YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

FOTOVOLTAİK SİSTEMLERDE KULLANILAN YUMUŞAK ANAHTARLAMALI BİR İNVERTER DEVRESİNİN GERÇEKLEŞTİRİLMESİ

Elektrik Mühendisi Hasan Ender YILMAZ

FBE Elektrik Mühendisliği Ana Bilim Dalı Elektrik Makinaları ve Güç Elektroniği Programında Hazırlanan

YÜKSEK LİSANS TEZİ

Tez Danışmanı: Yrd. Doç. Dr. A. Hülya OBDAN (YTÜ)

İSTANBUL, 2010

İÇİNDEKİLER

		Sayfa
SİMGE I	LİSTESİ	iv
KISALT	MA LİSTESİ	vi
ŞEKİL L	İSTESİ	vii
ÇİZELGI	E LİSTESİ	ix
ÖNSÖZ.		X
ÖZET		xi
ABSTRA	\CT	xii
1	GİRİŞ	1
2	FOTOVOLTAİK SİSTEMLERDE KULLANILAN İNVERTERLER	12
3	GERİLİM BESLEMELİ İNVERTERLERDE KULLANILAN SPWM	
	YÖNTEMLERİ	27
3.1 3.2 3.3	Tek Fazlı VSI İnverterlerde SPWM Yöntemleri Üç Fazlı VSI İnverterlerde SPWM Yöntemi Gerilim Beslemeli İnverterlerde Harmonikler	29 31 33
4	KAYIPSIZ PASİF YUMUŞAK ANAHTARLAMA TEKNİKLERİ	35
4.1 4.2	Pasif Yumuşak Anahtarlama Yöntemlerinin Özellikleri Aktif ve Pasif Yumuşak Anahtarlamalı PWM Dönüştürücülerin	35
13	Karşılaştırılması PWM Dönüstürücülerde Anahtarlama Kayınları	36
4.4	Pasif Yumusak Anahtarlamalı Dönüstürücülerde Enerijinin Geri Kazanımı	
4.5	Kayıpsız Pasif Yumuşak Anahtarlamalı İnverter Devresi	40
4.6	Kayıpsız Pasif Yumuşak Anahtarlamalı İnverterin Çalışma Modları	47
4.6.1	Mod 1 $(t_0 - t_1)$	51
4.6.2	Mod 2 $(t_1 - t_2)$	52
4.6.3	Mod 3 (<i>t</i> ₂ - <i>t</i> ₄)	52
4.6.4	Mod 4 $(t_4 - t_5)$	52
4.6.5	Mod 5 (<i>t</i> ₅ - <i>t</i> ₇)	53
4.6.6	Mod 6 (<i>t</i> ₇ - <i>t</i> ₀)	54
4.7	Kayıpsız Pasif Yumuşak Anahtarlamalı İnverter Devresinde Kullanılan Elemanların Seçimi	54
5	LABORATUVARDA GERÇEKLEŞTİRİLEN KAYIPSIZ PASİF YUMUŞ	AK
	ANAHTARLAMALI İNVERTER DEVRESİNİN SİMULASYONU	59
6	LABORATUVARDA GERÇEKLEŞTİRİLEN KAYIPSIZ PASİF YUMUŞ	SAK

ANAHTARLAMALI İNVERTER DEVRESİNİN DENEYSEL SONUÇLARI. 67

7 SONUÇ	76
KAYNAKLAR	77
EKLER	79
Ek 1 ICL8038 Sinüs Üçgen Kare Testere ve Darbe Genişlik Generatörü	
Ek 2 NE531 OPAMP	
Ek 3 IRFP264N MOSFET	
Ek 4 TLP250 MOSFET IGBT Sürme Entegresi	
Ek 5 MUR1560 Hızlı Diyot	
ÖZGEÇMİŞ	

SIMGE LISTESI

а	Dönüştürme oranı
C_{dg}	MOSFET in drain ve gate arasındaki parazitik kondansatörü
C_{ds}	MOSFET in drain ve source arasındaki parazitik kondansatörü
C_{f}	Filtre kondansatörü
$\dot{C_r}$	Sıfır gerilim kondansatörü
C_s	Enerji depolama kondansatörü
Ď	Bağıl iletim süresi
D_{s}	Bastırma diyodu
f_h	İnverter cıkıs gerilimi normallestirilmis harmonik frekansı
f_{α}	İnverter cıkıs frekansı
f_n	İnverter giriş akımı normallestirilmiş harmonik frekanşı
f_{s}	Anahtarlama frekansı
Jo Io	Geri dovum akımı
Labs	İnverter çıkışına bağlı transformatörün sekonder akımı
La	Doğru akım
Ia Ia	Giris akımı
I_{I}^{*}	Hat akımı referansı
	Generatörden akan akım
Im Imm	Maksimum güçü oluşturan akım
1 mpp I.	Cıkıs akımı
	Günes hücresinin ürettiği akım
I_{pn}	Kısa devre akımı
ic.	C. kondansatörü ortalama sari akımı
in	Anahtara ters paralel bağlı divot üzerinden akan akım
in.	Sıfır akım endüktansının akımı
i _{Lr}	Depo endüktansından akan akım
i.	Anahtar akımı
k	Boltzmann sabiti
L.	Filtre endüktansı
Lkaaak	Kacak endüktans
_каçак Lın	Primer endüktansı
L_p L_r	Sıfır akım endüktansı
L_{s}	Enerii depolama endüktansı
m_a	Modülasyon indeksi
т _а Mғ	Normallestirilmis tasivici frekans
Pnom	Nominal güc
a nom	Elektron vükü
\hat{R}_{a}	MOSFET kapı seri direnci
R_{o}^{s}	Yük direnci
Ron	MOSFET iletim direnci
S	Anahtar
\tilde{S}_{a}	Yardımcı anahtar
Szvt	Sıfır gerilim geçis anahtarı
tassis	Anahtarın iletimden cıkmasından kararlı duruma gelinceve kadar gecen süre
t _{off}	Kesime girme süresi
t_{on}	İletime girme süresi
ton rezonance	Rezonans süresi
T	Kelvin cinsinden sıcaklık
T_r	Transformatör
,	

T_s	Anahtarlama periyodu
V_{ab1}	a ve b kolları arasındaki gerilimin efektif değeri
V_{abs}	İnverter çıkışındaki transformatörün sekonder gerilimi
V_{ao}^{*}	İnverter kontrol gerilimi
V_c	Kontrol gerilimi
V_{Cr}	Sıfır gerilim kondansatörünün gerilimi
V_{Cs}	C _s enerji depo kondansatörünün gerilimi
V_{dc}	Doğru gerilim
V_{g}	Kaynak gerilimi
V_m	Dizel generatör gerilimi
V_{mpp}	Maksimum gücü oluşturan gerilim
V_o	Çıkış gerilimi
V_{oc}	Açık devre gerilimi
$V_{plateau}$	MOSFET kapı plateau gerilimi
V_s	Anahtar gerilimi
V_{sin_mak}	Sinüs gerilimin maksimum değeri
$V_{\ddot{u}arcell{c}}$ mak	Üçgen gerilimin maksimum değeri
W _{Cds}	MOSFET'in drain ile source arasındaki parazitik kondansatöründe depo edilen enerii
W_{Cs}	C kondansatöründe depo edilen enerii
Wilstim	İletim kayıpları
W_n	Rezonans frekansı
W_{off}	Kesime girme süresince olusan kavıplar
W_{on}	İletime girme süresince oluşan kayıplar
X_m	Generatör ile yük arasındaki endüktans değeri
Z_n	Rezonans empedansi
δ	Gerilimler arası faz açısı
Ø	Anahtar tetikleme açısı
	·

KISALTMA LİSTESİ

А	Akım birimi
AC	Alternatif akım veya gerilim
ARCP	Yardımcı rezonans komütasyon kutup
С	Elektron yük birimi
CCI	Akım kontrollü inverter
CSI	Akım kaynaklı inverter
DC	Doğru akım veya gerilim
EMI	Elektromanyetik girişim
FF	Doldurma Faktörü
FV	Fotovoltaik
GTO	Kapı sönümlü tristör
Hz	Frekans birimi
Ι	Akım
IGBT	İzole kapılı transistör
J	Joule cinsinden enerji birimi
Κ	Kelvin cinsinden sıcaklık birimi
MATLAB	Matrix laboratory
MOSFET	Metal oksit yarıiletken alan etkili transistör
PWM	Darbe genişlik modülasyonu
Si	Silikon
THD	Toplam harmonik distorsiyon
V	Gerilim
VCI	Gerilim kontrollü inverterler
VSD	Gerilim depo elemanı
VSI	Gerilim kaynaklı inverter

ŞEKİL LİSTESİ

Şekil 1.1	Güneş hücrelerinin çalışma prensibi	3
Şekil 1.2	Güneş hücrelerinin basitleştirilmiş devresi	4
Sekil 1.3	Güneş hücrelerinin V-I ve V-P karakteristiği	4
, Sekil 1.4	FV terimler	5
Şekil 1.5	(a) Şebekeye bağlı olmayan sistem, (b) Karma (hibrit) sistem,	
	(c) Şebekeye bağlı sistem.	6
Şekil 1.6	Güneş seviyesine göre güç-gerilim karakteristiği	7
Şekil 1.7	(a) Yarım köprü inverter, (b) Tam köprü inverter	8
Şekil 1.8	Üç fazlı inverter	9
Şekil 1.9	Zorlamalı komütasyonlu inverter	11
Şekil 2.1	(a) Gerilim beslemeli VCI, (b) Gerilim beslemeli CCI	12
Şekil 2.2	Tek fazlı hat komütasyonlu inverter	. 13
, Sekil 2.3	İki yönlü inverter sistemi	14
Sekil 2 4	Yüksek frekans transformatörlü inverter	. 14
Sekil 2.5	Tek fazlı varım könrü üc seviyeli inverter	15
Şekil 2.6	İzolasyonsuz VSI	16
Şekil 2.0	Ízolasvonsuz CSI	16
Şekil 2.7 Səlzil 2.8	Buck dönüstürücülü push pull inverter	17
Şeklî 2.8	Flyback dönüştürücülü inverter sistemi	17
Şekil 2.9	Sabaltava hačlı yumuşalı anahtarlamalı talı fazlı tam könrü alım	1 /
Şekli 2.10	Şebekeye bağlı yumuşak anantariaman tek fazir tam kopru akim	10
0.1.1.0.11	Desiement FV guç sistemi	18
Şekii 2.11	ZCS ve ZVS yukseitici DC-DC donuşturucu ile tek fazil tam dalga	10
G 1 1 A 4 A	yumuşak anahtarlamalı <i>LLCC</i> inverterli FV sistem	19
Şekil 2.12	ZVT-PWM yükseltici DC-DC dönüştürücü ile tek fazlı tam dalga	
	yumuşak anahtarlamalı <i>LLCC</i> inverterli FV sistem	20
Şekil 2.13	FV sistemlerde kullanılan paralel rezonans yumuşak anahtarlamalı tek	
	fazlı tam köprü inverter	21
Şekil 2.14	FV sistemlerde kullanılan ARCP tek fazlı yarım köprü inverter devresi	22
Şekil 2.15	FV sistemlerde kullanılan şebekeye bağlı ve şebekeye bağlı olmadan	
	çalışabilen yüksek verimli yumuşak anahtarlamalı inverter	23
Şekil 2.16	FV sistemlerde kullanılan aktif yardımcı rezonans devreli tek fazlı	
,	yarım köprü yumuşak anahtarlamalı inverter devresi	25
Sekil 3.1	Tek fazlı yarım köprü VSI çalışma bölgeleri	28
, Sekil 3.2	(a) Tek fazlı tam köprü VSI. (b) İki kutuplu SPWM vöntemi ve inverter	
·; ·	cikis gerilimi	29
Sekil 3 3	Tek kutunlu SPWM vöntemi ve inverter cıkıs gerilimi	30
Şekil 3.4	(a) Üc fazlı inverter (b) SPWM vöntemi ve inverter çıkış gerilimi	31
Şekil / 1	(a) Aktif yamusak anabtarlamalı yükseltici dönüstürücü (b) Pasif	
ŞUKII 4.1	vumusak anahtarlamalı vükseltici dönüstürücü	
Sekil 4 2	Enerij geri kazanım devreleri: (a) Forward transformatörlü hağlantı	
Şekii 1.2	(b) Büyük değerli kondansatör (C) hağlantı	40
Sekil 13	Enerii geri kazanım devresinin ana anahtara hağlanma sekilleri	+0
Şekil 4.5	Tak fazlı tam könrü inverterde sıfır gerilim kondensetörlerinin verleşimi	12
ŞUKII 4.4 Salzil 4 5	Voyingiz posif yamuşak analtarlamalı invertor devresinde kullender	42
ŞCKII 4.J	kayıpsız pasır yunuşak anantanan mivener devresinde kunannan	12
Q = 1 = 1 A C	$(-) il_{1} + \dots + 1 = 1 = 1 = 1 = 1 = 1 = 1$	43
Şekii 4.6	(a) neume ve kesime yumuşak olarak giren tek fazlı tam kopru	4 -
	inverter, (b) lietime yumuşak olarak giren tek fazlı tam köprü inverter	45

Şekil 4.7	(a) İletime ve kesime yumuşak olarak giren tek fazlı yarım köprü	
-	inverter, (b) İletime yumuşak olarak giren tek fazlı yarım köprü inverter	46
Şekil 4.8	Kayıpsız pasif yumuşak anahtarlamalı inverterin çalışma modları	47
Şekil 4.9	Kayıpsız pasif yumuşak anahtarlamalı inverterin teorik dalga şekilleri	51
Şekil 4.10	Farklı çıkış güçlerinde C _s kondansatörü üzerindeki gerilim	57
Şekil 5.1	Sert anahtarlamalı inverter güç devresi simulasyonu	59
Şekil 5.2	Yumuşak anahtarlamalı inverter güç devresi simulasyonu	59
Şekil 5.3	SPWM kontrol devresi simulasyonu	60
Şekil 5.4	Sinüs generatör devresi simulasyonu	60
Şekil 5.5	Üçgen generatör devresi simulasyonu	61
Şekil 5.6	İnverter sinyalleri ve ölü zaman	61
Şekil 5.7	Yumuşak anahtarlamalı inverterde S_4 anahtarına ait akım ve gerilim	
3	değişimleri	62
Şekil 5.8	Sert anahtarlamalı inverterde S_4 anahtarına ait akım ve gerilim	
3	değişimleri	62
Şekil 5.9	Yumuşak anahtarlamalı inverterde S_4 anahtarının iletime girme anındaki	
3	akım ve gerilimdeki değişimler	63
Sekil 5.10	Sert anahtarlamalı inverterde S_4 anahtarının iletime girme anındaki akım	
3	ve gerilimdeki değisimler	63
Sekil 5.11	Yumusak anahtarlamali inverterde S_4 anahtarının iletimden cıkma	
3	anındaki akım ve gerilimdeki değişimler	64
Şekil 5.12	Sert anahtarlamalı inverterde S_4 anahtarının iletimden çıkma anındaki	
3	akım ve gerilimdeki değişimler	64
Şekil 5.13	Sert anahtarlamalı inverter devresi çıkış gerilimi	65
Şekil 5.14	Yumuşak anahtarlamalı inverter devresi çıkış gerilimi	65
Şekil 5.15	Sert anahtarlamalı inverter devresi yük akımı	66
Şekil 5.16	Yumuşak anahtarlamalı inverter devresi yük akımı	66
Şekil 6.1	Kayıpsız pasif yumuşak anahtarlamalı inverter devresi uygulaması	67
Şekil 6.2	Referans gerilim	68
Şekil 6.3	Üçgen kontrol gerilimi	68
Şekil 6.4	MOSFET sürme sinyalleri ve ölü zaman	69
Şekil 6.5	Sert anahtarlama modunda S_1 anahtarının iletime girme anındaki akım	
3	ve gerilimdeki değişimler	73
Şekil 6.6	Yumuşak anahtarlama modunda S_l anahtarının iletime girme anındaki	
3	akım ve gerilimdeki değişimler	73
Sekil 6.7	Sert anahtarlama modunda S_1 anahtarının kesime girme anındaki akım	
3	ve gerilimdeki değişimler	74
Sekil 6.8	Yumusak anahtarlama modunda S_1 anahtarının kesime girme anındaki	
,	akım ve gerilimdeki değisimler	74
Sekil 6.9	S_1 anahtarı üzerindeki akım ve gerilim değisimleri	75
Sekil 6.10	Yumusak anahtarlamalı inverter cıkıs gerilimi	75
Şekil 6.11	Sert anahtarlamalı inverter çıkış gerilimi.	75

ÇİZELGE LİSTESİ

Cizelge 4.1	Aktif ve pasif vöntemlerde kavıplar	
Çizelge 4.2	Tek fazlı yarım ve tam köprü inverterler için yumuşak anahtarlamalı	
, .	topolojiler	41
Çizelge 6.1	Uygulamada kullanılan endüktans ve kondansatör değerleri	69

Sayfa

ÖNSÖZ

"Fotovoltaik Sistemlerde Kullanılan Yumuşak Anahtarlamalı Bir İnverter Devresinin Gerçekleştirilmesi" başlıklı yüksek lisans çalışmamı teorik ve pratik olarak tamamlamış bulunmaktayım.

Tez çalışmamdaki katkılarından dolayı tez danışmanım Yrd. Doç. Dr. A. Hülya OBDAN'a ve diğer tüm hocalarıma teşekkürü bir borç bilirim.

ÖZET

Günümüzde benzin, yağ, nükleer enerji vb. ana güç kaynaklarının azalması tehdidi ve fiyatlarındaki artış bizleri yenilenebilir enerji kaynaklarına çekmektedir. FV ve rüzgar enerji sistemleri gibi sistemler günümüzde cazip hale gelmiştir. Bu sistemlerden FV sistemler güneş enerjisini direk olarak elektrik enerjisine çevirerek elektrik enerjisi sağlamaktadır.

Sistemin ilk kurulma maliyeti fazla görünse de son zamanlarda yarı iletken teknolojisinin gelişmesi, yarı iletken fiyatlarının düşmesi ve yeni tekniklerin ortaya çıkmasıyla maliyet azaltılabilir. Bu tezde şebekeye bağlı olmayan FV sistemlerde kullanılan pasif elemanlarla gerçekleştirilmiş yumuşak anahtarlamalı inverter tekniği anlatılmıştır. Ana güç sistemine ek olarak sadece 11 pasif eleman kullanılarak yumuşak anahtarlama sağlanmış ve anahtarlama kayıpları büyük ölçüde azaltılarak sistemin güvenilirliği arttırılmıştır. Ayrıca sistemin teorik analizi yapılmış ve bir uygulama devresiyle teorik sonuçlar doğrulanmıştır.

Anahtar Kelimeler: Kayıpsız Pasif Yumuşak Anahtarlamalı İnverter, Sert Anahtarlamalı İnverter, Sinüsoidal Darbe Genişlik Modülasyonu, Fotovoltaik, Sıfır Akımda Anahtarlama, Sıfır Gerilimde Anahtarlama.

ABSTRACT

Today, reduction of oil, fuel, nuclear energy ect. and their high prices draw us to renewable energy sources. Such as wind and photovoltaic systems are attractive today. Photovoltaic systems convert sun light into electrical energy and supply electrical energy.

Installment of this systems are seem expensive but today, with devolopment of semiconductor technologies, reduction of semiconductor device's prices and appearing new techniques, their prices can be reduce. In this thesis, passive lossless soft-switching inverter technique for photovoltaic stand-alone systems is explained. Soft-switching is achieved with in addition to 11 passive devices to power inverter system. Thus, switching losses are reduced and system reliability is increased. In addition to this, system's teorical analysis is done and results are confirmed with an application.

Keywords: Passive Lossless Soft-Switching Inverter, Hard Switching Inverter, Sinusoidal Pulse Width Modulation, Photovoltaic, Zero Current Switching, Zero Voltage Switching.

1. GİRİŞ

Günümüzde gerçekleştirilmiş birçok fotovoltaik (FV) sistem mevcuttur. İnverterler FV sistemlerde bir arabirim gibi iş görür. İnverter giriş gerilimi doğru gerilim (DC) olduğundan Fotovoltaik kaynak direkt olarak invertere bağlanabilir veya inverter ile FV kaynak arasına DC-DC dönüştürücü, batarya gibi sistemler yerleştirilerek giriş gücünün kontrolü yapılabilir. FV hücreler DC akım veya gerilim kaynağı olduğundan bu enerjinin Alternatif akım (AC) kaynağa dönüştürülmesi gerekir. Bu dönüşümü yapan dönüştürücüler şüphesiz inverterlerdir. İnverterler çok çeşitli sınıflandırılabilirler.

