Özet:
Türk İşaret Dili Alfabesi harf işaretleri görüntüler üzerinden tanınmıştır.Bu amaçla birinci aşamada yönelim açısını kullanarak el nesnelerini hizalayan yeni bir hizalama yöntemi geliştirilmiştir.Hizalanan el işaretleri kullanılarak yapılan sınıflayıcı karşılaştırmasında en iyi sınıflamanın 1NN ve SVM sınıflayıcıları ile sağlandığı görülmüştür.İkinci aşamada Genelleştirilmiş Hough Transformu, ilgi bölgeleri (interest regions) ve yerel tanımlayıcılar (local descriptors) kullanan bir tanıma sistemi gerçeklenmiştir.Üçüncü aşamada ilgi bölgesi belirleyicilerinin (interest region detector) bir karşılaştırması yapılmış ve EdgeLap (Mikolajczyk vd., 2003) bölgelerinin en iyi tanıma başarısını sağladığı gözlemlenmiştir. İlgi bölgelerinin kalitesini sayısallaştırılmak amacı ile yeni bir ayırt edicilik istatistiği geliştirilmiş ve bu istatistik açısından bakıldığında SURF (Bay vd., 2008) ve DoG (Lowe, 2004)belirleyicilerinin öne çıktığı görülmüştür.Geliştirilen ayırt edicilik istatistiği ilgi bölgesi belirleyicisinin bölgelerinin başarısını rastgele üretilen bölgelerin başarısı ile kıyaslamaktadır. Bu amaçla yeni bir rastgele bölge üreticisi, ExpRand, geliştirilmiştir. Yapılan denemelerde ExpRand üreticisinin en iyi belirleyici ile eş tanıma başarısı verdiği ve ilgi bölgesi belirleyicilerinin birçoğundan daha ayırt edici olduğu gözlemlenmiştir.