| dc.description.abstract |
Recent advances in the automotive industry enabled us to build fast, reliable, and comfortable
vehicles with various safety features. Roads are designed and made safer than
ever before as well. Nevertheless, analyses and reports show that traffic accidents still remain
one of the major causes of death and/or serious injuries around the globe. Intelligent
transportation systems (ITSs) are expected to minimize the total number of accidents, if
not prevent them completely.
Safety is not the sole objective of ITS. Routing optimization, green environments with
reduced fuel consumption and carbon emission, and infotainment applications are also
prominent targets of ITS. It is clear that all of these objectives, envisions, and services
require some sort of a communications network structure. Note that two key components
of any transportation system are vehicles and the transportation infrastructure. Therefore,
it is easier to analyze the network structure required by ITS in terms of V2V and vehicle–
to–infrastructure (V2I) networks. A V2V network in ITS represents a set of physically
close–by vehicles which are communicating with each other within a local geographical
region. V2I network, on the other hand, consists of vehicles that communicate with the
transportation infrastructure. Due to the high–level mobility, signaling in both V2V and
V2I networks is established via wireless links. Generally, ITS is considered to be supported
by a backhaul over the V2I network so that it is connected to the core or backbone
network.
Among V2I and V2V networks, V2V networks receive slightly more attention compared
to V2I networks due to the following reasons: First of all, network topology for V2V networks
is dynamic and of transient nature because of high–level of mobility. This implies
that network entry, establishing connection, and maintaining a high–level of quality of
service (QoS) are relatively difficult tasks as compared to those in traditional terrestrial
communications networks such as cellular networks. Second, network traffic consists of
several types of messages including emergency–related data with various QoS requirements.
From this perspective, information flow, data integrity, authorization, and security
become life–critical concerns. In addition, in case there are multiple V2V networks in
the vicinity, relaying especially the critical emergency–related messages from one node
to another needs to be considered very carefully. In this regard, establishing a connection
between transient networks along with the aforementioned information flow, data
integrity, and security concerns is a serious challenge for the V2V networks. Note that
none of the concerns listed here poses severe problems for the V2I networks given that
the transportation infrastructure can handle the signaling seamlessly.
In order to tackle the problems and concerns listed above, generally the traditional layered
architecture is adopted in the literature for V2V networks. Although it is a very
powerful and successful strategy, layered architecture falls short in solving some critical
issues especially in V2V networks such as dynamic resource allocation. This points out
that a cross–layer approach could provide different perspectives while benefiting from the
layered architecture. At the end, it should be stated here that the standardization efforts
are not mature enough yet for V2V networks. For instance, network entry procedures
and the non-emergency/service channel selection mechanisms are not explicitly defined
in the draft version of the standard. This automatically indicates that there are some design
gaps which could be supported by the findings of research carried out in this field
especially with the cross–layer support. Hence, in this dissertation, a novel cross–layer
predictive channel selection mechanism is proposed for V2V networks in order to minimize
the average number of collisions. Both physical layer (PHY) and medium access
control (MAC) layers are incorporated into the cross–layer design. At PHY layer, first
a novel, fractional rate sensing mechanism is proposed, which reduces the total number
of computations in order to obtain sufficient statistics for the decision. Next, the necessary
condition for the optimum predictive sensing strategy is derived and validated by the
empirical data obtained by field measurements. It is also shown that any linear predictive
strategy outperforms the generalMarkovian–based prediction schemes under various traffic
load scenarios in case the derived necessary condition is satisfied. Finally, a protocol
which is developed based on master–slave architecture along with a nomination procedure
operating on a single universal broadcast channel is proposed at the MAC layer. The
proposed protocol is fed with the output of the PHY layer predictive channel selection
mechanism and completes the network entry procedure for V2V networks. |
en_US |
| dcterms.abstract |
Otomobil endüstrisindeki gelişmeler, pek çok güvenlik önlemi olan hızlı ve konforlu araçlar
üretilmesini sağlamıştır. Bu sayede otoyolların daha güvenli hale getirilmesi amaçlanmıştır.
Fakat yayınlanan raporlara göre trafik kazaları, halen dünya çapında en fazla can
kaybı sebeplerinden biridir. Trafik kazalarını azaltmak için, araçları ve ileti¸sim altyapısını
birbiri ile haberleştiren akıllı taşıma sistemleri (ATS) kullanılabilir.