Besleme kaynağı açısından,

- Gerilim kaynaklı inverterler (VSI)
- Akım kaynaklı inverterler (CSI)

Faz sayısına göre,

- Tek fazlı inverterler
- Üç fazlı inverterler

Kontrol açısından,

- Kare dalga inverterler
- Boşluklu (kısmi) kare dalga inverterler
- Darbe genişlik modülasyonlu (PWM) inverterler

İletim süresine göre,

- 180° iletimli inverterler
- 120° iletimli inverterler

Tek fazlı inverterler devre yapısına göre,

- Yarım köprü inverterler
- Tam köprü inverterler
- Push-pull inverterler

İnverter çıkışından saf sinüse yakın bir gerilim elde edilmek istenir. Ancak gerçekte inverter çıkışı saf sinüs olmayıp harmonikler içerir. Bu harmoniklerin yok edilmesi gerekir. Bu yüzden geliştirilmiş birçok inverter kontrol yöntemi bulunur. Bu yöntemler ile harmonik içeriği azaltmak mümkün olmaktadır. Ayrıca yumuşak anahtarlama tekniklerinin gelişmesi ile yüksek frekanslarda çalışma sağlanmakta ve uygun yöntemlerin kullanılmasıyla harmonik bozulmalar en aza indirilebilmektedir.

FV sistemler birçok sistemin bir araya gelmesinden oluşur ve sistemin kurulum maliyeti yüksektir. Bu nedenle maliyeti en aza indirecek ve güvenilir yöntemlerin tercih edilmesi gereklidir. Yüksek frekanslarda çalışmak ve maliyeti azaltmak için geliştirilmiş pasif yumuşak anahtarlamalı inverter teknikleri mevcuttur. Sadece pasif elemanların kullanılması ile hem maliyet azaltılmakta hem de yumuşak anahtarlama sağlanarak yüksek frekanslara çıkılmaktadır. Yüksek frekanslarda uygun tekniklerin kullanılması ile inverter çıkışından saf sinüse yakın bir gerilim elde edilmektedir.

FV sistemlerde kullanılan inverterlerin verimli bir şekilde çalışması güneş hücrelerinin karakteristikleri, yük karakteristikleri ve kullanılan yöntem iyi analiz edilmelidir.

Güneşten yayılan ışığın atmosferdeki güç yoğunluğu 1.373kW/m²'dir. Bu enerjinin bir kısmı dünyanın atmosferi tarafından absorbe edilir bir kısmı da kaybolur. Dünya yüzeyindeki ışığın güç yoğunluğu tropikal yerlerde öğle zamanlarında 1kW/m²'dir. FV teknolojisi bu ışığın kullanılabilir elektrik enerjisine dönüştürülmesiyle cazip hale gelmiştir. FV sistemlerin temel elemanı güneş hücreleridir (solar cell). Güneş hücreleri güneş ışığını doğrudan elektrik enerjisine dönüştürür. Buradan üretilen elektrik, aydınlatma, su pompalama, soğutma, telekomünikasyon ve televizyon gibi uygulamalarda kullanılabilir. Güneş hücrelerinin elektrik üretmesi FV etki diye bilinen quantum-mekanik isleme dayanır. Günes hücreler p ve ntabakalardan meydana gelir ve yarı iletkenlerden diyota benzer. Şekil 1.1'de tipik bir kristal günes hücresinin enine kesiti görülmektedir. Günes hücreler 0.2-0.3 mm kalınlığında iki adet farklı elektriksel özellikteki katmanların birleştirilmesinden meydana gelmiştir. Bu katmanlar saf olmayıp bor ve fosfor gibi elementlerin katılmasıyla oluşturulmuştur. Elektrik alan jonksiyonda meydana gelir. Jonksiyon bu iki katman arasında kalan kısımdır. Güneş ışığı (foton) güneş hücrelerine düşerse güneş hücrelerinin uçlarında gerilim meydana gelir. Bu hücrelerin uçlarına bir yük bağlanırsa bu yükten bir akım akar. Hücrede oluşan akım (I_{ph}) hücreve gelen ışığın yoğunluğuyla doğru orantılıdır (Nayar vd, 2001; Treble, 1980).

Şekil 1.1 Güneş hücrelerin çalışma prensibi (Nayar vd., 2001).

Güneş hücrelerinin basitleştirilmiş bir devresi Şekil 1.2'de görülmektedir. Şekilde diyot ile paralel bağlı bir akım kaynağı güneş hücresini temsil etmektedir. Bu devreye bağlı potansiyometre ise yükü ifade eder. Çıkış uçları kısa devre edilirse uç (çıkış) gerilimi ve diyot üzerindeki gerilimin sıfır olduğu görülür. Güneş ışığından üretilen tüm akım çıkışa akar. Hücre akımı maksimum (I_{sc}) olur. Eğer yük direnci arttırılırsa diyot uçlarındaki gerilimde artar. Akımın bir kısmı diyot üzerinden geçer ve çıkış akımı azalır. Eğer çıkış açık devre yapılırsa çıkışta akım gözlenmez. Üretilen tüm akım diyot üzerinden akar. Akım ve gerilim arasındaki ilişki diyot karakteristiği eşitliğinden bulunabilir.

$$I = I_{ph} - I_0 (e^{\frac{qV}{kT}} - 1) = I_{ph} - I_d$$
(1.1)

(1.1)'deki I_{ph} güneş hücresinden üretilen akım, V yük uçlarındaki gerilim, T kelvin cinsinden sıcaklık değeri, I_0 ise geri doyma akımıdır. q elektron yükü olup değeri,

 $q=1.6.10^{-19}$ C'dur.

(1.1)'deki k ise boltzman sabiti olup değeri,

k=1.38.10⁻²³ J/K'dir (Nayar vd, 2001; Treble, 1980).

Şekil 1.2 Güneş hücrelerinin basitleştirilmiş devresi (Nayar vd., 2001).

Güneş hücrelerinin yapımı için birçok yarı iletken materyal uygundur. Yaygın olarak silikon (Si) materyaller kullanılır (Nayar vd., 2001).

- Tek kristal (monocrystalline) hücre
- Çok kristal (polycrystalline) hücre
- Şekilsiz (amorphous) hücre

Güneş hücreler Şekil 1.3'de görülen karakteristik üzerindeki herhangi bir noktada çalışabilir. Bu eğrinin iki önemli noktası açık devre gerilimi (V_{oc}) ve kısa devre akımıdır (I_{sc}). Açık devre gerilimi sıfır akımdaki maksimum devre gerilimi, kısa devre akımı ise sıfır gerilimdeki maksimum devre akımıdır. Si güneş hücrelerinin deneysel olarak ölçülen santimetre kare başına açık devre gerilimi 0.6-0.7V ve kısa devre akımı 20-40mA'dir. Kısa devre akımı aydınlatma seviyesi ile doğru, açık devre gerilimi ise aydınlatma seviyesinin logaritmasıyla doğru orantılıdır (Nayar vd., 2001).

Şekil 1.3 Güneş hücrelerin V-I ve V-P karakteristiği (Nayar vd., 2001).

Şekil 1.3'de görüldüğü gibi güneş hücresi tek bir noktada maksimum gücü meydana getirmektedir. Bu nokta maksimum güç noktası (P_{mpp}) olarak adlandırılır. Gücü maksimum yapabilmek için güneş hücresinin üç parametresinin maksimum yapılması gerekir. Bu üç parametre sırasıyla açık devre gerilimi (V_{oc}), kısa devre akımı (I_{sc}) ve doldurma faktörüdür (FF). Güneş hücrelerinin yapısal seri direnci ve jonksiyon yapısının güneş hücrelerinin performansına olan etkisi FF ile belirlenir. FF aşağıdaki eşitlikle tanımlanır.

$$FF = \frac{V_{mpp}I_{mpp}}{V_{oc}I_{sc}}$$
(1.2)

Güneş hücrelerinde FF genellikle 0.6-0.8 dir (Nayar vd, 2001; Treble, 1980).

Si güneş hücreleri tipik olarak 0.5V üretir. FV hücreler birbirlerine seri bağlanarak FV modülleri meydana getirirler. FV paneller ise bu modüllerin birleşiminden meydana gelir. Terimler Şekil 1.4'te görülmektedir (Nayar vd, 2001; Treble, 1980).

Şekil 1.4 FV terimler (Nayar vd., 2001).

Kısa devre akımı sıcaklıkla bir miktar lineer olarak artar ancak açık devre gerilimi ve çıkış gücü sıcaklık ile büyük miktarda azalır (Nayar vd, 2001; Treble, 1980).

FV güç sistemleri aşağıdaki gibi sınıflandırılabilir.

- Şebeye bağlı olmayan (stand-alone) sistemler
- Karma (hibrit) sistemler
- Şebekeye bağlı olan sistemler

FV güç sistem tipleri blok diyagramları Şekil 1.5'te görülmektedir (Nayar vd., 2001).

Şekil 1.5 (a) Şebekeye bağlı olmayan sistem, (b) Karma (hibrit) sistem, (c) Şebekeye bağlı sistem (Nayar vd., 2001).

Şebekeye bağlı olmayan FV güç sistemleri gece ve güneş ışınlarının az olduğu zamanda talepleri karşılamak için enerjiyi depo etmelidir. Enerji depolama işlemi bataryalar (akü) ile yapılır.

Bataryanın aşırı şarj veya aşırı deşarj olmasının engellenmesi için bataryada depolanan enerji düzenli bir şekilde kontrol edilmelidir. FV sistemlerdeki oluşan hataların nedenlerinden birisi de bataryalardır. Şarj kontrolörleri şarjı düzenleyerek bataryanın aşırı şarj veya deşarj olmasını engeller. Genellikle üç çeşit şarj kontrolörü kullanılır (Nayar vd., 2001).

- Seri şarj regülatörü
- Şönt (paralel) şarj regülatörü
- DC-DC dönüştürücüler

Değişken yüklerde anahtarlamalı DC-DC dönüştürücü devreleri kullanılmaktadır. Birçok DC-DC dönüştürücü tipi bulunmaktadır.

- Düşürücü (Buck) Dönüştürücü
- Yükseltici (Boost) Dönüştürücü
- Düşürücü-Yükseltici (Buck-Boost) Dönüştürücü

FV dizinin maksimum güç noktasını izleyen kontrolör maksimum güç noktası izleyicisi (MPPT) olarak bilinir. Şekil 1.6'da 200W/m² ile 1000W/m² arasındaki güneş seviyesi için FV sistem çıkış gücü ve gerilimi grafiği görülmektedir. Şekil 1.6'daki eğrilerin maksimum noktalarının birleştirildiği çizgi maksimum güç alanı olarak isimlendirilir. FV hücreler pahalı olduğundan FV dizinin maksimum güçte çalıştırılması gerekir. Sistemin uygun bir biçimde çalışması için yük karakteristiğinin, FV dizinin maksimum güç noktası alanıyla uyumlu olması gerekir (Nayar vd., 2001).

Şebekeye bağlı olmayan birçok FV sistemde (230V veya 110V 50Hz veya 60Hz sistemlerde) AC ye ihtiyaç vardır. Şebekeye bağlı olmayan sistemler güç katına bağlı olarak, genellikle 12-24-48-96-110 veya 230V DC gerilim ile çalışır (Nayar vd., 2001).

İnverterin güç katında birçok yarı iletken (MOSFET, IGBT vb.) güç elemanı kullanılabilir. Düşük güçlü uygulamalarda genellikle MOSFET kullanılır. Yüksek frekanslarda anahtarlama kayıpları diğer yarı iletkenlere göre daha düşüktür. İletim gerilim düşümü azdır (2V civarlarında). IGBT'ler genellikle orta güçlü uygulamalarda kullanılırlar (Nayar vd., 2001; Bodur, 2010). Şebekeye bağlı olmayan sistemlerdeki inverterler genellikle gerilim beslemelidir. Tek fazlı veya üç fazlı olabilirler. Genellikle kare dalga, boşluklu kare dalga ve darbe genişlik modülasyon yöntemleri kullanılmaktadır. Kare dalga veya kısmi kare dalga inverterler güç araçlarını, dirençli ısıtıcıları veya akkor flamanlı lambaları besler. Bu sistemler için kaliteli sinüs gerilimi gerekli değildir. Güvenilirlikleri ve verimleri iyidir. Ancak evlerimizdeki bir çok uygulama distorsiyonu az sinüs dalga gerilimiyle çalışmaktadır. Genellikle, sinüs gerilimi üreten sistemler, şebekenin olmadığı alanlarda bulunmalıdır. İnverterden sinüs gerilimi elde etmek için genellikle darbe genişlik modülasyon (PWM) yöntemleri kullanılmaktadır (Nayar vd., 2001; Mohan vd., 2003; Bodur, 2010).

Tek fazlı sistemin genel şeması Şekil 1.7'de görülmektedir. Şekil 1.7 (a)'da yarım köprü inverter (b)'de ise tam köprü inverter görülmektedir. Yarım köprü inverterde S_1 ve S_2 anahtarları ve birbirlerine seri bağlı C_1 ve C_2 kondansatörleri DC kaynağa paralel olarak bağlanmıştır. Kondansatörlerin uçlarındaki gerilim giriş geriliminin yarısıdır. Her bir kondansatör uçlarındaki gerilim $V_{dc}/2$ 'dir. S_1 ve S_2 anahtarları periyodik olarak anahtarlanarak AC gerilim üretmektedirler. L_f ve C_f filtresi yüksek frekanslı harmonikleri azaltarak çıkışta sinüsoidal gerilim elde edilmesini sağlar. İnverter çıkışı yüke bir transformatör üzerinden bağlanabilir. Şekil 1.7 (b)'deki sistem de (a)'daki sisteme benzer ancak dört adet anahtar bulunmaktadır. Aynı giriş gerilimi için tam köprü inverterin çıkış gerilimi yarım köprü inverterin iki katıdır. Ayrıca tam köprü inverter anahtarlama elemanları aynı yükte daha az akım taşımaktadır (Nayar vd., 2001, Mohan vd., 2003, Bodur, 2010).

Şekil 1.7 (a) Yarım köprü inverter, (b) Tam köprü inverter (Nayar vd., 2001).

Üç fazlı inverter güç devresi Şekil 1.8'de görülmektedir. İnverter çıkışı yüke üç fazlı transformatör üzerinden bağlanmıştır (Transformatör üçgen-yıldız bağlıdır). Transformatörün sekonder tarafındaki yıldız noktası nötr noktasını oluşturmaktadır. Bu sisteme üç fazlı veya tek fazlı bağlantı gerçekleştirilebilmektedir. Alternatif olarak dönüştürücüyü besleyen kaynak

birbirine seri bağlı iki adet kondansatörden meydana geliyor ise kondansatörlerin orta noktası nötr noktası olarak kullanılabilir (Nayar vd., 2001).

Şekil 1.8 Üç fazlı inverter (Nayar vd., 2001).

Nominal inverter gücünün (P_{nom}) %10 altındaki yüklerde verimin düştüğü gözlemlenir. Sistemin en iyi şekilde çalışması için inverter içerisindeki güç kayıplarının az olması gerekmektedir. Son zamanlarda şebekeye bağlı FV sistemlerde kullanılan inverterlerdeki gelişmeler ile düşük güçlerde sistem veriminin arttırılabildiği gözlemlenmiştir (Nayar vd., 2001).

FV-dizel hibrit enerji sistemleri FV dizi ve bir inverterden meydana gelen, dönüşümlü olarak veya motor sürücülü generatör ile beraber çalışarak elektrik enerjisi üreten sistemlerdir. Kurulumlarına göre aşağıdaki gibi sınıflandırılabilir (Nayar vd., 2001).

- Seri hibrit enerji sistemleri
- Anahtarlamalı hibrit enerji sistemleri
- Paralel hibrit enerji sistemleri

Şebekeye bağlı olan inverterler sadece FV diziden açığa çıkan enerjiyi en verimli olacak şekilde kullanmayı sağlamakla kalmaz ayrıca çıkış enerjisinin şebeke ile tamamıyla senkronize olarak çalışmasını da sağlar. Bu sistemler bataryasız olabileceği gibi bataryalıda olabilir. Bataryalı sistemler bataryasız sistemlere göre daha güvenlidir. Şebekeye bağlı bu tür sistemlere olan rağbet son yıllarda artış göstermiştir. Bu tür sistemler yükün güneş enerjisi ile

beslenmesini ve açığa çıkan fazla enerjinin şebekeye geri aktarılmasını sağlar. Şebekenin bir parçası olarak kabul edilebilir. FV sistemler şebekeye bağlanırsa güç akışı iki yönde olur. FV sistemin ürettiği enerjinin yetersiz olduğu zamanlarda yükü şebeke besler. FV sistemin ürettiği fazlalık enerji de şebeke tarafından çekilir. Dünyanın bir çok yerinde bu tür sistemler kamu kuruluşları tarafından teşvik edilmektedir (Nayar vd., 2001).

Şebekenin enerjisi arıza nedeniyle kesildiğinde yükler, FV generatörden beslenmeli ve FV generatör şebekeden ayrılmalıdır. Şebekede meydana gelen kısa devre akımı veya aşırı akım inverter üzerinden akarak FV sisteme zarar verir. Bu nedenle inverterin kontrolü yapılmalıdır. Şebekenin gerilimi, empedansı, frekanstaki değişimler ve harmonikler ölçülerek inverterin kontrolü yapılır (Nayar vd., 2001).

FV sistemlerin kurulmasıyla birlikte ekstra iletim hatlarına ve transformatörlere gerek kalmaz. Ayrıca şebekeye reaktif güç desteği sağlarlar ve VAR kompansatörlerin üzerindeki yükü azaltırlar (Nayar vd., 2001).

Şebekeye bağlı olan FV sistemlerde kullanılan inverterler, FV dizi ile şebeke arasındaki anahtar bağlantılardır. Bir arabirim gibi iş görerek FV diziden üretilen DC akımı veya gerilimi şebeke için gerekli AC akıma veya gerilime çevirir. FV sistemin davranışı büyük oranda güç birimlerine bağlıdır. İnverterler sinüs dalgası üretmeli, çıkış frekansı ve gerilimi şebeke ile uyumlu olmalı ve MPPT ile FV diziden maksimum güç alabilmelidir. İnverter giriş gerilimi maksimum V-I eğrisi elde edilene kadar değişir. İnverter çıkışı şebeke ile aynı fazda olmalı ve inverter çıkışı frekans ve gerilim değişimlerine karşı kontrol edilmelidir. Tipik bir şebeke bağlı inverterde kontrol yöntemi olarak PWM kullanılabilir (Nayar vd., 2001).

İnverter girişindeki kaynak tipleri pasif elemanlar yardımıyla birbirlerine dönüştürülebilir. İnverterin DC tarafında gerilim kaynağının bulunması inverterin gerilim kaynaklı olarak, akım kaynağının bulunması akım kaynaklı olarak adlandırılmasını sağlar. İnverterin girişine bir kondansatör paralel bağlanırsa VSI elde edilir. Eğer inverter girişine seri olarak bir endüktans bağlanırsa CSI elde edilir. FV diziler DC akım kaynağına oldukça benzemektedir. Bir çok inverter gerilim kaynaklı olmasına rağmen FV modül akım kaynağıdır. CSI motor sürücülerinde yaygın olarak kullanılmasına rağmen FV sistemlerde kullanımı azdır. Ancak günümüzde akım kaynaklı FV sistemlere olan ilgi artmıştır. PWM'li VSI popüler olarak kullanılmaktadır (Nayar vd., 2001; Bodur, 2010).

FV güç sistemlerinde kullanılan zorlamalı komütasyonlu inverterlerde PWM yöntemleri kullanılabilir. Bu tip inverterler Şekil 1.9'da görüldüğü gibidir.

Şekil 1.9 Zorlamalı komütasyonlu inverter (Nayar vd., 2001).

İnverter köprüsü uygulamanın cinsine bağlı olarak transistör, MOSFET, IGBT ve GTO dan meydana gelebilir. Yüksek güçlü uygulamalarda GTO kullanılır. Yüksek frekanslı uygulamalarda ise (20kHz v.b) IGBT'ler şebekeye bağlı inverterlerde yaygın olarak kullanılmaktadır. Günümüzdeki inverterler zorlamalı komütasyonlu sinüs dalga inverterlerdir (Nayar vd., 2001; Bodur, 2010).

