dc.description.abstract |
Gelişen sayısal görüntüleme teknolojisi, günümüzde birçok alanda hayatı kolaylaştırmanın yanında bir ihtiyaç haline gelmiştir. Teknolojinin gelişmesi ile birlikte görüntüleme teknolojileri de ilerlemiş, hiperspektral görüntüleme gibi ileri seviyede görüntüleme imkânları oluşmuştur. Hiperspektral görüntülerin kullanılmasıyla birlikte spektral düzlemde dar band aralıklarına sahip çok büyük verilerle işlemler yapılmaya başlanmış, sınıflandırma başarımlarının yükselmesine karşılık yüksek hesaplama maliyetleri ortaya çıkmıştır. Bunun için de boyut indirgeme ihtiyacı doğmuştur. Bu çalışmada farklı boyut indirgeme yöntemleri hiperspektral veri setlerine uygulanmış ve farklı sınıflandırıcılar kullanılarak sınıflandırma başarımları analiz edilmiştir. Temel Bileşen Analizi ve Ayrık Temel Bileşen Analizi yöntemleri ile özellik çıkarımı ya da band seçimi yoluyla boyut indirgeme yapılmış ardından, indirgenmiş veriler çeşitli eğiticili ve eğiticisiz öğrenme yöntemleri ile eğitilerek sınıflandırılmışlardır. Öğrenme yöntemi olarak k En Yakın Komşuluk, Destek Vektör Makineleri, K-Ortalama ve Hiyerarşik Kümeleme yöntemleri seçilmiştir. Bu çalışmada Ayrık Temel Bileşen Analizi yönteminin sonucunu iyileştirme hedeflenmiş, buradan yola çıkılarak bandları gruplama yoluna gidilmiştir. Klasik yöntemden farklı olarak ayrıklık katsayılarının tepe yaptığı yerel maksimum noktalara bakılmış ve bu noktalar belli adım aralıkları ile gruplandırılarak band aralıkları içerisinden seçilmişlerdir. xiii Band seçme işlemi 3, 5 ve 10 band seçimi için denenmiştir. Eğiticili sınıflandırıcı sonuçlarının başarıları karışıklık matrisi yardımıyla belirlenmiştir. Tüm sistem başarısı için doğruluk hesabı yapılmış, ayrıca kesinlik, geriçağırım değerlerinden F1_skor değeri hesaplanarak sınıf başarıları hesaplanmıştır. Kümeleme sonuçları için ise Ayarlanmış Rasgelelik Endeksi yöntemi ile performans ölçümü yapılmıştır. Tüm boyut indirgeme ve sınıflandırma işlemleri AVIRIS sensörü ile alınmış Indian Pines ve KSC görüntülerine uygulanmıştır. Ayrık Temel Bileşen Analizine yapılan farklı yaklaşımın sonuçlara olumlu etki ettiği her iki veri setinde de görülmüştür. |
|