Abstract:
Kent yönetiminde, yapılaşmanın izlenmesi ve mevcut durumun tespit edilmesi kontrol ve karar verme süreçleri için oldukça önemlidir. Kentlerde dönüşüm projelerinin uygulanmaya başlanmasıyla mevcut binalara ait doğru, güncel ve hızlı bina verisi ihtiyacı artmıştır. Özellikle deprem kuşağında yer alan kentlerde klasik ölçme yöntemleri ve fotogrametrik üretim süreçlerine gerek duyulmadan otomatik bina çıkarımı gündeme gelmiştir. Bu çalışmada aynı platform üzerine yerleştirilen LiDAR, sayısal kamera ve GPS/IMU'dan oluşan çoklu algılama sistemi ile nesneye yönelik kural tabanlı sınıflandırma yöntemi kullanılarak otomatik bina çıkarımı olanakları araştırılmıştır. Bu amaçla, otomatik bina çıkarımında kullanılan mevcut yöntemler incelenmiş, yurtdışında ve ülkemizde yapılan ilgili araştırmalara yer verilmiştir. Piksel tabanlı sınıflandırma ve nesne tabanlı sınıflandırma yöntemleri kullanılarak otomatik bina çıkarımı konusunda yaşanan problemler tespit edilmiştir. Otomatik bina çıkarımında karşılaşılan en yaygın problem, bina sınıfı ile bina sınıfı olmayan (yeşil alan, zemin vb.) sınıfların karışmasıdır. Bu çalışma ile bina sınıfı ile diğer sınıfların karışması probleminin çözümü için sınıflar arasındaki farklılıkların tespit edilip, sınıflandırma sonucunda karışan objelerin ilgili sınıflara atanmasına, iyileştirilmesine dayanan bir yaklaşım geliştirilmiştir. Sınıflandırma aşamasında yeşil alan, bina sınırı, gölge ve zemin gibi yardımcı sınıflar oluşturularak otomatik olarak çıkarılan bina sınıfının doğruluğunun artırılması sağlanmıştır. Otomatik bina çıkarımı için geliştirilen yaklaşımda, NDVI, eğim, Hough, Canny ve bant farkı görüntüleri gibi yardımcı veriler çoklu algılama sistemi ile toplanan veriler yardımıyla oluşturulmuş ve hedef sınıf olan bina sınıfının iyileştirilmesinde kullanılmıştır. Geliştirilen yaklaşım ile kural setleri oluşturulmuş ve oluşturulan kural setleri Amerika Birleşik Devletleri'ne ait Çalışma Alanı (1) ve Ülkemizde Sivas iline ait Çalışma Alanı (2) de test edilmiştir. Geliştirilen yaklaşım ile oluşturulan kural setleri kullanılarak Çalışma Alanı (1) ve Çalışma Alanı (2)'de otomatik olarak çıkarılan bina sınıfı için doğruluk analizi yapılmıştır. Sınıflandırma sonucu Çalışma Alanı (1) için bütünlük %96.73 ve doğruluk %95.02, Çalışma (2) için bütünlük %80 ve doğruluk %85 değerleri elde edilmiştir. Çoklu algılama sistemi ile elde edilen Çalışma Alan (1) ve (2) verileri kullanılarak otomatik bina çıkarımında karşılaşılan sorunlar ve bu sorunların çözümü için geliştirilen çözüm önerileri sunulmuştur.