FV sistem ile geleneksel sistem arasında seçim yapılmış olabilir. FV sistemin seçilmesinin önemli nedenleri vardır. Bunlardan bazıları aşağıda belirtilmiştir.

- Transformatörler maksimum verimde çalışır.
- Şebekenin zayıf olan reaktif güç ihtiyacı karşılanır.

Son yıllarda FV sistemlerde kullanılan inverterlerle ilgili birçok çalışma yapılmıştır. Çalışmaların kronolojik sırasına göre FV sistemlerde kullanılan inverterlerde aktif ve pasif yumuşak anahtarlama teknikleri kullanılmıştır. Bu çalışmalardan bazıları bölüm 2'de özet olarak anlatılmıştır

2. FOTOVOLTAİK SİSTEMLERDE KULLANILAN İNVERTERLER

Günümüzde şebekeden bağımsız ve şebeke etkileşimli birçok FV sistemde inverterlerle ilgili makale ve yayınlar mevcuttur. Son yıllarda yumuşak anahtarlama tekniklerinin gelişmesi ile yumuşak anahtarlamalı inverter topolojileri ortaya çıkmıştır. FV sistemlerde kullanılan bazı inverter sistemleri aşağıda belirtilmiştir.

Şekil 2.1 (a)'da çift yönlü gerilim beslemeli tek fazlı tam dalga gerilim ve faz kaydırma kontrollü inverter görülmektedir. FV panellerde oluşan gücün transferi, dönüştürücü gerilimi ve şebeke gerilimi arasındaki faz açısı (δ) kontrol edilerek sağlanmıştır. İnverter gerilimi şebeke gerilimi ile uyum içerisindedir. Şekil 2.1 (b)'de ise aynı inverter akım kontrollü (CCI) olarak çalışmaktadır. Buradaki amaç ise darbe genişlik modülasyon teknikleri kullanılarak şebekeye verilen akımın aktif ve reaktif bileşenlerinin kontrol edilmesidir (Nayar, 2001).

Şekil 2.1 (a)-Gerilim beslemeli VCI, (b)-Gerilim beslemeli CCI (Nayar vd., 2001).

FV güç sistemlerinde kullanılan hat komütasyonlu inverterler genellikle elektrik-motor uygulamalarında kullanılır. Güç devresi genellikle tristörlerden meydana gelir. Kontrol algoritması maksimum güç noktası izleme kontrolünü gerektirir. Şekil 2.2'de tek fazlı devresi görülmektedir (Nayar, 2001).

Şekil 2.2 Tek fazlı hat komütasyonlu inverter (Nayar vd., 2001).

Sürücü devresinde tetikleme açıları doğrultucu modundan ($0^{\circ} < \emptyset < 90^{\circ}$) inverter moduna ($90^{\circ} < \emptyset < 180^{\circ}$) geçirilmelidir. 6 veya 12 darbeli inverterler kullanılabilir. 12 darbeli inverterler daha az harmonik içerir. Tristörler arasında komütasyonun doğru bir şekilde gerçekleşebilmesi için şebeke ile bağlantı empedansının küçük olması gerekir. Hat komütasyonlu inverterler ucuzdur ancak güç kaliteleri düşüktür. Eğer uygun filtreleme yapılmazsa şebekeye çok miktarda harmonik verir. Güç faktörleri de düşüktür ve güç faktörünün iyileştirilmesi için ekstra kontrol sistemleri gerektirir. Elektriksel izolasyonu sağlamak için transformatörler kullanılabilir. İnverter tarafından meydana gelen harmonikleri bastırmak için filtreler ve güç faktörünü düzeltmek için reaktif güç kompanzasyonu gerekir (Nayar, 2001).

İki yönlü inverterler şebekeye uzak olan alanlarda yaygın olarak kullanılır. Bu tipteki inverterler DC gerilimi AC ye (inverter modu) veya AC gerilimi DC ye (doğrultucu modu) dönüştürürler. Şebekeye bağlı olmayan FV sistemlerde kullanılan dizel generatör, batarya ve inverterden oluşan hibrit sistemlerdeki tek fazlı, çift yönlü inverter devresi Şekil 2.3'de görülmektedir. Şarj kontrol devresi FV dizi ile batarya arasındadır. İnverter dört adet anahtarla gerçekleştirilmiş tek fazlı tam köprü inverterdir. İnverter anahtarları (S_1 - S_4) MOSFET veya IGBT olabilir. Çapraz anahtarlar (S_1 - S_4 veya S_2 - S_3) SPWM yöntemiyle anahtarlanmaktadır. Böylece inverter sinüsoidal gerilim üretmektedir. L_f endüktansları ile C_f kondansatörü filtre elemanları olup harmonik içeriği azaltarak çıkış gerilimini sinüsoidale yaklaştırır. Birçok inverter çıkışta 50 veya 60Hz transformatör kullanarak çıkış gerilimini istenilen gerilim değerine yükseltir. Şekildeki sistemde dizel generatör ve inverter yüke paralel bağlanarak yükü beslemektedirler. Dizel generatör ile inverter birbirlerinden X_m endüktansı ile ayrılmaktadır. İnverter ile dizel generatör arasında iki yönlü güç akışı sağlanmaktadır. V_{abs} ile V_m arasındaki faz açısı (δ) kontrol edilerek güç akışı kontrol edilir. Dönüştürücünün çıkış

gerilimi (V_{abs}) PWM darbeleri ile kontrol edilir (Nayar vd., 2001).

Şekil 2.3 İki yönlü inverter sistemi (Nayar vd., 2001).

PWM ile kontrol edilen standart FV inverterlerde kullanılan 50Hz transformatörler sistemin ağırlığını ve fiyatını arttırır. Anahtarlama frekansının 20kHz in üzerinde olduğu uygulamalarda ferit nüveli transformatörler iyi seçim olabilir. Yüksek frekans transformatörü kullanan şebeke bağlantılı FV sistem Şekil 2.4'de görüldüğü gibidir (Nayar vd., 2001).

Şekil 2.4 Yüksek frekans transformatörlü inverter (Nayar vd., 2001).

Yüksek frekanslı inverterin girişindeki kondansatör filtre gibi çalışır. PWM ile kontrol edilen yüksek frekanslı inverter, transformatörün primerinden yüksek frekanslı AC gerilimin geçmesini sağlar. Sekonder gerilimi yüksek frekanslı doğrultucu ile doğrultulur. DC gerilim alçak geçiren endüktans filtre ile inverter girişine uygulanır ve inverter ile tekrar AC gerilime

çevirilerek şebekeye verilir. Hat akımının sinüsoidal olması ve hat gerilimi ile aynı fazda olması istenir. Bunu elde edebilmek için hat gerilimi ölçülerek hat akım için referans işaret (I_L^*) elde edilir. Bu referans akım transformatör dönüştürme oranıyla yükseltilerek yüksek frekanslı inverter çıkışı için referans akım elde edilir. Böylece akım kontrol yöntemiyle yüksek frekanslı inverter çıkış akımı kontrol edilir. Bu tip inverterler, izolasyon amacıyla kullanılır. Özellikle 3kW altı şebekeye bağlı çatı üstü uygulamalarında yüksek frekanslı transformatörler izolasyon için tercih edilir (Nayar vd., 2001).

Çok seviyeli inverterler çoklu panellerin gerilim kademeleri oluşturmakta kullanıldığı uygulamalarda kullanılmaktadır. Bu gerilim seviyeleri birleştirilerek çıkışta basamak şeklinde AC gerilim elde edilebilir. Sistem karmaşık değildir. Filtrelenmesi kolaydır. Tek fazlı yarım köprü üç seviyeli inverter devresi Şekil 2.5'de görülmektedir. Sistemde görüldüğü gibi transformatör bulunmamaktadır. Ayrıca bu tür sistemler verim ve fiyat bakımından oldukça iyidir (Calais ve Agelidis, 1998).

Şekil 2.5 Tek fazlı yarım köprü üç seviyeli inverter (Calais ve Agelidis, 1998).

FV güç sistemlerinde kullanılan izolasyonsuz gerilim beslemeli inverterlerde bir dizi düşük gerilimli FV panel veya bir adet yüksek gerilim çıkışlı FV panel, DC-DC dönüştürücü ve gerilim beslemeli inverter üzerinden şebekeye bağlanır. Şekil 2.6'da devresi görülmektedir. PWM yöntemleri kullanılarak çıkışta istenilen AC gerilim elde edilir. İnverter çıkışı filtrelenerek anahtarlamadan dolayı meydana gelen istenmeyen harmonik bileşenler yok edilir (Hirachi vd., 1998).

Şekil 2.6 İzolasyonsuz VSI (Hirachi vd., 1998).

FV güç sistemlerinde kullanılan izolasyonsuz akım beslemeli inverter devresi Şekil 2.7'de görülmektedir. Akım beslemeli inverter FV panel ve şebeke arasında bir arabirim olarak iş görmektedir. Sistemin maliyeti düşüktür ve verimi oldukça iyidir. Uygun kontrol yöntemleri kullanılarak akımdaki harmonikler azaltılabilir (Hirachi vd., 1998).

Şekil 2.7 İzolasyonsuz CSI (Hirachi vd., 1998).

FV güç sistemlerinde kullanılan düşürücü (buck) dönüştürücülü push-pull inverterlerde FV paneller şebekeye düşürücü DC-DC dönüştürücü ve push-pull inverter ile bağlanır. Şekil 2.8'de sistemi görülmektedir. Düşürücü dönüştürücü yüksek frekans ile anahtarlanır. Dönüştürücü çıkışından regüleli gerilim elde edilir. Girişteki düşük gerilim transformatör yardımıyla yükseltilir. Push-pull inverter, giriş DC gerilimi şebekeye uygun AC gerilime dönüştürür. Ayrıca çıkış gerilimin frekansı da şebeke ile uygun değere getirilir (Boegli ve

Ulmi, 1986).

Şekil 2.8 Buck dönüştürücülü push-pull inverter (Boegli ve Ulmi, 1986).

FV güç sistemlerinde kullanılan flyback dönüştürücülü inverter güç sistemleri FV panelin ürettiği gerilimi yükseltir. Sistem Şekil 2.9'da görülmektedir. Sistem karmaşık değildir. Kurulumu kolaydır. PWM kontrol yöntemleri uygulanır. Şebekenin olmadığı alanlarda kullanımı yaygındır (Nayar vd., 2001).

Şekil 2.9 Flyback dönüştürücülü inverter sistemi (Nayar vd., 2001).

Şekil 2.10'da görülen akım beslemeli inverter devresinde yumuşak anahtarlanmanın sağlanabilmesi için yardımcı rezonans anahtarlar (aktif devre) inverter girişine paralel olarak bağlanır.

Şekil 2.10 Şebekeye bağlı yumuşak anahtarlamalı tek fazlı tam köprü akım beslemeli FV güç sistemi (Oishi vd., 2002).

Yardımcı rezonans devrede aktif anahtar olarak IGBT kullanılmıştır. Kontrol SPWM yöntemiyle yapılmıştır. DC girişe paralel olarak GTO veya MOSFET bağlanarak tristörlü inverterler PWM yöntemiyle çalıştırılabilirler. Ancak aktif devrede iletime girme ve iletimden çıkma anlarında kayıplar meydana gelir. Şekil 2.10'da girişe paralel olarak bağlanmış aktif rezonans devre, güç akışının FV hücrelerden şebekeye doğru olduğu durumlarda çalışır. Devrenin çıkışında bir *LC* devresi oluşturularak yüksek frekanslı harmonikler bastırılır. Girişteki darbe akımlarını engellemek için akım kaynağına (L_d endüktansı) seri olarak bir L_o , C_o devresi bağlanmıştır. Bu devrenin frekansı şebeke frekansının iki katı olacak şekilde ayarlıdır.

FV hücrede üretilen akım, tristörlerin kesime girmeleri anında, ana devreden yardımcı rezoanans devreye geçer. Böylece tristörler iletime ve kesime sıfır akım (ZCS) ile girer. Yardımcı anahtarlar S_{a1} ve S_{a2} de sıfır akımda (ZCS) iletime ve sıfır gerilimde (ZVS) kesime girer. L_r endüktansı ana devrenin girişine seri olarak bağlanırsa devrenin çalışmasında bir değişme olmaz. Tek fazlı bu sistem, üç fazlı sistemlere de uygulanabilir (Oishi vd., 2002).

FV güç sistemlerinde kullanılan şebekeye bağlı tek fazlı tam köprü *LLCC* inverter sistemi Şekil 2.11'de görülmektedir.

Şekil 2.11 ZCS ve ZVS yükseltici DC-DC dönüştürücü ile tek fazlı tam dalga yumuşak anahtarlamalı *LLCC* inverterli FV sistem (Amorndechaphon vd., 2009).

İnverter devresi girişinde pasif elemanlardan meydana gelen bir yükseltici DC-DC dönüştürücü bulunmaktadır. İnverter çıkışında ise birbirine seri ve paralel bağlı L ve C elemanlarından meydana gelmiş bir rezonans devresi bulunmaktadır. Pasif bastırma devresi DC-DC dönüştürücünün ve *LLCC* rezonans devresi inverter güç anahtarlarının yumuşak olarak anahtarlanmasını sağlar.

Yükseltici devredeki pasif elemanlar ile oluşturulmuş devre kayıpsız bir devredir. Bir rezonans endüktansı (L_r), bir rezonans kondansatörü (C_r), bir tampon kondansatör (C_{rs}) ve bastırma diyotları (D_{s1} , D_{s2} , D_{s3}) meydana gelmiştir. Kayıpsız bastırma devresi Şekil 2.11'de inverterin girişinde gölgelendirilmiş alanda görülmektedir. L_r , C_r ve C_{rs} elemanlarının arasındaki rezonans ile güç anahtarının yumuşak olarak iletime ve kesime girmesi sağlanır. Güç anahtarı sıfır akımda (ZCS) iletime ve sıfır gerilimde (ZVS) kesime girer ancak güç anahtarı üzerinde çok az akım ve gerilim stresi oluşur. C_{rs} kondansatörü L_r ve C_r içerisindeki enerjiyi yönetir. Her bir anahtarlama periyodunda C_{rs} içerisindeki enerji yüke tamamen aktarılır ve böylece L_r ve C_r deki enerji kaybolmaz. Yükseltici devrenin diyotu da sıfır akımda (ZCS) iletime ve sıfır gerilimde (ZVS) kesime girer (Amorndechaphon vd., 2008).

LLCC rezonans inverter tek fazlı tam köprü bir inverterdir. Şekil 2.11'de inverter çıkışında gölgelendirilmiş alanda görülmektedir. Kontrol olarak kare dalga kontrol yöntemi kullanılır. Bu nedenle inverterin çıkış gerilimi kare dalgadır.

 $V_{ab} = \begin{cases} V_{dc} & 0 < wt < \pi \\ -V_{dc} & \pi < wt < 2\pi \end{cases}$

LLCC rezonans devresinin çıkışında kararlı sinüsoidal gerilim elde etmek ve yumuşak anahtarlamanın sağlanabilmesi için rezonans devresi elemanları AC şebeke frekansını (50Hz)

sağlayacak şekilde seçilmelidir. Bu sağlanırsa rezonans devrenin girişindeki kare dalga gerilim ile çıkışındaki sinüsoidal gerilim aynı fazda olur ve tüm inverter anahtarları sıfır gerilimde (ZVS) iletime ve kesime girer (Amorndechaphon vd., 2009).

Tek fazlı tam dalga *LLCC* yumuşak anahtarlamalı inverter devresi Şekil 2.12'de görülmektedir. Devrede görüldüğü gibi inverter girişinde ZVT-PWM'li yükseltici DC-DC dönüştürücü bulunmaktadır. İnverter çıkışında ise *LLCC* rezonans devresi bulunmaktadır.

Şekil 2.12 ZVT-PWM yükseltici DC-DC dönüştürücü ile tek fazlı tam dalga yumuşak anahtarlamalı *LLCC* inverterli FV sistem (Amorndechaphon vd., 2008).

İnverter giriş gerilimi genliği (V_{dc}) yükseltici DC-DC dönüştürücü ile kontrol edilir. Yükseltici dönüştürücü gerilim geri beslemeli olup inverter giriş gerilim regülasyonunu sağlar. Yükseltici DC-DC dönüştürücü içerisinde bulunan aktif anahtarlı rezonans devresi yükseltici devrenin ana anahtarının (S) ve yardımcı anahtarının (S_{ZVT}) yumuşak olarak anahtarlanmasını sağlar. Ana anahtar üzerinde her hangi bir akım ve gerilim stresi meydana gelmez. Yardımcı anahtar üzerinde de gerilim stresi oluşmaz ancak akım stresi oluşur. İnverter çıkışından *LLCC* rezonans devresi ile kararlı sinüsoidal gerilim elde edilir. İnverter içerisinde bulunan anahtarlar da ZVS ile iletime ve kesime girer (Amorndechaphon vd., 2008).

Yardımcı aktif rezonans devresi, bir aktif anahtar (S_{ZVT}), bir rezonans endüktansı (L_r), bir rezonans kondansatörü (C_r) ve bir diyottan (D_I) meydana gelir. Yardımcı anahtar sıfır akımda (ZCS) iletime girer. Ana anahtarın (S) sıfır gerilimde (ZVT) anahtarlanmasını sağlar. Yardımcı ve ana anahtarın iletime girme süreleri arasında zaman farkı bulunur. Yardımcı anahtar, ana anahtardan önce iletime sokulur. Kısmı rezonans ile ana anahtar uçlarındaki gerilim sıfıra düşer ve ana anahtarın iletime girme sinyali verilir. L_r endüktansı ana devrenin diyotunun kesime girme süresini belirler. C_r kondansatörünün değeri ana anahtarın çıkış parazitik kondansatörü ile ana anahtarın uçlarına bağlanan bir kondansatörün değerinin toplamıdır. Bu kondansatör ana anahtarın kesime girmesi anında dv/dt yi sınırlayarak ana anahtarın sıfır gerilimde (ZVS) kesime girmesini sağlar (Amorndechaphon vd., 2008). *LLCC* rezonanslı inverter tek fazlı tam dalga bir inverterdir. Anahtarlama frekansı şebeke frekansıdır. DC giriş gerilimini (V_{dc}) çıkışta genliği V_{dc} olan kare dalgaya dönüştürür. *LLCC* rezonans devresi şebeke frekansını (50Hz) sağlayacak şekilde seçilir. Böylece *LLCC* rezonans devresi çıkışından kararlı sinüsoidal gerilim elde edilir. Rezonans devresinin girişindeki kare dalga gerilim ile çıkışındaki sinüsoidal gerilim aynı fazdadır (Amorndechaphon vd., 2008).

Şekil 2.13'de görüldüğü gibi inverter girişine bir aktif anahtar, aktif anahtara paralel ve anahtar iletim yönünde bir diyot ve aktif anahtara seri bir kondansatör bağlanarak inverter anahtarlarının yumuşak olarak anahtarlanması sağlanır.

Şekil 2.13 FV sistemlerde kullanılan paralel rezonans yumuşak anahtarlamalı tek fazlı tam köprü inverter (Kim vd., 2010).

Aktif anahtarın kesime girmesiyle inverter anahtarları sıfır gerilimde (ZVS) iletime ve kesime girer ve anahtarlama kayıpları azalır. Aktif anahtar da sıfır gerilimde (ZVS) iletime ve kesime girer. Paralel Rezonans İnverterin girişindeki devre yükseltici DC-DC dönüştürücüdür. Dönüştürücüde bulunan iki aktif anahtarda sıfır akımda (ZCS) iletime ve sıfır gerilimde (ZVS) kesime girer. DC-DC dönüştürücüdeki anahtarlar üzerinde akım ve gerilim stresleri oluşur. Ayrıca yardımcı anahtara paralel bağlı ve anahtar iletim yönünde olan diyotta sıfır gerilimde (ZVS) kesime girer. İnverter anahtarları ve yardımcı anahtar üzerinde akım ve gerilim stresleri oluşur. Ayrıca yardımcı anahtara paralel bağlı ve anahtar iletim yönünde olan diyotta sıfır gerilimde (ZVS) kesime girer. İnverter anahtarları ve yardımcı anahtar üzerinde akım ve gerilim stresi oluşmaz. İnverterin kontrolü histeresiz akım kontrolüyle sağlanır. Anahtarlama frekansı sabit değildir. Ancak histeresis akım kontrolü, yardımcı anahtar ile senkron çalıştığından anahtarlama frekansı, dönüştürücü katı çalışma frekansı ile sınırlandırılır. Böylece aşırı değerler alması engellenir. Ayrıca çıkış akımı ve gerilimi de senkrondur (Kim vd., 2010).

