyceraldehyde-3- phosphate dehydrogenase gene, partial <u>EF409631.1</u>	639	2e-50	100			
Singlet 31 9R_F12-T7	218	Hordeum vulgare subsp. vulgare mRNA for predicted protein, partial cds <u>AK357796.1</u>	300	3e-78	99	3'5' Frame 3 Chain B, Structure Of Eukaryotic Translation Initiation Factor Eif3i Complex With Eif3b C-	24.3	7.7
		Hordeum vulgare subsp. vulgare mRNA for predicted protein, complete cds <u>AK359673.1</u>	285	9e-74	99	Terminus (655- 700) <u>3ZWL_B</u>		
		Triticum aestivum putative oxygen- evolving complex precursor (TAOEC01) mRNA, complete cds EF469610.1	182	le-42	85			

ARPA BİTKİSİNİN GÖVDESİNDEN PHRAP PROGRAMIYLA ELDE EDİLEN KONTİGLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ

KLON ADI	cDNA BOYUTU	DNA BENZERI	.İĞİ (BLAS'	TN)		PROTEİN BENZERLİĞİ (BLASTX- tBLASTX)			
	(bp)	Benzerlik sonucu	Skor	E değeri	Benzerlik oranı (%)	Benzerlik sonucu	Skor	E değeri	Benzerli k oranı (%)
Contig 1	337	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK354017.1</u>	510 503	2e-141 4e-139	100 99	5'3' Frame 1 Chain A, Crystal Structure Of Class I Chitinase From Oryza Sativa L. Japonica 2DKV_A	50.8	2e-08	70
		H.vulgare mRNA for chitinase 2b X78672.1 Hordeum vulgare mRNA for chitinase II (pathogenesis- related protein 3) (cht2 gene) AJ276226.1	300	5e-78 3e-40	99 100	Chain A, Crystal Structure Of Gh Family 19 Chitinase From Carica Papaya <u>3COL_A</u>	48.5	9e-08	66
		Hordeum vulgare subsp. vulgare clone BL Chit2 chitinase mRNA <u>EU887263.1</u> H.vulgare mRNA for chitinase 2a <u>X78671.1</u>	182	2e-42	80				
Contig 2	589	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK248868.1</u>	1072	0	99	3'5'Frame 1 Chain A, Structure Of The Phyr Stress Response Regulator At 1.25 Angstrom	27.7	5.9	33

						Resolution <u>3NOR_A</u>			
						5'3' Frame 1 Chain A, Crystal Structure Of The Chaperonin Complex Cpn60CPN10(A DP)7 FROM <i>Thermus</i> <i>thermophilus</i> <u>1WE3_A</u>	194	5e-58	55
Contig 3	613	Hordeum	1127	0	99	-	-	-	-
		vulgare subsp. vulgare mRNA for predicted protein <u>AK365017.1</u> <u>AK357370.1</u>	1130	0	100				
		Hordeum vulgare subsp. spontaneum isolate D05c hypothetical protein mRNA, partial cds <u>HM539666.1</u>	821	0	99				
			821	0	99				
		Hordeum vulgare subsp. spontaneum isolate D04c hypothetical protein mRNA, partial cds <u>HM539665.1</u>							
Contig 4	368	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK372161.1</u> <u>AK358929.1</u>	675	0	100	3'5' Frame 1 Chain A, Ribosome Recycling Factor From Thermus Thermophilus <u>1EH1_A</u>	125	4e-36	49
			669	0	99				
		Hordeum vulgare subsp. vulgare cDNA clone <u>AK249952.1</u>				Chain A, Crystal Structure Of The Ribosome Recycling Factor (Rrf) From Escherichia Coli <u>1EK8_A</u>	106	7e-29	44
Contig 5	330	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK357755.1</u>	603	3e-169	99	5'3' Frame 3 Chain B, Crystal Structure Of Pig Gtp-Specific Succinyl-Coa Synthetase In Complex With Gtp <u>2FP4_B</u>	129	4e-36	58
						Chain B, Crystal Structure Of The Complex Of Adp And Mg2+ With Dephosphorylate d E. Coli Succinyl-Coa	109	4e-29	58

						Synthetase <u>1CQI_B</u>			
Contig 6	237	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK369652.1</u> <u>AK360618.1</u>	438	7e-120	100	5'3' Frame 2 Chain S, Structure Of Rice RuBisCO In Complex With Nadp(H) <u>3AXK S</u>	66.6	5e-15	88
		AK354843.1 AK358450.1 Hordeum vulgare subsp. vulgare cDNA clone AK249588.1 AK249082.1 AK250591.1	438	7e-120	100	Chain S, Crystal Structure Of Activated Rice RuBisCO Complexed With 2- Carboxyarabinito 1-1,5- Bisphosphate <u>1WDD_S</u>	63.9	4e-14	84
						Chain S, A Crystal Form Of Ribulose-1,5- Bisphosphate Carboxylase(Slas h)oxygenase From Nicotiana Tabacum In The Activated <u>4RUB_S</u>	50.4	3e-09	77
						3'5' Frame 2 Chain A, The Crystal Structure Of An Isochorismatase- Like Hydrolase From Alkaliphilus Metalliredigens To 2.3a <u>3HB7_A</u>	29.3	0.22	46
Contig 7	280	Hordeum vulgare subsp. vulgare cDNA clone <u>AK251654.1</u> Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK372371.1</u>	438	8e-120 7e-116	97 99	5'3' Frame 2 Chain A, Crystal Structure Of Carnitine Acetyltransferase <u>INDB_A</u> 3'5' Frame 3 Chain A, Crystal Structure Of Human S- Adenosyl Homocysteine Hydrolase Protein <u>3MTG_A</u>	28.5	0.74 6.9	30
Contig 8	463	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK369974.1</u> <u>AK376775.1</u>	778 769	0.0 5e-99	99 100	5'3' Frame 3 Chain A, Crystal Structure Of Ribulose-5- Phosphate 3- Epimerase (Yp_718263.1) From Haemophilus Somnus 129pt At 1.91 A Resolution	29.6	0.74	32