Güvenlik odaklı tasarlanan ATS’lerin; rota optimizasyonu, eğlence uygulamaları, azaltılan
yakıt tüketimi ve buna bağlı karbon emisyonunu düşürmek gibi başka hedefleri de
bulunmaktadır. Tüm bu hedefler ancak araçların birbirleri ve çevreleriyle haberleşmesi ile
gerçekleştirilebilir. Bu haberleşme sistemi, belirli bir yerel bölgede fiziksel olarak yakın
olan araçların kendi aralarında araçtan-araca (AR-AR) haberleştiği ve bu araçların çeşitli
ileti¸sim altyapıları ile araçtan-altyapıya (AR-ALT) haberleştiği ağlar olmak üzere iki ana
kısımda değerlendirilebilir. Kablosuz olarak ileti¸sim sağlayan bu ağlar, hareket halinde
olan araçlardan ötürü çoğu zaman yüksek devingenliğe sahiptir. Bu devingenlik, özellikle
AR-AR ağlarının topolojilerinin süreklilik arz etmemelerine neden olur. Bu yüzden, hücresel
alar gibi geleneksel kara yayınlarına kıyasla, AR-AR bağlantılarının oluşturulması,
devam ettirilmesi ve servis kalite gereksinimlerinin (SKG) sağlanması çok daha zordur.
AR-AR haberleşmesi acil durum mesajları dahil olmak üzere pek çok SKG’ye sahip farklı
mesaj türlerini içinde barındırır. Acil durum mesajlarının birbirine yakın araçlar arasında
hızlı ve doğru bir biçimde iletilmesi büyük bir öneme sahiptir. Bu durum bilgi akı¸sının
sağlanması, veri bütünlüğünün korunması, yetkilendirme ve güvenlik konularını hayati
kılar. Olası hataların can ve mal kaybına sebep olabileceği hassas bir yapıya sahip olan
AR-AR ağları için ileti¸sim aksaklıkları ciddi sorunlar teşkil etmektedir. Bu sorunların
AR-ALT ağlarında, kablolu ileti¸sim altyapısının sinyalleşmeyi kesintisizce yapabildiği
varsayıldığı için nispeten daha kolay çözülebileceği düşünülmektedir. AR-AR ağlarında
ise bu sorunları çözmek için genellikle literatürde katmanlı yapılar tercih edilmektedir.
Bu yapılar çok güçlü ve başarılı olmalarına rağmen, devingen olarak kaynak tahsisi yapan
AR-AR ağlarında gecikmelere sebep olmakta ve bu ağlara has bazı sorunlarının çözümü
için yetersiz kalmaktadır. Katmanlar-arası bir tasarım, daha esnek bir yapı sağladığından
dolayı sözü edilen sorunlar için uygun bir çözüm adayı olabilir.
AR-AR ağları için standartlaştırma çalışmaları henüz tamamlanmamış olup mevcut standartlaştırma
çalışmalarında ağa dahil olma prosedürleri ve servis kanalı seçme yöntemlerinden
bahsedilmemektedir. Bu durum standartlarda, çeşitli katmanlarda tasarım boşluklarının
olduğunu ortaya koymaktadır. Doğal olarak bu boşluklar özellikle katmanlar-arası
araştırma çözümleri ile desteklenip tamamlanabilir.
Bu tezde AR-AR ağları için ortalama çakışma sayısını en aza indirecek yeni bir katmanlararası
tahmine dayalı kanal seçme mekanizması önerilmiş ve hem fiziksel katmanı hem
de ortam-eri¸sim katmanını içeren tümle¸sik katmanlar-arası bir yapı ortaya koyulmuştur.
Öncelikle fiziksel katmanda karar verebilecek kadar yeterli istatistiğin toplanması için
gereken hesaplama sayısını azaltan yeni bir basamaklı algılama yöntemi geliştirilmiştir.
Daha sonra tahmine dayalı algılama stratejisi için gereken koşullar kuramsal olarak
türetilmiş ve sonuçlar toplanan saha verileri ile karşılaştırılmıştır. Gerekli koşulların sağlandı
ğı çeşitli trafik senaryolarında önerilen doğrusal tahmin stratejilerinin, genel Markov
tabanlı tahmin stratejilerine oranla daha iyi performans sağladığı görülmüştür. Son olarak
ortam-eri¸sim katmanında evrensel yayın kanalı üzerinde çalı¸san adaylık sistemine bağlı
sunucu-istemci mimarisini kullanan bir protokol geliştirilmiştir. Bu protokol fiziksel katmanın
tahmine dayalı kanal seçme yöntemi verileri ile beslenerek olası en uygun kanal
seçilmiş ve ağa giriş prosedürleri tamamlanmıştır. |
TR |