Yardımcı rezoanans kutuplu devre (rezonans modülü) iki adet aktif anahtar (S_{a1} , S_{a2}), bir rezonans endüktansı (L_r) ve iki rezonans kondansatörü (C_{r1} , C_{r2}) meydana gelir. Yardımcı rezoanans kutuplu tek fazlı yarım köprü inverter devresi Şekil 2.14'de görülmektedir.

Şekil 2.14 FV sistemlerde kullanılan ARCP tek fazlı yarım köprü inverter devresi (Kim vd., 2007).

Yüksek güçlü ve frekanslı uygulamalarda kullanılır. Kayıplar azdır bu nedenle yüksek frekanslarda çalıştırılabilirler. Verimleri yüksektir. Anahtarlar üzerindeki stresler düşüktür. Şekil 2.14'de görüldüğü gibi inverter girişinde yükseltici DC-DC dönüştürücü vardır. Rezonans modülünde aktif anahtarlar birbirlerine paralel bağlıdır. Rezonans endüktansı (L_r) bu anahtarlara seri bağlıdır. Rezonans kondansatörleri (C_{r1} , C_{r2}) ise inverter anahtarlarına paralel bağlıdır. Yardımcı anahtarlar sadece rezonans anında aktif olarak inverter anahtarlarının sıfır gerilimde (ZVS) iletime ve kesime girmesini sağlar. Devrede bulunan inverter anahtarlarına ters paralel bağlı diyotlar da (D_1 , D_2) sıfır gerilimde (ZVS) iletime ve kesime girer. Diyotların ters toparlanma kayıpları azdır. Yardımcı anahtarlar ise sıfır akımda (ZCS) iletime ve kesime girer (Kim vd., 2007).

Şekil 2.15'de devresi görülen sistem, yüksek frekanslı bir devre, endüktans çifti ve tek fazlı tam dalga inverterden meydana gelmiştir. Sistem hem şebekeye bağlı olarak hem de şebekeden bağımsız çalışabilir (Duan ve Chang, 2008).

Şekil 2.15 FV sistemlerde kullanılan şebekeye bağlı ve şebekeye bağlı olmadan çalışabilen yüksek verimli yumuşak anahtarlamalı inverter (Duan ve Chang, 2008).

Yüksek frekanslı devre bir anahtar ve diyotlardan (D_1, D_2) meydana gelir. Bu devrenin anahtarlama frekansı yüksektir (70kHz v.b). Yüksek frekans kontrolüyle DC giriş akımının (I_d) endüktans çiftine aktarılmasını sağlar. Anahtar üzerindeki gerilim D_1 ve D_2 diyotları ile sınırlandırılır. Çift endüktanslı devre bir ucu birbirine bağlı primer ve sekonder olarak adlandırılmış endüktans çifti (L_p, L_s) ile bir diyottan (D_3) meydana gelmiştir. L_p endüktansı şarj akımlarını sınırlar. L_s endüktansı S_a yardımcı anahtarı kesime girdiğinde iletime girer böylece endüktans çifti bir manyetik anahtar gibi çalışır. Tek fazlı tam köprü inverter devresi ise dört adet anahtar (S_1-S_4) meydana gelir. Bu inverterin anahtarlama frekansı şebeke frekansı olup her bir çapraz kol, her yarım periyotta bağıl iletim süresinin %50 sinden az sinyaller ile tetiklenir. Sistemi şebekeden bağımsız olarak kullanabilmek için inverter çıkış uçlarına bir filtre kondansatörü (C_o) bağlanır. Bu kondansatöre paralel olarak da bir rezonans endüktansı (L_o) bağlanır. Şebeke kesildiğinde C_o kondansatörü yükün enerjisini sağlar. L_o endüktansı sıfır gerilim geçişlerinde C_o kondansatörünün gerilimini değiştirerek inverterin kısa devre olmasını engeller. Ayrıca bu kondansatör ani gerilim darbelerini de engeller. Rezonans endüktansı (L_o) ve filtre kondansatörü (C_o) şebeke frekansını sağlayacak şekilde seçilir. Şebekenin kesintide olmadığı hallerde FV sistemden elde edilen enerji L endüktansı ile şebekeye aktarılır (Duan ve Chang, 2008).

Rezonans endüktansı üzerinden geçen akım az olduğundan bu endüktansta meydana gelecek kayıplar da az olur. Ayrıca yüksek frekanslı devredeki endüktans çifti ile rezonans endüktansının hacimleri de küçüktür çünkü devrenin sirkülasyon akımları küçüktür. Endüktans çifti, sirkülasyon enerjisini ve inverter anahtarları üzerindeki gerilim streslerini engeller. Genellikle inverter çıkışına bağlanan hacimli endüktans hem sistemin ağırlığını arttırır hem de bakır kayıplarına neden olur. Ayrıca yüksek frekanslı harmonikler oluşabilir. Ani yüklerde ve lineer olmayan yüklerde problemler meydana gelir. CSI metodu ile çıkış kondansatörünün şarjı sağlanarak yüksek frekanslı harmonikler ve EMI engellenir. Ancak hacimli endüktans gerektirmesinden dolayı endüktansta akım ve inverter anahtarlarında gerilim stresleri meydana gelir. Bu nedenle yüksek gerilim değerli elemanlar veya bastırma devreleri kullanılması gerekir. Bununla beraber verim de düşer (Duan ve Chang, 2008).

Yüksek frekanslı devredeki anahtar ZCS ile iletime girer. Bu anahtarın kesim anındaki kayıpları da azdır. Uçlarında gerilim stresi yoktur. Çıkış geriliminin giriş geriliminden büyük olduğu durumlarda D_2 diyotu iletime girerek anahtar uçlarındaki gerilimin giriş gerilimini (V_d) aşmasını engeller. D_1 diyotu üzerindeki gerilim giriş gerilimini geçmez. Bu nedenle bu diyot giriş gerilimine göre seçilir. D_3 diyotunun gerilimi endüktans çiftinin sarım oranı (a) ile orantılı olduğundan sarım oranına göre seçilmesi gerekir. Diyotların ters toparlanma kayıpları da azdır. D_1 ve D_3 diyotları sert olarak iletime girer. Bu diyotların kesime girmeleri ise sıfır akımda (ZCS) gerçekleşir (Duan ve Chang, 2008).

$$a = \frac{N_s}{N_p}$$
(2.1)

İnverter anahtarlarının anahtarlama frekansı şebeke frekansıdır. İnverter anahtarlarının anahtarlama kayıpları da azdır. Ayrıca devrenin iletim kayıpları da azdır. Gerçekte endüktans çiftleri arasında kaçak endüktans olduğundan anahtarlar üzerinde stresler meydana gelir (Duan ve Chang, 2008).

Çıkış geriliminin toplam harmonik distorsiyonu (THD) azdır. Çıkış gerilimi ve harmonik distorsiyon yük değişimlerinden çok fazla etkilenmez. Hatta lineer olmayan yüklerde de iyi sonuçlar verir (Duan ve Chang, 2008).

Şekil 2.16'da devresi görülen tek fazlı yarım köprü yardımcı rezonans komütasyon kutup inverter devresine benzer.

Şekil 2.16 FV sistemlerde kullanılan aktif yardımcı rezonans devreli tek fazlı yarım köprü yumuşak anahtarlamalı inverter devresi (Shiraishi vd., 2004).

Yardımcı rezonans devresi ana rezonans kondansatörleri (C_{r1}, C_{r2}) , yardımcı rezonans kondansatörleri (C_{r3} , C_{r4}), rezonans endüktansları (L_{r1} , L_{r2}), yardımcı anahtarlar (S_{a1} , S_{a2}) ve bastırma diyotları (D₃, D₄, D₅, D₆) meydana gelmiştir. Ana rezonans kondansatörleri inverter anahtarlarına (ana anahtar) paralel bağlıdır. Bu kondansatörler çift yönlüdür. Yardımcı anahtarlar ve yardımcı endüktanslar ana rezonans kondansatörlerine paralel bağlıdır. Yardımcı rezonans kondansatörleri ve bastırma diyotları (D3, D4) rezonans endüktansına paralel bağlıdır. Enerji geri kazanım diyotlarının bir ucu yardımcı rezonans kondansatörü ile bastırma diyotları (D_3 , D_4) arasına bağlı iken diğer ucu kaynağa bağlıdır. Bu devrede elektrolitik kondansatörlere gerek yoktur. Böylece sistemin güvenilirliği artmaktadır. Ana anahtarların kesime girmesiyle anahtar uçlarındaki ana rezonans kondansatörlerinin lineer olarak sarj olması sonucunda ana anahtarlar sıfır gerilimde (ZVS) kesime girer. Yardımcı anahtar ve bu anahtara seri olarak bağlı rezonans endüktansı, ana diyotlar üzerindeki yük akımının rezonans endüktansına geçmesini sağlar. Yardımcı anahtar ve rezonans endüktansı üzerindeki akım sıfırdan lineer olarak artar. Böylece yardımcı anahtar sıfır akımda (ZCS) iletime girer. Ana diyotun akımının sıfır olmasıyla ana anahtarlar sıfır gerilimde (ZVS) iletime girer. Yardımcı anahtar, ana anahtarın kesime girmesinden bir süre sonra iletime girer. Bunun yapılmasındaki amaç rezonans akımlarını azaltmak ve rezonans devrede maydana gelen iletim kayıplarını azaltarak sistemin verimini arttırmaktır. Yardımcı anahtarın kesime girmesiyle yardımcı kondansatör sıfır gerilimden lineer olarak şarj olarak yardımcı anahtarın sıfır gerilimde (ZVS) kesime girmesini sağlar. Yardımcı kondansatörün kaynak gerilimine eşit olmasıyla rezonans endüktansının üzerindeki fazla enerji geri kazanım diyotları (D5 veya D_6), rezonans endüktansları (L_{r1} veya L_{r2}) ve bastırma diyotları (D_3 veya D_4) üzerinden kaynağa geri verilir. İnverter anahtarlarının birinin kesime girme anından diğer anahtarın iletime girme anına kadar geçen sürede yardımcı devrenin yumuşak anahtarlamayı sağlaması için gerekli olan koşulları sağlaması gerekir. Örneğin S_1 anahtarının kesime girdiğini varsayarsak Cr_2 kondansatörünün deşarj süresi, D_2 diyotunun kesime girme süresi ve L_{r1} , C_{r1} ve C_{r2} arasında meydana gelen rezonans süresinin iki anahtar arasındaki kesim süresinden küçük olması gerekir (Shiraishi vd., 2004).

Kullanılan aletlerin birçoğu sinüsoidal gerilim ile çalışır. Bu nedenle inverter çıkış geriliminin sinüsoidale yakın olması ve harmonik içeriğinin az olması istenir. SPWM yöntemi ile çıkış gerilimini sinüsoidale yaklaştırmak mümkündür. Ayrıca bu yöntem ile elde edilen çıkış geriliminin filtre edilmesi de kolaydır. Gerçekleştirilen yumuşak anahtarlamalı inverter devresi VSI ve SPWM kontrollü olduğundan bölüm 3'de VSI inverterlerde kullanılan SPWM yöntemleri anlatılmıştır. Bölüm 3'de anlatılan SPWM yöntemlerinde çıkış geriliminin kontrolü lineer bölgede sağlanmaktadır.

3. GERİLİM BESLEMELİ İNVERTERLERDE KULLANILAN SPWM YÖNTEMLERİ

Endüstride yaygın olarak kullanılan kontrol yöntemlerinden birisidir. Kontrol, sinüsoidal kontrol gerilimi ile yüksek frekanslı üçgen gerilimin karşılaştırılmasıyla sağlanır. Sinüsoidal gerilime temel gerilim, modülasyon gerilimi veya kontrol gerilimi denir. Üçgen gerilime ise taşıyıcı dalga denir. Bu sinyallerin bir karşılaştırıcı ile karşılaştırılmasıyla yarı iletken elemanların sinyalleri elde edilir. Çıkış gerilimi sinüsoidale yaklaşır. Ayrıca çıkış geriliminin ve giriş akımının harmonik seviyesi düşüktür. Ancak kare dalga çalışmaya göre bir periyot içerisinde anahtarlama sayısı fazla olduğundan anahtarlama kayıpları fazladır.

Sinüsoidal gerilimin genliği ve frekansı değiştirilerek çıkış gerilimin efektif değeri ve frekansı ayarlanır. Gerilim ve frekans inverter içinde kontrol edilir. Sinüsoidal gerilimin genliğinin üçgen gerilimin genliğini geçmediği bölgede çıkış geriliminin genliğinin kontrolü lineer olarak sağlanır. Bu bölgede çıkış gerilimini oluşturan ve ifadesi aşağıda verilen modülasyon indeksi veya modülasyon genlik oranı tanımlanır.

$$m_{a} = \frac{V_{sin_mak}}{V_{iic_mak}}$$
(3.1)

Çıkış geriliminin efektif değeri linner bölgede ($m_a \le 1$) tek fazlı yarım köprü inverter için aşağıdaki gibi tanımlanır. Anahtarlar V_d gerilimine maruz kalır ve anahtarlar üzerindeki maksimum akım, çıkış akımının maksimum değeridir.

$$\mathbf{V}_{ao1} = \mathbf{m}_a \; \frac{\mathbf{V}_d}{2\sqrt{2}} \tag{3.2}$$

Tek fazlı tam köprü inverter için çıkış geriliminin efektif değerinin ifadesi $m_a \le 1$ için aşağıdaki gibi tanımlanır. Anahtarlar V_d gerilimine maruz kalır ve anahtarlar üzerindeki maksimum akım, çıkış akımının maksimum değeridir.

$$V_{ab1} = m_a \frac{V_d}{\sqrt{2}}$$
(3.3)

Push-pull inverterin sekonder geriliminin efektif değeri $m_a \leq 1$ için aşağıdaki gibi tanımlanır. Anahtarlar $2V_d$ gerilimine maruz kalır ve anahtarlar üzerinden geçen maksimum akım I_{o_mak}/a olur. *a* dönüştürme oranı olup primer sarım sayısının sekonder sarım sayısına bölümü ile ifade edilir.

$$a = \frac{N_p}{N_s}$$
(3.4)

$$V_{abs1} = m_a \frac{V_d}{\sqrt{2}a}$$
(3.5)

Üç fazlı tam köprü inverter için faz kolları arasındaki gerilimin efektif değeri $m_a \le 1$ için aşağıdaki gibi tanımlanır.

$$V_{ab1} = V_{bc1} = V_{ca1} = m_a \sqrt{\frac{3}{2}} \frac{V_d}{2}$$
 (3.6)

Şekil 3.1'de tek fazlı yarım köprü gerilim beslemeli inverterin modülasyon indeksine bağlı çalışma aralıkları görülmektedir.

Şekil 3.1 Tek fazlı yarım köprü VSI çalışma bölgeleri (Espinoza, 2001).

Şekil 3.1'de görülen $\widehat{V_{o1}}$ ifadesi efektif çıkış geriliminin maksimum değeridir ve yarım köprü inverter için $\frac{2}{\pi} \int_{0}^{\pi} \frac{V_d}{2} \sin(wt) dwt$ ile ifade edilir. V_d ifadesi ise DC giriş geriliminin değeridir. $m_a \leq 1$ linner çalışma bölgesi, $m_a > 1$ modülasyon üstü çalışma, lineer olmayan çalışma veya aşırı modülasyon ve $m_a \ge 3$ kare dalga çalışma bölgeleridir. Lineer çalışmada çıkış geriliminin efektif değeri modülasyon oranı ile lineer olarak kontrol edilir. Aşırı modülasyonda inverter çıkış gerilimi modülasyon oranı ile lineer olarak değişmez ve bu orana göre daha az artar. Kare dalga çalışmada çıkış gerilimi kare dalgadır ve maksimum değerdedir (Espinoza, 2001; Mohan vd., 2003; Bose, 2006; Bodur, 2010).

3.1 Tek Fazlı VSI İnverterlerde SPWM Yöntemleri

Çok çeşitli SPWM yöntemleri vardır. Bu yöntemlerden bazıları aşağıda ele alınmıştır. Şekil 3.2'de iki kutuplu SPWM yönteminin dalga şekilleri ve çıkış gerilimi gösterilmiştir.

Şekil 3.2 (a) Tek fazlı tam köprü VSI, (b) İki kutuplu SPWM yöntemi ve inverter çıkış gerilimi (Bose, 2006).

Burada V_c kontrol gerilimi ve V_{ab} yük uçlarındaki gerilimdir. Modülasyon geriliminin taşıyıcı

gerilimden büyük olduğu anlarda S_1 ve S_4 anahtarları iletimde diğer anahtarlar kesimdedir. Taşıyıcı gerilimin modülasyon geriliminden büyük olduğu anlarda ise S_2 ve S_3 anahtarları iletimde diğer anahtarlar kesimdedir. Aynı faz koluna ait anahtarların aynı anda iletimde kalmaması için iki anahtarın da kesimde olduğu ölü zaman denilen zaman boşluklarının bırakılması gerekir. Şekil 3.2'de görüldüğü gibi inverter çıkış gerilimi iki yönlüdür bu nedenle iki kutuplu olarak adlandırılır. Bu gerilim taşıyıcı dalga ile ilgili harmonikler içerir ve bu nedenle filtrelenmesi kolaydır. Çıkış geriliminin frekansı ile modülasyon gerilimin frekansı aynıdır.

SPWM yöntemlerinden bir tanesi de tek kutuplu SPWM yöntemidir. Şekil 3.3'de yöntem ve çıkış dalga şekilleri verilmiştir.

Şekil 3.3 Tek kutuplu SPWM yöntemi ve inverter çıkış gerilimi (Bose, 2006).

Burada V_{ao}^* ve V_{bo}^* her bir faz kolu için modülasyon sinyallerini oluşturur. Birbirinden 180° faz farklı iki adet modülasyon sinyalinin üçgen sinyal ile karşılaştırılmasıyla her bir faz kolu için kontrol sinyalleri elde edilir. V_{ao}^* ve V_{bo}^* kontrol geriliminin üçgen gerilimden büyük olduğu aralıklarda S_1 ve S_3 elemanları iletimde diğer elemanlar kesimdedir. Faz kollarının kısa devre olmaması için ölü zaman bırakılmalıdır. Üçgen gerilimin sinüs gerilimden büyük olduğu aralıklarda ise S_2 ve S_4 iletimde diğer anahtarlar kesimdedir. Her yarım periyotta bir yönlü çıkış gerilimi elde edilir. Harmonik içeriği iki kutupluya göre daha iyidir. Ayrıca yarı iletken elemanlar üzerindeki gerilim her anahtarlamada $0.5V_d$ dir (Espinoza, 2001; Mohan vd., 2003; Bose, 2006; Bodur, 2010).

3.2 Üç Fazlı VSI İnverterlerde SPWM Yöntemi

3 fazlı inverter ve SPWM yöntemi Şekil 3.4'de gösterilmiştir.

Şekil 3.4 (a) Üç fazlı inverter, (b) SPWM yöntemi ve inverter çıkış gerilimi (Bose, 2006). Şekil 3.4'de V_{ao}^* , V_{bo}^* ve V_{co}^* her bir faz kolu için kontrol sinyallerini ifade etmektedir. Bu yöntemde birbirinden 120° faz farklı üç adet kontrol gerilimi, bir adet üçgen gerilim ile karşılaştırılır ve her bir faz kolu için sinyaller elde edilir. V_{ao}^* , V_{bo}^* ve V_{co}^* kontrol gerilimlerinin üçgen gerilimden büyük olduğu aralıklarda S_1 , S_3 ve S_5 anahtarları iletimde diğer anahtarlar kesimdedir. Üçgen gerilimin kontrol gerilimden büyük olduğu aralıklarda ise S_4 , S_6 ve S_2 anahtarları iletimde diğer anahtarlar kesimdedir. Faz kollarının kısa devre olmaması için aynı faz kolundaki anahtarların arasında ölü zaman bırakılması gerekir. Şekil 3.4'de görüldüğü gibi yıldız bağlı yüklerde fazlar arası gerilim (V_{ab}) 3 seviyeli, faz nötr gerilimi ise 5 seviyelidir. Modülasyon sinyaline 3 ve 3 ün katları harmonikler eklenerek lineer kontrol bandı arttırılabilir. Büyük güçlü inverterlerde anahtarlama kayıpları nedeniyle anahtarlama frekansı azaltılır (Espinoza, 2001; Mohan vd., 2003; Bose, 2006; Bodur, 2010).