						<u>3CU2_A</u>			
Contig 9	229	H.vulgare	416	3e-113	99	3'5' Frame 2			
		(clone pKG2316) mRNA for lipid transfer protein precursor Z37114.1				Chain A, Lipid Binding In Rice Nonspecific Lipid Transfer Protein-1 Complexes From Oryza Sativa <u>IUVA A</u>	52.4	4e-10	79
		H.vulgare Cw- 18 mRNA <u>X68655.1</u>	339	3e-108	98	Chain A,	49.7	4e-09	70
		Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK360670.1</u>	366	3e-98	96	Structural Basis Of Non-Specific Lipid Binding In Maize Lipid- Transfer Protein Complexes With Capric Acid Revealed By High-Resolution X-Ray Crystallography			
		H. vulgare BLT4 mRNA <u>X56547.1</u>	298	1e-77	91	Chain A, Solution Structure Of A New Ltp1 <u>1T12_A</u>	47.4	3e-08	63
Contig 10	322	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK368965.1</u>	575 553	7e-161 3e-154	99 98	5'3' Frame 3 Chain W, Model Of Mammalian Srp Bound To 80s Rncs 2137_W	36.2	0.002	32
		Hordeum vulgare Srp54- 2 mRNA, complete sequence; and signal recognition particle 54 kDa subunit (Srp				Chain A, Crystal Structure Of Apoptosis Inducing Factor (Aif) <u>1M6L A</u>	26.9	3.4	30
		54-3) mRNA <u>L48286.1</u>				Chain A, X-Ray Structure Of Annexin From Arabidopsis Thaliana Gene At1g35720 <u>1YCN_A</u>	26.2	5.5	41
Contig 11	215	Hordeum vulgare subsp. vulgare cDNA clone <u>AK248244.1</u>	375	5e-101	99	-	-	-	-
Contig 12	398	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK374021.1</u> <u>AK363776.1</u>	686	0	99	3'5' Frame 1 Chain A, Glutamine Binding Protein Open Ligand- Free Structure <u>IGGG A</u>	28.5	1.5	29
Contig 13	684	Hordeum vulgare subsp. Vulgare	1251	0,0	99	5'3' Frame 3 Chain D,			

		mRNA for predicted protein <u>AK359627.1</u> <u>AK374372.1</u>				Homology Model For The Spinach Chloroplast 50s Subunit Fitted To 9.4a Cryo-Em Map Of The 70s Chlororibosome <u>3BBO_D</u> Chain C, Crystal Structure Of The Ribosome At 5.5 A Resolution. <u>IGIY_C</u>	305	9e-60	78 52
Contig 14	323	Hordeum vulgare subsp. Vulgare mRNA for predicted protein <u>AK354765.1</u>	586	3e-164	100	5'3' Frame 2 Chain A, Crystal Structure Of The Fructose Specific Iib Subunit Of Pts System From Bacillus Subtilis Subsp. Subtilis Sut. 168 2R48 A 5'3' Frame 1 Chain A, The Structure Of The Mammalian Srp Becentor	29.3	0.27	52 24
Contig 15	459	Hordeum vulgare subsp. vulgare cDNA clone <u>AK251574.1</u> Hordeum vulgare subsp. vulgare mRNA for papain-like cysteine proteinase (pap-15 gene) <u>AM941125.1</u>	761 747	0.0	98 98	2FH5_A 3'5' Frame 2 Chain A, Ceruloplasmin Revisited: Structural And Functional Roles Of Various Metal Cation Binding Sites 2J5W_A 5'3' Frame 3 Chain A, Crystal Structure Of A Papain-Like Cysteine Protease Ervatamin-A Complexed With Irreversible Inhibitor E-64	26.6	8.9 le-11	35
						<u>3BCN A</u> Chain A, Complex Strcuture Of Tarocystatin And Papain <u>3IMA_A</u>	58.2	5e-11	40
						Chain A, The 2.0 A Crystal Structure Of The Kdel-Tailed Cysteine Endopeptidase Functioning In Programmed Cell Death Of Ricinus Communis	72.4	8e-16	46