3.3 Gerilim Beslemeli İnverterlerde Harmonikler

İnverter çıkış geriliminde, normalleştirilmiş taşıyıcı frekansının (m_f) tek değerleri için m_f ve katları çevresinde normalleştirilmiş frekanslardaki (f_h) harmonikler bulunur.

$$h = lm_f \pm k$$
 $l = 1, 2, 3...$ (3.7)

l = 1, 3, 5... için k = 2, 4, 6... ve l = 2, 4, 6... için k = 1, 3, 5... dir. $m_f > 9$ için çıkış geriliminin harmoniklerinin genlikleri modülasyon indeksinin (m_a) bir fonksiyonudur ve normalleştirilmiş taşıyıcı frekanstan (m_f) bağımsızdır. Giriş akımı normalleştirilmiş frekans (f_p) harmonikleri ise normalleştirilmiş taşıyıcı frekans (m_f) ve katları çevresinde görülür.

$$p = lm_f \pm k \pm 1$$
 $l = 1, 2, 3...$ (3.8)

$$l = 1, 3, 5...$$
 için $k = 2, 4, 6...$ ve $l = 2, 4, 6...$ için $k = 1, 3, 5...$ dir

 m_a >1 olursa üçgen gerilim sinyali ile sinüs gerilim sinyali arasındaki kesişme kaybolur ve düşük değerli harmonikler açığa çıkar ancak inverter çıkış gerilimin değeri artar. Bu bölgede çıkış geriliminin efektif değeri lineer olarak kontrol edilemez.

Tek fazlı yarım köprü gerilim beslemeli inverterde elde edilen analiz tek fazlı tam dalga gerilim beslemeli inverter için de geçerlidir. Ancak $m_a>1$ durumunda tek fazlı tam köprü gerilim beslemeli inverterin çıkış geriliminin efektif değeri (V_{ab1}) giriş gerilimini (V_d) geçer.

İki kutuplu SPWM ile kontrol edilen tek fazlı tam dalga gerilim beslemeli inverterden elde edilen sonuçlar tek kutuplu SPWM ile kontrol edilen tek fazlı tam köprü gerilim beslemeli inverter içinde geçerlidir. Bununla beraber faz gerilimleri benzer ancak birbirlerinden 180° faz farkının olmasından dolayı çıkış geriliminde (V_{ab}) çift harmonikler görülmez. Bu nedenle eğer m_f çift seçilirse, çıkış geriliminde normalleştirilmiş harmonik frekanslarının (f_h) tek değerleri, normalleştirilmiş taşıyıcı frekansın (m_f) çift katlarının çevresinde görülür.

$$h = lm_f \pm k$$
 $l = 2, 4, 6...$ $k = 1, 3, 5...$ (3.9)

Giriş akımındaki normalleştirilmiş frekanslardaki (f_p) harmonikler ise normalleştirilmiş taşıma frekansının çift katlarının çevresinde görülür.

$$p=lm_{f}\pm k\pm 1 \qquad l=2,4,6... \qquad k=1,3,5...$$
(3.10)

Aynı anahtarlama frekanslarında tek kutuplu SPWM yöntemi, iki kutuplu SPWM yöntemine göre avantajlıdır çünkü daha küçük filtre elemanları kullanılarak yüksek frekanslı harmonikler kolayca yok edilebilmektedir.

Üç fazlı sistemlerde, normalleştirilmiş taşıma frekansı (m_f) üçün tek katları şeklinde seçilmelidir. V_{an} , V_{bn} ve V_{cn} gerilimlerindeki üçün katı frekansındaki harmoniklerin genlikleri aynıdır ve faz farkı yoktur. Bu nedenle fazlar arası gerilimler üçün katı harmonikleri içermez. Harmonikler üçün tek katlarındaki taşıma frekansının (m_f) ve katlarının çevresinde görülür.

$$h = lm_f \pm k$$
 $l = 1, 2, 3...$ (3.11)

$$k = 2, 4, 6...$$
 için $l = 1, 3, 5...$ ve $k = 1, 5, 7...$ için $l = 2, 4, 6...$ olur.

Giriş akımındaki harmonik frekansları ise;

$$p = lm_f \pm k \pm 1$$
 $l = 1, 2, 3...$ (3.12)

k = 1, 5, 7... için l = 2, 4, 6... k = 2, 4, 6... için l = 1, 3, 5... olur (Espinoza, 2001; Mohan vd., 2003).

Gerçekleştirilen tek fazlı tam köprü yumuşak anahtarlamalı VSI inverter devresi pasif elemanlar ile oluşturulmuş olup iki yönlü SPWM yöntemi ile lineer bölgede kontrol edilmektedir. Böylece hem sistemin güvenilirliği arttırılmakta hem de çıkış gerilimi sinüse yaklaştırılmaktadır. Ayrıca pasif rezonans elemanları dışında, pasif enerji depo elemanları kullanılarak rezonans elemanlarının enerjileri kaynağa geri verilmektedir. Enerji geri kazanımı için transformatör yerine büyük değerli endüktans ve kondansatör kullanılmaktadır. Pasif ve aktif yöntemler ile gerçekleştirilen yumuşak anahtarlamalı inverter devresinin çalışma prensibi bölüm 4'te anlatılmaktadır.

4. KAYIPSIZ PASİF YUMUŞAK ANAHTARLAMA TEKNİKLERİ

İnverterler ve PWM dönüştürücüler için geliştirilmiş birçok aktif ve pasif yumuşak anahtarlama yöntemi bulunmaktadır. Aktif ve pasif yöntemlerin avantajları ve dezavantajları bulunmaktadır. Aşağıda inverterler için geliştirilmiş kayıpsız pasif yumuşak anahtarlama yöntemi, çalışma modları ile adım adım anlatılmıştır. Teorik sonuçlar elde edilmiştir. Simülasyon ve deneysel sonuçlar bölüm 5. ve 6'da anlatılmıştır.

4.1 Pasif Yumuşak Anahtarlama Yöntemlerinin Özellikleri

Yumuşak anahtarlamalı PWM dönüştürücülerde anahtarlama kayıpları ve elektromanyetik girişim (EMI) azalır. PWM dönüştürücülerde yumuşak anahtarlama teknikleri genel olarak pasif ve aktif yöntemler olarak iki gruba ayrılır. Pasif teknikte pasif elemanlar (*L*, *C*, *R*, *D*, *Tr*) kullanılır. Aktif yöntemlerde ise bu elemanlara ek olarak yardımcı anahtarlar (IGBT, MOSFET vb) kullanılır. Son yıllarda aktif tekniklere olan ilgi artmış gibi görünse de pasif yöntemlere olan ilgi de artmaktadır. Özellikle performans ve fiyat gibi avantajlarından ötürü pasif yöntemlere olan ilgi artmıştır.

Anahtarların iletime girme ve çıkma anındaki akım ve gerilimin üst üste binme kaybı, diyot ters toparlanma kaybı ve anahtarın iletime girme anında iç kapasitesinden dolayı oluşan kayıplar kayıp mekanizmasını oluşturur. Pasif yöntemler ile anahtarın iç kapasite kaybı dışındaki kayıplar azaltılabilir. Önceki uygulamalarda pasif elemanlar ile elde edilen teknikler kayıplıydı ve depo edilen enerji dirençlerde harcanmaktaydı. Günümüzde depo edilen enerjinin bir kısmının veya tamamının geri kazanıldığı teknikler ortaya çıkmıştır.

Devrenin sıfır akımda (ZCS) iletime girebilmesi ve sıfır gerilimde (ZVS) iletimden çıkabilmesi için devreye eklenmesi gereken iki eleman vardır. Bunlar sırasıyla küçük değerli bir endüktans ve küçük değerli bir kondansatördür. Endüktans anahtarın sıfır akımda (ZCS) iletime girmesini sağlar ve diyotun ters toparlanma akımını sınırlar. Kondansatör ise aktif anahtarın sıfır gerilimde (ZVS) iletimden çıkmasını sağlar. Endüktans, anahtar veya anahtarlara seri, kondansatör ise her bir anahtara paralel bağlanır. Ayrıca bu elemanlara ek olarak kurulan yardımcı pasif devreler ile bu elemanların depo ettiği enerji kaynağa veya yüke geri verilebilir. Geri kazanımı elde etmek için gerçekleştirilmiş bir çok devre bulunur.

Pasif yöntemlerle elde edilen yumuşak anahtarlamalı dönüştürücülerin özellikle yüksek güçlerdeki verimleri de çok iyidir. Pasif elemanlar devrede uygun yerlere yerleştirilerek performans arttırılabilir. Ayrıca maliyet azaltılabilir (Smith ve Smedley, 2000).

Aşağıda kayıpsız pasif yumuşak anahtarlamalı inverter devresi ele alınmıştır. Bu inverterde

ana anahtarların uçlarında gerilim stresi oluşur. Bu stresler azaltılabilir. Enerji geri kazanımı için transformatör kullanılmamıştır. Böylelikle transformatöre seri bağlı diyot üzerindeki gerilim stresi ve transformatör nedeniyle oluşan kaçak endüktans problemleri engellenmiştir. Gerçekleştirilen kayıpsız pasif yumuşak anahtarlamalı tek fazlı tam köprü inverterde ana anahtarların yumuşak olarak iletime girmesi için sadece 6 eleman kullanılmıştır. Ana anahtarların yumuşak olarak iletime ve kesime girmesi için ise sadece 11 eleman kullanılmıştır. Teorik sonuçlar verilmiştir. Simülasyon ve deney sonuçları bölüm 5 ve 6'da anlatılmıştır.

4.2 Aktif ve Pasif Yumuşak Anahtarlamalı PWM Dönüştürücülerin Karşılaştırılması

Dönüştürücülerde anahtarlama kayıplarının azaltılması için birçok metot uygulanır. Tüm yumuşak anahtarlama yöntemleri daha önce de belirtildiği gibi genel olarak pasif ve aktif yöntemler olarak iki gruba ayrılabilir. Aktif yöntemde dönüştürücüye ek olarak anahtar veya anahtarlar ve pasif rezonans elemanları bulunur. Böylece ana anahtarlar üzerindeki stresler kayda değer bir biçimde azaltılabilir. Bununla beraber bu kayıplar yardımcı devreye aktarılır ve ihmal edilemez. Pasif vöntemde ise pasif rezonans elemanları kullanılarak kayıplar azaltılmaya çalışılır. Aktif yöntemlere göre daha güvenilirdir. Ancak genel olarak sadece ana anahtarın sıfır akımda (ZCS) iletimini ve sıfır gerilimde (ZVS) kesimini sağlayabilirler. Şekil 4.1 (a) ve (b)'de sırasıyla aktif ve pasif devreler görülmektedir. Şekil 4.1 (a)'da görülen aktif devrede pasif rezonans elemanlarının yanında S_a yardımcı anahtarı kullanılmıştır. Bu yöntem ile ana anahtarın sıfır akım ve gerilimde iletime girmesi ve iletimden çıkması sağlanabilmektedir. Bu anahtara ek olarak kullanılan elemanlar $(L_r, C_r, C_l, D_{rl}, D_{r2}, D_{r3})$ da yumuşak anahtarlamaya yardımcı olmaktadır. Ayrıca aktif yöntemlerde sıfır gerilimde geçiş (ZVT) ve sıfır akımda geçiş (ZCT) sağlanabilmektedir. Şekil 4.1 (b)'de görülen pasif devrede ise sadece pasif elemanlar kullanılarak ana anahtarın sıfır akımda (ZCS) iletime ve sıfır gerilimde (ZVS) kesime girmesi sağlanarak yumuşak anahtarlama sağlanmıştır. Bu devrede ana anahtarın üzerindeki gerilim stresi azdır (Matsuura vd., 1998).

Şekil 4.1 (a) Aktif yumuşak anahtarlamalı yükseltici dönüştürücü, (b) Pasif yumuşak anahtarlamalı yükseltici dönüştürücü (Matsuura vd., 1998).

4.3 PWM Dönüştücülerde Anahtarlama Kayıpları

Anahtarların iletime girme ve çıkma anındaki kayıplar, ana anahtarın iç kondansatörünün deşarj kaybı ve iletim kayıpları toplam kayıpları oluşturmaktadır. Bastırma kondansatörü ve endüktansına bağlı olan kayıp miktarı basitleştirilmiş modellemeler ile hesaplanabilir. Hesaplamalarda ana ve yardımcı anahtar olarak MOSFET kullanıldığı varsayılacaktır.

Şekil 4.1 a ve b'deki devrelerde sıfır akım iletim kayıpları aşağıdaki gibi bulunabilir.

$$W_{on} = \frac{V_o^2 t_{on}^2}{24L_r}$$

$$\tag{4.1}$$

 t_{on} MOSFET in iletime girme süresidir. L_r yumuşak anahtarlama endüktansı ve V_o çıkış gerilimidir.

Şekil 4.1 a ve b'deki devrelerde sıfır gerilim kesim kayıpları ise aşağıdaki gibi bulunabilir.

$$\label{eq:cr} C_r < \frac{IR_g C_{dg}}{V_{plateau}} + C_{ds} ~~ \text{olduğunda},$$

$$W_{off} = \left(\frac{IR_g C_{dg}}{V_{plateau}} - C_r\right) \frac{V_o^2}{2} - W_{C_{ds}}$$

$$C_r \ge \frac{IR_g C_{dg}}{V_{plateau}} + C_{ds} \quad \text{olduğunda ise}$$
(4.2)

$$W_{\text{off}} \approx 0$$
 (4.3)

 R_g MOSFET kapı seri direnci, C_{dg} MOSFET in drain ile gate arası parazitik kondansatörü ve $V_{plateau}$ ise kapı plateau gerilimidir. W_{Cds} MOSFET in drain ile source arasındaki parazitik kondansatöründe depo edilen enerjidir. Bu enerji MOSFET sıfır gerilimde iletim girmedikçe kayıp olarak karşımıza çıkar. C_r kondansatörü yeteri kadar büyük ise kayıplar yaklaşık olarak sıfır olur. Sıfır gerilimde iletime girmedikçe MOSFET in drain ve source arasındaki parazitik kondansatöründe depo edilen enerji aşağıdaki gibi hesaplanır.

$$W_{C_{ds}} = \frac{1}{2} C_{ds} V_{o}^{2}$$
(4.4)

 C_{ds} MOSFET'in kesime girdiği andaki drain ile source arasındaki parazitik eşdeğer kondansatördür.

Aktif ve pasif yöntemlerin karşılaştırılmasında iletim kayıplarının da etkisi vardır. İletim anında MOSFET in sabit bir R_{on} direnci olduğu varsayılır. Geçici rezonans durumlarındaki kayıplar iki yöntem arasındaki iletim kaybı farkını belirler. Geçici durumlar dışında kalan iletim kayıpları aktif ve pasif yöntemler için benzer olacağından hesaplanmasına gerek yoktur. İletim kayıpları aşağıdaki gibi hesaplanır.

$$W_{\text{iletim}} = \int_{0}^{t_{\text{on_rezonans}}} R_{\text{on}} I_{\text{s}}^2 dt$$
(4.5)

Çizelge 4.1'de Şekil 4.1 a ve b'deki devrelere göre aktif ve pasif yöntemlerdeki kayıplar karşılaştırılmıştır. Aktif yöntemlerde ana anahtar üzerindeki anahtarlama kayıplarının yaklaşık olarak sıfıra indirgendiği görülmüştür. Bununla beraber yardımcı anahtar üzerindeki kayıplar rezonans elemanlarının (L_r ve C_r) bir fonksiyonu olarak karşımıza çıkar. Pasif yöntemlerde anahtarlama kayıplarının L_r ve C_r rezonans elemanları ile azaltıldığı görülür. Çizelge 4.1'den hangi yöntemin performansının daha iyi olduğu sonucuna varılamaz (Matsuura vd., 1998).

Yöntem	Aktif		Pasif
Кауıр	Ana anahtar	Yardımcı Anahtar	Ana anahtar
İletim	0	+	+
Kesim	+	+	+
Rezonans	0	+	+
C _{ds} deşarj	0	+	+

Cizelge 4.1 Aktif ve pasif yöntemlerde kayıplar (Matsuura vd., 1998).

4.4 Pasif Yumuşak Anahtarlamalı Dönüştürücülerde Enerjinin Geri Kazanımı

Kayıpsız pasif yumuşak anahtarlamalı sistemlerde rezonans enerjilerinin depo edilmesi ve bu depo edilen enerjinin kaynağa veya yüke geri aktarılması gerekir. Geçmişte inverter sistemlerinde rezonans enerjileri depo eden forward sistemler kullanılmaktaydı. Şekil 4.2 (a)'da sistem basit olarak gösterilmiştir. L_r şekilde görüldüğü gibi forward sisteme direk olarak bağlanmıştır ve enerjisini direk olarak kaynağa geri vermektedir. Ancak devrenin bir çok dezavantajı bulunmaktadır. Sistemde transformatör kullanılmasından dolayı anahtar ve diyot üzerindeki gerilim aşağıdaki gibi olur (Smith ve Smedley, 2000).

$$V_{s(mak)} = V_d (1 + \frac{1}{n})$$
 (4.6)

$$V_{Ds2(mak)} = V_d(1+n)$$
 (4.7)

Eşitlikten de görüleceği gibi örneğin 4 anahtarlı bir sistemde kesim anında anahtar uçlarındaki gerilim $1.25V_d$ ve anahtar iletime girdiğinde diyot uçlarındaki gerilim $5V_d$ olur. *n* anahtar sayısıdır. Bu değerlerin göz önünde bulundurulması gerekir. Bu stresler devrenin karmaşıklığının arttırılmasıyla yarıya düşürülebilir. Bunun dışında anahtar kesime girdiğinde transformatörün kaçak endüktansından dolayı gerilim darbeleri meydana gelir. Bu nedenle gerilim sabitleme (kırpma) devreleri kullanılır ve transformatörün kaçak endüktansının enerjisi kayıplı veya kayıpsız olarak kontrol edilir (Smith ve Smedley, 2000).

Gerilim depo elemanını (VSD) gerçekleştirmenin bir yolu da devre eleman sayısını önemli ölçüde azaltan ayrıca diyot üzerindeki gerilim stresini azaltan Şekil 4.2 (b)'de görülen büyük değerli bir kondansatör kullanmaktır. Sıfır akım endüktansının enerjisi yönetilerek kondansatörde enerji depolanır. İkinci bir endüktans (L_s) ve diyot (D_{s1}) eklenerek bir L, C ve D devresi oluşturulur. Böylece enerji geri kazanılır. Bu devre, ana anahtara paraleldir. Bu yapı ile aktif anahtar iletimde iken kondansatörde depo edilen enerji endüktansa (L_s) verilir. Şekil 4.2 (b)'de enerjinin akış yönü görülmektedir. Aktif anahtar kesime girdiğinde ise endüktanstaki enerji kaynağa geri verilir. Kararlı durumda kondansatöre gelen enerji ile kondansatörden çıkan enerji birbirine eşit olur. Bu durumda diyot üzerindeki stres anahtar üzerindeki stres ile eşit olur. ($V_d + V_{Cs}$) (Smith ve Smedley, 2000).

Şekil 4.2 Enerji geri kazanım devreleri: (a) Forward, transformatörlü bağlantı, (b) Büyük değerli kondansatör (Cs) bağlantı (Smith ve Smedley, 2000).

4.5 Kayıpsız Pasif Yumuşak Anahtarlamalı İnverter Devresi

Rezonans elemanları (L_r ve C_r) devrede uygun yerlere yerleştirilerek çok çeşitli yumuşak anahtarlamalı devreler oluşturulabilir. Kayıpsız pasif yumuşak anahtarlamalı devreleri birbirlerinden farklı yapan sıfır gerilim kondansatörü (C_r) ve sıfır akım endüktansında (L_r) depolanan enerjinin kontrolünü ve geri kazanımını sağlayan pasif elemanların devrede yerleştirildiği yerlerdir. Şekil 4.3'teki devrelerden yola çıkarak kayıpsız pasif yumuşak anahtarlamalı inverter devresi elde edilmiştir. Daha sonra elde edilen devrenin çalışmasını değiştirmeyecek şekilde pasif elemanların bir kısmı atılarak kayıpsız pasif yumuşak anahtarlamalı tek fazlı tam köprü inverter devresi elde edilmiştir. Elde edilen devre sadece 11 elemandan meydana gelmektedir (Smith ve Smedley, 2000).

Şekil 4.3 Enerji geri kazanım devresinin ana anahtara bağlanma şekilleri (Smith ve Smedley, 2000).

Şekil 4.3'teki devrelerde L_s endüktansı L_r endüktansından oldukça büyüktür. D_{s1} ve C_r devreden çıkarılırsa ana anahtar sadece sıfır akımda iletime girer. Ana anahtarın kesime girmesi sert olur.

Tek fazlı tam köprü gerilim beslemeli bir inverterde sıfır akımda iletimi (ZCS) sağlamak amacıyla bir endüktans yeterlidir. Endüktansın uygun olarak konulabileceği iki yer vardır bu yerler Çizelge 4.2 de görülmektedir. Benzer olarak tek fazlı yarım köprü inverterde de ZCS yi sağlamak için bir endüktans yeterlidir. Endüktans altı farklı bölgeye yerleştirilebilmektedir (Smith ve Smedley, 2000).

Çizelge 4.2 Tek fazlı yarım ve	tam köprü inverterler	için yumuşak ar	nahtarlamalı to	polojiler
(Smith ve Smedley, 2000).				

	Yarım köprü	Tam köprü
Lr yerleşim	$Vd1 \xrightarrow{(-)}{3} S1$ $(3) \xrightarrow{(-)}{3} S2$ $Vd2 \xrightarrow{(-)}{3} S2$	Vd $(-)$ $S1$ $S3$ Io $S3$ $S3$ $S2$ $S4$ $S4$
Cr yerleşim	L1-3, L2-9, L3-9, L4-3, L5-4, L6-4	L1-4, L2-4
Toplam	(32)	(8)

Çizelge 4.2'de her bir sıfır akım endüktans yerleşim yeri için sıfır gerilim kondansatörlerinin kaç farklı şekilde yerleştirilebileceği belirtilmiştir. Örneğin tek fazlı tam köprü inverterde sıfır

akım endüktansı L_1 bölgesine yerleştirildiğinde, sıfır gerilim kondansatörlerinin yerleşimi Şekil 4.4'de gösterilmiştir. Sadece bir endüktans kullanıldığında yarım köprü inverter için 32 adet yumuşak anahtarlamalı inverter topolojisi, tam köprü için ise 8 adet yumuşak anahtarlamalı inverter topolojisi elde edilebilir (Smith ve Smedley, 2000).

Şekil 4.4 Tek fazlı tam köprü inverterde sıfır gerilim kondansatörlerinin yerleşimi (Smith ve Smedley, 2000).

Kayıpsız pasif yumuşak anahtarlamalı inverterin elde edilmesi için Şekil 4.3'teki birinci devre kullanılmıştır. Şekil 4.5'te basitleştirme işlemi gösterilmiştir. Seçilen inverter topolojisi Şekil 4.5 (a)'da görülmektedir. Şekil 4.5 (b)'de kesikli çizgilerle belirtilen S_I ve S_2 anahtarlarına ait olan L_r endüktansları birbirlerine paralel bağlı olduğundan bu endüktanslar birleştirilebilir. Şekil 4.5 (c)'de endüktanslar birbirlerine paralel olacak biçimde birleştirilmiştir. Şekil 4.5 (c)'deki CS_{2b} , S_I anahtarına ait C_r kondansatörü ve CS_{4b} , S_3 anahtarına ait C_r kondansatörü tarafından sağlanabilir. Ayrıca S_3 anahtarına ait C_s kondansatörü de S_I anahtarına ait C_s kondansatörü tarafından sağlanabilir. Şekil 4.5 (d)'de bu basitleştirmeler görülmektedir. Devrenin basitleştirilmiş son hali Şekil 4.5 (e)'de görülmektedir (Smith ve Smedley, 2000).

Şekil 4.5 Kayıpsız pasif yumuşak anahtarlamalı inverter devresinde kullanılan eleman sayısının azaltılması (Smith ve Smedley, 2000).

Şekil 4.6 ve 4.7'de kayıpsız pasif tek fazlı tam köprü ve yarım köprü yumuşak anahtarlamalı inverter devreleri görülmektedir. Şekil 4.6 (b) ve 4.7 (b)'deki devrelerde sadece iletime girme anında yumuşak anahtarlama meydana gelir. Her bir inverterde bir nüveye sarılmış iki adet L_s endüktansı bulunmaktadır. Yarım köprü ve tam köprü inverterde ana anahtarlar ve diyotlar üzerindeki gerilim stresi en fazla $V_d + V_{Cs}$ olur. Ancak tam köprü inverterde L_{s1} ve L_{s2} endüktansları aynı nüveye sarılırsa bu endüktanslara seri bağlı diyotlar $2V_d$ gerilimine ulaşabilir (Smith ve Smedley, 2000).

(a)

Şekil 4.6 (a) İletime ve kesime yumuşak olarak giren tek fazlı tam köprü inverter, (b) İletime yumuşak olarak giren tek fazlı tam köprü inverter (Smith ve Smedley, 2000).

(a)

Şekil 4.7 (a) İletime ve kesime yumuşak olarak giren tek fazlı yarım köprü inverter, (b) İletime yumuşak olarak giren tek fazlı yarım köprü inverter (Smith ve Smedley, 2000).

Bir nüveye sarılmış endüktans çifti bir eleman olarak kabul edilirse Şekil 4.6 (a)'daki devre sadece 11, Şekil 4.6 (b)'deki devre 6, Şekil 4.7 (a)'daki devre 12 ve Şekil 4.7 (b)'deki devre 8 elamandan meydana gelir.

4.6 Kayıpsız Pasif Yumuşak Anahtarlamalı İnverterin Çalışma Modları

Kayıpsız pasif yumuşak anahtarlamalı inverterdeki Lr endüktansı inverter anahtarlarının sıfır akımda (ZCS) iletime girmesini sağlar. C_{r1} ve C_{r2} kondansatörleri inverter anahtarlarının sıfır gerilimde (ZVS) kesime girmesini sağlar. Böylece inverter anahtarları yumuşak olarak anahtarlanarak anahtarlama kayıpları büyük ölçüde engellenir. C_s kondansatörü rezonans elemanlarındaki enerjileri depo eder. L_{s1} ve L_{s2} endüktansları C_s kondansatöründe depo edilen bu enerjilerin kaynağa geri verilmesini sağlar. Şekil 4.8'de devrenin çalışma modları ve Şekil 4.9'da teorik dalga şekilleri verilmiştir. Akımın yönü S_1 ve S_4 anahtarları yönünde olarak kabul edilmiştir. Akımın yönü S_3 ve S_2 anahtarları yönünde olduğunda da devrenin çalışmasında bir değişme olmamaktadır. Ayrıca bağıl iletim süresi D olarak kabul edilmiştir (Smith ve Smedley, 2000).

47

(a)

(b)

(c)

48

(d)

(e)

49

Şekil 4.8 Kayıpsız pasif yumuşak anahtarlamalı inverterin çalışma modları (Smith ve Smedley, 2000).

Şekil 4.9 Kaypsız pasif yumuşak anahtarlamalı inverterin teorik dalga şekilleri (Smith ve Smedley, 2000).

4.6.1 Mod 1 $(t_0 - t_1)$

 t_0 anında S_1 ve S_4 anahtarı iletimde ve yük akımı Şekil 4.8 (a)'da görüldüğü gibidir. C_s kondansatörü içindeki enerjinin bir bölümü S_1 anahtarı ile L_{s1} endüktansına aktarılmaktadır. L_{s1} endüktansındaki akım bu aralıkta aşağıdaki gibi değişir (Smith ve Smedley, 2000).

$$i_{L_{s1}}(t) = \frac{V_{C_s}}{L_{s1}} (t - t_0)$$
(4.8)

Bu akım S_1 anahtarına eklenir. S_1 in akımı aşağıdaki gibi olur.

$$i_{S_1}(t) = I_0 + \frac{V_{C_s}}{L_{s1}} (t - t_0)$$
(4.9)

4.6.2 Mod 2 $(t_1 - t_2)$

 t_1 anında S_1 ve S_4 anahtarları C_{r1} ve C_{r2} kondansatörleriyle yumuşak olarak kesime girer. Sıfır akım endüktansı ve yük akımı (I_o) , C_{r1} 'i şarj C_{r2} 'yi ise deşarj eder. C_{r1} kondansatörü C_s ve D_{s2} üzerinden şarj olurken C_{r2} kondansatörü D_{s3} üzerinden deşarj olur. S_1 ve S_4 anahtarlarının geriliminin yükselme hızı (dv/dt) aşağıdaki gibi olur.

$$\frac{dV_{S_4}}{dt} = \frac{I_0}{C_{r2}} \qquad \frac{dV_{S_1}}{dt} = \frac{I_0 + i_{L_{s1}}(t_1 - t_0)}{C_{r1}}$$
(4.10)

 t_2 anında V_{Cr1} gerilimi V_d değerine, V_{Cr2} gerilimi de $-V_{Cs}$ gerilimine ulaşır. Tam bu anda S_2 ve S_3 anahtarlarına ait ters paralel bağlı diyotlar (D_2 ve D_3) iletime girer. Böylece S_2 ve S_3 anahtarları sıfır gerilimde iletime girebilir. S_1 ve S_4 anahtarlarının gerilimi $V_{bara} + V_{Cs}$ gerilimine sabitlenmiş olur (Smith ve Smedley, 2000).

4.6.3 Mod 3 $(t_2 - t_4)$

 I_o ve i_{Ls1} akımının yolu Şekil 4.8 (c)'de gösterilmiştir. C_s kondansatörü bu aralıkta şarj olmaktadır. Ls_1 endüktansındaki enerji gerilim kaynağına geri verilmekte ve C_s kondansatörü sıfır akım endüktansı L_r nin enerjisini, L_r nin akımı $-I_o$ olana kadar kontrol etmektedir. t_3 anında L_{s1} in akımı sıfır olur. Bu anda L_{s1} ve L_{s2} arasındaki etkileşimden dolayı D_{s6} diyodunun gerilimi $V_d - V_{Cs}$ geriliminden sıfıra düşer. D_{s6} diyotu iletime geçer. t_4 anında L_r nin akımı $-I_o$ a ulaşır ve D_{s1} , D_{s2} , D_{s3} ve D_{s4} diyotları kesime girer. Anahtar geçişleri bu anda tamamlanarak S_1 ve S_4 ün gerilimi V_d gerilimine eşit olur. Eğer ikinci modun süresi üçüncü modun süresinden oldukça küçükse anahtar geçiş zamanı yaklaşık olarak aşağıdaki gibi hesaplanabilir.

$$t_4 - t_1 \approx \frac{2I_o L_r}{V_{C_s}} \tag{4.11}$$

Mod 3 boyunca C_s kondansatörüne transfer edilen enerji aşağıdaki gibi olur (Smith ve Smedley, 2000).

$$W_{C_{s_giriş1}} = \frac{1}{2}L_r (2I_o)^2 = 2L_r I_o^2$$
(4.12)

4.6.4 Mod 4 $(t_4 - t_5)$

Şekil 4.8 (d)'de akımın izlediği yol görülmektedir. C_s nin enerjisinin bir kısmı L_{s2} ye verilir. Bu durumda L_{s2} üzerinden akan akım aşağıdaki gibi değişir.

$$i_{L_{s2}}(t) = \frac{V_{C_s}}{L_{s2}} (t - t_3)$$
(4.13)

Bu durumda S_3 anahtarına ait ters paralel bağlı diyot üzerinden akan akım aşağıdaki gibi elde edilir.

$$i_{D_3}(t) = -I_0 + \frac{V_{C_s}}{L_{s2}} (t - t_3)$$
(4.14)

 L_{s1} ve L_{s2} nin etkileşimde olmadığı ve eşit olduğu varsayılarak mod 4 ve mod 1'de kondansatörden çıkan enerji yaklaşık olarak bulunur. Mod 1 ve 4'ün sonunda L_{s1} ve L_{s2} nin toplam enerjisi C_s kondansatörünün çıkış enerjisine eşittir. (4.8) ve (4.13)'deki zamanların yerine sırasıyla DT_s ve $(1-D)T_s$ yazılmasıyla C_s kondansatöründen alınan enerji aşağıdaki gibi bulunur (Smith ve Smedley, 2000).

4.6.5 Mod 5 $(t_5 - t_7)$

 t_5 anında S_1 ve S_4 anahtarları sıfır akımda (ZCS) iletime girer. S_1 ve S_4 anahtarlarından geçen akımın yükselme hızı aşağıdaki gibi olur.

$$\frac{\mathrm{di}_{\mathrm{S}_{1},\mathrm{S}_{4}}}{\mathrm{dt}} = \frac{\mathrm{V}_{\mathrm{d}}}{2\mathrm{L}_{\mathrm{r}}} \tag{4.16}$$

 L_r endüktansı I_o akımına ulaşıncaya kadar lineer olarak artar. t_6 anında I_o olmasıyla S_2 ve S_3 anahtarlarına ait ters paralel diyotları ters toparlanma sürecine girer. Bu süre boyunca L_{s1} ve L_{s2} endüktansları iletimdedir. Endüktanslar aynı nüve üzerine sarılı olduğundan kaçak endüktans ($L_{kaçak}$) üzerine $2V_{Cs}$ gerilimi yüklenir. Bu da S_1 anahtarı üzerine ek olarak di/dt yükler. Bu ek akım aşağıdaki gibidir.

$$\frac{\mathrm{di}_{\mathrm{S}_{1_ek}}}{\mathrm{dt}} = \frac{2\mathrm{V}_{\mathrm{C}_{\mathrm{S}}}}{\mathrm{L}_{\mathrm{kaçak}}} \tag{4.17}$$

 $L_{kaçak}$ endüktansı L_r den çok büyük olduğu için ve V_{Cs} gerilimi V_d geriliminden oldukça küçük olduğu için kaçak endüktansın etkisi küçük olur ve ihmal edilebilir. t_7 anında diyotların kesime girmesiyle mod 5 sona erer (Smith ve Smedley, 2000).

4.6.6 Mod 6 $(t_7 - t_0)$

 t_7 anında S_2 ve S_3 anahtarlarına ait ters paralel diyotların kesime girmesiyle C_{r1} ve C_{r2} kondansatörleri L_r endüktansı ile rezonansa girer. C_{r1} in $-V_{Cs}$ ve C_{r2} nin V_d olmasıyla rezonans sona erer. L_{s1} üzerinden akan akım sıfır olur ve L_{s2} enerjisini girişe aktarır. C_{r1} kondansatörü D_{s1} diyodu ve S_1 anahtarı üzerinden L_r endüktansı ile rezonansa girer. C_{r2} ise D_{s4} diyodu ve C_s kondansatörü üzerinden L_r endüktansı ile rezonansa girer. Rezonans frekansı ile rezonans empedansı aşağıdaki gibidir.

$$W_{n} = \frac{1}{\sqrt{L_{r}(C_{r1} + C_{r2})}}, Z_{n} = \sqrt{\frac{L_{r}}{C_{r1} + C_{r2}}}$$
(4.18)

Kondansatör gerilimleri ve endüktans akımı mod 6'da aşağıdaki gibi tanımlanır.

$$V_{C_{r1}}(t) = V_{d}\cos(W_{n}t)$$
(4.19)

$$V_{C_{r2}}(t) = V_{d} - V_{C_{s}} - V_{C_{r1}}(t)$$
(4.20)

$$i_{L_r}(t) = I_o + \frac{V_d}{Z_n} \sin(W_n t)$$
(4.21)

 V_{Cr1} ve V_{Cr2} gerilimleri sırasıyla $-V_{Cs}$ ve V_d olur. L_r üzerindeki fazla enerji D_{s1} , D_{s2} , D_{s3} ve D_{s4} diyotları üzerinden C_s kondansatörüne verilir. t_8 anında L_r üzerindeki fazla enerji tamamen C_s kondansatörüne verilir ve I_{Lr} akımının I_o olmasıyla mod 6 sona erer. C_{r1} ve C_{r2} den C_s ye transfer edilen toplam enerji yaklaşık olarak aşağıdaki gibi olur. Ayrıca L_{s2} üzerinden akan akım sıfır olur ve L_{s1} , t_0 anında iletime girmeye başlar (Smith ve Smedley, 2000).

$$W_{C_{s_{giris2}}} = \frac{1}{2} \left[C_{r2} \left(V_{d} + V_{C_{s}} \right)^{2} + C_{r1} \left(V_{d}^{2} - V_{C_{s}}^{2} \right) \right]$$
(4.22)

4.7 Kayıpsız Pasif Yumuşak Anahtarlamalı İnverter Devresinde Kullanılan Elemanların Seçimi

Kayıpsız pasif yumuşak anahtarlamalı inverterde ana anahtarlara ek olarak yardımcı anahtar bulunmaz. Bu nedenle ek kontrol devresine gerek yoktur. Ancak yardımcı pasif devrenin çalışması ana anahtarlara ve yük akımına bağlıdır. Pasif elemanlar yumuşak anahtarlamayı sağlayacak ve devrenin tüm çalışma modlarında anahtar üzerindeki akım ve gerilim streslerini azaltacak şekilde seçilmelidir. Örneğin L_{s1} ve L_{s2} endüktansları geniş yük aralığında yumuşak anahtarlamayı sağlayacak şekilde büyük seçilmeli ancak anahtarlar üzerindeki stresi arttırmayacak şekilde sınırlandırılmalıdır. C_s rezonans enerjileri depolayabilecek kadar büyük seçilmeli ve sıfır akım endüktansındaki (L_r) enerjiyi yönetebilmelidir. Devrenin sıfır akımda iletime girmesi için göz önünde bulundurulması gereken durumlar vardır. Bu durumlar aşağıda incelenmiştir. Bağıl iletim süresi (D) olarak seçilmiş ve S_1 ve S_4 anahtarlarına uygulanmıştır. Akımın yönü Şekil 4.8 (a)'daki gibidir. Daha sonra anahtarların yumuşak olarak kesime girmesi için göz önünde bulundurulması gereken şartlar incelenmiştir.

 C_s kondansatörünün gerilimi L_r , C_{r1} , C_{r2} ve yük akımının değerine bağlıdır. Sadece yumuşak olarak iletime giren devrede C_s kondansatörünün gerilimi, sıfır akım endüktansından C_s kondansatörüne akan ve L_{s1} ve L_{s2} tarafından C_s kondansatöründen alının enerjilerin belirlenmesiyle elde edilir. (4.12) ve (4.15)'in kullanılmasıyla C_s kondansatörünün gerilimi aşağıdaki gibi elde edilir.

$$V_{C_{s}} = \frac{2 |I_{o}| \sqrt{L_{s}L_{r}}}{T_{s} \sqrt{(1-D)^{2} + D^{2}}}$$
(4.23)

Çıkış akımının frekansı (f_o), anahtarlama frekansından oldukça küçüktür. ($f_s/f_o>100$)

(4.23)'deki kondansatör gerilimi geniş yük akımı değerlerinde yumuşak anahtarlamayı sağlamalıdır. Yumuşak anahtarlamanın olabilmesi için anahtar geçiş zamanının $(t_1 - t_4)$, anahtar kesim süresinden küçük olması gerekir. Aşağıda belirtilmiştir.

$$t_{geçiş} \le (1-D)T_s \tag{4.24}$$

Diğer yandan eğer bu süre kesim süresinden büyük olursa D_{s1} , D_{s2} , D_{s3} ve D_{s4} diyotları iletimde olur ve anahtarlar sıfır akımda iletime giremez. (4.11)'deki süre ile (4.24)'deki $t_{geçiş}$ yer değiştirirse minimum C_s gerilim değeri elde edilmiş olur. Akımın sıfırdan küçük ve büyük olduğu zamanlarda elde edilen minimum C_s kondansatör gerilimleri aşağıda verilmiştir.

$$V_{C_{s_{min}}} = \frac{2I_0 L_r}{(1-D)T_s} \qquad I_0 > 0$$
(4.25)

$$V_{C_{s_{min}}} = \frac{-2I_0L_r}{DT_s}$$
 $I_0 < 0$ (4.26)

(4.23)'ü (4.25) ve (4.26)'dan büyük aldığımızda ve D yerine D_{mak} yazdığımızda uygun L_s/L_r değerini buluruz. Bu değer önemlidir. Uygun değerlerin seçilmesiyle yük akımına veya gerilim kaynağına bağlılık ortadan kalkar.

$$\frac{L_{s}}{L_{r}} \ge 1 + \frac{D_{mak}^{2}}{(1 - D_{mak})^{2}}$$
(4.27)

 L_{s1} ve L_{s2} endüktansları C_s kondansatörünün gerilimini otomatik olarak sınırlar. L_{s1} ve L_{s2} 'nin etkileşimde olmadığını varsayarsak devre dönüşümlü yükseltici-düşürücü devre gibi çalışır. Yükseltici-düşürücü devrede giriş gerilimi C_s kondansatörü, çıkış gerilimi V_d gerilimi ve anahtarlar S_1 ve S_3 gibi olur. Endüktanslar birçok durumda süreksiz modda çalışır. Bağıl iletim süresinin çok düşük veya çok yüksek olduğu zamanlarda ve C_s kondansatör geriliminin sınır değerinin üstünde olduğu durumda endüktanslardan birisi sürekli moda geçer. Böylece endüktans akımı artarken C_s kondansatörünün değeri otomatik olarak bir değere sabitlenmiş olur. Maksimum kondansatör gerilimi aşağıdaki gibi bulunur.

$$V_{C_{s_mak}} = \min(\frac{1-D}{D} V_d, \frac{D}{1-D} V_d)$$
(4.28)

Bu nedenle yumuşak anahtarlamanın sağlanabilmesi için (4.28) ve (4.23)'ün (4.25) ve (4.26)'dan büyük olması gerekir.