				r		-			
						Endosperm <u>1S4V_A</u>			
							65.5	2e-13	44
						Chain A, Actinidin From Actinidia Arguta Planch			
						(Sarusashi) <u>3P5U_A</u>	60.8	6e-12	48
						Chain A, 1.9 Angstrom Crystal Structure Of A Plant Cysteine Protease Ervatamin C <u>100E_A</u>			
Contig 16	358	Hordeum	647	0	98	5'3' Frame 3			
		vulgare subsp. Vulgare mRNA for predicted protein				(NBD_sugar- kinase_HSP70_a ctin superfamily)			
		Hordeum vulgare subsp.	647	0	99	Chain A, Atomic Structure Of The Actin:dnase I Complex	211	1e-67	83
		vulgare cDNA clone				<u>1ATN_A</u>			
		<u>AK252278.1</u>	647	0	99				
		Hordeum vulgare actin mRNA, complete cds <u>AY 145451.1</u>				Chain A, Crystal Structure Of Actin-Related Protein Arp4 From S. cerevisiae Complexed With Atp <u>3QB0_A</u>	55.8	1e-09	41
Contig 17	975	Hordeum	965	0	99	3'5' Frame 1			
		vulgare subsp. vulgare cDNA clone <u>AK251968.1</u>				(Glyco_tranf_GT A_type superfamily)			
		H.vulgare mRNA for UDP-glucose pyrophosphory lase <u>X91347.1</u>	959	0	99	Chain A, Crystal Structure Of A Putative Udp- Glucose Pyrophosphoryla se From Arabidopsis Thaliana With Bound Utp 2ICX_A	322	4e-106	89
		Hordeum vulgare subsp.	804	0	99				
		Vulgare mRNA for predicted protein				Chain A, Crystal Structure Of Ugp1p <u>215K_A</u>	211	2e-63	60
		<u>AK357990.1</u> <u>AK353670.1</u>				3'5' Frame 3			
						Chain A, Crystal	29.3	3.8	41
						Structure Of The Plant Stress- Response Enzyme			
						<u>3H7R_A</u>			

						Chain A, Crystal Structure Of Isoflavone O- Methyltransferas e Homolog In Complex With Biochanin A And Sah <u>2QYO A</u>	161	2e-29	44
Contig 18	679	Hordeum vulgare subsp. vulgare cDNA clone <u>AK248914.1</u>	749	0	99	5'3' Frame 2 (RuBisCO_large superfamily)			
		Hordeum vulgare subsp. vulgare cultivar Morex chloroplast, complete Genome <u>EF115541.1</u>	466	1e-127	100	Chain A, Crystal Structure Of Activated Rice RuBisCO Complexed With 2- Carboxyarabinito	177	7e-52	96
		Hordeum	466	1e-127	100	Bisphosphate <u>1WDD_A</u>			
		vulgare subsp. vulgare cultivar Angora ribulosc-1,5- bisphosphate carboxylase/ox ygenase large subunit (rbcL) gene, complete cds; chloroplast AY 137456 1	466	1e-127	100	Chain A, A Crystal Form Of Ribulose-1,5- Bisphosphate Carboxylase(Slas h)oxygenase From Nicotiana Tabacum In The Activated State <u>4RUB_A</u>	177	8e-82	96
		Hordeum vulgare subsp. spontaneum voucher H3139 ribulose-1,5- bisphosphate carboxylase/ox ygenase large subunit (rbcL) gene, <u>AY137453.1</u>	466	1e-127	100	Chain L, Activated Spinach RuBisCO In Complex With The Product 3- Phosphoglycerat e <u>1AA1_L</u>	174	6e-51	94
		Barley chloroplast genes rbcL and atpB X00630.1	466	1e-127	100				
		Hordeum vulgare subsp. spontaneum ribulose-1,5- bisphosphate carboxylase/ox ygenase large subunit (rbcL) gene, <u>AY836173.1</u>							
Contig 19	740	Hordeum vulgare subsp. Vulgare mRNA for predicted protein	737	0	99	3'5' Frame 3 (Methyltransf_2 superfamily) Chain A, Crystal Structure Of			

AK357990.1 AK353670.1 Hordeum vulgare subst vulgare cDN. clone <u>AK253070.1</u> AK251217.1	737	0	99	Isoflavone O- Methyltransferas e Homolog In Complex With Biochanin A And Sah <u>2QYO_A</u>	112	2e-28	45
--	-----	---	----	--	-----	-------	----