(4.28)'in (4.25) ve (4.26)'dan büyük seçilmesiyle maksimum L_r değeri belirlenir.

$$L_{r_{mak}} \le \frac{(1 - D_{mak})^2 V_d T_s}{2 D_{mak} I_{mak}}$$
(4.29)

I_{mak} maksimum yük akımıdır.

Çıkış akımındaki değişmelerde C_s kondansatörünün geriliminin V_{Cs_min} değerinden büyük olması gerekir. Dinamik değişimlerde C_s kondansatörünün geriliminin nasıl değiştiğini bilmemiz gerekir. Örneğin çıkış akım frekansı arttığında kondansatör geriliminin nasıl değiştiği önemlidir. Anahtarlama frekansının çıkış frekansının on katından büyük olduğunu varsayarsak C_s kondansatörünün ortalama gerilim değeri her anahtarlama çevrimdeki kondansatör akımının ortalamasından elde edilir.

$$\overline{V_{Cs}(t)} = \frac{1}{C_s} \int \overline{I_{Cs}(t)} dt$$
(4.30)

İletime yumuşak olarak giren tam köprü inverterdeki $\overline{I_{Cs}(t)}$ akımının değeri aşağıdaki gibi hesaplanır.

$$\overline{I_{C_{s}}(t)} = \frac{W_{C_{s_giris1}} - W_{C_{s_gikis}}}{\overline{V_{C_{s}}}T_{s}}$$
(4.31)

$$\frac{2L_{r}\overline{I_{o}^{2}}}{\overline{V_{C_{s}}}T_{s}} - \frac{\overline{V_{C_{s}}}T_{s}}{2L_{s}} (\overline{D^{2}} + (1-\overline{D})^{2})$$

$$(4.32)$$

 $I_o(t)$, $V_{Cs}(t)$ ve D(t) zamana bağlı fonksiyonlardır. C_s kondansatörünün değeri (4.30)'dan bulunur. Şekil 4.10'da $V_{Cs}(t)$ geriliminin 0 ile tam yük arasında değişmelerdeki dalga şekilleri verilmiştir. $V_{Cs}(t)$ geriliminin $V_{Cs_min}(t)$ gerilimini geçtiği zamanlarda yumuşak anahtarlanma sağlanmaktadır.

Şekil 4.10 Farklı çıkış güçlerinde Cs kondansatörü üzerindeki gerilim (Smith ve Smedley, 2000).

Şekil 4.6 (a)'da görülen kayıpsız pasif yumuşak anahtarlamalı inverterde kullanılan C_{r1} ve C_{r2} kondansatörleri (4.22)'de görüldüğü gibi C_s kondansatörüne bir miktar enerji aktarmaktadır. Bu nedenle dizayn aşamasında dikkat edilmesi gereken, C_s kondansatörü resetlenirken ana anahtarlar üzerindeki ek gerilim stresi ve anahtarlar üzerinden geçen maksimum akımdır. (4.12), (4.15) ve (4.22) kullanılarak kondansatöre gelen enerji ile kondansatörden çıkan enerjilerinin eşitliği ile aşağıdaki formül elde edilir.

$$W_{C_{s_giri\$1}} + W_{C_{s_giri\$2}} = W_{C_{s_giki\$}}$$
(4.33)

Ayrıca iletime ve kesime yumuşak olarak giren kayıpsız pasif yumuşak anahtarlamalı inverter devresindeki C_s kondansatöründen geçen akım ($\overline{I_{Cs}(t)}$) aşağıdaki formül ile hesaplanır.

$$\overline{I_{C_s}(t)} = \frac{W_{C_{s_giriş1}} + W_{C_{s_giriş2}} - W_{C_{s_gikiş}}}{\overline{V_{C_s}}T_s}$$
(4.34)

İletim anındaki anahtardan geçen maksimum akım (4.21)'den aşağıdaki gibi yazılabilir (Smith ve Smedley, 2000).

$$I_{S_{1_mak}} = I_o + \frac{V_d}{2Z_n}$$
 (4.35)

5. LABORATUVARDA GERÇEKLEŞTİRİLEN KAYIPSIZ PASİF YUMUŞAK ANAHTARLAMALI İNVERTER DEVRESİNİN SİMULASYONU

Devrenin simulasyonu Proteus v7.6 programında yapılmıştır. Programda hem yumuşak anahtarlama devresi hem de sert anahtarlama devresi gerçekleştirilmiş ve sonuçlar karşılaştırılmıştır. Sert anahtarlamalı ve yumuşak anahtarlamalı inverter simulasyon devreleri Şekil 5.1 ve 5.2'de görülmektedir.

Şekil 5.1 Sert anahtarlamalı inverter güç devresi simulasyonu.

Şekil 5.2 Yumuşak anahtarlamalı inverter güç devresi simulasyonu.

Devrelerde kontrol yöntemi olarak çift yönlü SPWM yöntemi kullanılmıştır. SPWM kontrol devresi simulasyonu Şekil 5.3'de görülmektedir.

Şekil 5.3 SPWM kontrol devresi simulasyonu.

Sinüs generatörü olarak ICL8038 entegre devresi kullanılmıştır. Şekil 5.4'de görülen sinüs generatör devresi ile sinüs gerilim sinyalinin frekansı 30-67Hz arasında ayarlanabilmektedir. ICL8038 devresi bilgileri Ek 1'de verilmiştir.

Şekil 5.4 Sinüs generatör devresi simulasyonu.

Üçgen genearatörü olarak ise gerilim yükselme hızı yüksek olan (34V/us) iki adet NE531 opamp entegre devresi kullanılmıştır. NE531 entegre devresi bilgileri Ek 2'de verilmiştir.
Şekil 5.5'de üçgen generatör devresinin simulasyonu görülmektedir. Şekil 5.5'de görüldüğü gibi sol taraftaki opampın çıkış gerilimi karedir. Kare dalga gerilimi, sağ taraftaki integral alıcı opamp devresi girişine verilmiştir. İntegral devresi ise kare dalga gerilimini üçgen gerilime çevirmektedir.

Şekil 5.5 Üçgen generatör devresi simulasyonu.

Sinüs ve üçgen kontrol sinyallerinin bir opamp entegre devresi ile karşılaştırılması sonucu oluşan sinyaller arasında ölü zaman bırakılmıştır. Ölü zaman devresi Şekil 5.3'de görülen iki hızlı diyot, iki direnç ve bir kondansatörden meydana gelmektedir. Daha sonra bu sinyaller iki hızlı diyot ve iki dirençten meydana gelen devre ile tek yönlü hale getirilmektedir. Tek yönlü hale getirilmiş sinyallerin keskinleştirilmesi için ise ve değil lojik kapısı kullanılmıştır. Şekil 5.6'da ve değil lojik kapısı çıkışındaki sinyaller görülmektedir.

Şekil 5.6 İnverter sinyalleri ve ölü zaman. (0.5V/div, 5us/div)

Yumuşak anahtarlamalı ve sert anahtarlamalı inverter devresinde, 30 ohm yükte, S_4 anahtarlarına ait akım ve gerilim grafikleri Şekil 5.7 ve 5.8'de görülmektedir. Giriş gerilimi 150V çıkış *LC* filtresi frekansı 1.788kHz e ayarlanmıştır. Anahtarlama frekansı 50kHz dir. Temel frekans ise 50Hz e ayarlanmıştır. Sert anahtarlamalı devrede modülasyon indeksi m_a =0.66'ya, yumuşak anahtarlamalı inverterde ise m_a =0.6'ya ayarlanmıştır. Grafiklerde akım ve gerilimin birlikte net olarak görülebilmesi için akım 10 kat arttırılmıştır.

Şekil 5.7 Yumuşak anahtarlamalı inverterde *S*₄ anahtarına ait akım ve gerilim değişimleri. (20A/div, 20V/div, 5us/div)

Şekil 5.8 Sert anahtarlamalı inverterde *S*₄ anahtarına ait akım ve gerilim değişimleri. (20A/div, 20V/div, 5us/div)

Yumuşak ve sert anahtarlamalı inverterde S4 anahtarına ait iletime girme anındaki akım ve

gerilimdeki değişimler Şekil 5.9 ve 5.10'da görülmektedir.

Şekil 5.9 Yumuşak anahtarlamalı inverterde S_4 anahtarının iletime girme anındaki akım ve gerilimdeki değişimler. (0.5A/div, 0.5V/div, 0.02ns/div)

Şekil 5.10 Sert anahtarlamalı inverterde *S*⁴ anahtarının iletime girme anındaki akım ve gerilimdeki değişimler. (20A/div, 20V/div, 20ns/div)

Yumuşak ve sert anahtarlamalı inverterde S_4 anahtarına ait iletimden çıkma anındaki akım ve gerilimdeki değişimler Şekil 5.11 ve 5.12'de görülmektedir.

Şekil 5.11 Yumuşak anahtarlamalı inverterde *S*₄ anahtarının iletimden çıkma anındaki akım ve gerilimdeki değişimler. (5A/div, 5V/div, 200ns/div)

Şekil 5.12 Sert anahtarlamalı inverterde *S*₄ anahtarının iletimden çıkma anındaki akım ve gerilimdeki değişimler. (20V/div, 20A/div, 100ns/div)

Şekil 5.9, 5.10, 5.11 ve 5.12'de görüldüğü gibi anahtarın iletime girme anında akım yükselme hızı ve iletimden çıkma anında ise gerilimin yükselme hızı azaltılarak anahtarlama kayıpları büyük ölçüde önlenmiştir.

Yumuşak ve sert anahtarlamalı inverter çıkış gerilimleri ve yük akımları Şekil 5.13, 5.14, 5.15 ve 5.16'da verilmiştir.

Şekil 5.13 Sert anahtarlamalı inverter devresi çıkış gerilimi. (20V/div, 2ms/div)

Şekil 5.14 Yumuşak anahtarlamalı inverter devresi çıkış gerilimi. (20V/div, 2ms/div)

Şekil 5.15 Sert anahtarlamalı inverter devresi yük akımı. (0.5A/div, 2ms/div)

Şekil 5.16 Yumuşak anahtarlamalı inverter devresi yük akımı. (0.5A/div, 2ms/div) Şekil 5.13, 5.14, 5.15 ve 5.16'da görüldüğü gibi çıkış gerilim ve akımı yumuşak anahtarlamalı inverterde daha düzgündür.

6. LABORATUVARDA GERÇEKLEŞTİRİLEN KAYIPSIZ PASİF YUMUŞAK ANAHTARLAMALI İNVERTER DEVRESİNİN DENEYSEL SONUÇLARI

Pasif kayıpsız yumuşak anahtarlamalı inverter devresi uygulaması Şekil 6.1'de görülmektedir. Devrenin sert anahtarlamalı olarak çalışabilmesi için güç devresinde uygun yerlere 6A akım taşıma kapasitesinde anahtarlar yerleştirilmiştir. Uygulama devresi prototip olup küçük güçlü (120W) FV uygulamalarda kullanılabilir.

Şekil 6.1 Kayıpsız pasif yumuşak anahtarlamalı inverter devresi uygulaması.

Pasif kayıpsız tek fazlı tam köprü yumuşak anahtarlamalı inverterde S_I ve S_3 anahtarlarının source si bataryanın veya şebekenin nötrüne bağlı olmadığından bu anahtarların sinyalleri izole edilmelidir. Ayrıca izoleli sürme devrelerinin beslenmesi için de iki adet izoleli gerilim kaynağı kullanılmalıdır. Bu nedenle S_I ve S_3 anahtarları için ayrı izoleli sürme devesi ve izoleli gerilim kaynağı kullanılmıştır. S_2 ve S_4 anahtarları için bir tek izoleli gerilim kaynağı ve her biri için izoleli sürme devresi kullanılmıştır. Ancak bu anahtarların source si şebekenin veya bataryanın nötrüne bağlı olduğundan bu anahtarların sinyallerinin izole edilmesine gerek yoktur. Kontrol kartı da çift yönlü izoleli gerilim kaynağından beslenmektedir. MOSFET'leri sürmek için ise TLP250 entegre devresi kullanılmıştır. Uygulamada hızlı anahtarlama yapabilen akım taşıma kapasitesi yüksek (25C° V_{GS} =10V ta I_D =44A) IRFP264N MOSFET anahtarlar kullanılmıştır. IRFP264N ve TLP250 ile ilgili bilgiler Ek 3 ve 4'te verilmiştir. Sinüs generatör olarak ICL8038 entegresi kullanılmıştır. Sinüs generatör çıkış gerilimi Şekil 6.2'de görülmektedir.

Şekil 6.2 Referans gerilim. (5V/div, 5ms/div)

Üçgen gerilim sinyali ise iki adet NE531 opamp entegre devresinden üretilmiştir. Üçgen gerilimin frekansı 50kHz e ayarlanmıştır. Üçgen generatör çıkışı Şekil 6.3'de görülmektedir.

Şekil 6.3 Üçgen kontrol gerilimi. (5V/div, 10us/div)

Bu iki kontrol sinyali LF353 opamp entegre devresi ile karşılaştırılmıştır. Başka bir LF353 entegresi ile bu sinyalin tersi alınmıştır. Elde edilen iki sinyal arasında ölü zaman devresi ile ölü zaman boşlukları bırakılmıştır. Ölü zaman devresi çıkışından elde edilen sinyaller diğer LF353 entegre devrelerine verilerek tek yönlü hale getirilmiştir. Daha sonra bu sinyallerin uçları ve değil entegre devresi (4093) ile keskinleştirilmiştir. 4093 entegresi çıkışından elde edilen sürme sinyalleri ve ölü zaman Şekil 6.4'de görülmektedir. Şekil 6.4'deki ölü zaman süresinin yaklaşık olarak 500ns olduğu görülmektedir. Bu süre aynı koldaki elemanların aynı

anda iletime girmemesi için yeterlidir.

Şekil 6.4 MOSFET sürme sinyalleri ve ölü zaman. (Kanal1: 5V/div, kanal2: 5V/div, yatay eksen: 1us/div)

Devre çalıştırıldığında kontrol kartında bulunan kondansatörlerin ve gerilim kaynaklarının enerjilenmesi için belli bir süre geçmesi nedeniyle sinyaller yarı iletken güç elemanlarına bir süre sonra verilmelidir. Bunun için açma kapama devresi kullanılır. Böylece kısa devre ve arızaların önüne geçilir.

Yumuşak anahtarlamalı güç devresinde akım taşıma kapasitesi yüksek (145C° de 15A) ve dayanma gerilimi yüksek (600V) altı adet MUR1560 diyot kullanılmıştır. MUR1560 ile ilgili bilgiler ek 5'te verilmiştir. L_r , L_s ve L_f endüktansları E nüvelere sarılmıştır. Kondansatörler dayanma gerilimi yüksek (en az 250V) malzemeden seçilmiştir. Devrede kullanılan endüktans ve kondansatör değerleri Çizelge 6.1'de verilmiştir.

L_r	4uH
L_s	265uH
L_{f}	1,3mH
C_r	50nF
C_s	1,1uF
C_{f}	6,6uF

Çizelge 6.1 Uygulamada kullanılan endüktans ve kondansatör değerleri.

Bu değerlerin seçiminde bazı kabuller yapılmıştır. Giriş gerilimi V_d =150V ve anahtarlama frekansı 50kHz'dir. I_o akımı sabit kabul edilmiş ve D_{min} =0,35 şekilde m_a ayarlanmıştır. Bu durumda maksimum bağıl iletim süresi (D_{mak}) diğer çapraz kollar için 0.65 olur. Yük direnci R_o =30 ohm'dur. (3.3)'ü $\sqrt{2}$ ile çarparsak çıkış geriliminin (V_o) maksimum değerini elde ederiz. m_a değeri ne kadar küçük olursa sinyaller 0,5'e yakın değerlerde salınım yapar. D_{min} =0,35 değerindeki bağıl iletim süresinde yaklaşık olarak m_a =0,6'dır. Bu durumda çıkış geriliminin maksimum değeri ve çıkış akımının efektif değeri hesaplanabilir.

$$V_{o_mak} = 0, 6.150 = 90$$
V olur.

Çıkış akımının efektif değeri,

$$I_o = \frac{V_{o_{mak}}}{R\sqrt{2}} = \frac{90}{30\sqrt{2}} \cong 2,12$$
A olur.

Önce L_{r_mak} hesaplanır. (4.29)'dan,

$$L_{r_mak} \le \frac{(1-0,65)^2 \cdot 150.20 \cdot 10^{-6}}{0,65.3.2} \Longrightarrow L_{r_mak} \le 94,2$$
uH olur

Deneyde ölçülen L_r değeri (L_r =4uH) aynen alınırsa (4.27)'den uygun L_s değeri seçilebilir. (4.27)'den,

$$\frac{L_s}{4.10^{-6}} \ge 1 + \frac{0.65^2}{(1-0.65)^2} \Longrightarrow \frac{L_s}{4.10^{-6}} \ge 4,45 \text{ olur.}$$

Buradan uygulamada elde edilen L_s =265uH seçilebilir. C_s kondansatörüne gelen ve kondansatörden çıkan enerjinin eşitliğinden (4.12) ve (4.22)'yi (4.15)'e eşitlersek C_s kondansatörünün gerilimini elde ederiz. Bağıl iletim süresinin 0,5 ile 0,65 arasındaki değerlerinde elde edilen kondansatör değerleri aşağıda verilmiştir. Burada akımın sıfırdan büyük olduğu kabul edilecektir (S_1 ve S_4 'ün bağıl iletim süreleri S_2 ve S_3 'ün bağıl iletim süresinden yüksek bu durumda I_o >0). Denklem $ax^2 + bx + c = 0$ denklemine benzediğinden denklemin kökleri kolaylık olması bakımından MATLAB programında hesaplanmıştır. Bunun için *roots([a b c])* komutu kullanılmıştır. Hesaplamalarda iki adet denklem kökü elde edilir. Pozitif olan alınmalıdır. C_r 'ler deneyde kullanılan değerleri ile alınacaktır ($C_{r1}=C_{r2}=50$ nF).

D=0,65 için, rezonans elemanlarının C_s kondansatörüne verdiği ve L_s endüktanslarının C_s kondansatöründen aldığı enerjilerin eşitliğinden C_s kondansatörünün gerilimi aşağıdaki gibi bulunur.

$$W_{C_{s_{giris_{1}}}} + W_{C_{s_{giris_{2}}}} = 2.4.10^{-6}.2, 12^{2} + 50.10^{-9}.150^{2} + 50.10^{-9}.150.V_{Cs}$$
$$W_{C_{s_{giris}}} = \frac{(V_{Cs})^{2}.(20.10^{-6})^{2}.((1-0,65)^{2} + 0,65^{2})}{2.265.10^{-6}}$$

dan a, b ve c katsayıları bulunur. Bu eşitlikten,

 $a = 4.11.10^{-7}, b = -7.5.10^{-6}$ ve $c = 1,16.10^{-3}$ olarak bulunur. Bu katsayılar *roots([a b c])* komutu ile hesaplanırsa *D*=0.65 için *V*_{Cs} gerilimi,

roots([4.11e-7 -7.5e-6 -1.16e-3])

 $V_{Cs} \cong 63V$ elde edilir. (4.10)'un süresi ile (4.11)'in süresinin toplamı (4.24)'ten küçük olmalıdır. Elde edilen kondansatör gerilim değeri için sürelerin uygunluğu aşağıda görülmektedir.

$$\frac{50.10^{-9}.(150+63)}{2,12} + \frac{2I_o L_r}{V_{Cs}} \le (1-0,65).20.10^{-6} \Longrightarrow 5,3.10^{-6} \le 7.10^{-6}$$

Aynı işlemler D=0,5 için yapılırsa,

 V_{Cs} =66,3V ve 5,35.10⁻⁶ \leq 10.10⁻⁶ elde edilir. Görüldüğü gibi $t_1 - t_4$ süresi (1-*D*)*Ts* süresini geçmemektedir. *D*<0,5 için I_o <0 olduğundan (4.24)'te (1-*D*) yerine *D* yazılıp aynı işlemler tekrarlanmalıdır. D_{min} =0,35 için de hesaplamalar yapılırsa değerlerin uygun olduğu görülür.

Anahtarların iletime girme anında bir anahtarlama periyodundaki toplam kayıplar (4.1)'in yarısı kadardır. Çünkü (4.16)'ya göre akımın yükselme hızı ikiye bölünmektedir. İletime girme anındaki kayıplar aşağıdaki gibi bulunur. t_{on} süresi IRFP264N MOSFET'in kataloğundan alınmıştır. MOSFET'in iletimden çıkma süresi yaklaşık olarak 62ns'dir.

$$W_{on} = \frac{150^2 \cdot (62.10^{-9})^2}{48.4.10^{-6}} = 4,5.10^{-7} \text{ W}$$
 olarak bulunur.

Sert anahtarlamalı inverterde iletim kayıpları aşağıdaki formül ile ifade edilebilir.

$$W_{on_sert} = \int_{0}^{t_{on}} (V_d - V_d \frac{t}{t_{on}}) I_o \frac{t}{t_{on}} dt$$
(6.1)

(6.1)'den,

$$W_{on_sert} = \frac{V_d I_o t_{on}}{6}$$
(6.2)

(6.2)'den sert anahtarlamalı inverterde iletime girme anındaki kayıplar bulunabilir. (6.2)'den,

$$W_{on} = \frac{150.2, 12.62.10^{-9}}{6} = 3, 28.10^{-6} \text{ W}$$
 olarak bulunur.

Sert anahtarlamalı inverterin iletime girme kaybını yumuşak anahtarlamalı inverterin iletime

girme kaybına bölersek kayıpların kaç kat azaldığını görürüz. Bölme işlemi yapılırsa kayıpların yaklaşık olarak 7,3 kat azaldığı görülür.

İnverter devresinde kesim anında meydana gelen kayıplar aşağıdaki gibi bulunur (I_{Ls1} etkisi ihmal edilmiştir).

$$V_{\rm C} = \frac{1}{C} \int_0^t I_{\rm o} \frac{t}{t_{\rm off}} dt$$
(6.3)

$$W_{off} = \int_{0}^{t_{off}} (I_o - I_o \frac{t}{t_{off}}) V_C dt$$
(6.4)

(6.4)'den,

$$W_{\rm off} = \frac{I_o^2 t_{\rm off}^2}{24C} \tag{6.5}$$

IRFP264N MOSFET'in kataloğundan t_{off} süresi yaklaşık olarak 105ns alınabilir. (6.5)'den kesime girme anındaki kayıplar,

$$W_{off} = \frac{2,12^2.(105.10^{-9})^2}{24.50.10^{-9}} = 4,13.10^{-8} \text{ W}$$
 olarak bulunur.

Sert anahtarlamlı inverterde ise kesime girme süresince oluşan kayıplar aşağıdaki gibi hesaplanabilir.

$$W_{off_sert} = \int_{0}^{t_{off}} (I_o - I_o \frac{t}{t_{off}}) V_d \frac{t}{t_{off}} dt$$
(6.6)

İntegral işlemi yapılırsa MOSFET anahtarlarının kesime girme süresince kayıpları aşağıdaki gibi elde edilir.

$$W_{\text{off_sert}} = \frac{V_d I_o t_{\text{off}}}{6}$$
(6.7)

(6.7)'den kesim süresince meydana gelen kayıplar,

$$W_{off} = \frac{150.2, 12.105.10^{-9}}{6} = 5,56.10^{-6} \text{ W}$$
 olarak bulunur.

Bu değer yumuşak anahtarlamalı inverterden elde edilen kayıplara bölünürse kayıpların kaç kat azaltıldığı bulunabilir. Bölme işlemi yapılırsa kayıpların yaklaşık olarak 134,6 kat azaldığı görülür.

Devre hem yumuşak anahtarlamalı modda hem de sert anahtarlamalı modda çalıştırılmış V_{dc} =100V, m_a =0,6 ve R_o =30 ohm daki sonuçları gözlemlenmiştir. Şekil 6.5 ve 6.6'da S_I anahtarına ait iletime girme anındaki akım ve gerilim değişimleri görülmektedir. Şekil 6.7 ve 6.8'de ise kesime girme anında S_I anahtarına ait akım ve gerilimdeki değişimler görülmektedir.

Şekil 6.5 Sert anahtarlama modunda S_1 anahtarının iletime girme anındaki akım ve gerilimdeki değişimler. (Kanal 1: 1A/div, kanal 2: 50V/div, yatay eksen: 50ns/div)

Şekil 6.6 Yumuşak anahtarlama modunda S_I anahtarının iletime girme anındaki akım ve gerilimdeki değişimler. (Kanal 1: 1A/div, kanal 2: 50V/div, yatay eksen: 250ns/div)

Şekil 6.7 Sert anahtarlama modunda S_1 anahtarının kesime girme anındaki akım ve gerilimdeki değişimler. (Kanal 1: 1A/div, kanal 2: 50V/div, yatay eksen: 50ns/div)

Şekil 6.8 Yumuşak anahtarlama modunda S_1 anahtarının kesime girme anındaki akım ve gerilimdeki değişimler. (Kanal 1: 1A/div, kanal 2: 50V/div, yatay eksen: 100ns/div)

 V_{dc} =120V için S_1 anahtarına ait akım ve gerilim değişimleri Şekil 6.9'da görülmektedir. Şekil 6.9'da görüldüğü gibi anahtar üzerinde ek bir gerilim ve akım stresi oluşmaktadır. Belirli bir yükte, anahtar üzerinde oluşan gerilim stresi C_r ve L_r rezonans elamanları değeri değiştirilerek optimum seviyeye ayarlanabilir. Anahtar üzerindeki akım stresi ise L_s endüktans değeri değiştirilerek optimum seviyeye getirilebilir. L_s endüktansı anahtar üzerinde akım stresi oluşturmayacak şekilde küçük, geniş yük aralığında yumuşak anahtarlanmanın sağlanması için de olabildiğince büyük seçilmesi gerekir.

Şekil 6.9 *S*₁ anahtarı üzerindeki akım ve gerilim değişimleri. (Kanal 1: 2A/div, kanal:2 50V/div, yatay eksen: 2.5us/div)

İnverter güç devresinin çıkışına bağlanan *LC* filtresi yaklaşık 1.7 kHz e ayarlanmıştır. V_{dc} =100V, m_a =0,6 ve R_o =30 ohm da yumuşak ve sert anahtarlama modundaki çıkış gerilim değişimi Şekil 6.10 ve 6.11'de görülmektedir. Simulasyon sonuçlarında olduğu gibi yumuşak anahtarlamalı sistemdeki çıkış gerilimi sert anahtarlamalı olandan daha düzgündür.

Şekil 6.10 Yumuşak anahtarlamalı inverter çıkış gerilimi. (20V/div, 5ms/div)

Şekil 6.11 Sert anahtarlamalı inverter çıkış gerilimi. (20V/div, 5ms/div)

7. SONUÇ

Uygulama devresi gerçekleştirilen kayıpsız pasif yumuşak anahtarlamalı tek fazlı tam köprü inverter devresi FV sistemlerde kullanıldığında sistemin toplam verimine etkisi son derece yüksektir. Yumuşak anahtarlama pasif elemanlar tarafından doğal olarak yapıldığından devrenin kontrolü daha kolaydır ve devrenin maliyeti de aktif anahtarlamalı olanlara göre oldukça düşüktür. Yumuşak anahtarlamalı inverter devresi sert anahtarlamalı güç devresine 11 (6 hızlı diyot, 3 kondansatör ve 2 endüktans) eleman ilave edilerek elde edilmiştir. Ayrıca laboratuvarda gerçekleştirilen inverter devresinin güvenilirliği aktif yumuşak anahtarlamalı inverterlere göre daha fazladır.

Pasif elemanlar ile gerçekleştirilen yumuşak anahtarlamalı inverter devresi yüksek frekanslarda (50kHz) sıfır akımda iletime (ZCS) girmeyi ve sıfır gerilimde kesime (ZVS) girmeyi sağlamaktadır. Devrede MOSFET'ler kullanıldığından iletime girme anında MOSFET'in parazitik kondansatörünün deşarj kaybı engellenememektedir. İletime girme anında kayıpların yaklaşık 7,3 kat azaldığı, kesime girme anında ise kayıpların 134,7 kat azaldığı görülmektedir.

Yumuşak anahtarlamalı inverterin çıkış gerilimindeki harmoniklerin bir kısmı *LC* filtre ile elemine edilmiştir. Yumuşak anahtarlamalı inverter devresinin çıkışından elde edilen sinüsoidal gerilim sert anahtarlamalı inverter devresinin çıkış gerilimine göre daha düzgündür.

KAYNAKLAR

Amorndechaphon, D., Premrudeepreechhacharn, S., ve Higuchi, K., (2008), "An Improved Soft-Switching Single Phase Inverter for Small Grid-Connected PV-System", Industrial Electronics, 2008, IECON 2008, 34th Annual Conference of IEEE, Orlando, FL, 2125-2130.

Amorndechaphon, D., Premrudeepreechhacharn, S., ve Higuchi, K., (2009), "Small Grid-Connected PV-System with Lossless Passive Soft-Switching Technique", ICROS-SICE International Joint Conference 2009, Ağustos 18-21, 2009, Fukuoka International Congress Center, Fukuoka, 424-429.

Bodur, H., (2010), Güç Elektroniği, Birsen Yayınevi, İstanbul.

Boegli, U. ve Ulmi, R., (1986), "Realization of a New Inverter Circuit for Direct Photovoltaic Energy Feedback into the Public Grid", Industry Applications, IEEE Transactions on, IA-22(2):255-258.

Bose, B., (2006), Power Electronics and Motor Drives Advances and Trends, Academic Press, USA.

Calais, M. ve Agelidis, V.G., (1998), "Multilevel Converters for Single-Phase Grid Connected Photovoltaic Systems-An Overview", Industrial Electronics, 1998, Proceedings, ISIE 98, IEEE International Symposium on, Pretoria, 1:224-229.

Duan, R.Y., ve Chang, C.T., (2008), "A Novel High-Efficiency Inverter for Stand-Alone and Grid-Connected Systems", Industrial Electronics and Applications, 2008, ICIEA 2008, 3rd IEEE Conference on, Singapore, 557-562.

Espinoza, J.R., (2001), Power Electronics Handbook, Academic Press, USA.

Hirachi, K., Matsumoto, K., Yamamoto, M. ve Nakaoka, M., (1998), "Improved Control Implementation of Single-Phase Current-Fed PWM Inverter for Photovoltaic Power Generation", Power Electronics and Variable Speed Drives, 1998, Seventh International Conference on, London, 63-68.

Kim, Y.H., Kim, J.G., Ji, Y.H., Won, C.Y., ve Jung, Y.C., (2010), "Photovoltaic Parallel Resonant DC-Link Soft Switching Inverter using Hysteresis Current Control", APEC, 2010 Twenty-Fifth Annual IEEE, Palm Springs, CA, 2275-2280.

Kim, H.J., Chung, Y.H., Lee, K.S., Jon, Y.S. ve Kim, K.S., (2007), "Performance Analysis of Soft-switching Inverter for the Photovoltaic Power System", Power Electronics, 2007, ICPE 07, 7th International Conference on, Daegu, 436-439.

Matsuura, I., Smith, K.M., ve Smedley, K.M., (1998), "A Comparison of Active and Passive Soft Switching Methods for PWM Converters", Power Electronics Specialists Conference, 1998, PESC 98 Record, 29th Annual IEEE, 1:94-100.

Mohan, N., Undeland, T.M. ve Robbins, W.P., (2003), Güç Elektroniği Çeviriciler Uygulamalar ve Tasarım, (N. Tuncay, M. Gökaşan ve S. Boğosyan), Literatür Yayıncılık, Beyoğlu, İstanbul, Türkiye.

Nayar, C.V., Islam, S.M., ve Sharma, H., (2001), Power Electronics Handbook, Academic Press, USA.

Oishi, H., Okada, H., Ishizaka, K., ve Itoh, R., (2002), "Single-Phase Soft-Switched Current Source Inverter for Utility Interactive Photovoltaic Power Generation System", Power Conversion Conference, 2002, PCC Osaka 2002, Osaka, 2:632-637.

Shiraishi, K., Imamura, K., Fujii, Y., Nakamura, M., Ahmed, T., Nakaoka, M., ve Lee, H.W., (2004), "Active Auxiliary Resonant Snubber-Assisted Soft-Switching PWM Inverter with Optimum Gate Pulse Pattern Sequences and Its PV-System Application", Power Electronics Specialists Conference, 2004, PESC 04, 2004 IEEE 35th Annual, Aachen, Germany, 5:3971-3977.

Smith, K.M. ve Smedley, K.M., (2000), "Lossless Passive Soft-Switching Methods for Inverters and Amplifiers", Power Electronics, IEEE Transactions on, CA, 15(1):164-173.

Smith, K.M. ve Smedley, K.M., (2001), "Engineering Design of Lossless Passive Soft Switching Methods for PWM Converters-Part I: With Minimum Voltage Stress Circuit Cells", Power Electronics, IEEE Transactions on, CA, 16(3):336-344.

Smith, K.M. ve Smedley, K.M., (2002), "Engineering Design of Lossless Passive Soft Switching Methods for PWM Converters-Part II: With Non-Minimum Voltage Stress Circuit Cells", Power Electronics, IEEE Transactions on, CA, 17(6):864-873.

Treble, F.C., (1980), "Solar Cells", Physical Science, Measurement and Instrumentation, Management and Education-Reviews, IEE Proceedings A, 127(8):505-527.

EKLER

- Ek 1 ICL8038 Sinüs, Üçgen, Kare, Testere ve Darbe Generatörü
- Ek 2 NE531 OPAMP
- Ek 3 IRFP264N MOSFET
- Ek 4 TLP250 MOSFET, IGBT Sürme Entegresi
- Ek 5 MUR1560 Hızlı Diyot

80

intersil

ICL8038

File Number 2864.4

Data Sheet

April 2001

Precision Waveform Generator/Voltage Controlled Oscillator

The ICL8038 waveform generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from 0.001Hz to more than 300kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic technology, using Schottky barrier diodes and thin film resistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than 250ppm/^oC.

Features

- Low Frequency Drift with Temperature..... 250ppm/^oC
- High Linearity0.1% (Triangle Wave Output)
- Wide Frequency Range0.001Hz to 300kHz

- Simultaneous Sine, Square, and Triangle Wave Outputs
- Easy to Use Just a Handful of External Components Required

Ordering Information

PART NUMBER	STABILITY	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
ICL8038CCPD	250ppm/ ^o C (Typ)	0 to 70	14 Ld PDIP	E14.3
ICL8038CCJD	250ppm/ ^o C (Typ)	0 to 70	14 Ld CERDIP	F14.3
ICL8038BCJD	180ppm/ ^o C (Typ)	0 to 70	14 Ld CERDIP	F14.3
ICL8038ACJD	120ppm/ ^o C (Typ)	0 to 70	14 Ld CERDIP	F14.3

Pinout

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-898-INTERSIL or 321-724-7143 | Intensil and Design is a trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2001, All Rights Reserved

High slew rate operational amplifier

NE/SE531

Product specification

DESCRIPTION

The 531 is a fast slewing high performance operational amplifier which retains DC performance equal to the best general purpose types while providing far superior large-signal AC performance. A unique input stage design allows the amplifier to have a large-signal response nearly identical to its small-signal response. The amplifier is compensated for truly negligible overshoot with a single capacitor. In applications where fast settling and superior large-signal bandwidths are required, the amplifier out-performs conventional designs which have much better small-signal response. Also, because the small-signal response is not extended, no special precautions need be taken with circuit board layout to achieve stability. The high gain, simple compensation, and excellent stability of this amplifier allow its use in a wide variety of instrumentation applications.

FEATURES

- 35V/µs slew rate at unity gain
- Pin-for-pin replacement for µA709, µA748, or LM101
- Compensated with a single capacitor

ORDERING INFORMATION

PIN CONFIGURATIONS

- Same low drift offset null circuitry as µA741
- Small-signal bandwidth 1MHz
- Large-signal bandwidth 500kHz
- True op amp DC characteristics make the 531 the ideal answer to all slew rate limited operational amplifier applications

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE531N	0404B
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	SE531FE	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	0°C to +70°C	NE531FE	0580A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
Vs	Supply voltage	±22	V
P _{D MAX}	Maximum power dissipation		
	T _A =25°C (still-air) ¹		
	FE package	780	mW
	N package	1160	mW
	Differential input voltage	±15	V
V _{CM}	Common-mode input voltage ²	±15	V
	Voltage between offset null and V-	±0.5	V
T _A	Operating ambient temperature range		
	NE531	0 to +70	°C
	SE531	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C
	Output short-circuit duration ³	indefinite	

NOTES:

1. The following derating factors should be applied above 25°C:

- FE package at 6.2mW/°C
- N package at 9.3mW/°C

2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage

3. Short-circuit may be to ground or either supply. Rating applies to +125°C case temperature or to +75°C ambient temperature.

Ek 3 IRFP264N MOSFET

IRFP264N

International **TOR** Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 5/01

www.irf.com

1

- Output current (IO): ±1.5A (max.)
- Switching time (tpLH/tpHL): 1.5µs(max.)
- Isolation voltage: 2500V_{rms}(min.)
- UL recognized: UL1577, file No.E67349
- Option (D4) type
 - VDE approved: DIN VDE0884/06.92,certificate No.76823 Maximum operating insulation voltage: 630VPK Highest permissible over voltage: 4000VpK

(Note) When a VDE0884 approved type is needed, please designate the "option (D4)"

Creepage distance: 6.4mm(min.) Clearance: 6.4mm(min.)

Schmatic

connected between pin 8 and 5 (See Note 5).

Truth Table

			Tr2
Input	On	On	Off
LED	Off	Off	On

11-10C4

11-10C4

 2.54 ± 0.25

TOSHIBA

Weight: 0.54 g

Ek 5 MUR1560 Hızlı Diyot

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Order this document by MUR1520/D

MUR1520 MUR1540

MUR1560

Motorola Preferred Devices

ULTRAFAST

RECTIFIERS

15 AMPERES

200-400-600 VOLTS

SWITCHMODE[™] Power Rectifiers

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state–of–the–art devices have the following features:

- · Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- · High Voltage Capability to 600 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- · Shipped 50 units per plastic tube
- Marking: U1520, U1540, U1560

CASE 221B-03 TO-220AC PLASTIC

MAXIMUM RATINGS

		MUR			
Rating	Symbol	1520	1540	1560	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	600	Volts
Average Rectified Forward Current (Rated V _R)	lF(AV)	1 @ T _C :	5 = 150°C	15 @ T _C = 145°C	Amps
Peak Rectified Forward Current (Rated V _R , Square Wave, 20 kHz)	IFRM	3 @ T _C :	0 = 150°C	30 @ T _C = 145°C	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	200	150		Amps
Operating Junction Temperature and Storage Temperature	TJ, Tstg	-65 to +175		°C	
THERMAL CHARACTERISTICS					
Maximum Thermal Resistance, Junction to Case	R _{0JC}	1.5		°C/W	
ELECTRICAL CHARACTERISTICS					
Maximum Instantaneous Forward Voltage (1) (iF = 15 Amps, T _C = 150°C) (iF = 15 Amps, T _C = 25°C)	۷F	0.85 1.05	1.12 1.25	1.20 1.50	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	İR	500 10	500 10	1000 10	μA
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/µs)	t _{rr}	35		60	ns

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

SWITCHMODE is a trademark of Motorola, Inc.

Preferred devices are Motorola recommended choices for future use and best overall value.

84

© Motorola, Inc. 1996

ÖZGEÇMİŞ

Doğum tarihi	05.03.1984	
Doğum yeri	Havran/Balıkesir	
Lise	1998-2002	Edremit Süper Lisesi
Lisans	2003-2008	Y.T.Ü Elektrik-Elektronik Fak. Elektrik Müh. Bölümü
Yüksek Lisans	2008-2010	Y.T.Ü Fen Bilimleri Enstitüsü Elektrik Müh. Bölümü, Elektrik Makinaları ve Güç Elektroniği