ARPA BİTKİSİNİN GÖVDESİNDEN PHRAP PROGRAMIYLA ELDE EDİLEN SİNGLETLERİN BLASTN VE BLASTP ANALİZLERİNİN SONUÇ ÇİZELGESİ

KLON ADI	cDNA BOYUTU	DNA BENZERLİ	Ğİ (BLASTI	N)	PROTEİN BENZERLİ tBLASTX)	Ğİ (BLAST	X-	
	(bp)	Benzerlik sonucu	Skor	E değeri	Benzerlik oranı (%)	Benzerlik sonucu	Skor	E değeri
Singlet 1 16R_A08-T7	145	Hordeum vulgare subsp. vulgare cDNA clone <u>AK252445.1</u>	257	le-65	99	5'3' Frame 1 Chain A, Structural Basis Of Gibberellin(Ga3)- Induced Della Recognition By The Gibberellin Receptor <u>2ZSH_A</u>	25.4	1.8
Singlet 2 8R_B05-T7	38	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357990.1</u> <u>AK353670.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK253070.1</u> <u>AK251217.1</u>	60 60	7e-07 7e-07	97 97	5'3' Frame 1 Chain A, Structure Determination And Refinement Of Ribulose 1,5 Bisphosphate Carboxylase(Slash)oxy genase From Synechococcus <u>1RBL_A</u>	22.3	4.7
Singlet 3 8R_A10-T7	184	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK356049.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK249305.1</u>	337	2e-89 2e-89	100	3'5' Frame 2 Chain A, Crystal Structure Of Mouse Mitochondrial Aspartate AminotransferaseKYN URENINE AMINOTRANSFERA SE IV <u>3HLM_A</u>	27.3	0.63
Singlet 4 7R_H10-T7	248	Hordeum vulgare subsp. vulgare cDNA clone: FLbaf150e10 <u>AK252232.1</u>	440 95.3	2e-120 2e-16	99 90	3'5' Frame 2 Chain A, Crystal Structure Of Jmjd5 Domain Of Human Lysine-Specific Demethylase 8 (Kdm8) In Complex With N-	26.2	2.3
		Zea mays clone hypothetical protein mRNA <u>EU965089.1</u> <u>EU959044.1</u> <u>EU954738.1</u> <u>EU954706.1</u> <u>EU954555.1</u>				Oxalylglycine <u>4AAP_A</u> 5'3' Frame 3 Chain A, Prolyl Oligopeptidase From Porcine Muscle <u>1QFM_A</u>	25.8	3.2
------------------------	-----	--	-------------------	-------------	------------------	---	------	-------
Singlet 5 7R_D04-T7	544	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK361836.1</u> <u>AK367369.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK252870.1</u>	1000	0	99 99	3'5' Frame 1 Chain A, X-Ray Structure Of Adenosine 5'-Monophosphate Deaminase From Arabidopsis Thaliana In Complex With Coformycin 5'- Phosphate <u>2A3L_A</u>	29.6	1.3
		Triticum aestivum RNA for phosphoribuloki nase <u>X51608.1</u> T.aestivum PRK gene for ribulose-5- phosphate kinase <u>X57952.1</u>	917 927	0	97 97	3'5' Frame 2 Chain A, Structure Of The Catalytic Domain Of Human Soluble Guanylate Cyclase 1 Beta 3. 2WZ1_A	27.3	4.8
Singlet 6 7R_D02-T7	379	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK374669.1</u> <u>AK363402.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK249148.1</u>	693 688 693	0 0 0	100 99 100	3'5' Frame 1 Chain P, Localization Of The Small Subunit Ribosomal Proteins Into A 5.5 A Cryo-Em Map Of Triticum Aestivum Translating 80s Ribosome <u>3IZ6 P</u>	192	1e-62
Singlet 7 7R_C09-T7	91	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK354893.1</u> <u>AK371162.1</u> <u>AK353755.1</u>	145	5e-32	99	3'5' Frame 1 Chain M, Cyanide- Bound Structure Of Bifunctional Carbon Monoxide DehydrogenaseACETY L-Coa Synthase From Moorella Thermoacetica, Cyanide-Bound C- Cluster <u>3IO4_M</u>	25.7	1.9
						5'3' Frame 3 Chain A, Crystal Structure Of Human Pank1 Alpha: The Catalytic Core Domain In Complex With Accoa <u>217N_A</u>	25.7	2.6

Singlet 8 7R_C05-T7	368	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK368348.1</u> <u>AK366552.1</u>	669 674	0 3e-46	99 100	5'3' Frame 3 Chain A, The Crystal Structure Of A Hydrolase From Pseudomonas Aeruginosa Pa01 <u>3OM8_A</u>	33.5	0.020
		aestivum mRNA for MIKC-type MADS-box transcription factor WM21B (WM21B gene) <u>AM502888.1</u>	444	26-121	92	5'3' Frame 2 Chain B, Structure Of Cryptochrome 3 - Dna Complex <u>2VTB_B</u>	30	0.32
Singlet 9 4R_G01-T7	17	-	-	-	-	-	-	-
Singlet 10 4R_F12-T7	228	Hordeum vulgare subsp. vulgare cDNA clone: FLbaf89d22 <u>AK250561.1</u>	409	5e-111	99	5'3' Frame 1 Chain A, Class Iv Chitinase Structure From Picea Abies At 1.8a 3HBD A	59.3	2e-12
		Phyllostachys edulis cDNA clone: bphylf060p09, full insert sequence FP093947.1	211	2e-51	86	Chain A, Crystal Structure And Enzymatic Properties Of A Bacterial Family 19 Chitinase Reveal Differences With Plant	53.9	3e-10
		Triticum aestivum cDNA, clone: SETI_D20, cultivar: Chinese Spring <u>AK336175.1</u>	211	2e-51	84	Enzymes 2CJL_A		
		Sorghum bicolor hypothetical protein, mRNA <u>XM_002448060.</u> 1	207 206	2e-50 7e-50	86 83			
		Triticum aestivum chitinase II precursor (Cht2) mRNA, complete cds <u>AF112963.1</u>						
Singlet 11 4R_E11-T7	133	Hordeum vulgare thaumatin-like protein TLP2 mRNA <u>AY839293.1</u>	241	1e-60	100	3'5' Frame 2 (GH64-TLP-SF superfam) Chain A, High Resolution Structure Of	31.6	0,015
		H.vulgare mRNA for a pathogenesis- related protein (Hv-1c) <u>X58565.1</u>	241	1e-60	100	A Cherry Allergen Pru Av 2 <u>2AHN_A</u> Chain A, The Crystal Structure Of Zeamatin.	29.3	0.082
		H.vulgare mRNA for a pathogenesis-	241	1e-60	100	<u>IDU5_A</u> Chain A, Crystal Structure Of Sweet-	26.9	0.43

		related protein (Hv-1b)				Tasting Protein Thaumatin II		
		<u>X58566.1</u>				<u>3AOK_A</u>		
		Hordeum vulgare	241	1e-60	100			
		mRNA for pathogenesis						
		gene)						
		Hordeum	235	5e-59	99			
		vulgare subsp. vulgare mRNA						
		for predicted protein						
		<u>AK355769.1</u>	235	5e-59	99			
		Hordeum vulgare subsp. vulgare cDNA clone: FLbaf65g08 <u>AK250244.1</u>						
			235	5e-59	99			
		Hordeum vulgare						
		mRNA for putative acidic pr5 (pr5a gene), isolated from a cDNA library after inoculation with Blumeria						
		graminis, cultivar pallas P-	235	5e-59	99			
		01. <u>AM405551.1</u>						
		Hordeum vulgare thaumatin-like protein TLP1 mRNA <u>AY839292.1</u>	235	5e-59	99			
		H.vulgare						
		mRNA for a pathogenesis- related protein (Hv-1a) <u>X58564.1</u>						
Singlet 12	27	-	-	-	-			
Singlet 13	218	Hordeum vulgare	300	3e-78	99	3'5' Frame 3		
9R_F12-T7		subsp. vulgare mRNA for predicted protein, partial cds <u>AK357796.1</u>				Chain B, Structure Of Eukaryotic Translation Initiation Factor Eif3i Complex With Eif3b C-Terminus (655-700) <u>3ZWL B</u>	24.3	7.7
		Hordeum vulgare subsp. vulgare mRNA for predicted protein, complete cds <u>AK359673.1</u>	285	9e-74	99			
		Triticum aestivum putative oxygen- evolving complex	182	1e-42	85			

		precursor (TAOEC01) mRNA, complete cds <u>EF469610.1</u>						
Singlet 14 9R_A08-T7	730	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK355370.1</u> <u>AK355251.1</u>	1349	0	100	5'3' Frame 1 Chain O, Crystal Structure And Functional Analysis Of Glyceraldehyde- 3- Phosphate Dehydrogenase From	375	3e-130
		Hordeum vulgare subsp. vulgare cDNA clone <u>AK253106.1</u> <u>AK250578 1</u>	1349	0	100	<u>3'5' Frame 2</u>		
		H.vulgare GADPH mRNA for glycolytic glycoraldehyde- 3-phosphate dehydrogenase X60343.1	1349	0	100	Chain A, Structure Of Human Casein Kinase I Gamma-1 In Complex With 2-(2- Hydroxyethylamino)-6- (3-Chloroanilino)-9- Isopropylpurine (Casp Target) <u>2CMW_A</u>	30.8	0.76
		Hordeum vulgare subsp. vulgare cultivar TR306 glyceraldehyde- 3-phosphate dehydrogenase gene, partial cds. EF409633.1	639	2e-50	100	Chain A, Structure Of Casein Kinase 1 Gamma 3 <u>2CHL A</u>	28.9	3.3
		Hordeum vulgare subsp. vulgare cultivar Steptoe glyceraldehyde- 3-phosphate dehydrogenase gene, partial cds. <u>EF409632.1</u>	639	2e-50	100			
		Hordeum vulgare subsp. vulgare cultivar Oregon Wolfe Barley Recessive glyceraldehyde- 3-phosphate dehydrogenase gene, partial <u>EF409631.1</u>	639	2e-50	100			
Singlet 15 16R_H10-T7	370	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK372960.1</u> <u>AK365515.1</u>	669	0	99	3'5' Frame 1 Chain B, Crystal Structure Of L-Proline Dehydrogenase From P.Horikoshii <u>1Y56 B</u>	26.9	4.6
		Triticum aestivum cDNA, clone: SET5_P09, cultivar: Chinese Spring <u>AK331055.1</u>	549	5e-153	94	5'3' Frame 3 Chain A, Crystal Structure Of Cathepsin B From Trypanosoma Brucei <u>3MOR_A</u>	26.9	3.4

						5'3' Frame 2	26.9	4.1
						Chain A, Glycerate Kinase From Neisseria Meningitidis (Serogroup A) <u>1TO6_A</u>		
Singlet 16	326	Hordeum vulgare	505	1e-139	100	3'5' Frame 2	28.5	0.83
16R_H11-T7		mRNA for predicted protein <u>AK355686.1</u>				Chain A, The Structure Of Cbb3 Cytochrome Oxidase <u>3MK7_A</u>		
		Triticum aestivum cDNA, clone: WT012_B05, cultivar: Chinese Spring <u>AK335101.1</u>	411	2e-111	91	5'3' Frame 3 Chain A, Crystal Structure Of The Kif1a Motor Domain Complexed With Mg- Adp <u>115S_A</u>	27.7	1.3
		PREDICTED: Brachypodium distachyon ubiquitin- conjugating enzyme E2 32- like (LOC100831984)). mRNA XM_003558027. 1	313	6e-82	86			
Singlet 17 3R_F07-T7	141	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK356301.1</u> Hordeum vulgare	261 261	9e-67 9e-67	100	3'5' Frame 1 Chain A, Crystal Structure Of A Galactose Specific Lectin From Artocarpus Hirsuta In Complex With Methyl- A-D-Galactose	24.3	3.4
		subsp. vulgare cDNA clone <u>AK252840.1</u>				<u>ITOQ_A</u>		
		<u>AK249713.1</u>				Chain A, Crystal Structure Of Potassium-Independent Plant Asparaginase <u>2GEZ_A</u>	24.6	3.4
Singlet 18 3R_F06-T7	62	-	-	-	-	-	-	-
Singlet 19 3R_F05-T7	362	Hordeum vulgare subsp. vulgare mRNA for predicted protein	664	0	99	5'3' Frame 1 (AAT_I superfamily) Chain A, Crystal	142	2e-40
		AK359363.1 Hordeum vulgare				Structure Of Alanine Aminotransferase From Hordeum vulgare <u>3TCM_A</u>		-
		subsp. vulgare cDNA clone <u>AK250046.1</u>	664	0	99	Chain A, Human Alanine	122	2e-33
		Deschampsia antarctica clone Dacor 1.7 alanine aminotransferase mRNA, 3' UTR and partial cds	464	2e-127	90	Aminotransferase 2 In Complex With Plp <u>3IHJ_A</u>		

		<u>AY090542.1</u>						
Singlet 20 2R_A02-T7	182	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357796.1</u> <u>AK356829.1</u> <u>AK356794.1</u> <u>AK359673.1</u>	331	9e-88	100	3'5' Frame 2 Chain A, The Structure Of Cbb3 Cytochrome Oxidase <u>3MK7_A</u> 5'3' Frame 3 Chain A, Crystal Structure Of The Kif1a Motor Domain Complexed With Mg- Adp <u>115S_A</u>	28.5	0.83
Singlet 21 3R_C03-T7	57	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK357990.1</u> <u>AK353670.1</u> Hordeum vulgare	89.8 89.8	le-15 le-15	95 95	3'5' Frame 3 Chain A, The Crystal Structure Of Isocitrate Dehydrogenase KinasePHOSPHATAS E From E. Coli <u>3EPS_A</u>	24.4	2.1
		cDNA clone <u>AK253070.1</u> <u>AK251217.1</u>						
Singlet 22 3R_A07-T7	186	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK369022.1</u> <u>AK367942.1</u>	241	2e-60	97	3'5' Frame 2 Chain B, Crystal Structure Of An Intact Type Ii Dna Topoisomerase: Insights Into Dna Transfer Mechanisms <u>2ZBK_B</u>	25.8	1.9
						Chain A, Structure Of Topoisomerase Subunit <u>1MX0_A</u> <u>1MU5_A</u>	25.8	2.0
Singlet 23 2R_G12-T7	255	Hordeum vulgare subsp. vulgare mRNA for predicted protein <u>AK370222.1</u>	472	8e-130	100	-	-	-
Singlet 24 2R_B02-T7	197	Hordeum vulgare subsp. vulgare cDNA clone <u>AK251768.1</u> Hordeum vulgare subsp. vulgare cDNA clone <u>AK253063.1</u>	363 350	4e-97 3e-93	100	3'5' Frame 1 Chain A, 2.76 Angstrom Crystal Structure Of A Putative Glucose-1- Phosphate Thymidylyltransferase From Bacillus Anthracis In Complex With A Sucrose. <u>3HL3_A</u>	25	4.0
		Hordeum vulgare partial mRNA for chlorophyll a/b-binding protein <u>AJ006296.1</u>	351	8e-94	99			

Singlet 25	27	-	-	-	-	-	-	-
2R_D03-T7								

ARPA BİTKİSİNİN GÖVDESİNDEN CAP3 PROGRAMIYLA ELDE EDİLEN KONTİGLERİ OLUŞTURAN cDNA'LAR VE SAYILARI

CAP3	programıyla	oluşturulan	17	adet	kontigin	oluşumuna	totalde	614	cDNA
katılm	ıştır.								

CAP3 Kontigleri	Toplam cDNA Sayısı	Oluşturan cDNA'lar
Kontig 1	6 adet	9458944
		9458069
		9458444
		9458425
		9458830
		9458643
Kontig 2	3 adet	9458962
		9458500
		9458363
Kontig 3	53 adet	945883
		9458903
		9458154
		9458424
		9458653
		9458621
		9458483
		9458435
		9458637

	9458649
	9458582
	9458035
	9458921
	9458173
	9458942
	9458455
	9458811
	9458003
	9458642
	9458448
	9458419
	9458146
	9458908
	9458917
	9458946
	9458805
	9458841
	9458847
	9458618
	9458471
	9458459
	9458329
	9458367
	9458356
	9458378
	9458098
	9458127
	9458849
	9458174
	9458814
	9458482
	9458941
	9458026
	9458029

		9458109
		9458600
		9458568
		9458115
		9458101
		9458326
		9458478
		9458124
		9458487
Kontig 4	5 adet	9458010
		9458042
		9458314
		9458332
		9458824
Kontig 5	3 adet	9458004
		9458016
		9458795
Kontig 6	2 adet	9458006
		9458317
Kontig 7	114 adet	9458000
		9458388
		9458892
		9458933
		9458364
		9458384
		9458012
		9458302
		9458018
		9458316
		9458417
		9458120
		9458809
		9458848
		9458785

	9458339
	9458606
	9458481
	9458430
	9458639
	9458436
	9458164
	9458652
	9458103
	9458931
	9458924
	9458893
	9458461
	9458056
	9458052
	9458319
	9458300
	9458497
	9458037
	9458850
	9458641
	9458106
	9458951
	9458305
	9458816
	9458779
	9458565
	9458627
	9458617
	9458426
	9458504
	9458480
	9458421
	9458484
	9458361

	9458345
	9458368
	9458327
	9458366
	9458358
	9458389
	9458349
	9458131
	9458099
	9458130
	9458184
	9458128
	9458119
	9458094
	9458073
	9458040
	9457988
	9458958
	9458778
	9458143
	9458169
	9458002
	9458454
	9458845
	9458798
	9458499
	9458929
	9458020
	9458930
	9458501
	9458901
	9458776
	9458159
	9458113
	9458784

		9458107
		9458453
		9457987
		9458832
		9458853
		9458629
		9458493
		9458343
		9458105
		9458157
		9458589
		9458048
		9458796
		9458141
		9458057
		9458633
		9458324
		9457997
		9458456
		9458965
		9458966
		9458354
		9458654
		9458021
		9458008
		9458306
		9458318
		9458476
		9458383
Kontig 8	367 adet	9458418
		9458110
		9458362
		9458165
		9458611
		9458852

	9458180
	9458370
	9458353
	9458133
	9458151
	9458027
	9458163
	9458579
	9458503
	9458625
	9457989
	9458181
	9458804
	9458176
	9458488
	9458631
	9458468
	9458412
	9458033
	9458017
	9458046
	9458449
	9458889
	9458973
	9458950
	9458381
	9458092
	9458970
	9458427
	9458149
	9458312
	9458344
	9458807
	9458323
	9458045

	9458373
	9457999
	9458333
	9458475
	9458414
	9458420
	9458624
	9458940
	9458918
	9458957
	9458655
	9458897
	9458097
	9458322
	9458423
	9458340
	9458050
	9458969
	9458968
	9458846
	9458139
	9458076
	9458882
	9458887
	9458172
	9458320
	9458839
	9458855
	9458581
	9458772
	9458612
	9458616
	9458829
	9458817
	9458372

	9458640
	9458413
	9458022
	9458828
	9458462
	9458638
	9458187
	9458352
	9458186
	9458505
	9458635
	9458492
	9458376
	9458309
	9458348
	9458112
	9458078
	9458777
	9458390
	9458310
	9458387
	9458104
	9457998
	9458375
	9457996
	9458821
	9458974
	9458815
	9458032
	9458574
	9458911
	9458840
	9458446
	9458614
	9458896

	9458299
	9458935
	9458630
	9458386
	9458834
	9458843
	9458495
	9458457
	9458902
	9458790
	9458806
	9458844
	9458081
	9458598
	9458385
	9458079
	9458794
	9458615
	9458603
	9458578
	9458359
	9458064
	9458773
	9458607
	9458955
	9458915
	9458792
	9458066
	9458434
	9458788
	9458975
	9458914
	9458646
	9458799
	9458775

	9458588
	9458474
	9458301
	9458152
	9458025
	9458932
	9458952
	9458789
	9458623
	9458560
	9458162
	9458111
	9458147
	9458102
	9458905
	9458943
	9458913
	9458954
	9458019
	9458590
	9458597
	9458572
	9458594
	9458570
	9458585
	9458608
	9458460
	9458428
	9458451
	9458360
	9458311
	9458341
	9458355
	9458330
	9458117

	9458121
	9458065
	9458024
	9457992
	9458063
	9458055
	9458023
	9458007
	9457991
	9458070
	9458062
	9458014
	9458013
	9458028
	9458059
	9458891
	9458766
	9458904
	9457993
	9458049
	9458586
	9458150
	9458491
	9458934
	9458818
	9458108
	9458831
	9458791
	9458783
	9458567
	9458604
	9458439
	9458350
	9458334
	9458926

	9458949
	9458916
	9458928
	9458912
	9458768
	9458801
	9458793
	9458769
	9458823
	9458767
	9458854
	9458774
	9458837
	9458765
	9458827
	9458787
	9458566
	9458619
	9458506
	9458498
	9458442
	9458489
	9458465
	9458433
	9458472
	9458440
	9458469
	9458429
	9458411
	9458369
	9458321
	9458328
	9458335
	9458303
	9458342

	9458325
	9458331
	9458338
	9458179
	9458114
	9458161
	9458183
	9458060
	9458927
	9458895
	9458910
	9458894
	9458925
	9458948
	9458884
	9458963
	9458939
	9458922
	9458898
	9458890
	9458937
	9458802
	9458900
	9458053
	9458634
	9458041
	9458584
	9458001
	9458486
	9458074
	9458168
	9458808
	9458142
	9458885
	9458770

	9458502
	9458810
	9458826
	9458577
	9458825
	9458907
	9458117
	9458437
	9458899
	9458599
	9458148
	9458803
	9458812
	9458011
	9458034
	9458158
	9458458
	9458036
	9458134
	9458051
	9458061
	9458466
	9458136
	9458587
	9458562
	9458118
	9458125
	9458044
	9458170
	9458563
	9458144
	9458009
	9458047
	9458583
	9458573

	9458135
	9458054
	9458182
	9458858
	9458313
	9458075
	9458441
	9458644
	9458346
	9458561
	9458571
	9458470
	9458058
	9458043
	9458039
	9458645
	9458569
	9458093
	9458613
	9458595
	9458592
	9458580
	9458596
	9458628
	9458416
	9458077
	9458986
	9458351
	9458473
	9458650
	9458392
	9458377
	9458626
	9458956
	9458601

		9458813
		9458835
		9458648
		9458365
		9458833
		9458919
		9458836
		9458415
		9458610
		9458945
		9458015
Kontig 9	2 adet	9458160
		9458153
Kontig 10	4 adet	9458178
		9458960
		9458485
		9458800
Kontig 11	9 adet	9458379
		9458496
		9458822
		9458138
		9458780
		9458479
		9458622
		9458031
		9458371
Kontig 12	3 adet	9458357
		9458185
		9458431
Kontig 13	10 adet	9458494
		9458030
		9458132
		9458886

		9458155
		9458591
		9458888
		9458347
		9458920
		9458923
Kontig 14	19 adet	9458576
		9458820
		9458909
		9458906
		9458298
		9458068
		9458315
		9458337
		9458786
		9458447
		9458374
		9458072
		9458771
		9458972
		9458463
		9458175
		9458464
		9458651
		9458467
Kontig 15	7 adet	9458605
		9458071
		9458116
		9458432
		9458961
		9458947
		9458336
Kontig 16	3 adet	9458647
		9458307

	9458308
4 adet	9458781
	9458038
	9458838
	9458156
	4 adet

ARPA BİTKİSİNİN GÖVDESİNDEN PHRAP PROGRAMIYLA ELDE EDİLEN KONTİGLERİ OLUŞTURAN cDNA'LAR VE SAYILARI

Phrap	programıyla	oluşturulan	19	adet	kontigin	oluşumuna	totalde	275	cDNA
katılmı	ştır.								

Phrap Kontigleri	Toplam cDNA sayısı	Oluşturan cDNA'lar
Kontig 1	2 adet	9458500
		9458363
Kontig 2	2 adet	9458317
		9458006
Kontig 3	2 adet	9458636
		9458602
Kontig 4	2 adet	9458647
		9458308
Kontig 5	2 adet	9458357
		9458431
Kontig 6	2 adet	9458095
		9458620
Kontig 7	3 adet	9458830
		9458069
		9458944
Kontig 8	3 adet	9458800
		9458178

		9458960
Kontig 9	3 adet	9458795
		9458016
		9458004
Kontig 10	3 adet	9458153
		9458160
		9458971
Kontig 11	4 adet	9458781
		9458038
		9458156
		9458838
Kontig 12	4 adet	9458071
		9458947
		9458432
		9458605
Kontig 13	4 adet	9458314
		9458824
		9458332
		9458010
Kontig 14	6 adet	9458379
		9458822
		9458622
		9458780
		9458496
		9458371
Kontig 15	10 adet	9458494
		9458920
		9458591
		9458155
		9458030
		9458923
		9458886
		9458347

		9458888
		9458132
Kontig 16	12 adet	9458175
		9458464
		9458467
		9458906
		9458651
		9458576
		9458786
		9458771
		9458447
		9458072
		9458820
		9458298
Kontig 17	17 adet	9458077
		9458392
		9458015
		9458415
		9458473
		9458650
		9458945
		9458377
		9458416
		9458610
		9458836
		9458351
		9458626
		9458833
		9458835
		9458919
		9457986
Kontig 18	37 adet	9458417
		9458103
		9458169

		9458639
		9458931
		9458785
		9458012
		9458143
		9458796
		9458461
		9458048
		9458641
		9457997
		9458832
		9458778
		9458384
		9458302
		9458037
		9458388
		9458633
		9458453
		9458454
		9458497
		9458850
		9458933
		9458929
		9458300
		9458499
		9458798
		9458456
		9458654
		9458318
		9458476
		9458306
		9458383
		9458966
Kontig 19	159 adet	9458386

	9458955
	9458885
	9458074
	9458322
	9458812
	9458803
	9458053
	9458828
	9458372
	9457996
	9458640
	9458022
	9458575
	9458050
	9458638
	9458821
	9458427
	9458462
	9458625
	9458413
	9458624
	9458344
	9458001
	9458148
	9458041
	9458777
	9458606
	9458584
	9458186
	9458616
	9458855
	9458817
	9458579
	9458612
	9458950

	9458940
	9458839
	9458172
	9458918
	9458807
	9458631
	9458142
	9458897
	9458079
	9458586
	9458843
	9458019
	9458093
	9458458
	9458036
	9458973
	9458470
	9458595
	9458439
	9458655
	9458846
	9458117
	9458826
	9458049
	9458066
	9458770
	9458061
	9458915
	9458792
	9458136
	9458168
	9458437
	9458487
	9458806
	9458630

	9458034
	9458152
	9458788
	9458789
	9458025
	9458775
	9458571
	9458834
	9458644
	9458818
	9458560
	9458474
	9458952
	9458503
	9458044
	9458125
	9458134
	9458162
	9458147
	9458301
	9458900
	9458969
	9458913
	9458054
	9458858
	9458081
	9458313
	9458598
	9458592
	9458334
	9458611
	9458887
	9458840
	9458613
	9458588

	9458573
	9458623
	9458580
	9458466
	9458118
	9457993
	9458943
	9458076
	9458596
	9458628
	9458441
	9458446
	9458450
	9458707
	9458353
	9458970
	9458844
	9458799
	9458791
	9458067
	9458607
	9458158
	9458434
	9458475
	9458370
	9458362
	9458418
	9458646
	9458165
	9458180
	9458880
	9458811
	9458424
	9458478
	9458003

	9458600
	9458805
	9458035
	9458842
	9458849
	9458173
	9458146
	9458448
	9458642
	9458419
	9458109
	9458908
	9458917
	9458921
	9458582
	9458621
	9458653

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı	:Bahar IŞIK
Doğum Tarihi ve Yeri	: 13.08.1987 / İstanbul
Yabancı Dili	:İngilizce
E-posta	:baharisik_34@hotmail.com

ÖĞRENİM DURUMU

Derece	Alan	Okul/Üniversite	Mezuniyet Yılı
Lisans iyi	Biyoloji	КТО	2008
Lise iyi	Fen	Orhan Cemal Fersoy Lisesi	2004